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Figure 1. Estimated tail indices for S&P 500.
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1. Heavy-tailed matrices with iid entries: Finite p

•We consider p× n matrices

X = Xn =
(
Xit

)
i,...,p;t=1,...,n

,

where the iid entries have a distribution with heavy tails

P(X > x) ∼ p+

L(x)

xα
and P(X < −x) ∼ p−

L(x)

xα

for a slowly varying function L, some α > 0, p+ + p− = 1.

•Assume E[X] = 0 if expectation is finite.
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• Let X1, X2 be iid copies of X.

• Then

P(X2 > x) ∼
L(
√
x)

xα/2

• If X > 0 Embrechts and Goldie (1984):

P(X1X2 > x) ∼
L̃(x)

xα

for some slowly varying L̃.

• If X > 0 and some additional condition holds Davis and Resnick (1985)

P(X1X2 > x)

P(X > x)
→ 2E[Xα] .

• If X,σ > 0 independent and E[σα+δ] <∞, then by Breiman (1965)

P(σX > x)

P(X > x)
→ E[σα] .
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• Therefore Gnedenko and Kolmogorov (1949), Feller (1971), Resnick (2007)

a−2
n

( n∑
t=1

X2
it − cn

) d→ ξ
(α/2)
i , α ∈ (0, 4) ,

where P(|X| > an) ∼ n−1 and (ξ
(γ)
i ) are iid γ-stable, γ ∈ (0, 2],

and for i 6= j,

b−1
n

(∑n
t=1XitXjt − cn

) d→ ξ
(2∧α)
i , α ∈ (0, 4) ,

where P(|X1X2| > bn) ∼ n−1 for α ∈ (0, 2) and bn =
√
n for

α ∈ (2, 4).

• Since a2
n ≈ n2/α and bn ≈ n1/(2∧α),∥∥∥a−2

n (XX′)− diag(XX′)
)∥∥∥2

2
≤
b2
n

a4
n

p∑
i=1

( 1

bn

( n∑
t=1

XitXjt − cn
))2 P→ 0 .
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• Therefore, by Weyl’s inequality,

a−2
n max

i=1,...,p

∣∣λ(i) − λ(i)(diag(XX′))
∣∣

≤ a−2
n

∥∥∥XX′ − diag(XX′)
∥∥∥

2

P→ 0 ,

where λ(1)(A) ≥ · · · ≥ λ(p)(A) for any symmetric matrix A,

λi = λi(XX′),

•Hence for α ∈ (0, 4), ξ
(α/2)
(1) ≥ · · · ≥ ξ(α/2)

(p)

a−2
n

(
λ(i) − cn

)
i=1,...,p

d→
(
ξ

(α/2)
(i)

)
i=1,...,p

In particular,

n

a2
n

(λ(1)

n
− E[X2] 1(2,4)(α)

) d→ max
i=1,...,p

ξ
(α/2)
i .



7

• The unit eigenvector Vj associated with λ(j) = λLj can be

localized:

‖Vj − eLj‖
P→ 0 .

•We have for α ∈ (2, 4),

1

a2
nc
p−1
n

(
det(XX′)− cpn

)
=

p∑
i=1

a−2
n (λ(i) − cn)

i−1∏
j=1

λ(j)

cn

d→
p∑
i=1

ξ
(α/2)
(i) =

p∑
i=1

ξ
(α/2)
i

d
= p2/αξ

(α/2)
1 .
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2. Heavy-tailed matrices with regularly varying stochastic

volatility entries: p fixed

•We consider p× n matrices

X = Xn =
(
Xit

)
i,...,p;t=1,...,n

,

•A stochastic volatility model is given by

Xit = σitZit for independent σ- and Z-fields

where (σit) is a strictly stationary non-negative field and (Zit)

has mean zero (if exists).
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•We assume either

Case (1) E[σα+δ] <∞ and

P(Z > x) ∼ p+

L(x)

xα
and P(Z < −x) ∼ p−

L(x)

xα

for a slowly varying function L, some α > 0, p+ + p− = 1.

Then, by Breiman (1965),

P(±X > x) ∼ E[σα] P(±Z > x) .

Case (2) E[|Z|α+δ] <∞ and

log σit =
∑
kl

ψklηi−k,t−l for an iid field (ηij), non-neg. (ψkl)

such that eη is regularly varying with index α > 0 and

maxklψkl = 1. Then σ is regularly varying with index α and

P(±X > x) ∼ E[Zα±] P(σ > x) .
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•Case (1) Analogous to iid case.

The diagonal of XX′ dominates and diagonal elements

converge to iid α/2-stable random variables.

•Case (2)

Case (2a) E[eαη] =∞. In this case

P(eη1eη2 > x)

P(eη > x)
→∞

Case (2b) E[eαη] <∞ and an additional condition. In this

case

P(eη1eη2 > x)

P(eη > x)
→ 2E[eαη] .
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• Example. Consider σit = eηit+ηi−1,t . Then

σ2
it = e2ηit+2ηi−1,t ,

σitσi−1,t = eηit+2ηi−1,t+ηi−2,t .

• In Case (2a),

σ2
it, σitσi−1,t, σitσi+1,t are regularly varying with index α/2

but P(σ2
it > x))/P(σitσi−1,t > x)→∞

while σitσi−k,t, k > 2, is regularly varying with index α.

Hence the tails of σ2
it dominate and the diagonal elements of

a−2
n XX′ dominate the entries off the diagonal.

The limit behavior of XX′ and its eigenvalues are analogous

to the iid case.
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Figure 2. Eigenvalues (left) and unit eigenvector corresponding to the largest eigenvalue (right): Cases (1) and (2a)
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• In Case (2b),

σ2
it, σitσi−1,t, σitσi+1,t are regularly varying with index α/2

and have equivalent tails

while σitσi−k,t, k > 2, is regularly varying with index α.

Hence the tails of σ2
it, σitσi−1,t, σitσi+1,t dominate a−2

n XX′

off the diagonal and first subdiagonals.

In this case a−2
n XX′ has α/2-stable dependent limits on the

diagonal and first subdiagonals; the limiting eigenstructure is

not evident.
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Figure 3. Eigenvalues (left) and unit eigenvector corresponding to the largest eigenvalue (right): Case (2b)
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against SEK
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3. Heavy-tailed matrices with iid entries: p increases with n

•Assume the previous iid conditions on

X =
(
Xit

)
i=1,...,p;t=1,...,n

This means: Xit iid, regular variation with α ∈ (0, 4), E[X] = 0

if expectation exists.

•We assume

p = pn = nβ`(n) ,

for some β > 0 and some slowly varying function `(n).

• Then

a−2
np

∥∥XX′ − diag(XX′)
∥∥

2

P→ 0 , β ∈ (0, 1] ,

a−2
np

∥∥X′X− diag(X′X)
∥∥

2

P→ 0 , β ∈ (1,∞) .
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Note: XX′ and X′X have the same positive eigenvalues.

•One needs Nagaev-type large deviations: for i 6= j,

p2 P
(
a−2
np

∣∣ n∑
t=1

XitXjt

∣∣ > ε
)
≈ p2 n P(|X1X2| > εa2

np)
P→ 0 ,

provided β ≤ 1.

• For β > 1, consider X′X, interchange the roles of n and p, and

observe that n = p1/β ˜̀(n) for some slowly varying ˜̀.
•Write λ1, . . . , λp for the eigenvalues of XX′ and

λ(p) ≤ · · · ≤ λ(1) .
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We also write

D→i =
n∑
t=1

X2
it = λi(XX′) , i = 1, . . . , p ,

D↓t =

p∑
i=1

X2
it = λt(X

′X) , t = 1, . . . , n .

and for the ordered values

D
→/↓
(1) ≥ D

→/↓
(2) ≥ · · ·

• By Weyl’s inequality,

1

a2
np

max
i=1,...,p

∣∣λ(i) −D→(i)
∣∣ ≤ 1

a2
np

∥∥XX′ − diag(XX′)
∥∥

2

P→ 0 , β ∈ (0, 1]

1

a2
np

max
t=1,...,n

∣∣λ(t) −D↓(t)
∣∣ ≤ 1

a2
np

∥∥X′X− diag(X′X)
∥∥

2

P→ 0 , β > 1
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• Limit theory for the order statistics of (D
→/↓
i ) can be handled

by point process convergence: for example,
p∑
i=1

εa−2
np (D→i −cn)

d→
∞∑
i=1

ε
Γ
−2/α
i

= NΓ

for Γi = E1 + · · ·+ Ei, (Ei) iid standard exponential, if and

only if Resnick (2007)

p P(a−2
np(D→i − cn) > x)→ x−α/2 , x > 0 ,

p P(a−2
np(D→i − cn) < −x)→ 0 , x > 0 .

This follows by Nagaev-type large deviations.

•Centering with cn is necessary only for α ∈ [2, 4) and if

(n ∨ p)/a2
np 6→ 0. Centering is not needed if

min(β, β−1) ∈
(
(α/2− 1)+, 1

]
.
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•Under the latter condition one also has the alternative

approximation

a−2
np max

i=1,...,p

∣∣λ(i) − Z2
(i),np

∣∣ P→ 0 .

•Under the latter condition,
p∑
i=1

εa−2
npλi

d→
∞∑
i=1

ε
Γ
−2/α
i

.

This was proved by Soshnikov (2004,2006) for α ∈ (0, 2) and by

Auffinger, Ben Arous, Péché (2009) for α ∈ (0, 4) in the case when

p/n→ γ ∈ (0,∞) .(3.1)

• Partial results (for particular choices of p) were proved in Davis,

Pfaffel and Stelzer (2014), Davis, Mikosch, Pfaffel (2016) for (Xit) satisfying

some linear dependence conditions.
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• In the light-tailed case, limit results for eigenvalues of XX′ are

very sensitive with respect to the growth rate of p.

• Johnstone (2001) showed for iid standard normal Xit under (3.1) that√
n+
√
p(

1/
√
n+ 1/

√
p
)1/3( λ(1)

(
√
n+
√
p)2
− 1

)
d→ Tracy-Widom distr.

• This result remains valid for iid entries Xit whose first four

moments match those of the standard normal. Tao and Vu (2011).
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• In the iid regular variation case, using a.s. continuous

mappings, folklore (Resnick (1987,2007)) applies to prove

the joint convergence of the order statistics (possibly with

centering cn)

a−2
np

(
λ(1), . . . , λ(k)

) d→
(
Γ
−2/α
1 , . . . ,Γ

−2/α
k

)
.

the joint convergence of the ratios of successive order

statistics(λ(2)

λ(1)

, . . . ,
λ(k−1)

λ(k)

) d→
((Γ1

Γ2

)2/α
, . . . ,

(Γk−1

Γk

)2/α)
.

the convergence of ratio of largest eigenvalue to trace of

XX′ for α ∈ (0, 2)

λ(1)

λ1 + · · ·+ λp

d→
Γ
−2/α
1

Γ
−2/α
1 + Γ

−2/α
2 + · · ·
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•With these techniques one can handle results involving finitely

many of the largest eigenvalues of XX′.

•One cannot handle the smallest eigenvalues, determinants,. . . .

• The largest eigenvalues have different sizes and the

eigenvectors are localized: let Vk be the unit eigenvector

corresponding to λ(k) = λLk. Then

‖Vk − eLk‖
P→ 0 .
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4. Extensions

• The main idea in the iid case is to exploit the heavier tails of

X2 in comparison with those of X1X2.

• Similar behavior can be observed for regularly varying

stochastic volatility models

Xit = σitZit , i, t ∈ Z .

with index α ∈ (0, 4).

•Nagaev-type large deviation for stochastic volatility models

Mikosch and Wintenberger (2016) exist and are likely to ensure

a−2
np

∥∥XX′ − diag(XX′)
∥∥

2

P→ 0 .
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• Similar techniques apply when σit = σ
(n)
it assumes zero with

positive probability, e.g. σit Bernoulli distributed and

P(σ(n) = 0)→ 1; see Auffinger et al. (2016). (thinning of X)

• The largest eigenvalue of sample correlation matrices of an iid

heavy-tailed sequence has similar behavior as in the light-tailed

case ask Johannes Heiny.
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5. Another structure where the squares dominate: linear

processes. Davis, Pfaffel, Stelzer (2014), Davis, Mikosch, Pfaffel (2016)

• Special case:

Xit = θ0Zi,t + θ1Zi−1,t

for iid (Zit) with regularly varying Z with index α ∈ (0, 4), real

coefficients θi.

•Observe that

n∑
t=1

X2
i,t =

n∑
t=1

(
θ2

0Z
2
i,t + θ2

1Z
2
i−1,t

)
+ 2θ0θ1

n∑
t=1

Zi,tZi−1,t

= θ2
0D
→
i + θ2

1D
→
i−1 + oP (a2

n) .
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•Here we used Nagaev-type large deviations and the fact that

Z2 has tail index α/2, while Z1Z2 has tail index α.

• Similarly,
n∑
t=1

Xi,tXi+1,t = θ0θ1

n∑
t=1

Z2
i,t + oP (a2

n)

= θ0θ1D
→
i + oP (a2

n) .

• This leads to the approximation( ∑n
t=1X

2
i,t

∑n
t=1Xi,tXi+1,t∑n

t=1Xi,tXi+1,t

∑n
t=1X

2
i+1,t

)
≈
(
θ2

0 θ0θ1

θ0θ1 θ2
1

)
D→i +

(
θ2

1 0
0 0

)
D→i−1 +

(
0 0
0 θ2

0

)
D→i+1.
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• The sample covariance matrix can be approximated by∥∥∥XX′ −
p∑
i=1

D→i Mi

∥∥∥
2

= oP (a2
np) ,

where

M1 =


θ2

0 θ0θ1 0 . . . 0
θ0θ1 θ2

1 0 . . . 0
0 0 0 . . . 0
... ... ... . . . ...
0 0 0 . . . 0

 ,M2 =


0 0 0 . . . 0
0 θ2

0 θ0θ1 . . . 0
0 θ0θ1 θ2

1 . . . 0
0 0 0 . . . 0
... ... ... . . . ...
0 0 0 . . . 0

 , . . .

•Denote the order statistics of the D→i by D→(1) ≥ · · · ≥ D→(p) and

D→Li = D→(i).

• Then

a−2
np

∥∥∥XX′ −
p∑
i=1

D→LiMLi

∥∥∥
2

P→ 0 .
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• For k = kn→∞ slowly,

a−2
np

∥∥∥XX′ −
k∑
i=1

D→LiMLi

∥∥∥
2

P→ 0 .

• Since (D→i ) is iid, (L1, . . . , Lp) is a random permutation of

(1, . . . , p), hence the event

Ak = {|Li − Lj| > 1, i 6= j = 1, . . . , k}

has probability close to one provided k2 = o(p).

•On the set Ak, the matrix
∑k

i=1D
→
Li

MLi is block-diagonal with

non-zero eigenvalues D→Li(θ
2
0 + θ2

1), i = 1, . . . , k.

•Here we used that MLi has rank 1 with non-zero eigenvalue

equal to θ2
0 + θ2

1.
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• By Weyl’s inequality,

a−2
np max

i=1,...,k

∣∣∣λ(i) −D→Li(θ
2
0 + θ2

1)
∣∣∣ ≤ a−2

np

∥∥∥XX′ −
k∑
i=1

D→LiMLi

∥∥∥
2

P→ 0 .

• Extension to general linear structure:

Xit =
∑
k,l

hklZk−i,l−t

•Use truncation of the coefficient matrix H = (hkl) of the linear

process.

• Then

a−2
np max

i=1,...,p

∣∣λ(i) − δ(i)

∣∣ P→ 0 , n→∞ ,

where δ(1), . . . , δ(p) are the p ordered values (with respect to

absolute value) of the set
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{(D→i −E[D→1 ])vj, i = 1, . . . , k; j = 1, 2, . . .} for α ∈ (0, 2),

(α ∈ (2, 4)) where (vj) are the eigenvalues of

HH ′ =
( ∞∑
l=0

hilhjl
)
i,j=1,2,...

• The mapping theorem implies for suitable real or complex

numbers (vj)

∞∑
j=1

p∑
i=1

εa−2
np (Di−ED1)vj

d→
∞∑
j=1

∞∑
i=1

ε
Γ
−2/α
i vj

.

The limit is a Poisson cluster process.

•An example: The separable case: We assume hkl = θkcl. The

matrix HH ′ =
∑∞

l=0 c
2
l

(
θiθj

)
i,j≥0

has rank r = 1 and

v(1) =
∞∑
l=0

c2
l

∞∑
k=0

θ2
k .
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The limit point process is Poisson as in the iid case. For α < 2,

a−2
np

(
λ(1), . . . , λ(k)

) d→ v(1)

(
Γ
−2/α
1 , . . . ,Γ

−2/α
k

)
,

λ(1)

λ(1) + · · ·+ λ(k)

d→
Γ
−2/α
1

Γ
−2/α
1 + · · ·+ Γ

−2/α
k

,

λ(1)

λ1 + λ2 + · · ·+ λp

d→
Γ
−2/α
1

Γ
−2/α
1 + Γ

−2/α
2 + · · ·

,
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Concluding remarks

• Extensions to non-linear heavy-tailed multivariate time series

where squares do not dominate are difficult: even the definition

of X is not straightforward if one wants to model dependence

between rows/columns.

•Heavy-tailed multivariate models with iid rows: Davis, Pfaffel, Stelzer

(2014). Limit behavior of eigenvalues as in iid case.

•Multivariate models with different tail indices in rows ?


