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FIGURE 1. Estimated tail indices for S&P 500.



1. HEAVY-TAILED MATRICES WITH IID ENTRIES: FINITE o

e We consider p X n matrices

X = X, = (Xu)

1ye..,pit=1,...,n 7

where the iid entries have a distribution with heavy tails

L(x L(x
P(X >x) ~py (@) and P(X < —x) ~p_ (@)
xre xre

for a slowly varying function L, some o > 0, p, + p_ = 1.

e Assume [E|X| = 0 if expectation is finite.



e Let X, X5 be iid copies of X.

e Then
L(v/x
P(X* > x) ~ (\//z_)
wa
® If X > 0 Embrechts and Goldie (1984):
L(x)

P(Xl X2 > 33) ~

wa

for some slowly varying L.

e If X > 0 and some additional condition holds Davis and Resnick (1985)

P(X1 X2 >
X1 Xo > 2) | opixe].
P(X > x)
e If X, 0 > 0 independent and E[c*"’] < oo, then by Breiman (1965)
Plco X > x
( ) > Elo?] .

P(X > x)



® Therefore Gnedenko and Kolmogorov (1949), Feller (1971), Resnick (2007)

ZX ) el e (0,4),

where P(| X| > a,) ~ n~! and (52(7)) are iid ~-stable, v € (0, 2],

and for 7 # 7,

b (0, XX — ¢) = €50, a € (0,4),

where P(| X, X;| > b,) ~n~! for a € (0,2) and b,, = y/n for
a € (2,4).

e Since a? ~ n** and b,, = n'/(2")

intht — Cn>>2 E) 0.
t=1

’I’L

2 p
a-2(XX') — diag(XX')) H —"Z
=1



e Therefore, by Weyl’s inequality,

a”? max ’)\(Z) )\(i)(diag(XX'))‘

n
1=1,....,p

—2 ‘XX’ _ diag(XX')

P
— 0,
2

where \(1)(A) > -+ > A\p)(A) for any symmetric matrix A,
A = (XX,

e Hence for a € (0,4), gg%/z) > .0 > 58)/2)

_ d o
an2(>‘(i) o Cn)izl,...,p — (5&)/2))@':1,...,1»

In particular,

A o
(2D _RBXY 10 (e) > max £/,

a2 n i=1,...,p



e The unit eigenvector V; associated with Ay = Ar,; can be

localized:
P
||V] — eLj|| — 0.

e We have for a € (2,4),

—(det(XX') — ¢P) Z a *(Au@) — ¢n) H

a%cn

a/2 a/2) d a~(a/2
ngu/)—zf(/):ﬁ/ g2



2. HEAVY-TAILED MATRICES WITH REGULARLY VARYING STOCHASTIC

VOLATILITY ENTRIES: p FIXED

e We consider p X n matrices

X = X, = (Xu)

1ye..,pit=1,...,n 7
e A stochastic volatility model is given by
Xt = oy Zi; for independent o- and Z-fields

where (o) is a strictly stationary non-negative field and (Z;;)

has mean zero (if exists).



® We assume either

Case (1) E[c*T°] < oo and

L(x L(x
P(Z > x) ~ p. (@) and P(Z < —x) ~p_ (@)
xr xr
for a slowly varying function L, some o« > 0, p, + p_ = 1.

Then, by Breiman (1965),
P(£X > x) ~ E[c*]|P(+Z > x).
Case (2) E[|Z]|**°] < oo and

log o = Z YriNi—k,t—1 for an iid field (7;;), non-neg. ()
kl
such that e" is regularly varying with index o > 0 and

maxy; ¥ = 1. Then o is regularly varying with index a and

P(£X > xz) ~ E[Z]]P(o > x) .
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e Case (1) Analogous to iid case.
The diagonal of XX’ dominates and diagonal elements

converge to iid a/2-stable random variables.

e Case (2)
Case (2a) E[e“] = co. In this case
P(enlen2 > w)
P(e” > x) '

Case (2b) E[e“"] < oo and an additional condition. In this

case
P(enlen2 > m)
P(e” > x)

> 2E[e™].



11

e Example. Consider o;; = e"itti-1t, Then

2 __ e2mt+2m—1,t,

O ;¢

OO 14 = eMitT2Mi—14+Mi—2t

b

e In Case (2a),
o%, Oit0i_14t, Oit0i114 are regularly varying with index a/2
but P(o, > x))/P(oitoi—14 > ) — o0
while o0;:0;_k+, kK > 2, is regularly varying with index o.
Hence the tails of o7, dominate and the diagonal elements of
a *XX’ dominate the entries off the diagonal.

The limit behavior of XX’ and its eigenvalues are analogous

to the 1id case.



12

)\(i) /trace

0.8

0.6

0.4

0.2

0.0

0.8
|

0.6

0.4

0.0
|
o
o
o
o
°
o
<]
o
o
o
o
o
o
<]
o

FIGURE 2. Eigenvalues (left) and unit eigenvector corresponding to the largest eigenvalue (right): Cases (1) and (2a)



e In Case (2b),

O'z-zt, OitTi—1t, Oit0i+1,+ are regularly varying with index o/2

and have equivalent tails

while o0;:0;_r+, kK > 2, is regularly varying with index o.

Hence the tails of o7, 0,101, 01011+ dominate a_ *XX’
off the diagonal and first subdiagonals.

In this case a_*XX’ has a/2-stable dependent limits on the
diagonal and first subdiagonals; the limiting eigenstructure is

not evident.

13



14

Ag)/trace

0.03 0.04 0.05 0.06 0.07 0.08

0.02

FIGURE 3. Eigenvalues (left) and unit eigenvector corresponding to the largest eigenvalue (right): Case (2b)
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3. HEAVY-TAILED MATRICES WITH IID ENTRIES: P INCREASES WITH N

e Assume the previous iid conditions on

X = (Xit)i:1,...,p;t:1,...,n
This means: Xj; iid, regular variation with a € (0,4), E[X] =0

if expectation exists.

® We assume

P = DPn = nﬁe(n) ’

for some B > 0 and some slowly varying function £(n).

e Then

a?|| XX’ — diag(XX')||, — 0, B € (0,1],

a;EHX'X — diag(X'X)||, =0, B € (1,00).



Note: XX’ and X’X have the same positive eigenvalues.

® One needs Nagaev-type large deviations: for 7 # 7,

p*P(a;2] Y XuXj| > ¢) = p*nP(| X, X,| > ea?) — 0,
t=1

provided 3 < 1.
e For 3 > 1, consider X’X, interchange the roles of n and p, and
observe that n = p'/ BZ(n) for some slowly varying 2.

e Write Aq,..., A, for the eigenvalues of XX’ and

Ap) S+ S Ay -

17
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We also write

-
1
|

; —ZXZ_A(XX’), i=1,..

Dj:ZXft:At(X'X), t=1,...

and for the ordered values

T—
Duy™ 2 D™ 2=+

e By Weyl’s inequality,

1

aT_El’laX ‘A(Z)

i Ap — D | <
ax ’ (t) (t)‘ =~

2 t—1....
anp 9 ’n a/

a,np

np

'7p7

Dy < —HXX’ diag(XX')||, = 0,

%HX’X — diag(X'X)||, = 0,

B € (0,1]

g >1
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e Limit theory for the order statistics of (D, / ¢) can be handled

by point process convergence: for example,

b o0
d
D Car2(Drr—em) D €p-2/a = Nr
1=1

=1

for I'; = E1 + -+ + E;, (E;) iid standard exponential, if and
only if Resnick (2007)
pIP(a,;;(Di_> —cp) > x) > Y2, x>0,
pIP)(a,;;(Df —cp) < —x) = 0, x> 0.
This follows by Nagaev-type large deviations.

e Centering with ¢, is necessary only for a € [2,4) and if

(nV p)/aip # 0. Centering is not needed if

min(8, 37" € ((a/2 — 1)4,1] .
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e Under the latter condition one also has the alternative
approximation
a_? max ’)\(1) Z? } E) 0.

np ;_— 1,. (i),np

e Under the latter condltlon,

p o0
d
Z Cang; — Z €F;2/a )
1=1 1=1

This was proved by Soshnikov (2004,2006) for o« € (0,2) and by

Auffinger, Ben Arous, Péché (2009) for o € (O, 4) in the case when
(3.1) p/n — v € (0,00).
e Partial results (for particular choices of p) were proved in Davis,

Pfaffel and Stelzer (2014), Davis, Mikosch, Pfaffel (2016) for (Xj;;) satisfying

some linear dependence conditions.
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e In the light-tailed case, limit results for eigenvalues of XX’ are

very sensitive with respect to the growth rate of p.

® Johnstone (2001) showed for iid standard normal X;; under (3.1) that
vn+ /P ( Aq1)
(1/vm+1/p) ">\ (v + /P)?

— 1) i Tracy-Widom distr.

e This result remains valid for iid entries X,;; whose first four

moments match those of the standard normal. Tao and vu (2011).
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e In the iid regular variation case, using a.s. continuous
mappings, folklore (Resnick (1987,2007)) applies to prove
the joint convergence of the order statistics (possibly with

centering c,)

CL;; ()\(1), cee A(k)) i) (F1_2/a, e 1-,;2/04) .

the joint convergence of the ratios of successive order

statistics
A(2) Ak-1)\ d ,T1\2/a Iy_1.2/a
G2, 20 & (e ().

the convergence of ratio of largest eigenvalue to trace of

XX’ for a € (0, 2)

A1_|_..._|_Ap 2/a+r 2/a+
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FIGURE 5. The logarithms of the ratios A¢jy1)/A() for the S&P 500 series after rank transform. We also show the 1, 50 and
99% quantiles (bottom, middle, top lines, respectively) of the variables log((T;/Ti+1)2).
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FIGURE 6. Eigenvalues and ratios )‘(i—}—l)/)‘(i) for S&P 2002-2014, p = 442
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e With these techniques one can handle results involving finitely
many of the largest eigenvalues of XX'.

e One cannot handle the smallest eigenvalues, determinants,.. ..

e The largest eigenvalues have different sizes and the
eigenvectors are localized: let V; be the unit eigenvector

corresponding to Ax) = Ar,. Then

P
||Vk — eLk|| — 0.
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4. EXTENSIONS

e The main idea in the iid case is to exploit the heavier tails of
X? in comparison with those of X;X,.
e Similar behavior can be observed for regularly varying

stochastic volatility models
Xit = 0yl n,teZ.

with index a € (0,4).
e Nagaev-type large deviation for stochastic volatility models

Mikosch and Wintenberger (2016) exist and are likely to ensure

a;?||XX’ — diag(XX')|, — 0.



e Similar techniques apply when o;; = O',g" ) assumes zero with
positive probability, e.g. o;; Bernoulli distributed and
P(c(™ = 0) — 1; see Auffinger et al. (2016). (thinning of X)

e The largest eigenvalue of sample correlation matrices of an iid

heavy-tailed sequence has similar behavior as in the light-tailed

Case€ ask Johannes Heiny.
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5. ANOTHER STRUCTURE WHERE THE SQUARES DOMINATE: LINEAR

PROCESSES. Davis, PFAFFEL, STELZER (2014), DAvIS, MIKOSCH, PFAFFEL (2016)

e Special case:
Xit =002, 4+ 01Z;_14

for iid (Z;;) with regularly varying Z with index a € (0,4), real
coefficients 6,.

® Observe that

n

Z Xzz,t —_ Z <9§Zz2,t —I— 9%Z7Z2—1,t> —|— 29091 Z Zi,tZ'—l,t
t=1 t=1 t=1

0,D;” + 6;D;”, + op(ay,) .
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e Here we used Nagaev-type large deviations and the fact that
Z? has tail index « /2, while Z;Z,5 has tail index «a.

e Similarly,

Z Xt Xit1,t = 061 Z Zit + op(a;)
t=1 t=1

= 0091DZ_> + Op(ai) .

e This leads to the approximation

( Zt 1)(2 Z?l tiz—}—lt)
S XiiXitie Yo X4

[ 62 60\ .,  [620)\ 00)
~ (9001 g2 )Pi" T 0o0)PiiT{0e )it
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e The sample covariance matrix can be approximated by

p
/ — . 2
HXX — ;Di M| = op(aZ,),
where

00 0 ...0
[ 6; 90‘2’10---0\ 0 62 9091...0\

0061 6> 0...0 0 6.0, 6 o0

Mi=| 0 0 0...0 ]| ,My=|[ %" 1 " |,

\ 0 00...0) \00 0“.0)

e Denote the order statistics of the D.” by D(_f) > eee > D(Z) and

DZ — D(_z’.).
e Then

P
% 0 L]
2

p
XX' =Y DMy,

=1

—2
a’np
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e For k = k,, — oo slowly,

k

—2 ’ — P
a2 XX’ = 3" DMy, 0.
i=1
e Since (D;”) is iid, (L4,..., L) is a random permutation of
(1,...,p), hence the event

has probability close to one provided k* = o(p).
e On the set Ay, the matrix Zle D7’My, is block-diagonal with

non-zero eigenvalues DZ(O% +6%),i=1,...,k.

e Here we used that M. has rank 1 with non-zero eigenvalue

equal to 9(2) + 9%.
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e By Weyl’s inequality,

k
XX =Y DpM| 0.
v 2

1=1

@y %, [Ny = DL (65 + 0)| < o,

e Extension to general linear structure:
X = E hii Zy—ij—+
k,l

e Use truncation of the coefficient matrix H = (hy;) of the linear

process.

e Then
a,” max !)\(i)—é(i)’ E)O, n — oo,
where d(1),...,0(,) are the p ordered values (with respect to

absolute value) of the set
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{(D;7—=E[D{)vj,t=1,...,k;5=1,2,...} for a € (0, 2),

(a € (2,4)) where (v;) are the eigenvalues of

HH' = (Z hilhﬂ)z‘,j:m,...
e The mapping theorem implies for suitable real or complex
numbers (v;)

co p o0 00
d
DD Curk(DimEDyw; T D D Cpey

J=11=1 7=1 1=1

The limit is a Poisson cluster process.

e An example: The separable case: We assume h;; = 0.c;. The

matrix HH' = Y ° ¢} (0,6, ) , has rank r = 1 and

’U(l) —ch 292.

=0
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The limit point process is Poisson as in the iid case. For o < 2,

a2(Ays - Ay) — vy (D700 T 29,

A+ A T e T
)\(1) 4 F1—2/a

P N T W N S
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CONCLUDING REMARKS

e Eixtensions to non-linear heavy-tailed multivariate time series
where squares do not dominate are difficult: even the definition
of X is not straightforward if one wants to model dependence
between rows/columns.

e Heavy-tailed multivariate models with iid rows: Davis, Pfaffel, Stelzer
(2014). Limit behavior of eigenvalues as in iid case.

e Multivariate models with different tail indices in rows 7



