The eigenvalues and eigenvectors of the sample covariance matrix of heavy-tailed multivariate time series ${ }^{\text {' }}$

Thomas Mikosch
University of Copenhagen

Joint work with Richard A. Davis (Columbia)
Johannes Heiny, Anja Janßen and Xiaolei Xie (Copenhagen)
Mohsen Rezapour (Kerman)

[^0]

Figure 1. Estimated tail indices for $\mathrm{S} \& \mathrm{P} 500$.

1. Heavy-tailed matrices with iid entries: Finite p

- We consider $\boldsymbol{p} \times \boldsymbol{n}$ matrices

$$
\mathbf{X}=\mathbf{X}_{n}=\left(\boldsymbol{X}_{i t}\right)_{i, \ldots, p ; t=1, \ldots, n}
$$

where the iid entries have a distribution with heavy tails

$$
\mathbb{P}(X>x) \sim p_{+} \frac{L(x)}{x^{\alpha}} \quad \text { and } \quad \mathbb{P}(X<-x) \sim p_{-} \frac{L(x)}{x^{\alpha}}
$$

for a slowly varying function L, some $\alpha>0, p_{+}+p_{-}=1$.

- Assume $\mathbb{E}[X]=0$ if expectation is finite.
- Let X_{1}, X_{2} be iid copies of \boldsymbol{X}.
- Then

$$
\mathbb{P}\left(X^{2}>x\right) \sim \frac{L(\sqrt{x})}{x^{\alpha / 2}}
$$

- If $\boldsymbol{X}>\mathbf{0}$ Embrechts and Goldie (1984):

$$
\mathbb{P}\left(X_{1} X_{2}>x\right) \sim \frac{\widetilde{L}(x)}{x^{\alpha}}
$$

for some slowly varying \widetilde{L}.

- If $\boldsymbol{X}>0$ and some additional condition holds Davis and Resnick (1985)

$$
\frac{\mathbb{P}\left(X_{1} X_{2}>x\right)}{\mathbb{P}(X>x)} \rightarrow 2 \mathbb{E}\left[X^{\alpha}\right] .
$$

- If $\boldsymbol{X}, \sigma>0$ independent and $\mathbb{E}\left[\sigma^{\alpha+\delta}\right]<\infty$, then by Breiman (1965)

$$
\frac{\mathbb{P}(\boldsymbol{\sigma} \boldsymbol{X}>\boldsymbol{x})}{\mathbb{P}(\boldsymbol{X}>\boldsymbol{x})} \rightarrow \mathbb{E}\left[\boldsymbol{\sigma}^{\alpha}\right]
$$

- Therefore Gnedenko and Kolmogorov (1949), Feller (1971), Resnick (2007)

$$
a_{n}^{-2}\left(\sum_{t=1}^{n} X_{i t}^{2}-c_{n}\right) \xrightarrow{\mathrm{d}} \xi_{i}^{(\alpha / 2)}, \quad \alpha \in(0,4)
$$

where $\mathbb{P}\left(|X|>a_{n}\right) \sim n^{-1}$ and $\left(\xi_{i}^{(\gamma)}\right)$ are iid γ-stable, $\gamma \in(0,2]$, and for $i \neq j$,

$$
b_{n}^{-1}\left(\sum_{t=1}^{n} X_{i t} X_{j t}-c_{n}\right) \xrightarrow{\mathrm{d}} \xi_{i}^{(2 \wedge \alpha)}, \quad \alpha \in(0,4)
$$

where $\mathbb{P}\left(\left|X_{1} X_{2}\right|>b_{n}\right) \sim n^{-1}$ for $\alpha \in(0,2)$ and $b_{n}=\sqrt{n}$ for $\alpha \in(2,4)$.

- Since $a_{n}^{2} \approx n^{2 / \alpha}$ and $b_{n} \approx n^{1 /(2 \wedge \alpha)}$,

$$
\left.\| a_{n}^{-2}\left(\mathrm{XX}^{\prime}\right)-\operatorname{diag}\left(\mathrm{XX}^{\prime}\right)\right) \|_{2}^{2} \leq \frac{b_{n}^{2}}{a_{n}^{4}} \sum_{i=1}^{p}\left(\frac{1}{b_{n}}\left(\sum_{t=1}^{n} \boldsymbol{X}_{i t} \boldsymbol{X}_{j t}-c_{n}\right)\right)^{2} \xrightarrow{\mathbb{P}} 0
$$

- Therefore, by Weyl's inequality,

$$
\begin{aligned}
& a_{n}^{-2} \max _{i=1, \ldots, p}\left|\lambda_{(i)}-\lambda_{(i)}\left(\operatorname{diag}\left(\mathbf{X X}^{\prime}\right)\right)\right| \\
& \leq a_{n}^{-2}\left\|\mathbf{X X}^{\prime}-\operatorname{diag}\left(\mathbf{X X}^{\prime}\right)\right\|_{2} \xrightarrow{\mathbb{P}} 0
\end{aligned}
$$

where $\lambda_{(1)}(A) \geq \cdots \geq \lambda_{(p)}(A)$ for any symmetric matrix A, $\lambda_{i}=\lambda_{i}\left(\mathrm{XX}^{\prime}\right)$,

- Hence for $\alpha \in(0,4), \xi_{(1)}^{(\alpha / 2)} \geq \cdots \geq \xi_{(p)}^{(\alpha / 2)}$

$$
a_{n}^{-2}\left(\lambda_{(i)}-c_{n}\right)_{i=1, \ldots, p} \xrightarrow{\mathrm{~d}}\left(\xi_{(i)}^{(\alpha / 2)}\right)_{i=1, \ldots, p}
$$

In particular,

$$
\frac{n}{a_{n}^{2}}\left(\frac{\lambda_{(1)}}{n}-\mathbb{E}\left[X^{2}\right] 1_{(2,4)}(\alpha)\right) \xrightarrow{\mathrm{d}} \max _{i=1, \ldots, p} \xi_{i}^{(\alpha / 2)}
$$

- The unit eigenvector V_{j} associated with $\lambda_{(j)}=\lambda_{L_{j}}$ can be localized:

$$
\left\|\mathrm{V}_{j}-\mathrm{e}_{L_{j}}\right\| \xrightarrow{\mathbb{P}} 0
$$

- We have for $\alpha \in(2,4)$,

$$
\begin{aligned}
\frac{1}{a_{n}^{2} c_{n}^{p-1}}\left(\operatorname{det}\left(\mathrm{XX}^{\prime}\right)-c_{n}^{p}\right) & =\sum_{i=1}^{p} a_{n}^{-2}\left(\lambda_{(i)}-c_{n}\right) \prod_{j=1}^{i-1} \frac{\lambda_{(j)}}{c_{n}} \\
& \xrightarrow{\mathrm{~d}} \sum_{i=1}^{p} \xi_{(i)}^{(\alpha / 2)}=\sum_{i=1}^{p} \xi_{i}^{(\alpha / 2)} \stackrel{\mathrm{d}}{=} p^{2 / \alpha} \xi_{1}^{(\alpha / 2)} .
\end{aligned}
$$

2. HEAVY-TAiled matrices with regularly varying stochastic
VOLATILITY ENTRIES: p FIXED

- We consider $\boldsymbol{p} \times \boldsymbol{n}$ matrices

$$
\mathbf{X}=\mathbf{X}_{n}=\left(\boldsymbol{X}_{i t}\right)_{i, \ldots, p ; t=1, \ldots, n}
$$

- A stochastic volatility model is given by

$$
X_{i t}=\sigma_{i t} Z_{i t} \text { for independent } \sigma \text { - and } Z \text {-fields }
$$

where $\left(\sigma_{i t}\right)$ is a strictly stationary non-negative field and $\left(Z_{i t}\right)$ has mean zero (if exists).

- We assume either

Case (1) $\mathbb{E}\left[\sigma^{\alpha+\delta}\right]<\infty$ and

$$
\mathbb{P}(Z>x) \sim p_{+} \frac{L(x)}{x^{\alpha}} \quad \text { and } \quad \mathbb{P}(Z<-x) \sim p_{-} \frac{L(x)}{x^{\alpha}}
$$

for a slowly varying function L, some $\alpha>0, p_{+}+p_{-}=1$.
Then, by Breiman (1965),

$$
\mathbb{P}(\pm \boldsymbol{X}>x) \sim \mathbb{E}\left[\sigma^{\alpha}\right] \mathbb{P}(\pm Z>x)
$$

Case (2) $\mathbb{E}\left[|Z|^{\alpha+\delta}\right]<\infty$ and
$\log \sigma_{i t}=\sum_{k l} \psi_{k l} \eta_{i-k, t-l}$ for an iid field $\left(\eta_{i j}\right)$, non-neg. $\left(\psi_{k l}\right)$ such that e^{η} is regularly varying with index $\alpha>0$ and $\max _{k l} \psi_{k l}=1$. Then σ is regularly varying with index α and

$$
\mathbb{P}(\pm \boldsymbol{X}>x) \sim \mathbb{E}\left[Z_{ \pm}^{\alpha}\right] \mathbb{P}(\sigma>x)
$$

- Case (1) Analogous to iid case.

The diagonal of XX^{\prime} dominates and diagonal elements converge to iid $\alpha / 2$-stable random variables.

- Case (2)

Case (2a) $\mathbb{E}\left[\mathrm{e}^{\alpha \eta}\right]=\infty$. In this case

$$
\frac{\mathbb{P}\left(\mathrm{e}^{\eta_{1}} \mathrm{e}^{\eta_{2}}>x\right)}{\mathbb{P}\left(\mathrm{e}^{\eta}>x\right)} \rightarrow \infty
$$

Case (2b) $\mathbb{E}\left[\mathrm{e}^{\alpha \eta}\right]<\infty$ and an additional condition. In this
case

$$
\frac{\mathbb{P}\left(\mathrm{e}^{\eta_{1}} \mathrm{e}^{\eta_{2}}>x\right)}{\mathbb{P}\left(\mathrm{e}^{\eta}>x\right)} \rightarrow 2 \mathbb{E}\left[\mathrm{e}^{\alpha \eta}\right]
$$

- Example. Consider $\sigma_{i t}=\mathrm{e}^{\eta_{i t}+\eta_{i-1, t}}$. Then

$$
\begin{aligned}
\sigma_{i t}^{2} & =\mathrm{e}^{2 \eta_{i t}+2 \eta_{i-1, t}} \\
\sigma_{i t} \sigma_{i-1, t} & =\mathrm{e}^{\eta_{i t}+2 \eta_{i-1, t}+\eta_{i-2, t}}
\end{aligned}
$$

- In Case (2a),
$\sigma_{i t}^{2}, \sigma_{i t} \sigma_{i-1, t}, \sigma_{i t} \sigma_{i+1, t}$ are regularly varying with index $\alpha / 2$ but $\left.\mathbb{P}\left(\sigma_{i t}^{2}>x\right)\right) / \mathbb{P}\left(\sigma_{i t} \sigma_{i-1, t}>x\right) \rightarrow \infty$
while $\sigma_{i t} \sigma_{i-k, t}, k>2$, is regularly varying with index α.
Hence the tails of $\sigma_{i t}^{2}$ dominate and the diagonal elements of $a_{n}^{-2} \mathrm{XX}^{\prime}$ dominate the entries off the diagonal.

The limit behavior of XX^{\prime} and its eigenvalues are analogous to the iid case.

Figure 2. Eigenvalues (left) and unit eigenvector corresponding to the largest eigenvalue (right): Cases (1) and (2a)

- In Case (2b),
$\sigma_{i t}^{2}, \sigma_{i t} \sigma_{i-1, t}, \sigma_{i t} \sigma_{i+1, t}$ are regularly varying with index $\alpha / 2$ and have equivalent tails
while $\sigma_{i t} \sigma_{i-k, t}, k>2$, is regularly varying with index α.
Hence the tails of $\sigma_{i t}^{2}, \sigma_{i t} \sigma_{i-1, t}, \sigma_{i t} \sigma_{i+1, t}$ dominate $a_{n}^{-2} \mathrm{XX}^{\prime}$ off the diagonal and first subdiagonals.

In this case $a_{n}^{-2} \mathrm{XX}^{\prime}$ has $\alpha / 2$-stable dependent limits on the diagonal and first subdiagonals; the limiting eigenstructure is not evident.

Figure 3. Eigenvalues (left) and unit eigenvector corresponding to the largest eigenvalue (right): Case (2b)

Figure 4. Eigenvalues (left) and unit eigenvector corresponding to the largest eigenvalue (right): FX rate daily log-return series against SEK
3. Heavy-tailed matrices with iid entries: \boldsymbol{p} increases with \boldsymbol{n}

- Assume the previous iid conditions on

$$
\mathbf{X}=\left(\boldsymbol{X}_{i t}\right)_{i=1, \ldots, p ; t=1, \ldots, n}
$$

This means: $X_{i t}$ iid, regular variation with $\alpha \in(0,4), \mathbb{E}[X]=0$ if expectation exists.

- We assume

$$
p=p_{n}=n^{\beta} \ell(n)
$$

for some $\beta>0$ and some slowly varying function $\ell(n)$.

- Then

$$
\begin{array}{ll}
a_{n p}^{-2}\left\|\mathrm{XX}^{\prime}-\operatorname{diag}\left(\mathrm{XX}^{\prime}\right)\right\|_{2} \xrightarrow{\mathbb{P}} 0, & \beta \in(0,1] \\
a_{n p}^{-2}\left\|\mathbf{X}^{\prime} \mathbf{X}-\operatorname{diag}\left(\mathbf{X}^{\prime} \mathbf{X}\right)\right\|_{2} \xrightarrow{\mathbb{P}} 0, & \beta \in(1, \infty)
\end{array}
$$

Note: XX^{\prime} and $\mathrm{X}^{\prime} \mathrm{X}$ have the same positive eigenvalues.

- One needs Nagaev-type large deviations: for $i \neq j$,

$$
p^{2} \mathbb{P}\left(a_{n p}^{-2}\left|\sum_{t=1}^{n} X_{i t} X_{j t}\right|>\varepsilon\right) \approx p^{2} n \mathbb{P}\left(\left|X_{1} X_{2}\right|>\varepsilon a_{n p}^{2}\right) \xrightarrow{\mathbb{P}} 0
$$

provided $\beta \leq 1$.

- For $\beta>1$, consider $\mathrm{X}^{\prime} \mathrm{X}$, interchange the roles of n and p, and observe that $n=p^{1 / \beta} \widetilde{\ell}(n)$ for some slowly varying $\widetilde{\ell}$.
- Write $\lambda_{1}, \ldots, \lambda_{p}$ for the eigenvalues of XX^{\prime} and

$$
\lambda_{(p)} \leq \cdots \leq \lambda_{(1)}
$$

We also write

$$
\begin{aligned}
D_{i}^{\rightarrow}=\sum_{t=1}^{n} X_{i t}^{2}=\lambda_{i}\left(\mathrm{XX}^{\prime}\right), & i=1, \ldots, p \\
D_{t}^{\downarrow} & =\sum_{i=1}^{p} X_{i t}^{2}=\lambda_{t}\left(\mathrm{X}^{\prime} \mathrm{X}\right),
\end{aligned} \quad t=1, \ldots, n
$$

and for the ordered values

$$
\overrightarrow{D_{(1)}^{\vec{l}}} \geq \underset{(2)}{\vec{\prime} / \downarrow} \geq \cdots
$$

- By Weyl's inequality,

$$
\begin{aligned}
& \frac{1}{a_{n p}^{2}} \max _{i=1, \ldots, p}\left|\lambda_{(i)}-D_{(i)}^{\vec{~}}\right| \leq \frac{1}{a_{n p}^{2}}\left\|\mathbf{X X}^{\prime}-\operatorname{diag}\left(\mathbf{X X}^{\prime}\right)\right\|_{2} \xrightarrow{\mathbb{P}} 0, \quad \beta \in(0,1] \\
& \frac{1}{a_{n p}^{2}} \max _{t=1, \ldots, n}\left|\lambda_{(t)}-D_{(t)}^{\downarrow}\right| \leq \frac{1}{a_{n p}^{2}}\left\|\mathbf{X}^{\prime} \mathbf{X}-\operatorname{diag}\left(\mathbf{X}^{\prime} \mathbf{X}\right)\right\|_{2} \xrightarrow{\mathbb{P}} 0, \quad \beta>1
\end{aligned}
$$

- Limit theory for the order statistics of $\left(D_{i}^{\rightarrow / \downarrow}\right)$ can be handled by point process convergence: for example,

$$
\sum_{i=1}^{p} \varepsilon_{a_{n p}^{-2}\left(D_{i}-c_{n}\right)} \xrightarrow{\mathrm{d}} \sum_{i=1}^{\infty} \varepsilon_{\Gamma_{i}^{-2 / \alpha}}=N_{\Gamma}
$$

for $\Gamma_{i}=E_{1}+\cdots+E_{i},\left(\boldsymbol{E}_{i}\right)$ iid standard exponential, if and only if Resnick (2007)

$$
\begin{aligned}
& p \mathbb{P}\left(a_{n p}^{-2}\left(D_{i}^{\rightarrow}-c_{n}\right)>x\right) \rightarrow x^{-\alpha / 2}, \quad x>0 \\
& p \mathbb{P}\left(a_{n p}^{-2}\left(D_{i}^{\rightarrow}-c_{n}\right)<-x\right) \rightarrow 0, \quad x>0
\end{aligned}
$$

This follows by Nagaev-type large deviations.

- Centering with c_{n} is necessary only for $\alpha \in[2,4)$ and if $(n \vee p) / a_{n p}^{2} \nrightarrow 0$. Centering is not needed if

$$
\min \left(\beta, \beta^{-1}\right) \in\left((\alpha / 2-1)_{+}, 1\right]
$$

- Under the latter condition one also has the alternative approximation

$$
a_{n p}^{-2} \max _{i=1, \ldots, p}\left|\lambda_{(i)}-Z_{(i), n p}^{2}\right| \xrightarrow{\mathbb{P}} 0 .
$$

- Under the latter condition,

$$
\sum_{i=1}^{p} \varepsilon_{a_{n p}^{-2} \lambda_{i}} \xrightarrow{\mathrm{~d}} \sum_{i=1}^{\infty} \varepsilon_{\Gamma_{i}^{-2 / \alpha}}
$$

This was proved by Soshnikov $(2004,2006)$ for $\alpha \in(0,2)$ and by Auffinger, Ben Arous, Péché (2009) for $\alpha \in(0,4)$ in the case when

$$
\begin{equation*}
p / n \rightarrow \gamma \in(0, \infty) \tag{3.1}
\end{equation*}
$$

- Partial results (for particular choices of \boldsymbol{p}) were proved in Davis, Pfaffel and Stelzer (2014), Davis, Mikosch, Pfaffel (2016) for ($\boldsymbol{X}_{\boldsymbol{i t}}$) satisfying some linear dependence conditions.
- In the light-tailed case, limit results for eigenvalues of XX^{\prime} are very sensitive with respect to the growth rate of p.
- Johnstone (2001) showed for iid standard normal $\boldsymbol{X}_{i t}$ under (3.1) that $\frac{\sqrt{n}+\sqrt{p}}{(1 / \sqrt{n}+1 / \sqrt{p})^{1 / 3}}\left(\frac{\lambda_{(1)}}{(\sqrt{n}+\sqrt{p})^{2}}-1\right) \xrightarrow{\text { d }}$ Tracy-Widom distr.
- This result remains valid for iid entries $\boldsymbol{X}_{i t}$ whose first four moments match those of the standard normal. Tao and Vu (2011).
- In the iid regular variation case, using a.s. continuous mappings, folklore (Resnick (1987,2007)) applies to prove
the joint convergence of the order statistics (possibly with centering c_{n})

$$
a_{n p}^{-2}\left(\lambda_{(1)}, \ldots, \lambda_{(k)}\right) \xrightarrow{\mathrm{d}}\left(\Gamma_{1}^{-2 / \alpha}, \ldots, \Gamma_{k}^{-2 / \alpha}\right) .
$$

the joint convergence of the ratios of successive order statistics

$$
\left(\frac{\lambda_{(2)}}{\boldsymbol{\lambda}_{(1)}}, \ldots, \frac{\boldsymbol{\lambda}_{(k-1)}}{\boldsymbol{\lambda}_{(k)}}\right) \xrightarrow{\mathrm{d}}\left(\left(\frac{\Gamma_{1}}{\Gamma_{2}}\right)^{2 / \alpha}, \ldots,\left(\frac{\Gamma_{k-1}}{\Gamma_{k}}\right)^{2 / \alpha}\right) .
$$

the convergence of ratio of largest eigenvalue to trace of XX^{\prime} for $\alpha \in(0,2)$

$$
\frac{\lambda_{(1)}}{\lambda_{1}+\cdots+\lambda_{p}} \xrightarrow{\mathrm{~d}} \frac{\Gamma_{1}^{-2 / \alpha}}{\Gamma_{1}^{-2 / \alpha}+\Gamma_{2}^{-2 / \alpha}+\cdots}
$$

Figure 5. The logarithms of the ratios $\boldsymbol{\lambda}_{(i+1)} / \boldsymbol{\lambda}_{(i)}$ for the S\&P 500 series after rank transform. We also show the 1,50 and 99% quantiles (bottom, middle, top lines, respectively) of the variables $\log \left(\left(\Gamma_{i} / \Gamma_{i+1}\right)^{2}\right)$.

Figure 6. Eigenvalues and ratios $\boldsymbol{\lambda}_{(i+1)} / \boldsymbol{\lambda}_{(i)}$ for S\&P 2002-2014, $\boldsymbol{p}=442$

- With these techniques one can handle results involving finitely many of the largest eigenvalues of XX^{\prime}.
- One cannot handle the smallest eigenvalues, determinants,....
- The largest eigenvalues have different sizes and the eigenvectors are localized: let V_{k} be the unit eigenvector corresponding to $\lambda_{(k)}=\lambda_{L_{k}}$. Then

$$
\left\|\mathrm{V}_{k}-\mathrm{e}_{L_{k}}\right\| \xrightarrow{\mathbb{P}} 0 .
$$

Normal data

Pareto data

Figure 7. The components of the eigenvector $\mathbf{V}_{\mathbf{1}}$. Right: The case of iid Pareto(0.8) entries. Left: The case of iid standard normal entries. We choose $\boldsymbol{p}=\mathbf{2 0 0}$ and $\boldsymbol{n}=\mathbf{1}, \mathbf{0 0 0}$.

- The main idea in the iid case is to exploit the heavier tails of X^{2} in comparison with those of $X_{1} X_{2}$.
- Similar behavior can be observed for regularly varying stochastic volatility models

$$
X_{i t}=\sigma_{i t} Z_{i t}, \quad i, t \in \mathbb{Z}
$$

with index $\alpha \in(0,4)$.

- Nagaev-type large deviation for stochastic volatility models

Mikosch and Wintenberger (2016) exist and are likely to ensure

$$
a_{n p}^{-2}\left\|\mathrm{XX}^{\prime}-\operatorname{diag}\left(\mathrm{XX}^{\prime}\right)\right\|_{2} \xrightarrow{\mathbb{P}} 0
$$

- Similar techniques apply when $\sigma_{i t}=\sigma_{i t}^{(n)}$ assumes zero with positive probability, e.g. $\sigma_{i t}$ Bernoulli distributed and $\mathbb{P}\left(\sigma^{(n)}=0\right) \rightarrow \mathbf{1}$; see Auffinger et al. (2016). (thinning of X)
- The largest eigenvalue of sample correlation matrices of an iid heavy-tailed sequence has similar behavior as in the light-tailed case ask Johannes Heiny.

5. Another structure where the squares dominate: Linear

Processes. Davis, Pfaffel, Stelzer (2014), Davis, Mikosch, Pfaffel (2016)

- Special case:

$$
X_{i t}=\theta_{0} Z_{i, t}+\theta_{1} Z_{i-1, t}
$$

for iid $\left(Z_{i t}\right)$ with regularly varying Z with index $\alpha \in(0,4)$, real coefficients θ_{i}.

- Observe that

$$
\begin{aligned}
\sum_{t=1}^{n} X_{i, t}^{2} & =\sum_{t=1}^{n}\left(\theta_{0}^{2} Z_{i, t}^{2}+\theta_{1}^{2} Z_{i-1, t}^{2}\right)+2 \theta_{0} \theta_{1} \sum_{t=1}^{n} Z_{i, t} Z_{i-1, t} \\
& =\theta_{0}^{2} D_{i}+\theta_{1}^{2} D_{i-1}^{\rightarrow}+o_{P}\left(a_{n}^{2}\right)
\end{aligned}
$$

- Here we used Nagaev-type large deviations and the fact that Z^{2} has tail index $\alpha / 2$, while $Z_{1} Z_{2}$ has tail index α.
- Similarly,

$$
\begin{aligned}
\sum_{t=1}^{n} \boldsymbol{X}_{i, t} \boldsymbol{X}_{i+1, t} & =\theta_{0} \theta_{1} \sum_{t=1}^{n} Z_{i, t}^{2}+o_{P}\left(a_{n}^{2}\right) \\
& =\theta_{0} \theta_{1} D_{i}^{\rightarrow}+o_{P}\left(a_{n}^{2}\right) .
\end{aligned}
$$

- This leads to the approximation

$$
\begin{aligned}
& \left(\begin{array}{cc}
\sum_{t=1}^{n} \boldsymbol{X}_{i, t}^{2} & \sum_{t=1}^{n} \boldsymbol{X}_{i, t} \boldsymbol{X}_{i+1, t} \\
\sum_{t=1}^{n} \boldsymbol{X}_{i, t} \boldsymbol{X}_{i+1, t} & \sum_{t=1}^{n} \boldsymbol{X}_{i+1, t}^{2}
\end{array}\right) \\
\approx & \left(\begin{array}{cc}
\boldsymbol{\theta}_{0}^{2} & \boldsymbol{\theta}_{0} \boldsymbol{\theta}_{1} \\
\boldsymbol{\theta}_{0} \boldsymbol{\theta}_{1} & \boldsymbol{\theta}_{1}^{2}
\end{array}\right) \boldsymbol{D}_{i}+\left(\begin{array}{cc}
\boldsymbol{\theta}_{1}^{2} & 0 \\
0 & 0
\end{array}\right) \boldsymbol{D}_{i-1}+\left(\begin{array}{cc}
0 & 0 \\
0 & \boldsymbol{\theta}_{0}^{2}
\end{array}\right) \boldsymbol{D}_{i+1} .
\end{aligned}
$$

- The sample covariance matrix can be approximated by

$$
\left\|\mathrm{XX}^{\prime}-\sum_{i=1}^{p} D_{i}^{\rightarrow} \mathrm{M}_{i}\right\|_{2}=o_{P}\left(a_{n p}^{2}\right)
$$

where

$$
\mathrm{M}_{1}=\left(\begin{array}{ccccc}
\theta_{0}^{2} & \theta_{0} \theta_{1} & 0 & \ldots & 0 \\
\theta_{0} \theta_{1} & \theta_{1}^{2} & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0
\end{array}\right), \mathrm{M}_{2}=\left(\begin{array}{ccccc}
0 & 0 & 0 & \ldots & 0 \\
0 & \theta_{0}^{2} & \theta_{0} \theta_{1} & \ldots & 0 \\
0 & \theta_{0} \theta_{1} & \theta_{1}^{2} & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0
\end{array}\right), \ldots
$$

- Denote the order statistics of the D_{i}^{\rightarrow} by $D_{(1)}^{\overrightarrow{1}} \geq \cdots \geq D_{(p)}^{\vec{~}}$ and

$$
D_{L_{i}}^{\overrightarrow{L_{i}}}=D_{(i)}^{\overrightarrow{2}}
$$

- Then

$$
a_{n p}^{-2}\left\|\mathrm{XX}^{\prime}-\sum_{i=1}^{p} D_{L_{i}}^{\rightarrow} \mathrm{M}_{L_{i}}\right\|_{2} \xrightarrow{\mathbb{P}} 0
$$

- For $k=k_{n} \rightarrow \infty$ slowly,

$$
a_{n p}^{-2}\left\|\mathrm{XX}^{\prime}-\sum_{i=1}^{k} D_{L_{i}}^{\rightarrow} \mathrm{M}_{L_{i}}\right\|_{2} \xrightarrow{\mathbb{P}} 0
$$

- Since $\left(D_{i}^{\rightarrow}\right)$ is iid, $\left(L_{1}, \ldots, L_{p}\right)$ is a random permutation of $(1, \ldots, p)$, hence the event

$$
A_{k}=\left\{\left|L_{i}-L_{j}\right|>1, i \neq j=1, \ldots, k\right\}
$$

has probability close to one provided $k^{2}=o(p)$.

- On the set A_{k}, the matrix $\sum_{i=1}^{k} D_{L_{i}} \mathrm{M}_{L_{i}}$ is block-diagonal with non-zero eigenvalues $D_{L_{i}}\left(\theta_{0}^{2}+\theta_{1}^{2}\right), i=1, \ldots, k$.
- Here we used that $\mathrm{M}_{L_{i}}$ has rank 1 with non-zero eigenvalue equal to $\theta_{0}^{2}+\theta_{1}^{2}$.
- By Weyl's inequality,
$a_{n p}^{-2} \max _{i=1, \ldots, k}\left|\lambda_{(i)}-D_{L_{i}}^{\rightarrow}\left(\theta_{0}^{2}+\theta_{1}^{2}\right)\right| \leq a_{n p}^{-2}\left\|\mathrm{XX}^{\prime}-\sum_{i=1}^{k} D_{L_{i}}^{\rightarrow} \mathrm{M}_{L_{i}}\right\|_{2} \xrightarrow{\mathbb{P}} 0$.
- Extension to general linear structure:

$$
X_{i t}=\sum_{k, l} h_{k l} Z_{k-i, l-t}
$$

- Use truncation of the coefficient matrix $H=\left(h_{k l}\right)$ of the linear process.
- Then

$$
a_{n p}^{-2} \max _{i=1, \ldots, p}\left|\lambda_{(i)}-\delta_{(i)}\right| \xrightarrow{\mathbb{P}} 0, \quad n \rightarrow \infty,
$$

where $\delta_{(1)}, \ldots, \delta_{(p)}$ are the p ordered values (with respect to absolute value) of the set
$\left\{\left(\boldsymbol{D}_{i}-\mathbb{E}\left[D_{1}^{\rightarrow}\right]\right) \boldsymbol{v}_{j}, i=1, \ldots, k ; j=1,2, \ldots\right\}$ for $\alpha \in(0,2)$, $(\alpha \in(2,4))$ where $\left(v_{j}\right)$ are the eigenvalues of

$$
\boldsymbol{H} \boldsymbol{H}^{\prime}=\left(\sum_{l=0}^{\infty} h_{i l} h_{j l}\right)_{i, j=1,2, \ldots}
$$

- The mapping theorem implies for suitable real or complex numbers (v_{j})

$$
\sum_{j=1}^{\infty} \sum_{i=1}^{p} \varepsilon_{a_{n p}^{-2}\left(D_{i}-E D_{1}\right) v_{j}} \xrightarrow{\mathrm{~d}} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \varepsilon_{\Gamma_{i}^{-2 / \alpha} v_{j}}
$$

The limit is a Poisson cluster process.

- An example: The separable case: We assume $h_{k l}=\theta_{k} c_{l}$. The matrix $H H^{\prime}=\sum_{l=0}^{\infty} c_{l}^{2}\left(\theta_{i} \theta_{j}\right)_{i, j \geq 0}$ has rank $r=1$ and

$$
\boldsymbol{v}_{(1)}=\sum_{l=0}^{\infty} c_{l}^{2} \sum_{k=0}^{\infty} \theta_{k}^{2} .
$$

The limit point process is Poisson as in the iid case. For $\alpha<2$,

$$
\begin{aligned}
& a_{n p}^{-2}\left(\lambda_{(1)}, \ldots, \lambda_{(k)}\right) \xrightarrow{\mathrm{d}} v_{(1)}\left(\Gamma_{1}^{-2 / \alpha}, \ldots, \Gamma_{k}^{-2 / \alpha}\right), \\
& \frac{\lambda_{(1)}}{\lambda_{(1)}+\cdots+\lambda_{(k)}} \xrightarrow{\mathrm{d}} \frac{\Gamma_{1}^{-2 / \alpha}}{\Gamma_{1}^{-2 / \alpha}+\cdots+\Gamma_{k}^{-2 / \alpha}}, \\
& \frac{\lambda_{(1)}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{p}} \xrightarrow{\mathrm{~d}} \frac{\Gamma_{1}^{-2 / \alpha}}{\Gamma_{1}^{-2 / \alpha}+\Gamma_{2}^{-2 / \alpha}+\cdots},
\end{aligned}
$$

Concluding Remarks

- Extensions to non-linear heavy-tailed multivariate time series where squares do not dominate are difficult: even the definition of X is not straightforward if one wants to model dependence between rows/columns.
- Heavy-tailed multivariate models with iid rows: Davis, Pfaffel, Stelzer (2014). Limit behavior of eigenvalues as in iid case.
- Multivariate models with different tail indices in rows ?

[^0]: ${ }^{1}$ Fields, May 2016

