Non-Skorokhodian functional convergence for dependent heavy-tailed models

Workshop on Dependence, Stability and Extremes Fields Institute, Toronto, May 2nd, 2016

> Adam Jakubowski Uniwersytet Mikołaja Kopernika Toruń

Skorokhod's J_1 and M_1

Non-Skorokhodiar convergence

Adam Jakubowski

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• Let $\{Y_i\}$ be an i.i.d. sequence satisfying

$$P(|Y_j| > x) = x^{-p}h(x), \ x > 0,$$

where $p \in (0, 2)$ and h(x) varies slowly at $x = +\infty$.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• Let $\{Y_i\}$ be an i.i.d. sequence satisfying

$$P(|Y_j| > x) = x^{-p}h(x), \ x > 0,$$

where $p \in (0, 2)$ and h(x) varies slowly at $x = +\infty$.

· Suppose also that

$$\lim_{x \to \infty} \frac{P(Y_j > x)}{P(|Y_j| > x)} = c_+, \quad \lim_{x \to \infty} \frac{P(Y_j < -x)}{P(|Y_j| > x)} = c_-.$$

$$EY_j = 0, \text{ if } \alpha > 1, \quad \{Y_j\} \text{ are symmetric, if } \alpha = 1$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• Let $\{Y_i\}$ be an i.i.d. sequence satisfying

$$P(|Y_j| > x) = x^{-p}h(x), \ x > 0,$$

where $p \in (0,2)$ and h(x) varies slowly at $x = +\infty$.

Suppose also that

$$\lim_{x \to \infty} \frac{P(Y_j > x)}{P(|Y_j| > x)} = c_+, \quad \lim_{x \to \infty} \frac{P(Y_j < -x)}{P(|Y_j| > x)} = c_-.$$

$$EY_j = 0, \text{ if } \alpha > 1, \quad \{Y_j\} \text{ are symmetric, if } \alpha = 1.$$

Then

$$Z_n = \frac{1}{a_n} \sum_{i=1}^n Y_i \xrightarrow{\mathcal{D}} Z$$

,

where $\{a_n\}$ is such that $nP(|Y_1| > a_n) \rightarrow 1$.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• Let $\{Y_i\}$ be an i.i.d. sequence satisfying

$$P(|Y_j| > x) = x^{-p}h(x), \ x > 0,$$

where $p \in (0,2)$ and h(x) varies slowly at $x = +\infty$.

Suppose also that

$$\lim_{x \to \infty} \frac{P(Y_j > x)}{P(|Y_j| > x)} = c_+, \quad \lim_{x \to \infty} \frac{P(Y_j < -x)}{P(|Y_j| > x)} = c_-.$$

$$EY_j = 0, \text{ if } \alpha > 1, \quad \{Y_j\} \text{ are symmetric, if } \alpha = 1.$$

• Then

$$Z_n = \frac{1}{a_n} \sum_{i=1}^n Y_i \xrightarrow{\mathcal{D}} Z$$

,

where $\{a_n\}$ is such that $nP(|Y_1| > a_n) \rightarrow 1$.

• Here Z has the strictly *p*-stable distribution $Pois(\nu(p, c_+, c_-))$, with the Lévy measure $\nu = \nu(p, c_+, c_-)$ given by the density $f_{\nu}(x) = (pc_+I(x > 0) + pc_-I(x < 0))|x|^{-(1+p)}$.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• By the Skorokhod theorem (1957) we also have

$$Z_n(t) = rac{1}{a_n} \sum_{i=1}^{[nt]} Y_i \xrightarrow{\mathcal{D}} Z(t),$$

where

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• By the Skorokhod theorem (1957) we also have

$$Z_n(t) = rac{1}{a_n} \sum_{i=1}^{[nt]} Y_i \longrightarrow Z(t),$$

where

• {Z(t)} is the stable Lévy Motion with $Z(1) \sim \text{Pois}(\nu(p, c_+, c_-))$,

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• By the Skorokhod theorem (1957) we also have

$$Z_n(t) = \frac{1}{a_n} \sum_{i=1}^{[nt]} Y_i \xrightarrow{\mathcal{D}} Z(t)$$

where

- {*Z*(*t*)} is the stable Lévy Motion with $Z(1) \sim \text{Pois}(\nu(p, c_+, c_-))$,
- the convergence holds on the Skorokhod space
 D([0, 1]) equipped with the topology J₁ of Skorokhod (1956).

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• By the Skorokhod theorem (1957) we also have

$$Z_n(t) = \frac{1}{a_n} \sum_{i=1}^{[nt]} Y_i \xrightarrow{\mathcal{D}} Z(t),$$

where

- {*Z*(*t*)} is the stable Lévy Motion with $Z(1) \sim \text{Pois}(\nu(p, c_+, c_-))$,
- the convergence holds on the Skorokhod space
 D([0, 1]) equipped with the topology J₁ of Skorokhod (1956).
- Notice that we mention two different papers by Skorokhod.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• Let us consider a linear process

$$X_i = \sum_{j \in \mathbb{Z}} c_j Y_{i-j}, \quad i \in \mathbb{Z},$$

where the innovations $\{Y_j\}$ are i.i.d. and $\{c_j\}$ are such that the series converges.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• Let us consider a linear process

$$X_i = \sum_{j \in \mathbb{Z}} c_j Y_{i-j}, \quad i \in \mathbb{Z},$$

where the innovations $\{Y_j\}$ are i.i.d. and $\{c_j\}$ are such that the series converges.

• An important property of this model is the propagation of big values.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• Let us consider a linear process

$$X_i = \sum_{j \in \mathbb{Z}} c_j Y_{i-j}, \quad i \in \mathbb{Z},$$

where the innovations $\{Y_j\}$ are i.i.d. and $\{c_j\}$ are such that the series converges.

- An important property of this model is the propagation of big values.
- Suppose that some random variable Y_j takes a big value, then this value is propagated along the sequence X_i (where Y_j is taken with big c_{i-j}).

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• Let us consider a linear process

$$X_i = \sum_{j \in \mathbb{Z}} c_j Y_{i-j}, \quad i \in \mathbb{Z},$$

where the innovations $\{Y_j\}$ are i.i.d. and $\{c_j\}$ are such that the series converges.

- An important property of this model is the propagation of big values.
- Suppose that some random variable Y_j takes a big value, then this value is propagated along the sequence X_i (where Y_j is taken with big c_{i-j}).
- Thus linear processes form the simplest model for phenomena of clustering of big values, what is important in insurance - see e.g. Mikosch & Samorodnitsky, Ann. Appl. Probab. 10 (2000), 1025–1064.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• Let us consider a linear process

$$X_i = \sum_{j \in \mathbb{Z}} c_j Y_{i-j}, \quad i \in \mathbb{Z},$$

where the innovations $\{Y_j\}$ are i.i.d. and $\{c_j\}$ are such that the series converges.

- An important property of this model is the propagation of big values.
- Suppose that some random variable Y_j takes a big value, then this value is propagated along the sequence X_i (where Y_j is taken with big c_{i-j}).
- Thus linear processes form the simplest model for phenomena of clustering of big values, what is important in insurance - see e.g. Mikosch & Samorodnitsky, Ann. Appl. Probab. 10 (2000), 1025–1064.
- Clustering of big values is especially seen in the case, when *Y_j*'s have really heavy tails.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Let us assume that

$$\sum_{j\in\mathbb{Z}}|\boldsymbol{c}_{j}|<+\infty,$$

and (for simplicity) that

p > 1.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Let us assume that

$$\sum_{j\in\mathbb{Z}}|\boldsymbol{c}_{j}|<+\infty,$$

and (for simplicity) that

p > 1.

Then the series defining the linear process is well-defined.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Let us assume that

$$\sum_{j\in\mathbb{Z}}|c_j|<+\infty,$$

Then the series defining the linear process is well-defined.

• Astrauskas (1983) - by direct manipulation;

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Let us assume that

$$\sum_{j\in\mathbb{Z}}|c_j|<+\infty,$$

and (for simplicity) that

p > 1.

Then the series defining the linear process is well-defined.

- Astrauskas (1983) by direct manipulation;
- Davis & Resnick (1986) using point processes;

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Let us assume that

$$\sum_{j\in\mathbb{Z}}|c_j|<+\infty,$$

and (for simplicity) that

p > 1.

Then the series defining the linear process is well-defined.

- Astrauskas (1983) by direct manipulation;
- Davis & Resnick (1986) using point processes;
- Kasahara and Maejima (1988) applying integral representations;

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Let us assume that

$$\sum_{j\in\mathbb{Z}}|\mathbf{c}_{j}|<+\infty,$$

and (for simplicity) that

p > 1.

Then the series defining the linear process is well-defined.

- Astrauskas (1983) by direct manipulation;
- Davis & Resnick (1986) using point processes;
- Kasahara and Maejima (1988) applying integral representations;

showed the following theorem.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Let $p \in (1, 2)$,

$$\sum_{j\in\mathbb{Z}}|\boldsymbol{c}_j|<+\infty,$$

and numbers $\{a_n\}$ are such that

$$Z_n = rac{1}{a_n}\sum_{i=1}^n Y_i \xrightarrow{\mathcal{D}} Z,$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Let $p \in (1, 2)$,

$$\sum_{j\in\mathbb{Z}}|\boldsymbol{c}_j|<+\infty,$$

and numbers $\{a_n\}$ are such that

$$Z_n = \frac{1}{a_n} \sum_{i=1}^n Y_i \xrightarrow{\mathcal{D}} Z_i,$$

$$S_n(t) = rac{1}{a_n} \sum_{i=1}^{[nt]} X_i \xrightarrow{f.d.d.} A \cdot Z(t),$$

where:

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Let $p \in (1, 2)$,

$$\sum_{j\in\mathbb{Z}}|\boldsymbol{c}_j|<+\infty,$$

and numbers $\{a_n\}$ are such that

$$Z_n = \frac{1}{a_n} \sum_{i=1}^n Y_i \xrightarrow{\mathcal{D}} Z_i,$$

$$S_n(t) = rac{1}{a_n} \sum_{i=1}^{[nt]} X_i \xrightarrow{f.d.d.} A \cdot Z(t),$$

where:

•
$$A = \sum_{j \in \mathbb{Z}} c_j;$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Let $p \in (1, 2)$,

$$\sum_{j\in\mathbb{Z}}|\boldsymbol{c}_j|<+\infty,$$

and numbers $\{a_n\}$ are such that

$$Z_n = \frac{1}{a_n} \sum_{i=1}^n Y_i \xrightarrow{\mathcal{D}} Z_i,$$

Then

$$S_n(t) = rac{1}{a_n} \sum_{i=1}^{[nt]} X_i \xrightarrow{f.d.d.} A \cdot Z(t),$$

where:

- $A = \sum_{j \in \mathbb{Z}} c_j;$
- {*Z*(*t*)} is the *p*-stable Lévy Motion such that Z(1) ∼ Z.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

In the previous theorem, the finite dimensional convergence cannot be, in general, strengthened to the functional convergence in any topology, in which the supremum is continuous. Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

In the previous theorem, the finite dimensional convergence cannot be, in general, strengthened to the functional convergence in any topology, in which the supremum is continuous.

Example

Let
$$X_i = Y_i - Y_{i-1}$$
, i.e. $c_0 = 1$ and $c_1 = -1$, then $A = \sum_i c_i = 0$ and we have

$$S_n(t) \xrightarrow{\mathcal{P}} 0, t \ge 0.$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

In the previous theorem, the finite dimensional convergence cannot be, in general, strengthened to the functional convergence in any topology, in which the supremum is continuous.

Example

Let
$$X_i = Y_i - Y_{i-1}$$
, i.e. $c_0 = 1$ and $c_1 = -1$, then $A = \sum_j c_j = 0$ and we have

$$S_n(t) \xrightarrow{\mathcal{P}} 0, t \ge 0.$$

On the other hand,

$$\sup_{t\in[0,1]}S_n(t)=\max_{k\leqslant n}\left(Y_k-Y_0\right)/a_n$$

converges to a Fréchet distribution.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

In the previous theorem, the finite dimensional convergence cannot be, in general, strengthened to the functional convergence in any topology, in which the supremum is continuous.

Example

Let
$$X_i = Y_i - Y_{i-1}$$
, i.e. $c_0 = 1$ and $c_1 = -1$, then $A = \sum_j c_j = 0$ and we have

$$S_n(t) \xrightarrow{\mathcal{P}} 0, t \ge 0.$$

On the other hand,

$$\sup_{t\in[0,1]}S_n(t)=\max_{k\leqslant n}\left(Y_k-Y_0\right)/a_n$$

converges to a Fréchet distribution.

In particular, none of Skorokhod's J_1 , J_2 , M_1 and M_2 topologies is applicable.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Convergence in *M*₁

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Convergence in M₁

Theorem (Avram & Taqqu (1992)) Let $p \in (1, 2)$. If

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Convergence in M₁

Theorem (Avram & Taqqu (1992))

Let $p \in (1, 2)$. If

• $c_j \ge 0, j \in \mathbb{Z}$,

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization
Convergence in M₁

Theorem (Avram & Taqqu (1992))

Let $p \in (1, 2)$. If

- $c_j \geqslant 0, j \in \mathbb{Z}$,
- both $\{c_j\}_{j \ge 0}$ and $\{c_j\}_{j < 0}$ are monotone sequences

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Convergence in M₁

Theorem (Avram & Taqqu (1992))

Let $p \in (1, 2)$. If

- $c_j \geqslant 0, j \in \mathbb{Z}$,
- both $\{c_j\}_{j \ge 0}$ and $\{c_j\}_{j < 0}$ are monotone sequences
- for some $0 < \beta < 1$

$$\sum_{j} c_{j}^{\beta} < +\infty$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Convergence in M₁

Theorem (Avram & Taqqu (1992))

Let $p \in (1, 2)$. If

- $c_j \ge 0, j \in \mathbb{Z}$,
- both $\{c_j\}_{j \ge 0}$ and $\{c_j\}_{j < 0}$ are monotone sequences
- for some $0 < \beta < 1$

$$\sum_{j} c_{j}^{\beta} < +\infty,$$

then

$$S_n(t) = rac{1}{a_n} \sum_{i=1}^{[nt]} X_i \longrightarrow_{\mathcal{D}} A \cdot Z(t)$$

on the Skorokhod space $\mathbb{D}([0, 1])$ equipped with the M_1 topology.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Theorem (after Louhichi & Rio (2011))

Let $p \in (1, 2)$. If

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Theorem (after Louhichi & Rio (2011))

Let $p \in (1, 2)$. If

•
$$c_j \ge 0, j \in \mathbb{Z}$$
,

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Theorem (after Louhichi & Rio (2011))

Let $p \in (1, 2)$. If

• $c_j \ge 0, j \in \mathbb{Z}$,

•
$$A = \sum_j c_j < +\infty$$
,

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Theorem (after Louhichi & Rio (2011))

Let $p \in (1, 2)$. If

• $c_j \ge 0, j \in \mathbb{Z}$,

•
$$A = \sum_j c_j < +\infty$$
,

then

$$S_n(t) = \frac{1}{a_n} \sum_{i=1}^{[nt]} X_i \longrightarrow A \cdot Z(t)$$

on the Skorokhod space $\mathbb{D}([0, 1])$ equipped with the M_1 -topology.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Theorem (after Louhichi & Rio (2011))

Let $p \in (1, 2)$. If

• $c_j \geqslant 0, j \in \mathbb{Z}$,

•
$$A = \sum_j c_j < +\infty$$
,

then

$$S_n(t) = \frac{1}{a_n} \sum_{i=1}^{[nt]} X_i \longrightarrow A \cdot Z(t)$$

on the Skorokhod space $\mathbb{D}([0, 1])$ equipped with the M_1 -topology.

 Louhichi and Rio (2011) proved M₁-tightness for associated sequences.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Theorem (after Louhichi & Rio (2011))

Let $p \in (1, 2)$. If

• $c_j \geqslant 0, j \in \mathbb{Z}$,

•
$$A = \sum_j c_j < +\infty$$
,

then

$$S_n(t) = rac{1}{a_n} \sum_{i=1}^{[nt]} X_i \longrightarrow A \cdot Z(t)$$

on the Skorokhod space $\mathbb{D}([0, 1])$ equipped with the M_1 -topology.

- Louhichi and Rio (2011) proved *M*₁-tightness for associated sequences.
- In Basrak, Krizmanic & Segers (2012) an original variant of the point processes method allows to obtain M₁-convergence directly (well, almost).

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Theorem (after Louhichi & Rio (2011))

Let $p \in (1, 2)$. If

• $c_j \geqslant 0, j \in \mathbb{Z}$,

•
$$A = \sum_j c_j < +\infty$$
,

then

$$S_n(t) = rac{1}{a_n} \sum_{i=1}^{[nt]} X_i \longrightarrow A \cdot Z(t)$$

on the Skorokhod space $\mathbb{D}([0, 1])$ equipped with the M_1 -topology.

- Louhichi and Rio (2011) proved M₁-tightness for associated sequences.
- In Basrak, Krizmanic & Segers (2012) an original variant of the point processes method allows to obtain M₁-convergence directly (well, almost).
- More in Bojan's talk this afternoon (hopefully).

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Conjecture (Avram & Taqqu (1992))

If $c_j = 0$, for $j \leqslant 0$ and $c_1, c_2, \ldots \in \mathbb{R}^1$ are such that

$$\mathbf{0} \leqslant \frac{\sum_{j=1}^{k} c_j}{\sum_{j=1}^{\infty} c_j} \leqslant \mathbf{1}, \quad k \in \mathbb{N},$$

then on (\mathbb{D}, M_2)

$$S_n(t) \xrightarrow{\mathcal{D}} A \cdot Z(t).$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Conjecture (Avram & Taqqu (1992))

If $c_j = 0$, for $j \leqslant 0$ and $c_1, c_2, \ldots \in \mathbb{R}^1$ are such that

$$\mathbf{0} \leqslant \frac{\sum_{j=1}^{k} c_j}{\sum_{j=1}^{\infty} c_j} \leqslant \mathbf{1}, \quad k \in \mathbb{N},$$

then on (\mathbb{D}, M_2)

$$S_n(t) \xrightarrow{\mathcal{D}} A \cdot Z(t).$$

Basrak and Krizmanić confirmed this conjecture in 2014,

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Conjecture (Avram & Taqqu (1992))

If $c_j = 0$, for $j \leqslant 0$ and $c_1, c_2, \ldots \in \mathbb{R}^1$ are such that

$$\mathbf{0} \leqslant \frac{\sum_{j=1}^{k} c_j}{\sum_{j=1}^{\infty} c_j} \leqslant \mathbf{1}, \quad k \in \mathbb{N},$$

then on (\mathbb{D}, M_2)

$$S_n(t) \xrightarrow{\mathcal{D}} A \cdot Z(t).$$

- Basrak and Krizmanić confirmed this conjecture in 2014,
- But we saw by example that in the general case none of Skorokhod's *J*₁, *J*₂, *M*₁ and *M*₂ topologies is applicable.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Linear processes converge in S

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Linear processes converge in S

Theorem (Balan, J. & Louhichi (2012, 2014, 2016)) If $p \in (1, 2)$ and $\sum_{j} |c_{j}| < +\infty$, then

$$S_n(t) \xrightarrow{\mathcal{D}} A \cdot Z(t)$$

on the Skorokhod space $\mathbb{D}([0, 1])$ equipped with the *S* topology.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Linear processes converge in S

Theorem (Balan, J. & Louhichi (2012, 2014, 2016))

If $p \in (1,2)$ and $\sum_j |c_j| < +\infty$, then

$$S_n(t) \xrightarrow{\mathcal{D}} A \cdot Z(t)$$

on the Skorokhod space $\mathbb{D}([0, 1])$ equipped with the *S* topology.

Theorem (Zhang, Sin &Ling (2015))

Under some additional technical conditions linear processes with GARCH(1,1) stationary noise converge to $A \cdot Z(t)$ on the Skorokhod space $\mathbb{D}([0,1])$ equipped with the *S* topology.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• Supremum is not continuos in S.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• Supremum is not continuos in S.

A direct application of the linear structure of S

Let $\alpha \in (1, 2)$ and $\sum_{j} |c_{j}| < +\infty$. Set, as before $A = \sum_{j} c_{j}$. Then for any $\beta > 0$

$$\frac{1}{na_n^{\beta}}\sum_{k=1}^n \Big|\sum_{i=1}^k \big(\big(\sum_j c_{i-j}Y_j\big) - AY_i\big)\Big|^{\beta} \xrightarrow{\mathcal{P}} 0.$$

 There exist more advanced examples of the use of the S topology, mainly related to the convergence of stochastic integrals.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First

characterization

• Supremum is not continuos in S.

A direct application of the linear structure of S

Let $\alpha \in (1, 2)$ and $\sum_{j} |c_{j}| < +\infty$. Set, as before $A = \sum_{j} c_{j}$. Then for any $\beta > 0$

$$\frac{1}{na_n^{\beta}}\sum_{k=1}^n \Big|\sum_{i=1}^k \big(\big(\sum_j c_{i-j}Y_j\big) - AY_i\big)\Big|^{\beta} \xrightarrow{\mathcal{P}} 0.$$

- There exist more advanced examples of the use of the S topology, mainly related to the convergence of stochastic integrals.
- For statistical examples of this type see e.g. Chen & Zhang (2010), (2013).

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First

characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

S-topology is the only sequential topology on \mathbb{D} for which $K \subset \mathbb{D}$ is relatively compact if, and only if, *K* satisfies the following two conditions:

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

S-topology is the only sequential topology on \mathbb{D} for which $K \subset \mathbb{D}$ is relatively compact if, and only if, *K* satisfies the following two conditions:

$$\sup_{x\in K}\|x\|_{\infty}<+\infty.$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

S-topology is the only sequential topology on \mathbb{D} for which $K \subset \mathbb{D}$ is relatively compact if, and only if, *K* satisfies the following two conditions:

$$\sup_{x\in {\cal K}}\|x\|_\infty<+\infty$$

$$\sup_{x\in K} N^{a,b}(x) < +\infty.$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

S-topology is the only sequential topology on \mathbb{D} for which $K \subset \mathbb{D}$ is relatively compact if, and only if, *K* satisfies the following two conditions:

$$\sup_{x\in K}\|x\|_{\infty}<+\infty$$

$$\sup_{x\in K} N^{a,b}(x) < +\infty$$

• Here, as always $||x||_{\infty} = \sup_{t \in [0,1]} |x(t)|$ and if a < b, $N^{a,b}(x)$ is the number of up-crossings of levels a < b by function $x : [0,1] \to \mathbb{R}^1$.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

S-topology is the only sequential topology on \mathbb{D} for which $K \subset \mathbb{D}$ is relatively compact if, and only if, *K* satisfies the following two conditions:

$$\sup_{x\in K}\|x\|_{\infty}<+\infty$$

$$\sup_{x\in K} N^{a,b}(x) < +\infty$$

- Here, as always $||x||_{\infty} = \sup_{t \in [0,1]} |x(t)|$ and if a < b, $N^{a,b}(x)$ is the number of up-crossings of levels a < b by function $x : [0,1] \to \mathbb{R}^1$.
- It is possible to give an explicit expression for $x_n \longrightarrow_S x_0$ (see J. (1997)).

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

 Let V ⊂ D be the space of (regularized) functions of finite variation on [0, 1] and

$$\|v\|(t) = \sup \left\{ |v(0)| + \sum_{i=1}^{m} |v(t_i) - v(t_{i-1})| \right\}.$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

 Let V ⊂ D be the space of (regularized) functions of finite variation on [0, 1] and

$$\|v\|(t) = \sup \{|v(0)| + \sum_{i=1}^{m} |v(t_i) - v(t_{i-1})|\}.$$

• We shall write $v_n \Rightarrow v_0$ if for every $f \in \mathbb{C}([0,1] : \mathbb{R}^1)$

$$\int_{[0,1]} f(t) dv_n(t) \rightarrow \int_{[0,1]} f(t) dv_0(t).$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

 Let V ⊂ D be the space of (regularized) functions of finite variation on [0, 1] and

$$\|v\|(t) = \sup \{|v(0)| + \sum_{i=1}^{m} |v(t_i) - v(t_{i-1})|\}.$$

• We shall write $v_n \Rightarrow v_0$ if for every $f \in \mathbb{C}([0,1] : \mathbb{R}^1)$

$$\int_{[0,1]} f(t) dv_n(t) \rightarrow \int_{[0,1]} f(t) dv_0(t).$$

 We shall write x_n→_S x₀ if for every ε > 0 one can find elements v_{n,ε} ∈ V, n = 0, 1, 2, ... which are ε-uniformly close to x_n's and weakly-* convergent:

$$\|x_n - v_{n,\varepsilon}\|_{\infty} \leqslant \varepsilon, \qquad n = 0, 1, 2, \dots,$$
(1)
$$v_{n,\varepsilon} \Rightarrow v_{0,\varepsilon}, \qquad \text{as } n \to \infty.$$
(2)

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

 Let V ⊂ D be the space of (regularized) functions of finite variation on [0, 1] and

$$\|v\|(t) = \sup \{|v(0)| + \sum_{i=1}^{m} |v(t_i) - v(t_{i-1})|\}.$$

• We shall write $v_n \Rightarrow v_0$ if for every $f \in \mathbb{C}([0,1] : \mathbb{R}^1)$

$$\int_{[0,1]} f(t) d\mathbf{v}_n(t) \rightarrow \int_{[0,1]} f(t) d\mathbf{v}_0(t).$$

 We shall write x_n→_S x₀ if for every ε > 0 one can find elements v_{n,ε} ∈ V, n = 0, 1, 2, ... which are ε-uniformly close to x_n's and weakly-* convergent:

$$\|x_n - v_{n,\varepsilon}\|_{\infty} \leq \varepsilon, \qquad n = 0, 1, 2, \dots,$$
(1)
$$v_{n,\varepsilon} \Rightarrow v_{0,\varepsilon}, \qquad \text{as } n \to \infty.$$
(2)

• *S* is weaker than M_1 (and J_1) but is incomparable with M_2 .

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

A typical phenomenon for S-converegnce

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

A typical phenomenon for S-converegnce

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

A summary on the S topology

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization
• *S* is a weak topology on D, which is non-Skorokhod, sequential and not metrisable.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- *S* is a weak topology on D, which is non-Skorokhod, sequential and not metrisable.
- The *σ*-field B_S of Borel subsets for S coincides with the usual *σ*-field generated by projections (or evaluations) on D: B_S = *σ*(π_t : t ∈ [0, 1]).

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- *S* is a weak topology on D, which is non-Skorokhod, sequential and not metrisable.
- The *σ*-field B_S of Borel subsets for S coincides with the usual *σ*-field generated by projections (or evaluations) on D: B_S = *σ*(π_t : t ∈ [0, 1]).
- The set P(D, S) of S-tight probability measures is exactly the set of distributions of stochastic processes with trajectories in D: P(D, S) = P(D).

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- *S* is a weak topology on D, which is non-Skorokhod, sequential and not metrisable.
- The *σ*-field B_S of Borel subsets for S coincides with the usual *σ*-field generated by projections (or evaluations) on D: B_S = *σ*(π_t : t ∈ [0, 1]).
- The set P(D, S) of S-tight probability measures is exactly the set of distributions of stochastic processes with trajectories in D: P(D, S) = P(D).
- S is a submetric topology, for there exists a countable family of S-continuous functions which separate points in D.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- *S* is a weak topology on D, which is non-Skorokhod, sequential and not metrisable.
- The *σ*-field B_S of Borel subsets for S coincides with the usual *σ*-field generated by projections (or evaluations) on D: B_S = *σ*(π_t : t ∈ [0, 1]).
- The set P(D, S) of S-tight probability measures is exactly the set of distributions of stochastic processes with trajectories in D: P(D, S) = P(D).
- S is a submetric topology, for there exists a countable family of S-continuous functions which separate points in D.
- In particular, compact subsets of (D, S) are metrisable.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- *S* is a weak topology on D, which is non-Skorokhod, sequential and not metrisable.
- The *σ*-field B_S of Borel subsets for S coincides with the usual *σ*-field generated by projections (or evaluations) on D: B_S = *σ*(π_t : t ∈ [0, 1]).
- The set P(D, S) of S-tight probability measures is exactly the set of distributions of stochastic processes with trajectories in D: P(D, S) = P(D).
- S is a submetric topology, for there exists a countable family of S-continuous functions which separate points in D.
- In particular, compact subsets of (D, S) are metrisable.
- Notice that we arrive to S starting from criteria of compactness!

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

• $\longrightarrow_{\mathcal{S}}$ defines a topology on \mathbb{D} .

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- $\longrightarrow_{\mathcal{S}}$ defines a topology on \mathbb{D} .
- But the convergence in this topology, say $\xrightarrow{*}_{S}$, is weaker than \longrightarrow_{S} .

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- $\longrightarrow_{\mathcal{S}}$ defines a topology on \mathbb{D} .
- But the convergence in this topology, say $\xrightarrow{*}_S$, is weaker than \longrightarrow_S .
- This is the same story as in the well-known situation

a.s. convergence \longleftrightarrow convergence in probability.

Adam Jakubowski

Skorokhod's modes of convergence Linear processes S convergence

First characterization

- $\longrightarrow_{\mathcal{S}}$ defines a topology on \mathbb{D} .
- But the convergence in this topology, say $\xrightarrow{*}_S$, is weaker than \longrightarrow_S .
- This is the same story as in the well-known situation

a.s. convergence \longleftrightarrow convergence in probability.

 The question is: can we provide a "compact" characterization of →_S?

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processes S convergence First characterization

Compact definition of $\stackrel{*}{\longrightarrow}_{\mathcal{S}}$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Compact definition of $\stackrel{*}{\longrightarrow}_{\mathcal{S}}$

Let A be a family of continuous functions of finite variation (A ⊂ C([0, 1]) ∩ V), satisfying A(0) = 0.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- Let A be a family of continuous functions of finite variation (A ⊂ C([0, 1]) ∩ V), satisfying A(0) = 0.
- Let $A_n \in \mathbb{A}$, $n = 0, 1, 2, \dots$ We say that $A_n \longrightarrow_{\tau} A_0$, if

$$\sup_{t\in[0,1]}|A_n(t)-A_0(t)|\to 0,$$

and

$$\sup_n \|A_n\| < +\infty.$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- Let A be a family of continuous functions of finite variation (A ⊂ C([0, 1]) ∩ V), satisfying A(0) = 0.
- Let $A_n \in \mathbb{A}$, $n = 0, 1, 2, \dots$ We say that $A_n \longrightarrow_{\tau} A_0$, if

$$\sup_{t\in[0,1]}|A_n(t)-A_0(t)|\to 0$$

and

$$\sup_n \|A_n\| < +\infty.$$

• This is a "mixed topology" on $C([0,1]) \cap \mathbb{V}$.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- Let A be a family of continuous functions of finite variation (A ⊂ C([0, 1]) ∩ V), satisfying A(0) = 0.
- Let $A_n \in \mathbb{A}$, $n = 0, 1, 2, \dots$ We say that $A_n \longrightarrow_{\tau} A_0$, if

$$\sup_{t\in[0,1]}|A_n(t)-A_0(t)|\to 0,$$

and

$$\sup_n \|A_n\| < +\infty.$$

• This is a "mixed topology" on $C([0,1]) \cap \mathbb{V}$.

Theorem

$$x_n \xrightarrow{*}_{S} x_0$$
 if, and only if, $x_n(1) \to x_0(1)$ and
 $\int_0^1 x_n(u) \, dA_n(u) \to \int_0^1 x_0(u) \, dA_0(u),$

for each sequence $A_n \longrightarrow_{\tau} A_0$.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processes S convergence First characterization

Compact definition of $\stackrel{*}{\longrightarrow}_{\mathcal{S}}$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Compact definition of $\stackrel{*}{\longrightarrow}_{S}$

• If
$$x_n \xrightarrow{*}_{S} x_0$$
, then

$$\int_0^1 x_n(u) \, dA_n(u) \to \int_0^1 x_0(u) \, dA_0(u)$$

for each sequence $A_n \longrightarrow_{\tau} A_0$ - A.J., (1996, AoP), for stochastic processes.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processes S convergence First

characterization

• If
$$x_n \xrightarrow{*}_S x_0$$
, then

$$\int_0^1 x_n(u) \, dA_n(u) \to \int_0^1 x_0(u) \, dA_0(u)$$

for each sequence $A_n \longrightarrow_{\tau} A_0$ - A.J., (1996, AoP), for stochastic processes.

• If $\{x_n(1)\}$ is bounded and

$$\int_0^1 x_n(u) \, dA_n(u) \to \int_0^1 x_0(u) \, dA_0(u)$$

for each sequence $A_n \longrightarrow_{\tau} A_0$, then $\{x_n\}$ is relatively *S*-compact, hence contains a subsequence $x_{n_k} \longrightarrow_S x_0$.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processes S convergence First characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Theorem

 $x_n \xrightarrow{*}_S x_0$ if, and only if, $x_n(1) \to x_0(1)$ and for each relatively τ -compact set $\mathcal{A} \subset \mathbb{A}$

$$\sup_{A\in\mathcal{A}}\left|\int_{0}^{1}\left(x_{n}(u)-x_{0}(u)\right)\,dA(u)\right|\rightarrow0.$$

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Theorem

 $x_n \xrightarrow{*}_S x_0$ if, and only if, $x_n(1) \to x_0(1)$ and for each relatively τ -compact set $\mathcal{A} \subset \mathbb{A}$

$$\sup_{A\in\mathcal{A}} \left|\int_0^1 \left(x_n(u)-x_0(u)\right)\,dA(u)\right|\to 0.$$

 Let σ be the (locally convex) topology on D given by the seminorm ρ₁(x) = |x(1)| and the seminorms

$$\rho_{\mathcal{A}}(x) = \sup_{A \in \mathcal{A}} |\int_0^1 x(u) \, dA(u)|,$$

where A runs over relatively τ -compact subsets of A.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processes S convergence First characterization

Theorem

 $x_n \xrightarrow{*}_S x_0$ if, and only if, $x_n(1) \to x_0(1)$ and for each relatively τ -compact set $\mathcal{A} \subset \mathbb{A}$

$$\sup_{A\in\mathcal{A}} \left|\int_0^1 \left(x_n(u)-x_0(u)\right)\,dA(u)\right|\to 0.$$

 Let σ be the (locally convex) topology on D given by the seminorm ρ₁(x) = |x(1)| and the seminorms

$$\rho_{\mathcal{A}}(x) = \sup_{A \in \mathcal{A}} \big| \int_0^1 x(u) \, dA(u) \big|,$$

where A runs over relatively τ -compact subsets of A.

• Then $x_n \xrightarrow{*}_S x_0$ if, and only if, $x_n \longrightarrow_{\sigma} x_0$.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processes S convergence First characterization

Theorem

 $x_n \xrightarrow{*}_S x_0$ if, and only if, $x_n(1) \to x_0(1)$ and for each relatively τ -compact set $\mathcal{A} \subset \mathbb{A}$

$$\sup_{A\in\mathcal{A}} \left|\int_0^1 \left(x_n(u)-x_0(u)\right)\,dA(u)\right|\to 0.$$

 Let σ be the (locally convex) topology on D given by the seminorm ρ₁(x) = |x(1)| and the seminorms

$$\rho_{\mathcal{A}}(x) = \sup_{A \in \mathcal{A}} \big| \int_0^1 x(u) \, dA(u) \big|,$$

where A runs over relatively τ -compact subsets of A.

- Then $x_n \xrightarrow{*}_{S} x_0$ if, and only if, $x_n \longrightarrow_{\sigma} x_0$.
- Corollary: $S \supset \sigma$.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processes S convergence First characterization

Theorem

 $x_n \xrightarrow{*}_S x_0$ if, and only if, $x_n(1) \to x_0(1)$ and for each relatively τ -compact set $\mathcal{A} \subset \mathbb{A}$

$$\sup_{A\in\mathcal{A}} \left|\int_0^1 \left(x_n(u)-x_0(u)\right)\,dA(u)\right|\to 0.$$

 Let σ be the (locally convex) topology on D given by the seminorm ρ₁(x) = |x(1)| and the seminorms

$$\rho_{\mathcal{A}}(x) = \sup_{A \in \mathcal{A}} \big| \int_0^1 x(u) \, dA(u) \big|,$$

where A runs over relatively τ -compact subsets of A.

- Then $x_n \xrightarrow{*}_{S} x_0$ if, and only if, $x_n \longrightarrow_{\sigma} x_0$.
- Corollary: $S \supset \sigma$.
- Conjecture: S ≡ σ. In other words, (D, S) is a linear topological space (in fact: locally convex LTS).

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processes S convergence First characterization

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

 Let (𝔄, < ·, · >) be a real, separable, infinite-dimensional Hilbert space. Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- Let (𝔄, < ·, · >) be a real, separable, infinite-dimensional Hilbert space.
- Let τ_w = σ(ℍ, ℍ) be the weak topology on ℍ, i.e. the coarsest topology with respect to which all linear functionals < ·, y > are continuous.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- Let (𝔄, < ·, · >) be a real, separable, infinite-dimensional Hilbert space.
- Let τ_w = σ(ℍ, ℍ) be the weak topology on ℍ, i.e. the coarsest topology with respect to which all linear functionals < ·, y > are continuous.
- Let τ_s be the sequential topology generated by the weak convergence of elements of H.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processe

S convergence

First characterization

- Let (𝔄, < ·, · >) be a real, separable, infinite-dimensional Hilbert space.
- Let τ_w = σ(ℍ, ℍ) be the weak topology on ℍ, i.e. the coarsest topology with respect to which all linear functionals < ·, y > are continuous.
- Let τ_s be the sequential topology generated by the weak convergence of elements of H.
- τ_s is essentially finer than τ_w !

Adam Jakubowski

Skorokhod's modes of convergence Linear processe

S convergence

First characterization

- Let (𝔄, < ·, · >) be a real, separable, infinite-dimensional Hilbert space.
- Let τ_w = σ(ℍ, ℍ) be the weak topology on ℍ, i.e. the coarsest topology with respect to which all linear functionals < ·, y > are continuous.
- Let τ_s be the sequential topology generated by the weak convergence of elements of H.
- τ_s is essentially finer than τ_w !
- (\mathbb{H}, τ_s) is a linear topological space!

Adam Jakubowski

Skorokhod's modes of convergence Linear processes S convergence

First characterization

- Let (𝔄, < ·, · >) be a real, separable, infinite-dimensional Hilbert space.
- Let τ_w = σ(ℍ, ℍ) be the weak topology on ℍ, i.e. the coarsest topology with respect to which all linear functionals < ·, y > are continuous.
- Let τ_s be the sequential topology generated by the weak convergence of elements of H.
- τ_s is essentially finer than τ_w !
- (\mathbb{H}, τ_s) is a linear topological space!

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processe

S convergence

First characterization

- Let (𝔄, < ·, · >) be a real, separable, infinite-dimensional Hilbert space.
- Let τ_w = σ(ℍ, ℍ) be the weak topology on ℍ, i.e. the coarsest topology with respect to which all linear functionals < ·, y > are continuous.
- Let τ_s be the sequential topology generated by the weak convergence of elements of H.
- τ_s is essentially finer than τ_w !
- (\mathbb{H}, τ_s) is a linear topological space!
- The space D (Schwartz's sample functions) with the topology of the inductive limit does not have this property!

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processe

S convergence

First characterization

The *S* topology and the J_1 topology

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

The *S* topology and the J_1 topology

• $\mathbb D$ with the norm $\|\cdot\|_\infty$ is a Banach space, but non-separable.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

The S topology and the J_1 topology

- $\mathbb D$ with the norm $\|\cdot\|_\infty$ is a Banach space, but non-separable.
- The J₁ topology of Skorokhod is metric separable and (D, J₁) is topologically complete, but (D, J₁) is not a linear topological space.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processe

S convergence

First characterization
- $\mathbb D$ with the norm $\|\cdot\|_\infty$ is a Banach space, but non-separable.
- The J₁ topology of Skorokhod is metric separable and (D, J₁) is topologically complete, but (D, J₁) is not a linear topological space.
- Addition is not sequentially J₁-continuous!

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence Linear processe

First characterization

- $\mathbb D$ with the norm $\|\cdot\|_\infty$ is a Banach space, but non-separable.
- The J₁ topology of Skorokhod is metric separable and (D, J₁) is topologically complete, but (D, J₁) is not a linear topological space.
- Addition is not sequentially J₁-continuous!
- A discontinuous function cannot be approximated by continuous functions in the *J*₁ topology.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- $\mathbb D$ with the norm $\|\cdot\|_\infty$ is a Banach space, but non-separable.
- The J₁ topology of Skorokhod is metric separable and (D, J₁) is topologically complete, but (D, J₁) is not a linear topological space.
- Addition is not sequentially J₁-continuous!
- A discontinuous function cannot be approximated by continuous functions in the *J*₁ topology.
- OBSERVATION: the S topology is weaker than J_1 .

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

- $\mathbb D$ with the norm $\|\cdot\|_\infty$ is a Banach space, but non-separable.
- The J₁ topology of Skorokhod is metric separable and (D, J₁) is topologically complete, but (D, J₁) is not a linear topological space.
- Addition is not sequentially J₁-continuous!
- A discontinuous function cannot be approximated by continuous functions in the *J*₁ topology.
- OBSERVATION: the S topology is weaker than J_1 .
- QUESTION: Can we find a position for *S* in the hierarchy of topologies on *D*?

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Addition is not continuous in J_1 , but is sequentially continuous in S

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Addition is not continuous in J_1 , but is sequentially continuous in S

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Relations between S and J_1

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Relations between S and J_1

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Between S and Skorokhod's J_1 and M_1

Theorem (Second characterization of the S topology)

Every linear topology on \mathbb{D} , which is weaker than modified J_1 , is also weaker than the *S* topology.

Relations between S and J_1

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Between S and Skorokhod's J_1 and M_1

Theorem (Second characterization of the S topology)

Every linear topology on \mathbb{D} , which is weaker than modified J_1 , is also weaker than the *S* topology.

Corollary

Were (\mathbb{D}, S) a linear topological space, *S* would be the finest linear topology on \mathbb{D} "below" J_1 .

Relations between S and M_1

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Relations between *S* and *M*₁

Non-Skorokhodiar convergence

Adam Jakubowski

Theorem (Balan, A.J. & Louhichi, to appear in JTP)

The *S* topology is weaker than the M_1 topology of Skorokhod.

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Relations between S and M_1

Theorem (Balan, A.J. & Louhichi, to appear in JTP)

The *S* topology is weaker than the M_1 topology of Skorokhod.

Theorem (The third characterization of the *S* topology)

Every linear topology on \mathbb{D} , which is weaker than modified M_1 , is also weaker than the *S* topology.

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization

Relations between S and M_1

Theorem (Balan, A.J. & Louhichi, to appear in JTP)

The *S* topology is weaker than the M_1 topology of Skorokhod.

Theorem (The third characterization of the *S* topology)

Every linear topology on \mathbb{D} , which is weaker than modified M_1 , is also weaker than the *S* topology.

Remark

S is incomparable with Skorokhod's M_2 !

Non-Skorokhodiar convergence

Adam Jakubowski

Skorokhod's modes of convergence

Linear processes

S convergence

First characterization