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What is Branching random walk?

I Branching random walk is a natural extension of
Galton-Watson process in a spatial sense.

I Start with one particle at origin;

I Its children who form the first generation are points of a point
process L on R.

I Each particle produces its own children who form second
generation and “positioned” (with respect to their parent)
according to L.

I Each individual in the n-th generation produce independently
of each other and everything else.
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Questions?

I The underlying tree is a Galton-Watson tree.

I Various assumptions on displacements and positions can be
assumed.

I Questions of interest: If Sv denotes the position of a particle
v then the behaviour as n→∞ of

Nn =
∑
|v |=n

δa−1
n (Sv−bn).

I Position of the top most particle in the n-th generation and
scaling limits.



How did it begin? and state of the art!

Branching Brownian motion (BBM):

I At time 0, particle at 0 ∈ R.

I Particle moves by a Brownian motion until for exponential
time.

I After the step, particle splits into two. Repeat independently.

I N(t) ∼ e−t number of particles in time t and positions be
denoted by S1(t), · · · , SN(t)(t).

[Picture by Matt Roberts]



Branching Brownian motion

I Started with connections of differential equations to
probability.

I Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP)
equation:

∂tu(x , t) =
1

2
∂2xu(x , t) + u − u2 u(0, x) = 1x<0 .

I If u(t, x) = P(max1≤i≤N(t)Si (t) > x) then McKean (1975)
showed that it satisfies F-KPP.

I Bramson (1978) showed

u(t, x + m(t))→ w(x) m(t) =
√

2t − 3

2
√

2
log t.
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Branching Brownian motion

I w(x) satisfies the following equation:

1

2
∂2xw +

√
2∂xw + w2 − w = 0

I Remarkable result of Lalley-Sellke (1987) showed

w(x) = E
[
e−cZe

−
√

2x
]

where Z is a limit of a ”derivative” martingale.

I Arguin-Bovier-Kistler (2013),
Aidekon-Brunet-Berestycki-Shi (2013) showed the point
process

Lt =
∑

1≤i≤N(t)

δSi (t)−m(t) → L, where L is superposable.
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Branching Random Walk

I Strong law for topmost particle: Hammerseley, Kingman,
Biggins (70’s)

I Addario-Berry, Reed (2009): Order of expected maxima.

I Bramson-Zeitouni (2009) : Tightness for recentered
maxima.

I Aidekon (2013) ( weak law for minimum position, same as
BBM). Relies on works of Biggins and Kyprianou (2004) on
convergence of derivative martingale in boundary case.

I Madaule (2015) : Point process convergence of the position
in n-th generation (seen from the tip).

I Non-boundary, heavy tails: Durrett (1979,
1983),Bhattacharya, H., Roy (2015, 2016), Bhattacharya,
Maulik, Palmowski, Roy (2016+).
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Assumptions on Branching Mechanism

I Underlying tree is a Galton-Watson tree.

I Zn denotes the number of particles at n-th generation and
µ := E(Z1) ∈ (1,∞).

I We shall assume that P(Z1 = 0) = 0 (no leaves).

I Using martingale convergence theorem,

Zn

µn
→W (≥ 0) almost surely.

I Kesten-Stigum condition :

E(Z1 logZ1) <∞⇔ P(W > 0) = 1.



Assumptions on Displacement Random Variables

I Each particle produces an independent copy of

L =

Z1∑
i=1

δXi

where Z1 ⊥ (X1,X2, . . .) is a K := [0,∞)∞-valued random
variables such that

I each Xi ∼ F ∈ RV−α(α > 0);

I (X1,X2, . . .) ∈ RV−α(K \ 0∞, λ)
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Assumptions on Displacement Random Variables

I We say (X1,X2, . . .) ∈ RV−α(K \ 0∞, λ)

if there exists a
sequence {cn} such that

µnP(c−1n (X1,X2, . . .) ∈ A)→ λ(A).

for all A ⊂ K0 = K \ {0∞} such that 0∞ /∈ Ā and λ(∂A) = 0
and λ(·) is a measure on K0 such that for all ε > 0,
λ(K \ B(0∞, ε)) <∞.

I This convergence is introduced by Hult and Lindskog(2006)
and have been extended by Das, Mitra, Resnick (2013),
Lindskog, Resnick and Roy(2014).
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First main result

Let us denote the random point process of the positions of the
particles by

Nn =
∑
|v |=n

δc−1
n Sv

where cn ≈ µn/α.

Theorem (Bhattacharya, H. and Roy (2016))

Under our assumptions, the random point configuration converges
in distribution to the Cox cluster process N∗ where

N∗
d
=
∞∑
l=1

Ul∑
k=1

T
(k)
l δ

W 1/αj
(k)
l



Description of N∗: One Large Bunch Phenomenon

U = 3

T (1) = 2 T (2) = 3 T (3) = 5

N∗
d
=
∞∑
l=1

Ul∑
k=1

T
(k)
l δ

j
(k)
l W

1
α
, where

∞∑
l=1

δ(
j
(1)
l , j

(2)
l , ...

) ∼ PRM(K0, λ)



Maxima

I Let Mn denotes the maximal position of the nth generation
particles.

Theorem (Bhattacharya, H. and Roy (2016))

Under the assumptions, for every x > 0,

lim
n→∞

P(Mn > cnx) = E
[
e−Wκλx

−α
]

where κλ > 0 is a constant.

I This is an extension of main result of Durrett(1983).

I Extensions of point process result to multi-type in forth
coming article by Bhattacharya, Maulik, Palmowski, Roy
(2016+)
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Stable Point process

I (Scalar Multiplication) For every a ∈ (0,∞), define

a ◦ P =
∞∑
i=1

δaui .

I (Superposition) The superposition of two point measures L1
and L2 will be denoted by L1 + L2.

Definition (Davydov, Molchanov and Zuyev (2008,2011))

A point process N is called a strictly α-stable (α > 0) point
process if for all a1, a2 ∈ (0,∞)

a1 ◦ N1 + a2 ◦ N2
d
= (aα1 + aα2 )1/α ◦ N

where N1 and N2 are two independent copies of N.
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Representation of Stable Point Processes

Theorem (Davydov, Molchanov, Zuyev (2008,2011))

N be a strictly α-stable (α > 0) point process if and only if

N
d
=
∞∑
i=1

λi ◦ Pi

where

I {λi : i ≥ 1} are such that Λ =
∑∞

i=1 δλi ∼ PRM(να) where
να((x ,∞]) = x−α for all x > 0;

I Pi s are independent copies of the point process P and also
independent of Λ.
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Brunet-Derrida in Our Setup

BD1 The analogue of the superposability is

N∗
d
= W 1/α ◦ Q

where W is the martingale limit and Q is a strictly α-stable
point process. (Randomly scaled strictly α-stable point
process).

BD2 The analogous representation is randomly scaled
scale-decorated Poisson point process (Randomly scaled DMZ
representation).

I We have shown that BD1 and BD2 are equivalent
(heavy-tailed extension of Subag and Zeitouni (2014)).
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Domain of Attraction Theorem

I Recall that M set of point measures, is a complete, separable
metric space equipped with vague metric.

I One can define regular variation for measures on M using
works of Hult and Lindskog(2006).

Theorem (Bhattacharya, H., Roy (2015))

Let L be a point process on S . Suppose L is RV−α, that is,

nP(b−1n ◦ L ∈ ·)
HL→ µα(·).

Then

b−1n ◦
n∑

i=1

Li ⇒ Strictly α-stable Point Process
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Thank You

I Point process convergence for branching random walks
with regularly varying steps: arXiv:1411.5646, to appear in
Annales de l’Institut Henri Poincaré.

I Branching random walks, stable point processes and
regular variation: arXiv:1601.01656, submitted.
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