Stability of point process, regular variation and branching random walk

Rajat Subhra Hazra
Joint work with Ayan Bhattacharya and Parthanil Roy

Indian Statistical Institute, Kolkata
6th May, 2016

Table of contents

Extremes of Branching random walk

Dependent Heavy tailed Branching random walk

Stability in a nutshell

What is Branching random walk?

- Branching random walk is a natural extension of Galton-Watson process in a spatial sense.

What is Branching random walk?

- Branching random walk is a natural extension of Galton-Watson process in a spatial sense.
- Start with one particle at origin;

What is Branching random walk?

- Branching random walk is a natural extension of Galton-Watson process in a spatial sense.
- Start with one particle at origin;
- Its children who form the first generation are points of a point process \mathcal{L} on \mathbb{R}.

What is Branching random walk?

- Branching random walk is a natural extension of Galton-Watson process in a spatial sense.
- Start with one particle at origin;
- Its children who form the first generation are points of a point process \mathcal{L} on \mathbb{R}.
- Each particle produces its own children who form second generation and "positioned" (with respect to their parent) according to \mathcal{L}.

What is Branching random walk?

- Branching random walk is a natural extension of Galton-Watson process in a spatial sense.
- Start with one particle at origin;
- Its children who form the first generation are points of a point process \mathcal{L} on \mathbb{R}.
- Each particle produces its own children who form second generation and "positioned" (with respect to their parent) according to \mathcal{L}.
- Each individual in the n-th generation produce independently of each other and everything else.

Growth process

Growth process

Growth process

Growth process

Growth process

Questions?

- The underlying tree is a Galton-Watson tree.
- Various assumptions on displacements and positions can be assumed.
- Questions of interest: If S_{v} denotes the position of a particle v then the behaviour as $n \rightarrow \infty$ of

$$
N_{n}=\sum_{|v|=n} \delta_{a_{n}^{-1}\left(S_{v}-b_{n}\right)}
$$

- Position of the top most particle in the n-th generation and scaling limits.

How did it begin? and state of the art!

Branching Brownian motion (BBM):

- At time 0, particle at $0 \in \mathbb{R}$.
- Particle moves by a Brownian motion until for exponential time.
- After the step, particle splits into two. Repeat independently.
- $N(t) \sim e^{-t}$ number of particles in time t and positions be denoted by $S_{1}(t), \cdots, S_{N(t)}(t)$.

[Picture by Matt Roberts]

Branching Brownian motion

- Started with connections of differential equations to probability.

Branching Brownian motion

- Started with connections of differential equations to probability.
- Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$
\partial_{t} u(x, t)=\frac{1}{2} \partial_{x}^{2} u(x, t)+u-u^{2} \quad u(0, x)=\mathbb{1}_{x<0}
$$

Branching Brownian motion

- Started with connections of differential equations to probability.
- Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$
\partial_{t} u(x, t)=\frac{1}{2} \partial_{x}^{2} u(x, t)+u-u^{2} \quad u(0, x)=\mathbb{1}_{x<0}
$$

- If $u(t, x)=\mathrm{P}\left(\max _{1 \leq i \leq N(t)} S_{i}(t)>x\right)$ then McKean (1975) showed that it satisfies F-KPP.

Branching Brownian motion

- Started with connections of differential equations to probability.
- Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

$$
\partial_{t} u(x, t)=\frac{1}{2} \partial_{x}^{2} u(x, t)+u-u^{2} \quad u(0, x)=\mathbb{1}_{x<0}
$$

- If $u(t, x)=\mathrm{P}\left(\max _{1 \leq i \leq N(t)} S_{i}(t)>x\right)$ then McKean (1975) showed that it satisfies F-KPP.
- Bramson (1978) showed

$$
u(t, x+m(t)) \rightarrow w(x) \quad m(t)=\sqrt{2} t-\frac{3}{2 \sqrt{2}} \log t .
$$

Branching Brownian motion

- $w(x)$ satisfies the following equation:

$$
\frac{1}{2} \partial_{x}^{2} w+\sqrt{2} \partial_{x} w+w^{2}-w=0
$$

Branching Brownian motion

- $w(x)$ satisfies the following equation:

$$
\frac{1}{2} \partial_{x}^{2} w+\sqrt{2} \partial_{x} w+w^{2}-w=0
$$

- Remarkable result of Lalley-Sellke (1987) showed

$$
w(x)=\mathrm{E}\left[e^{-c \mathbf{Z} e^{-\sqrt{2} x}}\right]
$$

where Z is a limit of a "derivative" martingale.

Branching Brownian motion

- $w(x)$ satisfies the following equation:

$$
\frac{1}{2} \partial_{x}^{2} w+\sqrt{2} \partial_{x} w+w^{2}-w=0
$$

- Remarkable result of Lalley-Sellke (1987) showed

$$
w(x)=\mathrm{E}\left[e^{-c \mathbf{Z} e^{-\sqrt{2} x}}\right]
$$

where Z is a limit of a "derivative" martingale.

- Arguin-Bovier-Kistler (2013), Aidekon-Brunet-Berestycki-Shi (2013) showed the point process

$$
L_{t}=\sum_{1 \leq i \leq N(t)} \delta_{S_{i}(t)-m(t)} \rightarrow L, \text { where } L \text { is superposable. }
$$

Branching Random Walk

- Strong law for topmost particle: Hammerseley, Kingman, Biggins (70's)

Branching Random Walk

- Strong law for topmost particle: Hammerseley, Kingman, Biggins (70's)
- Addario-Berry, Reed (2009): Order of expected maxima.

Branching Random Walk

- Strong law for topmost particle: Hammerseley, Kingman, Biggins (70's)
- Addario-Berry, Reed (2009): Order of expected maxima.
- Bramson-Zeitouni (2009) : Tightness for recentered maxima.

Branching Random Walk

- Strong law for topmost particle: Hammerseley, Kingman, Biggins (70's)
- Addario-Berry, Reed (2009): Order of expected maxima.
- Bramson-Zeitouni (2009) : Tightness for recentered maxima.
- Aidekon (2013) (weak law for minimum position, same as BBM). Relies on works of Biggins and Kyprianou (2004) on convergence of derivative martingale in boundary case.

Branching Random Walk

- Strong law for topmost particle: Hammerseley, Kingman, Biggins (70's)
- Addario-Berry, Reed (2009): Order of expected maxima.
- Bramson-Zeitouni (2009) : Tightness for recentered maxima.
- Aidekon (2013) (weak law for minimum position, same as BBM). Relies on works of Biggins and Kyprianou (2004) on convergence of derivative martingale in boundary case.
- Madaule (2015) : Point process convergence of the position in n-th generation (seen from the tip).

Branching Random Walk

- Strong law for topmost particle: Hammerseley, Kingman, Biggins (70's)
- Addario-Berry, Reed (2009): Order of expected maxima.
- Bramson-Zeitouni (2009) : Tightness for recentered maxima.
- Aidekon (2013) (weak law for minimum position, same as BBM). Relies on works of Biggins and Kyprianou (2004) on convergence of derivative martingale in boundary case.
- Madaule (2015) : Point process convergence of the position in n-th generation (seen from the tip).
- Non-boundary, heavy tails: Durrett (1979, 1983),Bhattacharya, H., Roy (2015, 2016), Bhattacharya, Maulik, Palmowski, Roy (2016+).

Assumptions on Branching Mechanism

- Underlying tree is a Galton-Watson tree.
- Z_{n} denotes the number of particles at n-th generation and $\mu:=\mathrm{E}\left(Z_{1}\right) \in(1, \infty)$.
- We shall assume that $\mathrm{P}\left(Z_{1}=0\right)=0$ (no leaves).
- Using martingale convergence theorem,

$$
\frac{Z_{n}}{\mu^{n}} \rightarrow W(\geq 0) \text { almost surely. }
$$

- Kesten-Stigum condition :

$$
\mathrm{E}\left(Z_{1} \log Z_{1}\right)<\infty \Leftrightarrow \mathrm{P}(W>0)=1 .
$$

Assumptions on Displacement Random Variables

- Each particle produces an independent copy of

$$
\mathcal{L}=\sum_{i=1}^{Z_{1}} \delta_{X_{i}}
$$

Assumptions on Displacement Random Variables

- Each particle produces an independent copy of

$$
\mathcal{L}=\sum_{i=1}^{Z_{1}} \delta_{X_{i}}
$$

where $Z_{1} \perp\left(X_{1}, X_{2}, \ldots\right)$ is a $\mathbb{K}:=[0, \infty)^{\infty}$-valued random variables such that

Assumptions on Displacement Random Variables

- Each particle produces an independent copy of

$$
\mathcal{L}=\sum_{i=1}^{Z_{1}} \delta_{X_{i}}
$$

where $Z_{1} \perp\left(X_{1}, X_{2}, \ldots\right)$ is a $\mathbb{K}:=[0, \infty)^{\infty}$-valued random variables such that

- each $X_{i} \sim F \in R V_{-\alpha}(\alpha>0)$;

Assumptions on Displacement Random Variables

- Each particle produces an independent copy of

$$
\mathcal{L}=\sum_{i=1}^{Z_{1}} \delta_{X_{i}}
$$

where $Z_{1} \perp\left(X_{1}, X_{2}, \ldots\right)$ is a $\mathbb{K}:=[0, \infty)^{\infty}$-valued random variables such that

- each $X_{i} \sim F \in R V_{-\alpha}(\alpha>0)$;
- $\left(X_{1}, X_{2}, \ldots\right) \in R V_{-\alpha}\left(\mathbb{K} \backslash 0_{\infty}, \lambda\right)$

Assumptions on Displacement Random Variables

- We say $\left(X_{1}, X_{2}, \ldots\right) \in R V_{-\alpha}\left(\mathbb{K} \backslash 0_{\infty}, \lambda\right)$

Assumptions on Displacement Random Variables

- We say $\left(X_{1}, X_{2}, \ldots\right) \in R V_{-\alpha}\left(\mathbb{K} \backslash 0_{\infty}, \lambda\right)$ if there exists a sequence $\left\{c_{n}\right\}$ such that

$$
\mu^{n} \mathrm{P}\left(c_{n}^{-1}\left(X_{1}, X_{2}, \ldots\right) \in A\right) \rightarrow \lambda(A) .
$$

Assumptions on Displacement Random Variables

- We say $\left(X_{1}, X_{2}, \ldots\right) \in R V_{-\alpha}\left(\mathbb{K} \backslash 0_{\infty}, \lambda\right)$ if there exists a sequence $\left\{c_{n}\right\}$ such that

$$
\mu^{n} \mathrm{P}\left(c_{n}^{-1}\left(X_{1}, X_{2}, \ldots\right) \in A\right) \rightarrow \lambda(A)
$$

for all $A \subset \mathbb{K}_{0}=\mathbb{K} \backslash\left\{0_{\infty}\right\}$ such that $0_{\infty} \notin \bar{A}$ and $\lambda(\partial A)=0$

Assumptions on Displacement Random Variables

- We say $\left(X_{1}, X_{2}, \ldots\right) \in R V_{-\alpha}\left(\mathbb{K} \backslash 0_{\infty}, \lambda\right)$ if there exists a sequence $\left\{c_{n}\right\}$ such that

$$
\mu^{n} \mathrm{P}\left(c_{n}^{-1}\left(X_{1}, X_{2}, \ldots\right) \in A\right) \rightarrow \lambda(A)
$$

for all $A \subset \mathbb{K}_{0}=\mathbb{K} \backslash\left\{0_{\infty}\right\}$ such that $0_{\infty} \notin \bar{A}$ and $\lambda(\partial A)=0$ and $\lambda(\cdot)$ is a measure on \mathbb{K}_{0} such that for all $\epsilon>0$, $\lambda\left(\mathbb{K} \backslash B\left(0_{\infty}, \epsilon\right)\right)<\infty$.

- This convergence is introduced by Hult and Lindskog(2006) and have been extended by Das, Mitra, Resnick (2013), Lindskog, Resnick and Roy(2014).

First main result

Let us denote the random point process of the positions of the particles by

$$
N_{n}=\sum_{|v|=n} \delta_{c_{n}^{-1} S_{v}}
$$

where $c_{n} \approx \mu^{n / \alpha}$.
Theorem (Bhattacharya, H. and Roy (2016))
Under our assumptions, the random point configuration converges in distribution to the Cox cluster process N_{*} where

$$
N_{*} \stackrel{d}{=} \sum_{l=1}^{\infty} \sum_{k=1}^{U_{l}} T_{l}^{(k)} \delta_{W^{1 / \alpha j_{l}}}
$$

Description of N_{*} : One Large Bunch Phenomenon

$$
N_{*} \stackrel{d}{=} \sum_{l=1}^{\infty} \sum_{k=1}^{U_{l}} T_{l}^{(k)} \delta_{j_{l}(k)} W^{\frac{1}{\alpha}}, \text { where } \sum_{l=1}^{\infty} \delta_{\left(j_{l}^{(1)}, j_{l}^{(2)}, \ldots\right)} \sim \operatorname{PRM}\left(\mathbb{K}_{0}, \lambda\right)
$$

Maxima

Maxima

- Let M_{n} denotes the maximal position of the $n^{\text {th }}$ generation particles.

Maxima

- Let M_{n} denotes the maximal position of the $n^{\text {th }}$ generation particles.

Theorem (Bhattacharya, H. and Roy (2016))
Under the assumptions, for every $x>0$,

$$
\lim _{n \rightarrow \infty} P\left(M_{n}>c_{n} x\right)=E\left[e^{-W \kappa_{\lambda} x^{-\alpha}}\right]
$$

where $\kappa_{\lambda}>0$ is a constant.

Maxima

- Let M_{n} denotes the maximal position of the $n^{\text {th }}$ generation particles.

Theorem (Bhattacharya, H. and Roy (2016))
Under the assumptions, for every $x>0$,

$$
\lim _{n \rightarrow \infty} P\left(M_{n}>c_{n} x\right)=E\left[e^{-W \kappa_{\lambda} x^{-\alpha}}\right]
$$

where $\kappa_{\lambda}>0$ is a constant.

- This is an extension of main result of Durrett(1983).
- Extensions of point process result to multi-type in forth coming article by Bhattacharya, Maulik, Palmowski, Roy (2016+)

Stable Point process

- (Scalar Multiplication) For every $a \in(0, \infty)$, define

$$
a \circ \mathcal{P}=\sum_{i=1}^{\infty} \delta_{a u_{i}} .
$$

Stable Point process

- (Scalar Multiplication) For every $a \in(0, \infty)$, define

$$
a \circ \mathcal{P}=\sum_{i=1}^{\infty} \delta_{a u_{i}}
$$

- (Superposition) The superposition of two point measures \mathcal{L}_{1} and \mathcal{L}_{2} will be denoted by $\mathcal{L}_{1}+\mathcal{L}_{2}$.

Stable Point process

- (Scalar Multiplication) For every $a \in(0, \infty)$, define

$$
a \circ \mathcal{P}=\sum_{i=1}^{\infty} \delta_{a u_{i}}
$$

- (Superposition) The superposition of two point measures \mathcal{L}_{1} and \mathcal{L}_{2} will be denoted by $\mathcal{L}_{1}+\mathcal{L}_{2}$.

Definition (Davydov, Molchanov and Zuyev $(2008,2011)$) A point process N is called a strictly α-stable $(\alpha>0)$ point process if for all $a_{1}, a_{2} \in(0, \infty)$

Stable Point process

- (Scalar Multiplication) For every $a \in(0, \infty)$, define

$$
a \circ \mathcal{P}=\sum_{i=1}^{\infty} \delta_{a u_{i}}
$$

- (Superposition) The superposition of two point measures \mathcal{L}_{1} and \mathcal{L}_{2} will be denoted by $\mathcal{L}_{1}+\mathcal{L}_{2}$.

Definition (Davydov, Molchanov and Zuyev $(2008,2011)$) A point process N is called a strictly α-stable $(\alpha>0)$ point process if for all $a_{1}, a_{2} \in(0, \infty)$

$$
a_{1} \circ N_{1}+a_{2} \circ N_{2} \stackrel{d}{=}\left(a_{1}^{\alpha}+a_{2}^{\alpha}\right)^{1 / \alpha} \circ N
$$

Stable Point process

- (Scalar Multiplication) For every $a \in(0, \infty)$, define

$$
a \circ \mathcal{P}=\sum_{i=1}^{\infty} \delta_{a u_{i}} .
$$

- (Superposition) The superposition of two point measures \mathcal{L}_{1} and \mathcal{L}_{2} will be denoted by $\mathcal{L}_{1}+\mathcal{L}_{2}$.

Definition (Davydov, Molchanov and Zuyev $(2008,2011)$) A point process N is called a strictly α-stable $(\alpha>0)$ point process if for all $a_{1}, a_{2} \in(0, \infty)$

$$
a_{1} \circ N_{1}+a_{2} \circ N_{2} \stackrel{d}{=}\left(a_{1}^{\alpha}+a_{2}^{\alpha}\right)^{1 / \alpha} \circ N
$$

where N_{1} and N_{2} are two independent copies of N.

Representation of Stable Point Processes

Theorem (Davydov, Molchanov, Zuyev $(2008,2011))$
N be a strictly α-stable $(\alpha>0)$ point process if and only if

Representation of Stable Point Processes

Theorem (Davydov, Molchanov, Zuyev $(2008,2011))$ N be a strictly α-stable $(\alpha>0)$ point process if and only if

$$
N \stackrel{d}{=} \sum_{i=1}^{\infty} \lambda_{i} \circ \mathcal{P}_{i}
$$

where

- $\left\{\lambda_{i}: i \geq 1\right\}$ are such that $\Lambda=\sum_{i=1}^{\infty} \delta_{\lambda_{i}} \sim \operatorname{PRM}\left(\nu_{\alpha}\right)$ where

Representation of Stable Point Processes

Theorem (Davydov, Molchanov, Zuyev $(2008,2011)$)
N be a strictly α-stable ($\alpha>0$) point process if and only if

$$
N \stackrel{d}{=} \sum_{i=1}^{\infty} \lambda_{i} \circ \mathcal{P}_{i}
$$

where

- $\left\{\lambda_{i}: i \geq 1\right\}$ are such that $\Lambda=\sum_{i=1}^{\infty} \delta_{\lambda_{i}} \sim \operatorname{PRM}\left(\nu_{\alpha}\right)$ where $\nu_{\alpha}((x, \infty])=x^{-\alpha}$ for all $x>0$;
- $\mathcal{P}_{i} s$ are independent copies of the point process \mathcal{P} and also independent of \wedge.

Brunet-Derrida in Our Setup

Brunet-Derrida in Our Setup

BD1 The analogue of the superposability is

$$
N_{*} \stackrel{d}{=} W^{1 / \alpha} \circ \mathcal{Q}
$$

where W is the martingale limit and \mathcal{Q} is a strictly α-stable point process. (Randomly scaled strictly α-stable point process).

Brunet-Derrida in Our Setup

BD1 The analogue of the superposability is

$$
N_{*} \stackrel{d}{=} W^{1 / \alpha} \circ \mathcal{Q}
$$

where W is the martingale limit and \mathcal{Q} is a strictly α-stable point process. (Randomly scaled strictly α-stable point process).

BD2 The analogous representation is randomly scaled scale-decorated Poisson point process (Randomly scaled DMZ representation).

Brunet-Derrida in Our Setup

BD1 The analogue of the superposability is

$$
N_{*} \stackrel{d}{=} W^{1 / \alpha} \circ \mathcal{Q}
$$

where W is the martingale limit and \mathcal{Q} is a strictly α-stable point process. (Randomly scaled strictly α-stable point process).

BD2 The analogous representation is randomly scaled scale-decorated Poisson point process (Randomly scaled DMZ representation).

- We have shown that BD1 and BD2 are equivalent

Brunet-Derrida in Our Setup

BD1 The analogue of the superposability is

$$
N_{*} \stackrel{d}{=} W^{1 / \alpha} \circ \mathcal{Q}
$$

where W is the martingale limit and \mathcal{Q} is a strictly α-stable point process. (Randomly scaled strictly α-stable point process).

BD2 The analogous representation is randomly scaled scale-decorated Poisson point process (Randomly scaled DMZ representation).

- We have shown that BD1 and BD2 are equivalent (heavy-tailed extension of Subag and Zeitouni (2014)).

Domain of Attraction Theorem

- Recall that \mathcal{M} set of point measures, is a complete, separable metric space equipped with vague metric.

Domain of Attraction Theorem

- Recall that \mathcal{M} set of point measures, is a complete, separable metric space equipped with vague metric.
- One can define regular variation for measures on \mathcal{M} using works of Hult and Lindskog(2006).

Domain of Attraction Theorem

- Recall that \mathcal{M} set of point measures, is a complete, separable metric space equipped with vague metric.
- One can define regular variation for measures on \mathcal{M} using works of Hult and Lindskog(2006).

Theorem (Bhattacharya, H., Roy (2015))
Let \mathcal{L} be a point process on S. Suppose \mathcal{L} is $R V_{-\alpha}$, that is,

$$
n \mathrm{P}\left(b_{n}^{-1} \circ \mathcal{L} \in \cdot\right) \xrightarrow{H L} \mu_{\alpha}(\cdot) .
$$

Then

$$
b_{n}^{-1} \circ \sum_{i=1}^{n} \mathcal{L}_{i} \Rightarrow \text { Strictly } \alpha \text {-stable Point Process }
$$

Thank You

- Point process convergence for branching random walks with regularly varying steps: arXiv:1411.5646, to appear in Annales de I'Institut Henri Poincaré.
- Branching random walks, stable point processes and regular variation: arXiv:1601.01656, submitted.

