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Main motivation

I For a parametric model Z ∼ Fθ of multivariate max-stable
distributions, the full LLHs are usually not available.

I Maximum likelihood estimation is infeasible.

I Goal: Use full LLHs in Bayesian setup to

I improve frequentist efficiency,
I allow for Bayesian methods in multivariate extremes.
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Max-stable distributions and partitions

I Let Z be a d-dimensional max-stable distribution and X1, . . . ,Xn

(with std. Fréchet margins) in its MDA.

I Componentwise maxima Mn = maxni=1 Xi/n
d
≈ Z.

I Partition Πn of the set {1, . . . , d} of occurrence times of maxima,
i.e., j and k in the same set if Mn,j and Mn,k come from same Xi .
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Example: d = 4, n = 3, Πn = {{1}, {2, 3}, {4}}.
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(with std. Fréchet margins) in its MDA.

I Componentwise maxima Mn = maxni=1 Xi/n
d
≈ Z.

I Partition Πn of the set {1, . . . , d} of occurrence times of maxima,
i.e., j and k in the same set if Mn,j and Mn,k come from same Xi .

●

1 2 3 4

●

●

●

Example: d = 4, n = 3, Πn = {{1}, {2, 3}, {4}}.



Max-stable distributions and partitions

I Let Z be a d-dimensional max-stable distribution and X1, . . . ,Xn
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Max-stable distributions and partitions

I We have the weak limit as n→∞

(Mn,Πn)
d→ (Z,Π),

where Π is the limit partition of occurrence times of Z.

I Πn and Π are distributions on the set Pd of all partitions of
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Max-stable distributions and likelihoods

I P(Z ≤ z) = e−V (z), where V is the exponent measure of Z.

I Likelihood of Z is
LZ(z) =

∑
π∈Pd

LZ,Π(z, π),

where the Stephenson–Tawn LLH (2005, Biometrika) is joint LLH
of Z and Π and has the explicit form

LZ,Π(z, π) = e−V (z)

|π|∏
j=1

{−Vπ(j) (z)} ,

where Vπ(j) are partial derivatives of V in directions π(j), and the
partition π = (π(1), . . . , π(|π|)) consists of |π| sets.

I Since |Pd | is the dth Bell number (very large), the use of LZ(z) is
infeasible.
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Parametric inference methods for Z ∼ Fθ

With information on partition (occurrence times observed):

I Stephenson and Tawn (2005, Biometrika) use partition information
and the joint LLH LZ,Π(z, π).
But: Possible bias if Πn 6= Π.

I Wadsworth (2015, Biometrika) proposes bias correction by using
LZ,Πn (z, π).

Without information on partition (occurrence times unobserved):

I Composite (pairwise) likelihood Padoan et al. (2010, JASA).
But: Losses in efficiency.

I Dombry et al. (2013, Biometrika) introduces Gibbs sampler to
obtain conditional partitions of LΠ|Z(π|z).

I Thibaud et al. (2015, http://arxiv.org/abs/1506.07836) use
this Gibbs sampler to choose Π automatically and obtain posterior
L(θ|z) in a Bayesian framework for Brown–Resnick processes.



Parametric inference methods for Z ∼ Fθ

With information on partition (occurrence times observed):

I Stephenson and Tawn (2005, Biometrika) use partition information
and the joint LLH LZ,Π(z, π).
But: Possible bias if Πn 6= Π.

I Wadsworth (2015, Biometrika) proposes bias correction by using
LZ,Πn (z, π).

Without information on partition (occurrence times unobserved):

I Composite (pairwise) likelihood Padoan et al. (2010, JASA).
But: Losses in efficiency.

I Dombry et al. (2013, Biometrika) introduces Gibbs sampler to
obtain conditional partitions of LΠ|Z(π|z).

I Thibaud et al. (2015, http://arxiv.org/abs/1506.07836) use
this Gibbs sampler to choose Π automatically and obtain posterior
L(θ|z) in a Bayesian framework for Brown–Resnick processes.



Parametric inference methods for Z ∼ Fθ

With information on partition (occurrence times observed):

I Stephenson and Tawn (2005, Biometrika) use partition information
and the joint LLH LZ,Π(z, π).
But: Possible bias if Πn 6= Π.

I Wadsworth (2015, Biometrika) proposes bias correction by using
LZ,Πn (z, π).

Without information on partition (occurrence times unobserved):

I Composite (pairwise) likelihood Padoan et al. (2010, JASA).
But: Losses in efficiency.

I Dombry et al. (2013, Biometrika) introduces Gibbs sampler to
obtain conditional partitions of LΠ|Z(π|z).

I Thibaud et al. (2015, http://arxiv.org/abs/1506.07836) use
this Gibbs sampler to choose Π automatically and obtain posterior
L(θ|z) in a Bayesian framework for Brown–Resnick processes.



Parametric inference methods for Z ∼ Fθ

With information on partition (occurrence times observed):

I Stephenson and Tawn (2005, Biometrika) use partition information
and the joint LLH LZ,Π(z, π).
But: Possible bias if Πn 6= Π.

I Wadsworth (2015, Biometrika) proposes bias correction by using
LZ,Πn (z, π).

Without information on partition (occurrence times unobserved):

I Composite (pairwise) likelihood Padoan et al. (2010, JASA).
But: Losses in efficiency.

I Dombry et al. (2013, Biometrika) introduces Gibbs sampler to
obtain conditional partitions of LΠ|Z(π|z).

I Thibaud et al. (2015, http://arxiv.org/abs/1506.07836) use
this Gibbs sampler to choose Π automatically and obtain posterior
L(θ|z) in a Bayesian framework for Brown–Resnick processes.



Parametric inference methods for Z ∼ Fθ

With information on partition (occurrence times observed):

I Stephenson and Tawn (2005, Biometrika) use partition information
and the joint LLH LZ,Π(z, π).
But: Possible bias if Πn 6= Π.

I Wadsworth (2015, Biometrika) proposes bias correction by using
LZ,Πn (z, π).

Without information on partition (occurrence times unobserved):

I Composite (pairwise) likelihood Padoan et al. (2010, JASA).
But: Losses in efficiency.

I Dombry et al. (2013, Biometrika) introduces Gibbs sampler to
obtain conditional partitions of LΠ|Z(π|z).

I Thibaud et al. (2015, http://arxiv.org/abs/1506.07836) use
this Gibbs sampler to choose Π automatically and obtain posterior
L(θ|z) in a Bayesian framework for Brown–Resnick processes.



Goals

I Recall: MLE with LZ(z) is infeasible.

I Establish Bayesian framework which uses full LLHs for general
max-stable distributions (without observed partition information).

I Improve (frequentist) efficiency of estimates compared to existing
methods (pairwise LLH,...)

I Without partition information.
I With partition information: ignore partition information.

I Explore applications of Bayesian methodology in multivariate
extremes.
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Bayesian framework

Parametric model Z ∼ Fθ with θ ∈ Θ.

Observations from Z: z1, . . . , zn ∈ Rd

Unobserved partitions:

(latent variables)

π1, . . . , πn ∈ Pd

Model parameters:

γ ∼

θ ∈ Θ

I Bayesian setup: Introduce prior γ on Θ and try to obtain the
posterior distribution L(θ, π1, . . . , πn|z1, . . . zn).
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Markov Chain Monte Carlo

I The posterior has to be evaluated by MCMC.

I Gibbs sampler for partitions and Metropolis–Hastings for θ, using

L(θ, π1, . . . , πn|z1, . . . zn) ∝ γ(θ)
n∏

i=1

L(zi , πi )

∝ γ(θ)
n∏

i=1

|πi |∏
j=1

{
−V

π
(j)
i
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I We need derivatives of the exponent measure Vπ(j) (z).
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Examples

I Logistic model with θ ∈ Θ = (0, 1):

Vπ(j) (z) = θ1−|π(j)| Γ(|π(j)| − θ)

Γ(1− θ)

(
d∑

k=1

z
−1/θ
k

)θ−|π(j)| ∏
k∈π(j)

z
−1−1/θ
k

I Many other models:
I Brown–Resnick; cf. Thibaud et al. (2015, Biometrika)
I Extremal-t
I Reich–Shaby
I Dirichlet
I ...
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Extremal dependence: max-stable data
I Simulate n = 100 samples z1, . . . zn from the d-dim. max-stable

logistic model for Z with parameter θ0 ∈ {0.1, 0.7, 0.9}; see
Dombry et al. (2016, Biometrika).

I Run MC with uniform prior γ on (0, 1), and take empirical
median of posterior L(θ|z1, . . . zn) as point estimate θ̂Bayes.

Theta estimates
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Figure : Markov chains whose stationary distributions are the posterior of θ0

(left) and the mean partition size (right); θ0 = 0.1, d = 10.
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Extremal dependence: max-stable data

I Compare with pairwise composite LLH estimator θ̂PL.

θ0 = 0.1 θ0 = 0.7 θ0 = 0.9
d 6 10 50 6 10 50 6 10 50

Bias(θ̂Bayes) 2 2 2 10 6 1 -6 -3 2

s(θ̂Bayes) 36 27 12 240 179 79 239 182 84

Bias(θ̂PL) 1 0 2 13 12 16 26 31 41

s(θ̂PL) 40 30 13 275 237 173 313 273 246

Table : Sample bias and standard deviation of θ̂Bayes and θ̂PL, estimated from
1500 estimates; figures multiplied by 10000.

Observations:

I Posterior median θ̂Bayes is unbiased.

I Substantially reduced std. deviations by using full LLHs.
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Extremal dependence: max-stable data

θ0 = 0.1 θ0 = 0.7 θ0 = 0.9
dimension d 6 10 50 6 10 50 6 10 50

MSE(θ̂Bayes)

MSE(θ̂PL)
82 83 78 76 57 21 58 44 11

Table : Relative efficiencies (%) of θ̂Bayes compared to θ̂PL, estimated from
1500 estimates.

Observations:

I Increasing efficiency gain for lower dependence and higher dimensions;
see also Huser et al. (2015, Extremes)).



Extremal dependence: max-domain of attraction
I For i = 1, . . . , n, n = 100, simulate b = 50 samples x1,i , . . . xb,i from

outer power Clayton copula in MDA of logistic model with
parameter θ0.

I Take block maxima z̃i = maxj=1,...,b xj,i as input data.

I Compare θ̂Bayes, θ̂PL based on {z̃i}i , and ST estimator θ̂ST and its

bias-corrected version θ̂W based on {(z̃i , πi )}i .

θ0 = 0.1 θ0 = 0.7 θ0 = 0.9
dimension d 6 10 6 10 6 10

θ̂Bayes 100 100 100 100 100 100

θ̂PL 83 81 71 60 62 51

θ̂ST 90 97 47 23 16 7

θ̂W 90 97 110 70 70 26

Table : Relative efficiencies as MSE(θ̂Bayes)/MSE(θ̂) (in %) for different
estimators θ̂; estimated from 1500 estimates.

Observations:

I Efficiency gain by using full information remains large.

I Automatic choice of partition in θ̂Bayes more robust than ST- likelihood
with fixed partition; no bias correction needed.
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More results and work in progress

Estimation of marginal parameters:

I Simultaneous estimation of marginals and dependence parameters
possible.

I Astonishing observation: This substantially reduces MSE for
shape estimation (weak improvement for location and scale).

Bayesian hypothesis testing:

I Ex.: Testing asymptotic independence against dependence

H0 : θ0 = 1 against H1 = θ0 ∈ (0, 1).

I Compare posterior probabilities P(H0|z1, . . . , zn) and
P(H1|z1, . . . , zn).

I Many other tests are possible (symmetry, regression coefficients,...).

Asymptotic limit results for posterior median.
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