Bayesian inference for multivariate extreme value distributions

Sebastian Engelke

Clément Dombry, Marco Oesting

Toronto, Fields Institute, May 4th, 2016

For a parametric model Z ~ F_θ of multivariate max-stable distributions, the full LLHs are usually not available.

(ロ)、(型)、(E)、(E)、 E) の(の)

For a parametric model Z ~ F_θ of multivariate max-stable distributions, the full LLHs are usually not available.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Maximum likelihood estimation is infeasible.

For a parametric model Z ~ F_θ of multivariate max-stable distributions, the full LLHs are usually not available.

- Maximum likelihood estimation is infeasible.
- Goal: Use full LLHs in Bayesian setup to
 - ► improve frequentist efficiency,

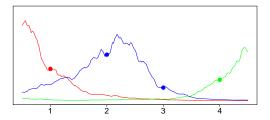
- For a parametric model Z ~ F_θ of multivariate max-stable distributions, the full LLHs are usually not available.
- Maximum likelihood estimation is infeasible.
- ▶ Goal: Use full LLHs in Bayesian setup to
 - improve frequentist efficiency,
 - allow for Bayesian methods in multivariate extremes.

Let Z be a *d*-dimensional max-stable distribution and X₁,..., X_n (with std. Fréchet margins) in its MDA.

Let Z be a *d*-dimensional max-stable distribution and X₁,..., X_n (with std. Fréchet margins) in its MDA.

• Componentwise maxima
$$\mathbf{M}_n = \max_{i=1}^n \mathbf{X}_i / n \stackrel{d}{\approx} \mathbf{Z}$$
.

- Let Z be a d-dimensional max-stable distribution and X₁,..., X_n (with std. Fréchet margins) in its MDA.
- Componentwise maxima $\mathbf{M}_n = \max_{i=1}^n \mathbf{X}_i / n \stackrel{d}{\approx} \mathbf{Z}$.
- Partition Π_n of the set {1,..., d} of occurrence times of maxima, i.e., j and k in the same set if M_{n,j} and M_{n,k} come from same X_j.

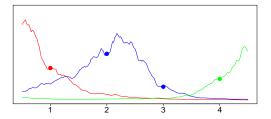


Example: d = 4, n = 3, $\prod_n = \{\{1\}, \{2, 3\}, \{4\}\}$.

• We have the weak limit as $n \to \infty$

$$(\mathbf{M}_n, \Pi_n) \stackrel{d}{\rightarrow} (\mathbf{Z}, \Pi),$$

where Π is the **limit partition** of occurrence times of **Z**.



Example: d = 4, n = 3, $\prod_n = \{\{1\}, \{2, 3\}, \{4\}\}$.

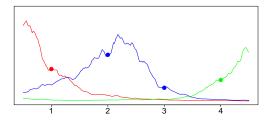
・ロット・「山・山・山・山・山・山・

• We have the weak limit as $n \to \infty$

$$(\mathbf{M}_n, \Pi_n) \stackrel{d}{\rightarrow} (\mathbf{Z}, \Pi),$$

where Π is the **limit partition** of occurrence times of **Z**.

• Π_n and Π are distributions on the set \mathcal{P}_d of all partitions of $\{1, \ldots, d\}$.



Example: d = 4, n = 3, $\prod_n = \{\{1\}, \{2, 3\}, \{4\}\}$.

Max-stable distributions and likelihoods

• $\mathbb{P}(\mathbf{Z} \leq \mathbf{z}) = e^{-V(\mathbf{z})}$, where V is the exponent measure of **Z**.

Max-stable distributions and likelihoods

• $\mathbb{P}(\mathbf{Z} \leq \mathbf{z}) = e^{-V(\mathbf{z})}$, where V is the exponent measure of **Z**.

$$L_{\mathbf{Z}}(\mathbf{z}) = \sum_{\pi \in \mathcal{P}_d} L_{\mathbf{Z},\Pi}(\mathbf{z},\pi),$$

where the Stephenson–Tawn LLH (2005, *Biometrika*) is joint LLH of Z and Π and has the explicit form

$$L_{\mathbf{Z},\Pi}(\mathbf{z},\pi) = e^{-V(\mathbf{z})} \prod_{j=1}^{|\pi|} \{-V_{\pi^{(j)}}(\mathbf{z})\},\$$

where $V_{\pi^{(j)}}$ are **partial derivatives** of V in directions $\pi^{(j)}$, and the partition $\pi = (\pi^{(1)}, \ldots, \pi^{(|\pi|)})$ consists of $|\pi|$ sets.

Max-stable distributions and likelihoods

• $\mathbb{P}(\mathbf{Z} \leq \mathbf{z}) = e^{-V(\mathbf{z})}$, where V is the exponent measure of **Z**.

$$L_{\mathbf{Z}}(\mathbf{z}) = \sum_{\pi \in \mathcal{P}_d} L_{\mathbf{Z},\Pi}(\mathbf{z},\pi),$$

where the Stephenson–Tawn LLH (2005, *Biometrika*) is joint LLH of Z and Π and has the explicit form

$$L_{\mathbf{Z},\Pi}(\mathbf{z},\pi) = e^{-V(\mathbf{z})} \prod_{j=1}^{|\pi|} \{-V_{\pi^{(j)}}(\mathbf{z})\},$$

where $V_{\pi^{(j)}}$ are **partial derivatives** of V in directions $\pi^{(j)}$, and the partition $\pi = (\pi^{(1)}, \ldots, \pi^{(|\pi|)})$ consists of $|\pi|$ sets.

Since $|\mathcal{P}_d|$ is the *d*th Bell number (very large), the use of $L_Z(z)$ is infeasible.

With information on partition (occurrence times observed):

Stephenson and Tawn (2005, *Biometrika*) use partition information and the joint LLH L_{Z,Π}(z, π).
 But: Possible bias if Π_n ≠ Π.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

With information on partition (occurrence times observed):

- Stephenson and Tawn (2005, *Biometrika*) use partition information and the joint LLH L_{Z,Π}(z, π).
 But: Possible bias if Π_n ≠ Π.
- Wadsworth (2015, *Biometrika*) proposes bias correction by using L_{Z,Πn}(z, π).

With information on partition (occurrence times observed):

- Stephenson and Tawn (2005, *Biometrika*) use partition information and the joint LLH L_{Z,Π}(z, π).
 But: Possible bias if Π_n ≠ Π.
- Wadsworth (2015, *Biometrika*) proposes bias correction by using L_{Z,Πn}(z, π).

Without information on partition (occurrence times unobserved):

 Composite (pairwise) likelihood Padoan et al. (2010, JASA). But: Losses in efficiency.

With information on partition (occurrence times observed):

- Stephenson and Tawn (2005, *Biometrika*) use partition information and the joint LLH L_{Z,Π}(z, π).
 But: Possible bias if Π_n ≠ Π.
- Wadsworth (2015, *Biometrika*) proposes bias correction by using L_{Z,Πn}(z, π).

Without information on partition (occurrence times unobserved):

- Composite (pairwise) likelihood Padoan et al. (2010, JASA). But: Losses in efficiency.
- Dombry et al. (2013, *Biometrika*) introduces Gibbs sampler to obtain conditional partitions of L_{Π|Z}(π|z).

With information on partition (occurrence times observed):

- Stephenson and Tawn (2005, *Biometrika*) use partition information and the joint LLH L_{Z,Π}(z, π).
 But: Possible bias if Π_n ≠ Π.
- Wadsworth (2015, *Biometrika*) proposes bias correction by using L_{Z,Πn}(z, π).

Without information on partition (occurrence times unobserved):

- Composite (pairwise) likelihood Padoan et al. (2010, JASA). But: Losses in efficiency.
- Dombry et al. (2013, *Biometrika*) introduces Gibbs sampler to obtain conditional partitions of L_{Π|Z}(π|z).
- Thibaud et al. (2015, http://arxiv.org/abs/1506.07836) use this Gibbs sampler to choose Π automatically and obtain posterior L(θ|z) in a Bayesian framework for Brown–Resnick processes.

• **Recall**: MLE with $L_{Z}(z)$ is infeasible.

- **Recall**: MLE with $L_{Z}(z)$ is infeasible.
- Establish Bayesian framework which uses full LLHs for general max-stable distributions (without observed partition information).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- **Recall**: MLE with $L_{Z}(z)$ is infeasible.
- Establish Bayesian framework which uses full LLHs for general max-stable distributions (without observed partition information).
- Improve (frequentist) efficiency of estimates compared to existing methods (pairwise LLH,...)

- **Recall**: MLE with $L_{Z}(z)$ is infeasible.
- Establish Bayesian framework which uses full LLHs for general max-stable distributions (without observed partition information).
- Improve (frequentist) efficiency of estimates compared to existing methods (pairwise LLH,...)

Without partition information.

- **Recall**: MLE with $L_{Z}(z)$ is infeasible.
- Establish Bayesian framework which uses full LLHs for general max-stable distributions (without observed partition information).
- Improve (frequentist) efficiency of estimates compared to existing methods (pairwise LLH,...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Without partition information.
- With partition information: ignore partition information.

- **Recall**: MLE with $L_{Z}(z)$ is infeasible.
- Establish Bayesian framework which uses full LLHs for general max-stable distributions (without observed partition information).
- Improve (frequentist) efficiency of estimates compared to existing methods (pairwise LLH,...)
 - Without partition information.
 - With partition information: ignore partition information.
- Explore applications of Bayesian methodology in multivariate extremes.

Bayesian framework

Parametric model $\mathbf{Z} \sim F_{\theta}$ with $\theta \in \Theta$.

Observations from Z :	$z_1,\ldots,z_n\in\mathbb{R}^d$
Unobserved partitions:	$\pi_1,\ldots,\pi_{\sf n}\in \mathcal{P}_{\sf d}$

Model parameters:

 $heta\in \Theta$

Bayesian framework

Parametric model $\mathbf{Z} \sim F_{\theta}$ with $\theta \in \Theta$.

- Observations from Z: $z_1, \ldots, z_n \in \mathbb{R}^d$ Unobserved partitions: $\pi_1, \ldots, \pi_n \in \mathcal{P}_d$ (latent variables) $\gamma \sim \theta \in \Theta$
- Bayesian setup: Introduce prior γ on Θ and try to obtain the posterior distribution L(θ, π₁,..., π_n|z₁,...z_n).

Markov Chain Monte Carlo

► The posterior has to be evaluated by MCMC.

Markov Chain Monte Carlo

- The posterior has to be evaluated by MCMC.
- Gibbs sampler for partitions and Metropolis–Hastings for θ , using

$$L(\theta, \pi_1, \dots, \pi_n | \mathbf{z}_1, \dots \mathbf{z}_n) \propto \gamma(\theta) \prod_{i=1}^n L(\mathbf{z}_i, \pi_i)$$
$$\propto \gamma(\theta) \prod_{i=1}^n \prod_{j=1}^{|\pi_i|} \left\{ -V_{\pi_i^{(j)}}(\mathbf{z}_i) \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Markov Chain Monte Carlo

- The posterior has to be evaluated by MCMC.
- Gibbs sampler for partitions and Metropolis–Hastings for θ , using

$$L(\theta, \pi_1, \dots, \pi_n | \mathbf{z}_1, \dots \mathbf{z}_n) \propto \gamma(\theta) \prod_{i=1}^n L(\mathbf{z}_i, \pi_i)$$
$$\propto \gamma(\theta) \prod_{i=1}^n \prod_{j=1}^{|\pi_i|} \left\{ -V_{\pi_i^{(j)}}(\mathbf{z}_i) \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We need derivatives of the exponent measure $V_{\pi^{(j)}}(\mathbf{z})$.

Examples

• Logistic model with $\theta \in \Theta = (0, 1)$:

$$V_{\pi^{(j)}}(\mathsf{z}) = \theta^{1 - |\pi^{(j)}|} \frac{\Gamma(|\pi^{(j)}| - \theta)}{\Gamma(1 - \theta)} \left(\sum_{k=1}^{d} z_k^{-1/\theta} \right)^{\theta - |\pi^{(j)}|} \prod_{k \in \pi^{(j)}} z_k^{-1 - 1/\theta}$$

Examples

• Logistic model with $\theta \in \Theta = (0, 1)$:

$$V_{\pi^{(j)}}(\mathbf{z}) = \theta^{1-|\pi^{(j)}|} \frac{\Gamma(|\pi^{(j)}|-\theta)}{\Gamma(1-\theta)} \left(\sum_{k=1}^{d} z_k^{-1/\theta}\right)^{\theta-|\pi^{(j)}|} \prod_{k \in \pi^{(j)}} z_k^{-1-1/\theta}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Many other models:
 - Brown–Resnick; cf. Thibaud et al. (2015, Biometrika)
 - Extremal-t
 - Reich–Shaby
 - Dirichlet
 - ▶ ...

Simulate n = 100 samples z₁,... z_n from the d-dim. max-stable logistic model for Z with parameter θ₀ ∈ {0.1, 0.7, 0.9}; see Dombry et al. (2016, *Biometrika*).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simulate n = 100 samples z₁,... z_n from the d-dim. max-stable logistic model for Z with parameter θ₀ ∈ {0.1, 0.7, 0.9}; see Dombry et al. (2016, *Biometrika*).

Run MC with uniform prior γ on (0,1), and take empirical median of posterior L(θ|z₁,...z_n) as point estimate θ̂_{Bayes}.

- Simulate n = 100 samples z₁,... z_n from the d-dim. max-stable logistic model for Z with parameter θ₀ ∈ {0.1, 0.7, 0.9}; see Dombry et al. (2016, *Biometrika*).
- Run MC with uniform prior γ on (0,1), and take empirical median of posterior L(θ|z₁,...z_n) as point estimate θ̂_{Bayes}.

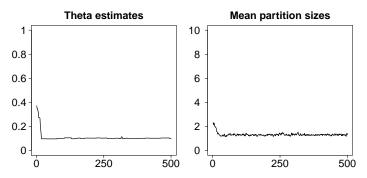


Figure : Markov chains whose stationary distributions are the posterior of θ_0 (left) and the mean partition size (right); $\theta_0 = 0.1$, d = 10.

- Simulate n = 100 samples z₁,... z_n from the d-dim. max-stable logistic model for Z with parameter θ₀ ∈ {0.1, 0.7, 0.9}; see Dombry et al. (2016, *Biometrika*).
- Run MC with uniform prior γ on (0,1), and take empirical median of posterior L(θ|z₁,...z_n) as point estimate θ̂_{Bayes}.

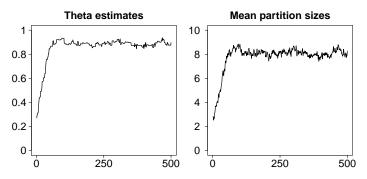


Figure : Markov chains whose stationary distributions are the posterior of θ_0 (left) and the mean partition size (right); $\theta_0 = 0.9$, d = 10.

• Compare with pairwise composite LLH estimator $\hat{\theta}_{\rm PL}$.

• Compare with pairwise composite LLH estimator $\hat{\theta}_{\rm PL}$.

	$ heta_0 = 0.1$			$\theta_0 = 0.7$			$\theta_0 = 0.9$			
d	6	10	50	6	10	50	6	10	50	
$\operatorname{Bias}(\hat{\theta}_{\operatorname{Bayes}})$	2	2	2	10	6	1	-6	-3	2	
$s(\hat{ heta}_{ ext{Bayes}})$	36	27	12	240	179	79	239	182	84	
$\operatorname{Bias}(\hat{ heta}_{\operatorname{PL}})$	1	0	2	13	12	16	26	31	41	
$s(\hat{ heta}_{ m PL})$	40	30	13	275	237	173	313	273	246	

Table : Sample bias and standard deviation of $\hat{\theta}_{Bayes}$ and $\hat{\theta}_{PL}$, estimated from 1500 estimates; figures multiplied by 10000.

Observations:

- Posterior median $\hat{\theta}_{\text{Bayes}}$ is unbiased.
- Substantially reduced std. deviations by using full LLHs.

	$ heta_0 = 0.1$			$\theta_0 = 0.7$			$\theta_0 = 0.9$		
dimension d	6	10	50	6	10	50	6	10	50
$rac{\textit{MSE}(\hat{ heta}_{ ext{Bayes}})}{\textit{MSE}(\hat{ heta}_{ ext{PL}})}$	82	83	78	76	57	21	58	44	11

Table : Relative efficiencies (%) of $\hat{\theta}_{Bayes}$ compared to $\hat{\theta}_{PL}$, estimated from 1500 estimates.

Observations:

Increasing efficiency gain for lower dependence and higher dimensions; see also Huser et al. (2015, *Extremes*)).

For i = 1,..., n, n = 100, simulate b = 50 samples x_{1,i},...x_{b,i} from outer power Clayton copula in MDA of logistic model with parameter θ₀.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For i = 1,..., n, n = 100, simulate b = 50 samples x_{1,i},...x_{b,i} from outer power Clayton copula in MDA of logistic model with parameter θ₀.

• Take block maxima $\tilde{\mathbf{z}}_i = \max_{j=1,...,b} \mathbf{x}_{j,i}$ as input data.

- For i = 1,..., n, n = 100, simulate b = 50 samples x_{1,i},...x_{b,i} from outer power Clayton copula in MDA of logistic model with parameter θ₀.
- Take block maxima $\mathbf{\tilde{z}}_i = \max_{j=1,...,b} \mathbf{x}_{j,i}$ as input data.
- Compare θ̂_{Bayes}, θ̂_{PL} based on {ž_i}_i, and ST estimator θ̂_{ST} and its bias-corrected version θ̂_W based on {(ž_i, π_i)}_i.

- For i = 1,..., n, n = 100, simulate b = 50 samples x_{1,i},...x_{b,i} from outer power Clayton copula in MDA of logistic model with parameter θ₀.
- Take block maxima $\tilde{\mathbf{z}}_i = \max_{j=1,...,b} \mathbf{x}_{j,i}$ as input data.
- Compare θ̂_{Bayes}, θ̂_{PL} based on {ž_i}_i, and ST estimator θ̂_{ST} and its bias-corrected version θ̂_W based on {(ž_i, π_i)}_i.

	$\theta_0 =$	0.1	$\theta_0 =$	- 0.7	$\theta_0 = 0.9$		
dimension d	6	10	6	10	6	10	
$\hat{ heta}_{\mathrm{Bayes}}$	100	100	100	100	100	100	
$\hat{ heta}_{ ext{PL}}$	83	81	71	60	62	51	
$\hat{ heta}_{ m ST}$	90	97	47	23	16	7	
$\hat{ heta}_{\mathrm{W}}$	90	97	110	70	70	26	

Table : Relative efficiencies as $MSE(\hat{\theta}_{Bayes})/MSE(\hat{\theta})$ (in %) for different estimators $\hat{\theta}$; estimated from 1500 estimates.

Observations:

- Efficiency gain by using full information remains large.
- Automatic choice of partition in $\hat{\theta}_{\text{Bayes}}$ more robust than ST- likelihood with fixed partition; no bias correction needed.

More results and work in progress

Estimation of marginal parameters:

Simultaneous estimation of marginals and dependence parameters possible.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Astonishing observation: This substantially reduces MSE for shape estimation (weak improvement for location and scale).

More results and work in progress

Estimation of marginal parameters:

- Simultaneous estimation of marginals and dependence parameters possible.
- Astonishing observation: This substantially reduces MSE for shape estimation (weak improvement for location and scale).

Bayesian hypothesis testing:

► Ex.: Testing asymptotic independence against dependence

$$H_0: \theta_0 = 1$$
 against $H_1 = \theta_0 \in (0, 1)$.

- Compare posterior probabilities $\mathbb{P}(H_0|z_1,...,z_n)$ and $\mathbb{P}(H_1|z_1,...,z_n)$.
- Many other tests are possible (symmetry, regression coefficients,...).

More results and work in progress

Estimation of marginal parameters:

- Simultaneous estimation of marginals and dependence parameters possible.
- Astonishing observation: This substantially reduces MSE for shape estimation (weak improvement for location and scale).

Bayesian hypothesis testing:

► Ex.: Testing asymptotic independence against dependence

$$H_0: \theta_0 = 1$$
 against $H_1 = \theta_0 \in (0, 1)$.

• Compare posterior probabilities $\mathbb{P}(H_0|\mathbf{z}_1,...,\mathbf{z}_n)$ and $\mathbb{P}(H_1|\mathbf{z}_1,...,\mathbf{z}_n)$.

Many other tests are possible (symmetry, regression coefficients,...).
 Asymptotic limit results for posterior median.

References

C. Dombry, S. Engelke, and M. Oesting.

Exact simulation of max-stable processes. *Biometrika*, 2016. To appear.

C. Dombry, F. Eyi-Minko, and M. Ribatet. Conditional simulation of max-stable processes. *Biometrika*, 100(1):111–124, 2013.

R. Huser, A. C. Davison, and M. G. Genton. Likelihood estimators for multivariate extremes. *Extremes*, 19:79–103, 2016.

S. A. Padoan, M. Ribatet, and S. A. Sisson. Likelihood-based inference for max-stable processes. *J. Amer. Statist. Assoc.*, 105:263–277, 2010.

A. Stephenson and J. A. Tawn.

Exploiting occurrence times in likelihood inference for componentwise maxima. *Biometrika*, 92(1):213–227, 2005.

E. Thibaud, J. Aalto, D. S. Cooley, A. C. Davison, and J. Heikkinen.

Bayesian inference for the Brown–Resnick process, with an application to extreme low temperatures.

Available from http://arxiv.org/abs/1506.07836, 2015.

J. L. Wadsworth.

On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions.

Biometrika, 102:705-711, 2015.