Operator-scaling random ball model

Joint work with Olivier Durieu (Tours) and Yizao Wang (Cincinnati)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

May, 3rd, Worshop on Dependence, Stability and Extremes, Toronto, Canada

Outlines

1 Anisotropic Random ball model

- Simple model
- Weighted model

2 Generalized anisotropic random balls

- Generalized field
- Scaling behavior
- Functional convergence

3 Generalized operator scaling α -stable fields

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Operator scaling property
- Illustration

We start with a family of grains $X_j + B_E(0, R_j)$ in \mathbb{R}^d where

 $(X_j, R_j)_j$ is a Poisson point process in $\mathbb{R}^d \times \mathbb{R}^+$,

with intensity measure n(dx, dr) = dxF(dr) where

- *E* is a $d \times d$ matrix with real parts of eigenvalues given by $a_1 \ge \ldots \ge a_d > 0$;
- $B_E(0,r) = r^E B$ for some ball B with finite volume $v_B = \mathcal{L}_d(B)$;
- F is a σ -finite non-negative measure on $\mathbb{R}^+ = (0, +\infty)$ such that

$$\int_{\mathbb{R}^+} \mathcal{L}_d(B_E(0,r)) F(\mathrm{d} r) < +\infty.$$

Let N be the associated Poisson random measure on $\mathbb{R}^d \times \mathbb{R}^+$. For $A \in \mathcal{B}(\mathbb{R}^d \times \mathbb{R}^+)$ with $n(A) < \infty$

$$N(A) = \# \{j; (X_j, R_j) \in A\} \sim \mathcal{P}(n(A)).$$

Anisotropic Random ball model

Associated shot-noise random field

One can define the random field X on \mathbb{R}^d by

$$\begin{aligned} X(t) &= \int_{\mathbb{R}^d \times \mathbb{R}^+} \mathbf{1}_{\mathcal{B}_E(x,r)}(t) \mathcal{N}(\mathrm{d} x, \mathrm{d} r) \\ &= \# \text{ grains containing } t \in \mathbb{R}^d. \end{aligned}$$

Isotropic scaling case $E = I_d$ considered in [HB, Estrade 06] and [Kaj et al 07]

(ロ) (型) (E) (E) (E) (O)

Examples

 $\mathbf{d} = 1 \longrightarrow X(t) =$ numbers of connections to a server at time t $\mathbf{d} = 2 \longrightarrow X(t) =$ discretized gray level at point t in a picture $\mathbf{d} = 3 \longrightarrow X(t) =$ mass density of a 3D granular media in t

Main properties

X is stationary and second-order

• $\mathbb{E}X(t) = \int_{\mathbb{R}^d \times \mathbb{R}^+} \mathbf{1}_{B_E(x,r)}(t) n(\mathrm{d}x,\mathrm{d}r) = \int_{\mathbb{R}^+} \mathcal{L}_d(B_E(0,r)) F(\mathrm{d}r)$ with

 $\mathcal{L}_d(B_E(0,r)) = \mathcal{L}_d(B)r^q$, for q = tr(E).

• $\operatorname{Cov}(X(t), X(t')) = \int_{\mathbb{R}^+} \mathcal{L}_d(B_E(t, r) \cap B_E(t', r)) F(\mathrm{d}r)$

Let $\alpha \in (1, 2]$, $\sigma > 0$, M a $S\alpha S(\sigma)$ r.v. with probability distribution G_{α} and $(M_j)_j$ iid MWe consider the independently marked point process

 $(X_j, R_j, M_j)_j$ in $\mathbb{R}^d \times \mathbb{R}^+ \times \mathbb{R}$.

It is a Poisson point process with intensity measure

 $n_{\alpha}(\mathrm{d} x, \mathrm{d} r, \mathrm{d} m) = n(\mathrm{d} x, \mathrm{d} r)G_{\alpha}(\mathrm{d} m) = \mathrm{d} x F(\mathrm{d} r)G_{\alpha}(\mathrm{d} m).$

Associated shot noise random field X on \mathbb{R}^d

$$X(t) = \int_{\mathbb{R}^d \times \mathbb{R}^+ \times \mathbb{R}} m \mathbf{1}_{B_E(x,r)}(t) N_\alpha(\mathrm{d} x, \mathrm{d} r, \mathrm{d} m)$$

Ideas from [Breton & Dombry, 09]

Main properties

- X is stationary, integrable $(\alpha > 1)$
- $\mathbb{E}X(t) = \mathbb{E}(M)\left(\int_{\mathbb{R}^+} \mathcal{L}_d(B_E(0,r))F(\mathrm{d}r)\right) = 0$
- the characteristic function of X(t) is given by

$$\begin{split} \mathbb{E}\left(e^{iuX(t)}\right) &= \exp\left(\int_{\mathbb{R}^d \times \mathbb{R}^+ \times \mathbb{R}} \left[e^{ium\mathbf{1}_{B_E(x,r)}(t)} - 1\right] \mathrm{d}x F(\mathrm{d}r) G_\alpha(\mathrm{d}m)\right) \\ &= \exp\left(\int_{\mathbb{R}^d \times \mathbb{R}^+} \left[\hat{G}_\alpha(u\mathbf{1}_{B_E(x,r)}(t)) - 1\right] \mathrm{d}x F(\mathrm{d}r)\right) \\ &= \exp\left(\int_{\mathbb{R}^d \times \mathbb{R}^+} \left[\hat{G}_\alpha(u) - 1\right] \mathbf{1}_{B_E(x,r)}(t) \mathrm{d}x F(\mathrm{d}r)\right) \\ &= \exp\left(\int_{\mathbb{R}^+} \mathcal{L}_d(B_E(0,r)) F(\mathrm{d}r) [e^{-\sigma^\alpha |u|^\alpha} - 1]\right) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalized anisotropic random balls

We consider the Schwartz space $S(\mathbb{R}^d)$ of all infinitely differentiable rapidly decreasing functions on \mathbb{R}^d equipped with the family of seminorms

$$\pi_{N,j}(f) := \sup_{z \in \mathbb{R}^d} (1 + |z|)^N \left| D^j(f)(z) \right|, \forall N \in \mathbb{N}, j \in \mathbb{N}^d$$

that induces its usual nuclear Fréchet topology and the closed subspace

$$\mathcal{S}_n(\mathbb{R}^d) = \left\{ f \in \mathcal{S}(\mathbb{R}^d); \int_{\mathbb{R}^d} z^j f(z) dz = 0, orall j \in \mathbb{N}^d ext{ with } |j| < n
ight\}, ext{ for } n \in \mathbb{N}$$

Note that

- a closed subspace of a nuclear space is a nuclear space
- the topological dual of a nuclear Fréchet space is a nuclear space

Definition

A generalized random field on $S_n(\mathbb{R}^d)$ defined on $(\Omega, \mathcal{A}, \mathbb{P})$ is a measurable map : $(\Omega, \mathcal{A}) \to (S_n(\mathbb{R}^d)', \mathcal{B}(S_n(\mathbb{R}^d)'))$.

For all $f\in \mathcal{S}(\mathbb{R}^d)$ we define the r.v. as " $\int_{\mathbb{R}^d}X(t)f(t)\mathrm{d}t$ "

$$X(f) := \int_{\mathbb{R}^d \times \mathbb{R}^+ \times \mathbb{R}} m\left(\int_{\mathbb{R}^d} \mathbf{1}_{B_E(x,r)}(t)f(t) \mathrm{d}t\right) N_\alpha(\mathrm{d}x,\mathrm{d}r,\mathrm{d}m).$$

Proposition

a.s.
$$X \in \mathcal{S}(\mathbb{R}^d)' \subset \mathcal{S}_n(\mathbb{R}^d)'$$
 for all $n \geq 1$.

It follows from the fact that X is linear and $|X(f)| \leq C_N \pi_{N,0}(f)$, with

$$C_N = \int_{\mathbb{R}^d \times \mathbb{R}^+ \times \mathbb{R}} |m| \left(\int_{\mathbb{R}^d} \mathbf{1}_{B_E(x,r)}(t)(1+|t|)^{-N} \mathrm{d}t \right) N_\alpha(\mathrm{d}x,\mathrm{d}r,\mathrm{d}m),$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

with finite expectation as soon as N > d.

Generalized anisotropic random balls

The characteristic functional of a generalized field Y on $S_n(\mathbb{R}^d)$ is defined as

$$\Psi_{Y}(f) = \mathbb{E}\left(e^{iY(f)}\right) = \int_{\mathcal{S}_{n}(\mathbb{R}^{d})'} e^{iu(f)} d\mathbb{P}_{Y}(u), \forall f \in \mathcal{S}_{n}(\mathbb{R}^{d})$$

Theorem (Minlos-Bochner Theorem)

A functional $\Psi : S_n(\mathbb{R}^d) \to \mathbb{C}$ is the characteristic functional of a generalized field Y on $S_n(\mathbb{R}^d)$ iff Ψ is continuous, $\Psi(0) = 1$ and Ψ is positive definite on $S_n(\mathbb{R}^d)$.

We write
$$T_r^E f(x) = \int_{\mathbb{R}^d} \mathbf{1}_{B_E(x,r)}(t) f(t) dt$$
 so that

$$X(f) := \int_{\mathbb{R}^d \times \mathbb{R}^+ \times \mathbb{R}} m T_r^E f(x) N_\alpha(dx, dr, dm).$$
Then $\Psi_X(f) = \mathbb{E}\left(e^{iX(f)}\right) = \exp\left(\int_{\mathbb{R}^d \times \mathbb{R}^+} \left[e^{-\sigma^\alpha |T_r^E f(x)|^\alpha} - 1\right] dx F(dr)\right)$
and

$$|\Psi_X(f)| \le \exp\left(\sigma^\alpha \int_{\mathbb{R}^+} ||T_r^E f||_\alpha^\alpha F(dr)\right) = \exp\left(\sigma^\alpha \int_{\mathbb{R}^+} ||T_r^E f||_\alpha^\alpha F(dr)\right)$$

Scaling behavior

Let us multiply the radii by ho>0 and the intensity measure by $\lambda(
ho)>0$:

$$n(\mathrm{d} x, \mathrm{d} r) = \mathrm{d} x F(\mathrm{d} r) \curvearrowright n_{\lambda(\rho),\rho}(\mathrm{d} x, \mathrm{d} r) = \lambda(\rho) \mathrm{d} x F_{\rho}(\mathrm{d} r)$$

$$\begin{split} F_{\rho}(\mathrm{d} r) &= \mathrm{image\ measure\ of\ } F(\mathrm{d} r)\ \mathrm{by\ the\ change\ of\ scale\ } r\mapsto\rho r.\\ \hline X_{\rho}(f) &= \int_{\mathbb{R}^d\times\mathbb{R}^+\times\mathbb{R}} mT_r^Ef(x)\ N_{\alpha,\lambda(\rho),\rho}(\mathrm{d} x,\mathrm{d} r,\mathrm{d} m) \end{split}$$

with $N_{\alpha,\lambda(\rho),\rho}$ Poisson measure with intensity

$$n_{\alpha,\lambda(\rho),\rho}(\mathrm{d} x,\mathrm{d} r,\mathrm{d} m)=n_{\lambda(\rho),\rho}(\mathrm{d} x,\mathrm{d} r)G_{\alpha}(\mathrm{d} m).$$

 $\left\{ \begin{array}{ll} {\sf zoom\text{-}in}: \quad \rho \to +\infty \quad ({\sf small \ grain \ assumption}) \\ {\sf zoom\text{-}out}: \quad \rho \to 0 \qquad ({\sf large \ grain \ assumption}) \end{array} \right.$

Theorem (Lévy Theorem, [Meyer, 1964, Fernique, 1968])

Let $(Y_m)_m$ be a sequence of generalized field : TFAE

$$Y_m \xrightarrow[m \to +\infty]{d} Y$$

• $(\mathbb{P}_{Y_m})_m$ weakly converges to $(\mathbb{P}_Y)_m$: $\forall \varphi \in \mathcal{C}_b(\mathcal{S}'_n(\mathbb{R}^d))$

$$\int_{\mathcal{S}'_n(\mathbb{R}^d)} \varphi(u) \mathrm{d}\mathbb{P}_{Y_m}(u) \xrightarrow[m \to +\infty]{} \int_{\mathcal{S}'_n(\mathbb{R}^d)} \varphi(u) \mathrm{d}\mathbb{P}_Y(u).$$

• the characteristic functionals converge pointwize : $\forall f \in S_n(\mathbb{R}^d)$, one has

$$\Psi_{Y_m}(f) \xrightarrow[m \to +\infty]{} \Psi_Y(f).$$

うして ふゆう ふほう ふほう うらつ

Convergence in law

We are looking for a normalization term $n(\rho)$ s.t. $Y_{\rho} := X_{\rho}/n(\rho)$ converges in law. Note that $\Psi_{Y_{\rho}}(f) = \mathbb{E}\left(e^{iX_{\rho}(f)/n(\rho)}\right)$

$$= \exp\left(\int_{\mathbb{R}^d \times \mathbb{R}^+} \lambda(\rho) \left[e^{-\sigma^{\alpha} n(\rho)^{-\alpha} |T_r^{\mathcal{E}} f(x)|^{\alpha}} - 1 \right] \mathrm{d} x F_{\rho}(\mathrm{d} r) \right)$$

Power law assumptions : for $\beta \neq q$, assume F(dr) = f(r)dr with

$$f(r) \sim C_{\beta}r^{-\beta-1}$$
, as $r \to 0^{q-\beta} = \begin{cases} r \to +\infty, & \beta > q \text{ (zoom-out)} \\ r \to 0, & \beta < q \text{ (zoom-in)} \end{cases}$

Recall that $\int_{\mathbb{R}^+} r^q F(dr) < +\infty$ with q = tr(E). **Lemma** :[HB, Estrade, Kaj, 2010] if g is a continuous function on \mathbb{R}^+ such that $|g(r)| \leq C \min(r^{p_1}, r^{p_2})$, for some $0 < p_1 < \beta < p_2$, then

$$\int_{\mathbb{R}^+} g(r) F_{\rho}(\mathrm{d} r) \underset{\rho \to 0^{\beta-q}}{\sim} C_{\beta} \rho^{\beta} \int_{\mathbb{R}^+} g(r) r^{-\beta-1} \mathrm{d} r.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Operator properties

Recall that $T_r^E f(x) = \int_{B_E(x,r)} f(t) dt$, we need assumptions on $\beta \neq q$ and f s.t.

$$\int_{\mathbb{R}^+} \|T_r^{\mathcal{E}}f\|_{\alpha}^{\alpha} r^{-\beta-1} \mathrm{d}r < +\infty.$$

Proposition

For $\alpha \in [1, 2]$, and $f \in \mathcal{S}(\mathbb{R}^d)$

- $\|T_r^E f\|_{\alpha}^{\alpha} \leq c_{\scriptscriptstyle B,1} r^{q\alpha} \|f\|_{\alpha}^{\alpha}$
- $||T_r^E f||_{\alpha}^{\alpha} \le c_{\scriptscriptstyle B,2} r^q ||f||_1^{\alpha}$
- if moreover $\int f = 0$ ie $f \in S_1(\mathbb{R}^d)$, then for r > 1,

$$\|T_{r}^{E}f\|_{\alpha}^{\alpha} \leq c_{{}_{B},\mathbf{3}}r^{q-a_{d}}\max(|\log r|,1)^{\ell_{d}-1}\|f\|_{1}^{\alpha-1}\int_{\mathbb{R}^{d}}|t||f(t)|\mathrm{d}t,$$

where a_d is the minimal real part of the eigenvalues of E and ℓ_d the size of its associated Jordan block.

Generalized operator scaling α stable field

Let
$$\alpha \in (1,2]$$
 and $\beta \in \begin{cases} (q, \alpha q) & n = 0\\ (q - a_d, q) & n = 1 \end{cases}$, we can define the $S\alpha S$
r.v.
 $Z^{E}_{\alpha}(f) := \int_{\mathbb{R}^{d} \times \mathbb{R}^{+}} T^{E}_{r}f(x)W_{\alpha,\beta}(\mathrm{d}x\mathrm{d}r),$

where $W_{\alpha,\beta}$ is a $S\alpha S$ random measure with intensity $\sigma^{\alpha}C_{\beta}r^{-1-\beta}dxdr$ for $f \in S_n(\mathbb{R}^d)$.

Proposition

The random field $(Z_{\alpha}^{E}(f))_{f \in S_{n}(\mathbb{R}^{d})}$ admits a regularization $(\tilde{Z}_{\alpha}^{E}(f))_{f \in S_{n}(\mathbb{R}^{d})}$ in $S_{n}(\mathbb{R}^{d})'$ meaning that there exists a generalized field $(\tilde{Z}_{\alpha}^{E}(f))_{f \in S_{n}(\mathbb{R}^{d})}$ defined on some probability space $(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{\mathbb{P}})$ such that $\forall k \in \mathbb{N}, f_{1}, \ldots, f_{k} \in S_{n}(\mathbb{R}^{d}), A_{1}, \ldots, A_{k} \in \mathcal{B}(\mathbb{R})$

$$\mathbb{P}\left(Z_{\alpha}^{\mathcal{E}}(f_1)\in A_1,\ldots,Z_{\alpha}^{\mathcal{E}}(f_k)\in A_k\right)=\tilde{\mathbb{P}}\left(\tilde{Z}_{\alpha}^{\mathcal{E}}(f_1)\in A_1,\ldots,\tilde{Z}_{\alpha}^{\mathcal{E}}(f_k)\in A_k\right).$$

Functional scaling limit

Theorem

Assume that
$$\beta \in \begin{cases} (q, \alpha q) & n = 0\\ (q - a_d, q) & n = 1 \end{cases}$$
. As $n(\rho) := \rho^{\beta} \lambda(\rho) \to +\infty$
with $\rho \to 0^{\beta - q}$, then
 $Y_{\rho} := \frac{X_{\rho}}{n(\rho)} \stackrel{d}{\to} \tilde{Z}_{\alpha}^{E}$,

for the convergence in law in $\mathcal{S}_n(\mathbb{R}^d)'$.

Let us quote that by linearity fdd convergence follows once we have proven that

$$\Psi_{Y_{\rho}}(f) \to \Psi_{Z_{\alpha}^{E}}(f)$$

This follows the same lines as in [Breton, Dombry, 09]. Since $\Psi_{Z_{\alpha}^{E}} : S_{n}(\mathbb{R}^{d}) \to \mathbb{C}$ is positive definite and continuous, Bochner-Minlos Theorem gives the existence of \tilde{Z}_{α}^{E} . But $\Psi_{Z_{\alpha}^{E}}(f) = \Psi_{\tilde{Z}_{\alpha}^{E}}(f)$, such that Lévy's Theorem directly gives us the functional convergence!

Some remarks

Functional convergence results previously obtained for

- isotropic scaling $E = I_d$;
- **z**oom out case : ho
 ightarrow 0 ;
- $\beta \in (\alpha, \alpha d);$
- In [Breton, Dombry, 2011], for $\mathcal{D}(\mathbb{R}^d)'$ with $\mathcal{D}(\mathbb{R}^d) \subset \mathcal{S}(\mathbb{R}^d)$ the space of smooth compactly supported functions, using a different approach with a tighness criterion

Properties of the limit

Following [Dobrushin, 1979], define

• the group shift transformation $\mathcal{T} = \{\tau_h; h \in \mathbb{R}^d\}$ on the space $\mathcal{S}_n(\mathbb{R}^d)$:

$$au_h f(t) = f(t-h), f \in \mathcal{S}_n(\mathbb{R}^d), h \in \mathbb{R}^d, t \in \mathbb{R}^d;$$

• the group of E-operator scaling transformations

$$\Delta^{E} = \{\delta_{c}^{E}; c \in (0, +\infty)\} \text{ on the space } S_{n}(\mathbb{R}^{d}) :$$

$$\delta_{c}^{E}f(t) = c^{-q}f(c^{-E}t), f \in S_{n}(\mathbb{R}^{d}), c \in (0, +\infty), q = tr(E), t \in \mathbb{R}^{d};$$

and their analogous \mathcal{T} , Δ^{E} on $\mathcal{S}_{n}(\mathbb{R}^{d})'$ with

$$au_h(L(f)) := L(au_h f), \text{ and } \delta_c^E L(f) := L(\delta_c^E f) \text{ for } L \in \mathcal{S}_n(\mathbb{R}^d)'.$$

Note that for L given by a function g, one has

$$\tau_h g(x) = g(x+h) \text{ and } \delta_c^E g(x) = g(c^E x).$$

Properties of the limit

Let $\alpha \in (1,2]$ and $\beta \in (q - a_p, \alpha q) \setminus \{q\}$. The generalized random field \tilde{Z}^{E}_{α} is

• with stationary *n*th increments : $\forall h \in \mathbb{R}^d$,

$$au_h \tilde{Z}^E_\alpha \stackrel{d}{=} \tilde{Z}^E_\alpha,$$

equivalently

$$\forall f \in \mathcal{S}_n(\mathbb{R}^d), \Psi_{\tilde{Z}_{\alpha}^E}(\tau_h f) = \Psi_{\tilde{Z}_{\alpha}^E}(f).$$

• (E, H)-operator scaling for

$$H = \frac{q-\beta}{\alpha} \in (-q(1-1/\alpha), 0) \cup (0, a_d/\alpha), \forall c > 0,$$

$$\delta_c^E \tilde{Z}_{\alpha}^E \stackrel{d}{=} c^H \tilde{Z}_{\alpha}^E,$$

equivalently $\forall f \in \mathcal{S}_n(\mathbb{R}^d), \Psi_{\tilde{Z}^E_\alpha}(\delta^E_c f) = \Psi_{c^H \tilde{Z}^E_\alpha}(f).$

• Self-similarity exponents are defined by $H_i := H/a_i \le H/a_d < 1/\alpha$ in the direction of the eigenvector when a_i is an eigenvalue of E.

 $E = \text{diag}(1, 1.2), \ \sigma = 0.1, \ \beta = 1.6 \in (1.5, 2.5)$ Top : $\alpha = 2, \ H = 0.3 = H_1, \ H_2 = 0.25, \ \text{Bottom} : \alpha = 1.8, \ H = 0.33 = H_1, \ H_2 = 0.28$

 $E = \operatorname{diag}(1, 1.2), \ \sigma = 0.1, \ \beta = 1.6 \in (1.5, 2.5)$

 $E = \text{diag}(1, 1.8), \ \sigma = 0.1, \ \beta = 1.9 \in (1.8, 2.8)$ Top : $\alpha = 2, \ H = 0.45 = H_1, \ H_2 = 0.25, \ \text{Bottom} : \alpha = 1.8, \ H = 0.5 = H_1, \ H_2 = 0.28$

 $E = \text{diag}(1, 1.5), \ \sigma = 0.1, \ \beta = 1.75 \in (1.5, 2.5)$ Top : $\alpha = 2, \ H = 0.375 = H_1, \ H_2 = 0.25, \ \text{Bottom} : \alpha = 1.8, \ H = 0.417 = H_1, \ H_2 = 0.28$

 $E = \text{diag}(1, 1.5), \ \sigma = 0.1, \ \beta = 1.75 \in (1.5, 2.5)$ $\alpha = 2 \text{ and } H = 0.375 \text{ (top)}, \ \alpha = 1.8 \text{ and } H = 0.417 \text{ (bottom)}.$

э