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Anisotropic Random ball model

We start with a family of grains X; + Bg(0, R;) in RY where
(X;, R;); is a Poisson point process in RY x R*,
with intensity measure n(dx,dr) = dxF(dr) where

m E is a d x d matrix with real parts of eigenvalues given by
a1 >...2aq9>0;

m Be(0,r) = rf B for some ball B with finite volume vg = L4(B);

m F is a o-finite non-negative measure on R™ = (0, 4+00) such that
/ L4(Be(0,r))F(dr) < +oc.
R+

Let N be the associated Poisson random measure on R x R+,
For A€ B(R? x RT) with n(A) < oo

N(A) = #{j; (Xj Rj) € A} ~ P(n(A))-



Anisotropic Random ball model

Associated shot-noise random field
One can define the random field X on R? by

X(t) = / 1o er) ()N (dx, dr)
R xR+
= # grains containing t € RY.

Isotropic scaling case E = Iy considered in [HB, Estrade 06] and [Kaj et al 07]



Shot noise random field

Examples

d=1 — X(t) = numbers of connections to a server at time t
d=2 — X(t) = discretized gray level at point t in a picture
d=3 — X(t) = mass density of a 3D granular media in ¢

Main properties

m X is stationary and second-order
B EX(t) = [par g 1Be(en(t)n(dx, dr) = [o. La(Be(0, r))F(dr) with

L4(Be(0,r)) = L4(B)r, for g = tr(E).

m Cov(X(t),X(t) = [ La (Be(t,r) N Be(t',r)) F(dr)



Towards « stable law : weighted random balls

Let a« € (1,2], 0 > 0, M a SaS(o) r.v. with probability distribution G,
and (Mj)j iid M
We consider the independently marked point process
(X, R, Mj); in RY x RT x R.
It is a Poisson point process with intensity measure

no(dx, dr,dm) = n(dx,dr)G,(dm) = dxF(dr)G,(dm).

Associated shot noise random field X on R¢
X(t) :/ mlp, (x,n(t)Na(dx,dr,dm)
RI xR+ xR

Ideas from [Breton & Dombry, 09]



Main properties

m X is stationary, integrable (a > 1)
m EX(t) = E(M) ([ La(Be(0,r))F(dr)) =0

m the characteristic function of X(t) is given by

E (eiuX(t)> = exp (/}Rdxwx]R [e'“’"lBE(x () _ 1] dxF(dr)G (dm))

= exp UIBE(X n(t)) — 1} dxF(dr))

]R"><]R+

(
= exp ( Rdxw - 1} g (x r)(t)dxF(df))
(L

= exp L4(Be(0, r))F(dr)[e=o 14" — 1])



Generalized anisotropic random balls

We consider the Schwartz space S(R?) of all infinitely differentiable
rapidly decreasing functions on R? equipped with the family of seminorms

() = sup (1+[2])"[D/ (f) (2)] ,¥N € N,j € N
z€R4

that induces its usual nuclear Fréchet topology and the closed subspace
Sn(RY) = {f € S(Rd);/ Zf(z)dz =0,Vj € N with |j| < n} , forne N
Rd

Note that

m a closed subspace of a nuclear space is a nuclear space

m the topological dual of a nuclear Fréchet space is a nuclear space
Definition

A generalized random field on S,(R?) defined on (Q, A,P) is a
measurable map : (2, A) — (S,(R?), B(S,(R?)).



Generalized anisotropic random balls

For all f € S(RY) we define the r.v. as " [, X(t)f(t)dt"

X(f) = / m< IBE(”)(t)f(t)dt) Ny (dx, dr, dm).
RI xR+ xR R4

Proposition
a.s. X € S(RY) c S,(RY) for all n > 1.

It follows from the fact that X is linear and |X(f)| < Cymp o(f), with

= [ n ( [ tsuentia+ |t|)“dt) No(dx, dr, dm),
RY xR+ xR R9

with finite expectation as soon as N > d.



Generalized anisotropic random balls

The characteristic functional of a generalized field Y on S,(RY) is
defined as

Vy(f) =E (") = / NPy (u), VF € Sp(RY)
S,,(Rd)’

Theorem (Minlos-Bochner Theorem)

A functional V : S,(RY) — C is the characteristic functional of a
generalized field Y on S,(R9) iff W is continuous, W(0) = 1 and W is
positive definite on S,(R9).

We write TEf(x) = [oa 1.(x,n(£)F(£)dt so that
X(f) ::/ mTEf(x)Ny(dx,dr,dm).
RIXR+ xR

Then Wx(f) = E (X) = exp (. [e7" 770" — 1] axF(dr))
and

() <exp (o [ ITEFISF(@N).



Scaling behavior

Let us multiply the radii by p > 0 and the intensity measure by A(p) > 0 :
n(dx,dr) = dxF(dr) ~ ny(,),,(dx,dr) = A(p)dxF,(dr)

F,(dr) = image measure of F(dr) by the change of scale r — pr.
X, (f) = fRde+XR mTEf(x) Nox(p),p(dx,dr,dm)

with N, x(p),, Poisson measure with intensity
No A(p),p(dx, dr,dm) = ny(,) ,(dx, dr)Ga (dm).

zoom-in :  p — 400 (small grain assumption)
zoom-out : p — 0 (large grain assumption)




Convergence in law

Theorem (Lévy Theorem, [Meyer, 1964, Fernique, 1968])

Let (Ym)m be a sequence of generalized field : TFAE

d
Y, — Y
m——+400

m (Py, )m weakly converges to (Py)n, : Vo € Cp(SH(R?))

/SL(R") plu)dBy, () =2 m—+00 /S,’,(]Rd) p(u)dPy (u).

m the characteristic functionals converge pointwize : Vf € S,(R?), one
has
\Uym(f) mjoo \Uy(f)



Convergence in law

We are looking for a normalization term n(p) s.t. Y, = p/n(p)
converges in law.
Note that \pr(f) =E (eiXp(f)/n(p))

— exp </ (o) [e—aan(p)*a\T,Ef(x)l‘* _ 1] dpr(dr))
R xR+

Power law assumptions : for 5 # q, assume F(dr) = f(r)dr with

Bl g—p _ | r—+oo, B> q (zoom-out)
flr) ~ Cor yas r= 0T = { r—0, B < g (zoom-in)

Recall that [, riF(dr) < 400 with g = tr(E).
Lemma :[HB, Estrade, Kaj, 2010] if g is a continuous function on R™
such that |g(r)| < Cmin(rP, rP?), for some 0 < p; < 3 < p», then

/g(r)Fp(dr) ~ Csp‘ﬁ/ g(r)yr="=tdr.
R+ q R+

p—0P8—



Operator properties

Recall that TEf(x fB (1) t)dt, we need assumptions on 3 # g and
fs.t.

/ I TEF|r#-1dr < +oo.
R+

For a € [1,2], and f € S(RY)
w (| TEFIS < coar®lIfIS
m | TEFIS < 6. r0lIf IS

m if moreover [ f =0 ie f € S1(R?), then for r > 1,
||TEf||O‘ < ¢, ,r97 % max(|log r|, 1) a— 1||f|| / [t||f(t)|dt,

where ay is the minimal real part of the eigenvalues of E and ¢, the
size of its associated Jordan block.



Generalized operator scaling « stable field

Let « € (1,2] and 3 € { Eg’a? 7) :itl) , we can define the SaS
— dd, -

r.v.

ZE(f) = / TEF(x)W, s(dxdr),
RI xR+

where W, 5 is a SaS random measure with intensity o Csr= 2~ dxdr
for f € Sn(RY).

Proposition

The random field (Z£(f))res,re) admits a regularization
(ZE(F))res,me) in Sa(RY)" meaning that there exists a generalized field
(Zf(f))fesn(Rd) defined on some probability space (Q, A, P) such that
Vk €N, f,..., i € Sy(RY), Ay, ... A € B(R)

P(ZE(R) € Av,... ZE(R) € A) =B (ZE(R) € Av,..., ZE(F) € Ar)



Functional scaling limit

Theorem
Assume that § € { gg’fgl 9) Z z (1) . As n(p) := pPA(p) — +oo
with p — 08=9, then

for the convergence in law in S,(RY)’.

Let us quote that by linearity fdd convergence follows once we have

proven that
Wy, (f) = Wze(f)

This follows the same lines as in [Breton, Dombry, 09].
Since Ve : S,(RY) — C is positive definite and continuous,

Bochner-Minlos Theorem gives the existence of Z£. But
Wze(f) = W3c(f), such that Lévy's Theorem directly gives us the
functional convergence !



Some remarks

Functional convergence results previously obtained for
m isotropic scaling E = I ;
m zoom out case : p — 0;

m € (a,ad);

In [Breton, Dombry, 2011], for D(R?)" with D(R9) C S(RY) the
space of smooth compactly supported functions, using a different
approach with a tighness criterion

In [Breton, Gobard, 2015], for C(.A) the space of continuous
function on a compact subset A of finite signed measure for the
I ll7v topology [(n(dt) instead of f(t)dt]



Properties of the limit

Following [Dobrushin, 1979], define

m the group shift transformation 7 = {74; h € R?} on the space
Sn(RY) :

mhf(t) = f(t — h),f € S,(RY),h € R, t € R,

m the group of E-operator scaling transformations
AE = {65;c € (0,40)} on the space S,(RY) :

Sef(t) = c 9 (cFt),f € Sp(RY),c € (0,+00),q = tr(E), t € RY;
and their analogous 7, AE on S,(R9)" with
Th(L(F)) := L(7hf), and EL(F) := L(6EF) for L € S,(RY)'.
Note that for L given by a function g, one has

Thg(x) = g(x + h) and 6£g(x) = g(cx).



Properties of the limit

Let a € (1,2] and 8 € (g — ap, aq) ~ {q}. The generalized random field
ZEis
m with stationary nth increments : Vh € RY,
ThZOI:: i 25,

equivalently
VF € Sn(RY), Wze(hf) = W3¢ (f).

m (E, H)-operator scaling for
H=9"% ¢ (-q(1-1/a),0)U(0,aq/a), Yc >0,

SEZE 4 HZE
equivalently Vf € S,(R?), W5c(65F) = W i 5¢(Ff).

m Self-similarity exponents are defined by H; := H/a; < H/ag < 1/«
in the direction of the eigenvector when a; is an eigenvalue of E.



[llustration

E = diag(1,1.2), 0 = 0.1, 3 = 1.6 € (1.5,2.5)
Top:a=2,H=03=H;, H> =0.25, Bottom: « =1.8, H=0.33 = Hy, H» = 0.28
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E = diag(1,1.2), 0 = 0.1, 3 = 1.6 € (1.5,2.5)



[llustration

E = diag(1,1.8), c =0.1, 3 =19 € (1.8,2.8)
Top: a=2, H=0.45 = Hy:, H» = 0.25, Bottom : a« = 1.8, H=0.5 = Hi, H» = 0.28



[llustration

E= diag(l, 1.5), c=01 8=175¢ (1.5,2.5)
Top:a=2, H=0.375 = Hy, H» = 0.25, Bottom : « = 1.8, H = 0.417 = Hy, H» = 0.28



[llustration

By Bi/2 B

1.5), 0 = 0.1, B = 1.75 € (1.5,2.5)
5 (top), @ =1.8 and H = 0.417 (bottom)
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