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Stationary regularly varying sequences
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Regular variation

regularly varying random variable

p · x−αL(x)

x

q · x−αL(x)
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Multivariate regular variation

σ(S) · x−αL(x)
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Regularly varying process

I A stationary time series (Xn)n is said to be regularly varying if
random vectors

(X0, . . . , Xk) k ≥ 0

are regularly varying for each k.
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For a stationary regularly varying sequence there exists a tail process

(Yt)t∈Z

such that (
Xt

x

)
t∈Z

∣∣∣∣ |X0| > x
d→ (Yt)t∈Z

and a spectral tail process

(θt)t∈Z

independent of |Y0| such that

(Yt)t
d
= |Y0|(θt)t .

Moreover
|θ0| = 1 and |Y0| ∼ Pareto(α) .
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There exists a sequence (an) such that(
Xt

an

)
t∈Z

∣∣∣∣ |X0| > an
d→ (Yt)t∈Z.
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Examples (for simplicity, assume θ0 = 1)

a) Xt iid RV(α), θt = 0, for t 6= 0.

b) Xt = Zt ∨ Zt−1, Zt iid RV(α),

. . . , θ−1, θ0, θ1, . . . ∼
{
. . . , 0, 0, 1, 1, 0, . . . w.p. 1/2
. . . , 0, 1, 1, 0, 0, . . . w.p. 1/2
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c) Xt = Zt +
1
2
Zt−1, Zt iid RV(α).
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Independent observations

Regular variation assumption determines limiting behavior of

B point processes

B sums and random walks Sn = X1 + · · · +Xn

B maxima and other extremes Mn = max{X1, . . . , Xn}
B records and record times
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Complete convergence theorem 1
simple but powerful – cf. Leadbetter-Rootzén, Resnick

Theorem For iid Xt ≥ 0, X0 is reg. varying is if and only if

Nn =
n∑
1

δ i
n ,
Xi
an

d→ N =
∑
i

δTi,Pi ,

where N is PRM(Leb×d(−x−α)).

So

P (Mn/an ≤ u) = P (Nn([0, 1]× (u,∞)) = 0)→ P (N([0, 1]× (u,∞)) = 0) = e−u
−α
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u

a b

Pois((b− a)u−α)

N
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Extremes of dependent sequences cluster
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Strongly mixing observations

Mori (1977) showed if

Nn
d→ N

then
N =

∑
i

∑
j

δTi,PiQi,j

where

B
∑

i δTi,Pi is a PRM(ϑ·Leb×d(−x−α)) with ϑ ∈ (0, 1]

B
∑

j δQij is an iid sequence of point processes in [−1, 1], independent of
PRM above.
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It was not really clear

B what is ϑ

B what is the distribution of
∑

j δQij

B what would be a sufficient condition for such a convergence
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N
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Anti-clustering condition
or finite mean cluster size condition

High level exceedances are not clustering for ”too long”, i.e for some
rn→∞ and rn/n→ 0:

lim
m→∞

lim sup
n→∞

P

 ∨
m≤|i|≤rn

|Xi| > anu

∣∣∣∣∣∣ |X0| > anu

 = 0 , u > 0 . (1)

It implies

Ym
P→ 0, as |m|→ ∞.
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Main technical lemma

Denote LY = supi∈Z |Yi| and Mn = max |X1|, . . . , |Xn|, then under the
assumptions above

(
rn∑
i=1

δXi/Mrn
,
Mrn

an

∣∣∣Mrn > an

)
⇒
(∑

i

δYi/LY , LY
∣∣∣ sup
j<0
|Yj| ≤ 1

)

with two components on the right hand side being independent – B. &
Tafro (2016).
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Complete convergence theorem 2

building on Davis & Resnick, Davis & Hsing, Davis & Mikosch

Theorem Under strong mixing and a.c., as n→∞,

Nn
d→ N =

∑
i,j

δ(Ti,PiQij) ,

where

B
∑

i δTi,Pi is a Poisson process on [0, 1]×(0,∞] with intensity ϑLeb×
d(−x−α)

B (
∑

j δQij)i is an iid sequence of point processes independent of the
process above

tafro,b.(2016) /krizmanić, segers, b. (2012)
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Here ϑ is the extremal index of the sequence |Xt| with representation

ϑ = P (
∨
i≥1
|Yi| ≤ 1) = P (

∨
i≤−1
|Yi| ≤ 1) > 0.

While cluster shapes satisfy

∑
j

δQj
d
=
∑
i

δYi/LY

∣∣∣ sup
j<0
|Yj| ≤ 1
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Complete convergence theorem illustrated Xt = Zt + 0.9Zt−1.
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As in the iid case one can prove (functional) limit theorems for

B partial maxima Mbntc

B partial sums Sbntc under additional conditions and unusual topologies
(Avram & Taqqu, B. Krizmanić, Segers, or Jakubowski...)
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However...

B in the limit there is a loss of information about the order

B one cannot find the limit of Sbntc even for some very simple models

B it is difficult to say much about records or record times
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Space for ordered clusters

We introduce a new space

l̃0 = l0/ ∼ where l0 = {x = (xi)i∈Z : lim
|i|→∞

xi = 0}

and x ∼ y if d(x,y) = 0 with

d(x,y) = inf
k
sup
j
|xj − yj+k|.

Adapting d to l̃0 produces a separable and complete metric space.
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Technical lemma in l̃0
large deviations result

Under a.c. assumption as n→∞(
X1, . . . , Xrn

an

∣∣∣Mrn > an

)
⇒
(
Yi, i ∈ Z

∣∣∣ sup
j<0
|Yj| ≤ 1

)
in l̃0 \ {0}. The space is not locally compact, so we need to use w#

topology (cf. Daley–Vere Jones). Related to Hult & Samorodnitsky (2010)
and Mikosch & Wintenberger (2016) large deviations results.

As before, conditionally on supj<0 |Yj| ≤ 1, random variable LY =
supi∈Z |Yi| and random cluster (Yi/LY )i are independent.
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Complete convergence theorem 3
very technical but order is preserved
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Partial sums converge again

Under assumptions above (for α ∈ (0, 1) plus an additional one for α ∈
[1, 2)) we prove functional limit theorem for

Sbntc
an

, t ≥ 0 ,

but the limit is a ”process” in a new space – E[0, 1], M2. Assume for
convenience that Xi’s are symmetric if α ≥ 1.

Similarly one can prove the limiting theorem in a more standard space
(D[0, 1],M1) for

sup
s≤t

Sbnsc
an

, t ≥ 0 .
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Space E[0, 1]
Whitt 2002

Elements are triples
(x, T, {I(t) : t ∈ T}),

where x ∈ D[0, 1], T is a countable subset of [0, 1] with

Disc(x) ⊆ T,

and, for each t ∈ T , I(t) is a closed bounded interval such that

x(t), x(t−) ∈ I(t) .
Moreover, for each ε > 0, there are at most finitely many times t with
diameter of I(t) greater than ε.
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Functional limit theorem
in the space E

Theorem Under assumptions above for α ∈ (0, 2) as n→∞,

Sbntc
an

d→ SE ,

for some SE = (S, TS, {IS(t) : t ∈ TS}) with S being an α–stable Lévy
process.

planinić, soulllier, b. (2016)
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Remark

In the limit SE = (S, TS, {IS(t) : t ∈ TS}), countable set TS includes all
the discontinuities of the stable process S, and S can be trivial.

All three components of the process SE can be expressed in the terms of
the tail process.

One can prove that in D[0, 1] with M1 topology

sup
s≤t

Sbnsc
an

d→ sup
s≤t

SE(s) .
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Partial sums for Xt = Zt + 0.9Zt−1.
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Partial sums for Xt = Zt − 0.7Zt−1.
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Running max of sums for Xt = Zt − 0.7Zt−1.
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Sums of Xt = Zt − 2.5Zt−1 + Zt−2.
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Sums of Xt = Zt − Zt−1.
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Record times

It is well known (Resnick, 1987) that for any iid sequence from a continuous
distribution, point process of record times converges, ie

Rn =
∞∑
i=1

δi/nI{Xi is a record}

satisfies
Rn

d→ R =
∑
i∈Z

δRi

where R is a so called scale invariant Poisson process on (0,∞) with
intensity dx/x .
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Record times are much more difficult to handle when dependence is present,
therefore we assume

B sequence (Xn), maybe after monotone transformation, is regularly
varying, strong mixing and a.c. holds.

B with probability one all nonzero values of the tail process Yi are mutually
different .
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The limit of record times

Theorem Under assumptions above as n→∞,

Rn
d→ R′ =

∑
i∈Z

δRiκi ,

where

B
∑

i∈Z δRi is Poisson process on (0,∞) with intensity dx/x and

B (κi)i∈Z is an iid sequence independent of it.

planinić, soulllier, b. (2016)
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Records are broken in clusters.
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Remark

The limit R′ does not depend on ϑ directly.

Moreover, κi have the same distribution as

∞∑
j=−∞

I{Qj>supi<j Qi∨e−W/α} ,

where W is standard exponential and

(Qj)j
d
=

((
Yi
LY

)
i

∣∣∣ sup
j<0
|Yj| ≤ 1

)
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Summary

A stationary regularly varying sequence (Xt)

B has a tail process (Yt)

B the clusters of extremes can be described by (Yt)

B point processes Nn have a limit characterized by (Yt) with order pre-
served in the space [0, 1]× l̃0 .

B random walks with steps (Xt) have an ”α–stable” limit for α ∈ (0, 2)
but in M2 on E[0, 1] (càdlàg functions are ok only for some special
cases).

B record times have a surprisingly simple compound Poisson structure in
the limit.
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Thanks
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