
Portability of Deep-Learning Side-Channel Attacks against
Software Discrepancies

Chenggang Wang∗
Auburn University at Montgomery

Montgomery, AL, USA
cwang2@aum.edu

Mabon Ninan
University of Cincinnati
Cincinnati, OH, USA

ninanmm@mail.uc.edu

Shane Reilly
University of Cincinnati
Cincinnati, OH, USA
reillysp@mail.uc.edu

Joel Ward∗
Cedarville University
Cedarville, OH, USA

joelbenward@gmail.com

William Hawkins
University of Cincinnati
Cincinnati, OH, USA

hawkinwh@ucmail.uc.edu

Boyang Wang
University of Cincinnati
Cincinnati, OH, USA
boyang.wang@uc.edu

John M. Emmert
University of Cincinnati
Cincinnati, OH, USA
john.emmert@uc.edu

ABSTRACT
Deep-learning side-channel attacks can reveal encryption keys on
a device by analyzing power consumption with neural networks.
However, the portability of deep-learning side-channel attacks can
be affected when training data (from the training device) and test
data (from the test device) are discrepant. Recent studies have exam-
ined the portability of deep-learning side-channel attacks against
hardware discrepancies between two devices.

In this paper, we investigate the portability of deep-learning side-
channel attacks against software discrepancies between the training
device and test device. Specifically, we examine four factors that can
lead to software discrepancies, including random delays, instruction
rewriting, optimization levels, and code obfuscation. Our experi-
mental results show that software discrepancies caused by each
factor can significantly downgrade the attack performance of deep-
learning side-channel attacks, and even prevent an attacker from
recovering keys. To mitigate the impacts of software discrepancies,
we investigate three mitigation methods, including adjusting Points
of Interest, domain adaptation, and multi-domain training, from the
perspective of an attacker. Our results indicate that multi-domain
training is the most effective approach among the three, but it can
be difficult to scale given the diversity of software discrepancies.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures.
∗The work was done when the authors were at the University of Cincinnati.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9859-6/23/05. . . $15.00
https://doi.org/10.1145/3558482.3590177

KEYWORDS
Side-channel analysis, deep learning, software discrepancies

ACM Reference Format:
ChenggangWang, Mabon Ninan, Shane Reilly, Joel Ward, William Hawkins,
Boyang Wang, and John M. Emmert. 2023. Portability of Deep-Learning
Side-Channel Attacks against Software Discrepancies. In Proceedings of
the 16th ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec’23), May 29-June 1, 2023, Guildford, United Kingdom. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3558482.3590177

1 INTRODUCTION
Side-channel attacks [22] can recover encryption keys from a device,
such as a microcontroller or an FPGA (Field-Programmable Gate
Arrays) by analyzing correlations between power consumption
and intermediate values of encryption, such as AES (Advanced
Encryption Standard). Recent studies [10, 20, 27] show that machine
learning can offer new advantages in side-channel attacks compared
to traditional attacks, such as Correlation Power Analysis [9] and
Template Attacks [12]. For instance, attacks [6, 31] built upon deep
learning can recover keys from raw power traces with (no or less)
pre-processing and can even defeat countermeasures, including
masking and random delays.

On the other hand, deep-learning side-channel attacks still face
challenges in terms of portability [7, 15]. Portability indicates the
effectiveness of profiling side-channel attacks when training and
test data are collected from two devices. According to recent studies
[7, 11, 33, 39, 43], when training and test data are discrepant due to
hardware discrepancies between the training device and test device,
an attacker needs a greater number of traces to recover keys, and
may even fail to compromise keys.

In this paper, we investigate the portability of deep-learning
profiling side-channel attacks against software discrepancies, which
have not been well-studied in the current literature. Put differently,
we examine the cases where training data and test data are dis-
crepant and these discrepancies are primarily caused by different

1

https://doi.org/10.1145/3558482.3590177
https://doi.org/10.1145/3558482.3590177

WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom C. Wang, M. Ninan, S. Reilly, J. Ward, W. Hawkins, B. Wang, and J. M. Emmert

software settings between two devices. We examine the following
two open research questions.

• RQ1: To what degree can software discrepancies impact the
portability of deep-learning profiling side-channel attacks?

• RQ2: How can an attacker overcome/mitigate software dis-
crepancies and still recover keys successfully?

Our Contributions. To answer the two research questions, we
make the following contributions:

• We investigate four factors that can lead to software dis-
crepancies, including random delays, instruction rewriting,
optimization levels, and code obfuscation. Specifically, we sim-
ulate random delays by randomly shifting power measure-
ments. We examine instruction rewriting at the assembly
level and also over ELF (Executable and Linkable Format)
files by leveraging a reverse engineering tool Ghidra [1].
We investigate four optimization levels, including Os, O1,
O2, and O3 given a cross-compiler. We explore three code
obfuscations offered by a code obfuscation tool Tigress [2].

• To facilitate our investigation, we collect a large-scale dataset,
named SoftPower dataset. It consists of more than 3.2 mil-
lion power traces (187 GBs) of AES-128 encryption from
two types of microcontrollers, including AVR XMEGA (8-bit
RISC) and ARM STM32 (32-bit Cortex-M4), using ChipWhis-
perer [3] and various software settings associated with the
four discrepancy factors we examine.

• Experimental results suggest that every software discrep-
ancy factor we examine leads to attack performance drops.
Specifically, it takes a much greater number of test traces for
a CNN (Convolutional Neural Network) to reveal encryption
keys. Moreover, discrepancies caused by instruction rewrit-
ing, optimization levels, or code obfuscation can even result
in the failure of recovering keys using a CNN.

• Tomitigate the impacts of software discrepancies, we explore
three mitigation methods, including (I) adjusting Points of
Interest (POI); (II) domain adaptation; and (III) multi-domain
training, from the perspective of an attacker. Each method
requires lowering the attack assumption to some degree.
Specifically, adjusting POI requires a small amount of unla-
beled traces from the test device to identify leakage points
through statistical analysis, e.g., Normalized Inter-Class Vari-
ance [8]. Domain adaptation requires a large amount of un-
labeled traces from the test device. Multi-domain training
requires large amounts of labeled traces of multiple software
settings from the training device.

• Our results suggest that adjusting POI can improve attack
performance against discrepancies caused by instruction
rewriting, optimization levels, or code obfuscation. Domain
adaptation is only effective in few examples associated with
random delays. Multi-domain training can overcome dis-
crepancies caused by every factor and effectively reveal keys.
However, it has to significantly demote the attack assump-
tion by requiring an attacker to know every possible software
setting in advance. Although this is potentially feasible, it
could be difficult to scale in practice given the diversity of
software discrepancies between the training device and test
device. We highlight our findings in Table 1.

Table 1: Our Main Findings (# indicates a method is not
effective at all; G# indicates a method is effective to some
degree or in some cases; suggests a method is effective.)

Adjusting Domain Multi-Domain
POI Adaptation Training

Random Delays # G#
Instruction Rewriting G# #
Compiler Optimization G# #
Code Obfuscation G# #

Reproducibility. The source code and datasets of this study are
made publicly available at [4].

2 BACKGROUND
2.1 System and Threat Model
System Model. The system model (shown in Fig 1) of machine-
learning profiling side-channel attacks includes two devices, in-
cluding the training device and the test device. An attacker aims to
reveal an unknown but fixed key on the test device. As in previous
studies, we assume that this attacker has control of the training
device to assist her to learn a profile (e.g., a classifier). Specifically,
this attacker knows the key on the training device and can capture
power traces and associated plaintexts (i.e., inputs of the encryp-
tion) from the training device. On the other hand, this attacker does
not have control of the test device but can passively capture power
consumption and associated plaintexts from the test device.

A machine-learning profiling side-channel attack includes two
phases, the training phase (a.k.a., profiling phase) and the test phase
(a.k.a., attack phase). In the profiling phase, this attacker trains a
classifier with labeled power traces from the training device. In the
attack phase, the attacker acquires unlabeled power traces from
the test device and tries to recover the key on the test device by
leveraging the classifier. We focus on deep-learning profiling side-
channel attacks, where the classifier is a neural network.

Cross-Device Scenario. We focus on the cross-device scenario,
where the training device and test device are of the same type but
are distinct (e.g., two STM32 microcontrollers). Both of the devices
run the same encryption algorithm but the two encryption keys on
the two devices are different. We also assume that hardware discrep-
ancies exist between the two devices due to imperfection/variations
in manufacturing.

Software Discrepancies. In addition to key and hardware dis-
crepancies, we assume that the two devices also carry software
discrepancies. Specifically, we assume that the initial source code
of the encryption remains the same but the binaries running on
the two devices are different. For instance, given the same AES
C code, the binary on the training device was compiled with O1
optimization but the binary on the test device was compiled with
O2 optimization. These discrepancies could happen when an at-
tacker has knowledge of the initial source code but does not have
full knowledge regarding how the code was further modified or
compiled for the test device.

Generation of Binaries with Cross-Compilation. To facili-
tate the discussions later, we briefly describe the cross-compilation
process for a binary (i.e., a hex file) running on a microcontroller,
specifically with ChipWhisperer – the hardware platform we lever-
age for data acquisition. Cross-compilation means generating a

2

Portability of Deep-Learning Side-Channel Attacks against Software Discrepancies WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom

Training
Phase

Power
TracesTraining

Device

Test
Device

Secret Key
on Test TargetAttack

Phase

Trained
Classifier

Power
Traces

Unknown
Secret KeyAES.c

aes1.hex
aes1 != aes2

aes2.hex

Figure 1: The system model of machine-learning profiling
side-channel attacks with software discrepancies.

Figure 2: High-level overview of the generation of a hex file
from source code with cross-compilation.

binary for a platform other than the one on which the compiler
is running. For ChipWhisperer, given a C code (or an assembly
code), it is first compiled (or assembled) as object files using a cross-
compiler on a PC. Next, multiple object files are linked together to
produce an ELF file. Finally, the ELF file is further formatted as a
hex file on a PC and this hex file is flashed to a microcontroller.

2.2 Notations and Leakage Model
A power trace 𝑡 is denoted as a vector 𝑡 = (𝑡 [1], ..., 𝑡 [𝑙]), where
𝑡 [𝑖] is the measurement of power consumption of a device at time 𝑖
and 𝑙 is the number of measurements. LetM be the plaintext space
and K be the key space. Given a plaintext𝑚 ∈ M and key 𝑘 ∈ K ,
a power trace 𝑡 is collected when a device runs encryption with
plaintext𝑚 and key𝑘 . We use 𝑧 = 𝜑 (𝑚,𝑘) to denote an intermediate
value of encryption, where function 𝜑 (·) is a leakage step.

Encryption Algorithm.We focus on attacks on AES-128 en-
cryption, where a side-channel attack reveals one key byte each
time. As in previous studies, our description of side-channel attacks
focus on recovering one byte, where we assume key 𝑘 , plaintext𝑚,
or intermediate value 𝑧 only has one byte. We use 𝑘∗1 , 𝑘

∗
2 ,, 𝑘

∗
256

to denote all the possible 256 key values. We use the SubBytes of
the 1st round of AES as the leakage step 𝜑 (·).

Leakage Model. We leverage Hamming Weight (HW) model
[6, 31] to formulate side-channel leakage. The HW model assumes
that there are correlations between the power consumption of an
intermediate value and the Hamming weight of this intermediate
value. The label of a power trace 𝑡 is HW(𝑧) — the Hamming weight
of the intermediate value 𝑧 = 𝜑 (𝑚,𝑘)) given plaintext𝑚 and key
𝑘 . There are 9 possible Hamming weights (i.e., 0∼8) as we assume
intermediate value 𝑧 has one byte.

Points of Interest (POI). Given a power trace, Points of Interest
are power measurements associated with the leakage step, which
is the SubBytes of the 1st round of AES-128 in this study. Given a
device and a software setting, we identify POI in advance as in [39].
Specifically, given an AES implementation (in C or assembly), we
insert multiple consecutive NOPs (No Operations), before and after
SubBytes of the 1st round of AES to produce obvious gaps in power
consumption. With this approach, we can loosely locate the start
and end of SubBytes in a (raw) power trace. For instance, given a

(raw) power trace 𝑡 , if POI=[1200, 2200], only power measurements
(𝑡 [1200], ..., 𝑡 [2200]) are used for the side-channel attacks.

Training Phase. Given power traces 𝑇 = (𝑡1, ..., 𝑡𝑁), plaintexts
𝑀 = (𝑚1, ...,𝑚𝑁) and key 𝑘 from a training device, where 𝑚𝑖 is
associated with 𝑡𝑖 , an attacker obtains intermediate outputs 𝑍 =

(𝑧1, ..., 𝑧𝑁), where 𝑧𝑖 = 𝜑 (𝑚𝑖 , 𝑘), and computes ℎ𝑖 = HW(𝑧𝑖) as
the label of power trace 𝑡𝑖 . An attacker trains a classifier 𝐹 with
(𝑇,𝐻) = {(𝑡1, ℎ1), ..., (𝑡𝑁 , ℎ𝑁)}.

Attack Phase. An attacker captures traces 𝑇 ′ = (𝑡 ′1, ..., 𝑡
′
𝑁 ′) and

plaintexts 𝑀′ = (𝑚′
1, ...,𝑚

′
𝑁 ′) from a test device running key 𝑘′,

where𝑚′
𝑖
is associated with 𝑡 ′

𝑖
. Given power trace 𝑡 ′

𝑖
, an attacker

obtains a score for each Hamming weight from classifier 𝐹 and tries
to infer the key 𝑘′ on the test device.

Evaluation Metric. We utilize key rank (a.k.a. guessing en-
tropy [31]) as the metric to measure the attack performance of
side-channel attacks. Specifically, given a power trace 𝑡 ′

𝑖
, classifier

𝐹 outputs a HW score vector (𝑠𝑖 [0], ..., 𝑠𝑖 [8]), where 𝑠𝑖 [𝑗] is the
score for Hamming weight 𝑗 . Next, an attacker obtains a key score
vector (𝑟𝑖 [𝑘∗1], ..., 𝑟𝑖 [𝑘

∗
256]) by calculating

𝑟𝑖 [𝑘∗𝑔] = 𝑠𝑖 [𝑗], if HW(𝜑 (𝑚′
𝑖 , 𝑘

∗
𝑔)) == 𝑗 (1)

for 1 ≤ 𝑔 ≤ 256, where 𝑟𝑖 [𝑘∗𝑔] is the score of possible key 𝑘∗𝑔
according to trace 𝑡 ′

𝑖
and plaintext 𝑚′. The aggregated key score

vector (𝑟 [𝑘∗1], ..., 𝑟 [𝑘
∗
256]) over 𝑁

′ power traces are computed as

𝑟 [𝑘∗𝑗] =
𝑁 ′∑︁
𝑖=1

𝑟𝑖 [𝑘∗𝑗], for 1 ≤ 𝑗 ≤ 256 (2)

The aggregated key scores (𝑟 [𝑘∗1], ..., 𝑟 [𝑘
∗
256]) are further sorted in

descending order based on the scores.
Key rank is denoted as𝑤 , where𝑤 ∈ [0, 255], if correct key 𝑘′ is

ranked as the (𝑤 + 1)-th key among all the possible keys 𝑘∗1 , ..., 𝑘
∗
256

based on the aggregated key scores. A key rank of 0 over 𝑁 ′ traces
suggests that an attacker can recover key 𝑘′ with 𝑁 ′ traces. We use
KRC to indicate the number of test traces that an attacker needs
for key rank to converge to 0. If key rank converges to 0 with a
lower number of traces, it indicates that an attack is more effective.

Normalized Inter-Class Variance (NICV). NICV [8] can iden-
tify leakage points with high correlations between power consump-
tion and intermediate values of encryption. Specifically, let 𝑌 be a
random variable of power measurements at time 𝑖 over 𝑁 traces
and 𝑍 ∗ be a random variable of intermediate values of the leak-
age step associated with the 𝑁 traces, NICV at time 𝑖 over the 𝑁
traces can be computed as Var[E[𝑌 |𝑍 ∗]]

Var[𝑌] , where E denotes mean
and Var denotes variance. We utilize NICV in this study, but other
methods, such as Signal-to-Noise Ratio [21] or Test Vector Leakage
Assessment [34], can also locate points with high correlations.

3 SOFTWARE DISCREPANCIES
We examine four discrepancy factors, including random delays,
instruction rewriting, optimization levels, and code obfuscation.

1 Random delay is an effective way to mitigate side-channel
attacks, where POI across traces are misaligned. Random delay can
be implemented in software. 2 Instruction rewriting, in the context
of this study, refers to manually modifying machine instructions
of AES implementation without affecting its correctness. 3 When
compiling a C code, a cross-compiler can choose an optimization

3

WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom C. Wang, M. Ninan, S. Reilly, J. Ward, W. Hawkins, B. Wang, and J. M. Emmert

Figure 3: The NICV offset is -328 from dataset A to dataset
B. If the training over A uses POI=[1800, 2800], then testing
over B with offset=-328 means POI=[1472, 2472].

level. Different optimization levels offer different tradeoffs among
compilation time, file size, and memory usage. 4 Code obfusca-
tion transforms a C code to an obfuscated version, in which the
functionalities remain the same but the code is difficult for reverse
engineering.

Since discrepancies produced by these factors depend on the
architecture of microcontrollers, hardware platforms, etc. We will
discuss the details of each factor in the evaluation section.

4 MITIGATION METHODS
We investigate three mitigation methods in order to still recover
keys against software discrepancies.

4.1 Mitigation I: Adjusting POI
Since software discrepancies fundamentally lead to different in-
structions, which result in different power patterns of AES on a
device (see examples in Appendix) and shifts in terms of leakage
points. We believe that adjusting POI based on statistical analysis,
such as NICV, could be helpful.

Specifically, given training data from the training device and
test data from the test device, we first compute the NICV of each
dataset. Next, we compare the high peaks of NICVs between the
two datasets and obtain a NICV offset. This NICV offset is defined
as the offset between the first high peak of NICV of the training
dataset and the first high peak of NICV of the test dataset. Finally,
we align the POI of the test data with the POI of the training data
by applying the NICV offset (or offsets close to this NICV offset). An
example of NICV offset is illustrated in Fig. 3.

In essence, given a vector of NICV values (𝑛𝐴 [1], ...𝑛𝐴 [𝑙]) from
dataset A and a vector of NICV values (𝑛𝐵 [1], ..., 𝑛𝐵 [𝑙]) from dataset
B, the NICV offset from A to B can be formulated as the offset 𝛼
such that the distance between the two vectors is minimized, where
the distance is defined as below:

argmin
𝛼

=

𝑙∑︁
𝑖=1

����𝑛𝐴 [(𝑖 + 𝛼) mod 𝑙] − 𝑛𝐵 [𝑖]
���� (3)

The intuition of this mitigation is that if a classifier can
learn side-channel leakage and recover keys from training data,
the measurements associated with high NICV peaks contribute
significantly to the predictions of the classifier. If we align the NICV
peaks of the test data with the NICV peaks of the training data, it
could help the classifier to mitigate data discrepancies.

Assumptions of Mitigation I. To apply this method, we need
to assume that the NICV peaks can be observed. This requires two

Feature

Extractor

Source

Classifier

Domain

Discriminator

Source Data

Target Data

LC

LD

∂LC

∂θC
∂LC

∂θF

−λ∂LD

∂θF
λ∂LD

∂θD
GRL

Back-

propagation

Back-

propagation

Features

Domain label

Class label

Loss

Loss

Figure 4: The structure of a domain adversarial network [16].
GRL stands for Gradient Reversal Layer.

assumptions for the attacks: (1) the number of test traces from a test
dataset is sufficient (e.g., a few hundred or thousand traces depend-
ing on the noise level of a dataset); (2) random delay or masking is
not implemented such that leakage points are not preserved.

4.2 Mitigation II: Domain Adaptation
When training data and test data are discrepant, i.e., training data
and test data are from two different domains, domain adaptation
[37] is a common machine learning approach to mitigate discrep-
ancies. We particularly leverage Adversarial Domain Adaptation
(ADA) [16, 36], which has shown promising results to mitigate
domain discrepancies in other areas, such as image recognition.

Background of ADA. In domain adaptation [37], there are
two datasets, including a source dataset and a target dataset. Do-
main adaptation addresses domain discrepancies between the two
datasets by mapping source data and target data into a domain-
invariant feature space. In the context of side-channel attacks, data
from the training device are considered as source data while data from
the test device are treated as target data.

ADA [16, 36] learns a domain-invariant feature space by training
a domain adversarial network. It leverages generative adversarial
learning [19] and outperforms traditional domain adaptation rely-
ing on Maximum Mean Discrepancy [24]. As illustrated in Fig. 4, a
domain adversarial network consists of three parts, including a Fea-
ture Extractor 𝐹 , a Domain Discriminator 𝐷 , and a Source Classifier
𝐶 . Each part is a neural network. During the training of a domain
adversarial network, the Feature Extractor takes labeled source data
and unlabeled target data as inputs and outputs domain-invariant
features. The Domain Discriminator aims to distinguish whether
an output of the Feature Extractor is generated from the source
domain or the target domain. The Source Classifier minimizes the
loss on predicting the correct labels of source data.

Let 𝜃𝐹 , 𝜃𝐷 , and 𝜃𝐶 be the parameters of the Feature Extractor,
Domain Discriminator and Source Classifier, respectively. Given
the loss function L of the domain adversarial network, the Feature
Extractor and Source Classifier minimize the loss L while the Do-
main Discriminator maximizes the loss L. The loss function L can
be computed as

L(𝜃𝐹 , 𝜃𝐷 , 𝜃𝐶) = L𝐶 (𝜃𝐹 , 𝜃𝐶) − 𝜆L𝐷 (𝜃𝐹 , 𝜃𝐷) (4)

where L𝐶 is the loss function of the Source Classifier, L𝐷 is the
loss function of the Domain Discriminator, and 𝜆 is a pre-defined
trade-off parameter shaping features [16]. After the training, the

4

Portability of Deep-Learning Side-Channel Attacks against Software Discrepancies WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom

Feature Extractor 𝐹 and the Classifier 𝐶 can be extracted and used
to perform classifications over target data.

Assumptions of Mitigation II. This method requires that an
attacker possesses a large number of unlabeled traces of the target
dataset collected from the test device, such that DomainDiscriminator
can potentially assist the entire domain adversarial network to learn
a robust domain-invariant feature space.

4.3 Mitigation III: Multi-Domain Training
Multi-domain training trains a classifier with data from multiple
domains and test data from each domain individually. For instance,
an attacker can train a CNN with power traces collected from
multiple optimization levels, including O1, O2, and O3, using the
training device. Then, this attacker can test the CNN with traces
collected from the test device, where it assumes the power traces
are generated with a binary compiled with either O1, O2, or O3.

Assumptions of Mitigation III. This method downgrades the
attack to a closed-world problem. Closed-world means that an at-
tacker needs to know all the possible software settings on the test
device and can capture large amounts of labeled traces from each
software setting on the training device.

5 DATA COLLECTION SETUP
Hardware Setting.We collect power traces of AES-128 from de-
vices, including AVR XMEGA and ARM STM32F3 microcontrollers
with ChipWhisperer. Specifically, we leverage two desktops (PC1
and PC2) and two sets of ChipWhisperer Level 1 Kits (CL1 and CL2)
to collect power traces. Both desktops run Ubuntu 18.04. A figure
of the setup is presented in Fig. 10 in Appendix.

We examine data from twoXMEGA (X1 andX2) and two STM32F3
(S1 and S2). We use PC1 and CL1 to collect data from X1 (S1) and
use PC2 and CL2 to obtain data from X2 (S2). We use X1 (S1) as
the training device and leverage X2 (S2) as the test device. We use
different keys between the training device and the test device. We
use the default sampling rate from ChipWhisperer.

We use the format of Target_Key_ExtraInfo to name each
dataset from our data acquisition. Target indicates which micro-
controller it is, Key suggests which key is used, ExtraInfo con-
tains additional information of the data collection. For instance,
X1_K1_O1 indicates that a dataset is collected from X1 using key
K1, and the binary is compiled with O1. For each dataset, unless
specified, we always collect 200,000 traces from X1 (S1) and 100,000
traces from X2 (S2). Each trace consists of 5,000 measurements.

Basic Software Settings. We leverage two implementations of
AES-128 as the basic software settings. The first one is tinyAES
[3], which is an unmasked AES written in C. The second one is
a low-security masked AES (version 1) [5] written in assembly
for XMEGA. For the cross-compiler, we use avg-gcc (5.4.0) for
XMEGA and arm-none-eabi-gcc (6.3.1) for STM32. The default
optimization level is Os. All the software discrepancies evaluated
later are based on basic settings by modifying certain specifics.

6 EVALUATION
Experiment Setting. All the experiments are carried out on a
desktop equipped with Ubuntu 18.04, Intel i7 CPU, NVIDIA Titan
RTX GPU, and 64GB memory. For all of the experiments, we always

Table 2: Keys Involved in Our Data Collection

K1 0x2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c
K2 0xaa 80 d8 a7 84 d3 3f 5c 0b 90 a9 85 20 8e ff 4a
K3 0xd2 d5 01 68 82 83 91 43 96 9e e9 a2 53 a7 52 e1
K4 0xe6 de 35 a9 a5 23 19 df c6 cc bb ba c1 36 c3 bf

Table 3: Datasets Associated with Random Delays

XMEGA X1_K1 X2_K2, X2_K2_RD50
X2_K2_RD100, X2_K2_RD200

STM32 S1_K1 S2_K3, S2_K3_RD50
S2_K3_RD100, S2_K3_RD200

report attack results on the third byte of an AES key. We use
Hamming Weight model to formulate the leakage.

We utilize the CNN from [6], which was used for side-channel
attacks over ASCAD datasets. The CNN is implemented with Ten-
sorflow 2.3.2. The hyperparameters of this CNN are presented in
Table 18 in Appendix. We use the same CNN (without the output
layer) as the Feature Extractor of ADA. Source Classifier of ADA
contains 1 convolutional layer with 1024 neurons and 1 output
layer with 9 neurons. Domain Discriminator of ADA contains 3
convolutional layers (No. of neurons: {1024, 512, 256}) and 1 output
layer with 2 neurons. The ADA is implemented with PyTorch 1.8.11.

For a CNN, we always use 40,000 traces for training and 10,000
traces for testing2. If a dataset is involved in multiple experiments,
the same training data (or test data) are used across experiments for
fair comparisons. For ADA, we use 40,000 traces of a source dataset
and 40,000 (unlabeled) traces of a target dataset for training, and
10,000 traces of a target dataset for testing. We train 100 epochs for
a CNN or ADA. Key ranks are reported on average by running each
test 5 rounds and shuffling the order of testing traces per round.

Experiment 0: Impacts of Hardware Discrepancies.We first
demonstrate the discrepancies introduced by hardware and keys in
our data acquisition. We show that these discrepancies have impacts
on the attack results but are (relatively) minor among our datasets.

Specifically, we collect 4 datasets, including X1_K1, X2_K2, and
S1_K1, and S2_K2. The details of each key can be found in Table 2.
As shown in Table 4, it only takes 1 trace for a CNN to recover the
key when both training and test data are from X1_K1. On the other
hand, it takes 5 traces for the same CNN to recover the key when
the training data are from X1_K1 and test data are from X2_K2. We
have similar observations from STM32. We use POI=[1800, 2800]
for XMEGA and POI=[1200, 2200] for STM32.

6.1 Impacts of Random Delays
Evaluation Scope. Similar to previous studies [6, 10], we simulate
random delays by delaying power measurements of each trace
with a random number of 𝑟 , where 𝑟 ∈ [0, 𝑅𝐷] and 𝑟 is uniformly
distributed. 𝑅𝐷 is denoted as the max delay parameter. We focus
on the cases where the training data and test data are generated by
different max delay parameters running tinyAES.

Datasets.We generate three datasets from X2_K2 by applying
max random delay 𝑅𝐷 = {50, 100, 200} respectively. We repeat the

1ADA in PyTouch outperforms ADA in Tensorflow in our evaluation.
2In general, training with more than 40,000 traces does not necessarily improve attack
performance of a CNN in our evaluation. Therefore, we choose 40,000 traces for training.
Additional traces are available in our datasets for others to expand our findings.

5

WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom C. Wang, M. Ninan, S. Reilly, J. Ward, W. Hawkins, B. Wang, and J. M. Emmert

Table 4: Attack Performance of CNN and ADA; Random De-
lay; CNN: Train with 40k (Source), Test with 10k (Target);
ADA: Train with 40k (Source) and 40k (Target), Test with 10k
(Target); XMEGA POI=[1800, 2800]; STM32 POI=[1200, 2200].
NA: Not Applicable; ⊥: key is not revealed.

Source Target KRC (CNN) KRC (ADA)

X1_K1

X1_K1 1 NA
X2_K2 5 NA
X2_K2_RD50 170 486
X2_K2_RD100 786 1,531
X2_K2_RD200 4,115 3,831

S1_K1

S1_K1 5 NA
S2_K3 6 NA
S2_K3_RD50 127 c
S2_K3_RD100 754 ⊥
S2_K3_RD200 4,201 ⊥

same process for S2_K2. Datasets associated with random delays
can be found in Table 3.

Experiment 1.1: Impacts of Random Delays. We train a
CNN with data from X1_K1 and then test it with data from X2
with different max random delays. As shown in Table 4 and Fig. 5,
the attack performance decreases with an increase of max random
delay 𝑅𝐷 . We have a similar observation from STM32.

The performance drops are expected as different random delay
parameters cause discrepancies between training and test data.
Fig. 5 shows that a dataset with random delays does not contain
NICV peaks due to misalignment across traces. Despite no NICV
peaks observed from test data, CNN can still recover keys. This is
likely because (1) there are distribution overlaps between training
and test data in the case of random delays and (2) the convolutional
layers can automatically overcome random delays to some degree.
This is consistent with the results of CNNs over traces with random
delays in existing studies [6, 10].

Observation 1.1: Our results suggest that discrepancies caused
by random delays can downgrade attack performance, where a CNN
needs a greater number of test traces to reveal keys.

Experiment 1.2: Mitigating Discrepancies Caused by Ran-
dom Delays. As datasets with random delays do not leak NICV
peaks, adjusting POI is not suitable. We first explore domain adapta-
tion to mitigate discrepancies caused by random delays. As shown
in Table 4, ADA can recover keys on XMEGA but it requires even
more test traces than CNN, except when the target dataset is
X2_K2_RD500. In addition, it fails to recover keys on STM32. In
other words, CNN fails to improve attack performance. Note that
when there are no software discrepancies between two datasets
(e.g., X1_K1 and X2_K2), there is no need to apply ADA as CNN can
effectively recover keys already.

Next, we perform multi-domain training. Specifically, we gener-
ate an additional dataset S1_K1_RD200 from S1_K1 by using 𝑅𝐷 =

200. As random delays are uniformly distributed, S1_K1_RD200
includes traces from 𝑅𝐷 = {0, 50, 100}. Therefore, we leverage
S1_K1_RD200 as a dataset containing data from multiple domains
to train a CNN, and test the CNN over datasets with different max
random delays. As shown in Table 5, the CNN can recover keys
within 8 traces regardless which dataset is tested.

(a) Train: X1_K1; test: X2_K2 (b) Train: S1_K1; test: S2_K3

(c) NICV of X1_K1 (d) NICV of X2_K2_RD50

Figure 5: Key Ranks and NICV, Random Delays
Table 5: Attack Performance of CNN; Random Delay;
Train: 40k (Source), Test: 10k (Target), Source: S1_K1_RD200,
POI=[1200, 2200];

Target KRC Target KRC
S2_K3 8 S2_K3_RD100 6
S2_K3_RD50 6 S2_K3_RD200 6

Observation 1.2: Our results suggest that ADA fails to promote
attack performance against discrepancies caused by random delays.
On the other hand, multi-domain training can effectively mitigate
discrepancies caused by random delays.

6.2 Impacts of Instruction Rewriting
Evaluation Scope.We focus on the scenarios where the training
data are from an original implementation but the test data are from
a rewritten implementation. We examine two cases that an original
implementation can be rewritten, including (1) rewriting at the
assembly level on .s files; (2) rewriting on ELF files.

Case 1: Assembly, XMEGA.We utilize the masked AES in as-
sembly [5] on XMEGA. We focus on instructions associated with
AddKey (line 880 – line 914 in .s file) and SubBytes (line 353 – line
442 in .s file). We identify 5 types of instructions (summarized in Ta-
ble 6) that can be rewritten without affecting the correctness of AES
encryption. Overall, 23 lines in the original .s file were rewritten to
derive the modified version.

Datasets from Case 1. We collect one dataset X1_K1_ASM from
the original assembly code on XMEGA. We collect another dataset
X2_K4_ASM_RW by running a hex file generated by the modified
assembly code on XMEGA. As the 1st round of SubBytes in the
assembly code does not happen within the first 5,000 measure-
ments, an offset of 17,500 during the data acquisition (i.e., recording
measurements from index 17,500 to index 22,500) is used to collect
measurements associated with the 1st round of SubBytes

Case 2: ELF, STM32.We compile tinyAES C code into an ELF
file by leveraging the Makefile from ChipWhisperer repository. We
then leverage Ghidra to locate the SubByte function in the ELF file.

6

Portability of Deep-Learning Side-Channel Attacks against Software Discrepancies WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom

Table 6: Rewritten Instructions for Assembly on XMEGA

Original Instruction Modified No. of lines
Instructions Purpose Instructions modified
CLR r0 Clear register r0 EOR r0, r0 13 lines
DEC r0 Decrease the value SUBI r0, 0x01 2 lines

at register r0 by 1
MOV r0, r1 Copy data at register EOR r0, r0 3 lines

r1 to r0 ADD r0, r1

MOVW r0, r1 Copy data at register EOR r0, r0 4 lines
r1 to r0 ADD r0, r1

ADIW r0, 16 Add 16 to the value EGR r0 1 line
at register r0 SUBI r0, 16

EGR r0

We find that two bytes (0x00bf) are redundant towards the end
of the SubByte function. These 2 bytes can be removed without
affecting the correctness of encryption.

As presented in Fig. 9 in Appendix, we make the following mod-
ifications on the ELF file by using a hex editor HxD. (1) We insert 2
bytes 0x0032, which is a 2-byte dummy instruction adds r2 #0x0,
at address 0x080014ee. The instruction adds 0 to register r2, which
does not affect the correctness of AES. (2) We move the original in-
structions starting at 0x080014ee down by 2 bytes. (3) We remove
the two redundant bytes 0x00bf. (4) We update the offset f7 to f6
for bne instruction at address 0x080014f2 and offset f3 to f2 for
bne instruction at address 0x080014f8. We verify that the outputs
of AES remain correct after these modifications.

Note that the above modifications are not the only way to rewrite
the ELF file. For instance, we can insert the 2-byte dummy instruc-
tion at other addresses before 0x080014fa. Moreover, we can use
other 2-byte instructions (e.g., 0x003d, which is instruction sub r5
#0x0) rather than adds r2 #0x0.

Datasets from Case 2. For the original ELF file, we already have
dataset S1_K1. We collect another dataset S2_K3_RW by running a
hex file generated by the rewritten ELF file on STM32.

Experiment 2.1: Impacts of Instruction Rewriting. We use
X1_K1_ASM as the source and use X2_K4_ASM and X2_K4_ASM_RW as
the target respectively. As shown in Table. 8, CNN recovers keys
within 3 traces if the traces are both collected from the original as-
sembly code. However, when we test over traces from the rewritten
assembly code with the same CNN, the CNN fails to recover the
keys. We have a similar observation from the case of ELF files on
STM32, where discrepancies caused by instruction rewriting lead
to performance drops as presented in Table. 9.

Observation 2.1 Our results suggest that discrepancies in instruc-
tion rewriting can downgrade attack performance, where a CNN may
not even recover the keys.

Experiment 2.2: Mitigating Discrepancies Caused by In-
struction Rewriting. As illustrated in Fig. 6, instruction rewriting
causes shifts of NICV peaks, which is likely the reason for perfor-
mance drops. The rewritten assembly on XMEGA leads to a NICV
offset of 398 according to Fig. 6a.

We apply adjusting POI to recover keys. Specifically, when a
CNN is trained with X1_K1_ASM with POI=[1600, 4500], we test
the CNN with X2_K4_ASM_RW by using different POI offsets. For
instance, the attack can recover keys with 189 test traces given
offset 363 (i.e., POI=[1963, 4863]) as presented in Table 9. We only

Table 7: Datasets Associated with Instruction Rewriting

XMEGA X1_K1_ASM X2_K4_ASM, X2_K4_ASM_RW

STM32 S1_K1 S2_K3, S2_K3_RW

Table 8: Attack Performance of CNN; Instruction Rewrit-
ing, Assembly; Train: 40k (Source), Test: 10k (Target), Source:
X1_K1_ASM, POI=[1600, 4500], ⊥: key is not revealed.

Target POI Offset KRC
X1_K1_ASM 0 3
X2_K4_ASM 0 3

X2_K4_ASM_RW
0 ⊥
363 (best) 189
398 (NICV) ⊥

Table 9: Attack Performance of CNN; Instruction Rewriting,
ELF; Train: 40k (Source), Test: 10k (Target), Source: S1_K1,
POI=[1200, 2200].

Target POI Offset KRC
S2_K3 0 6

S2_K3_RW
0 2,001
6 (best) 552
32 (NICV) ⊥

(a) NICV, XMEGA, Assembly (b) NICV, STM32, ELF

(c) Train: X1_K1_ASM (POI=[1600,
4500]), test: X2_K4_ASM_RW

(d) Train: S1_K1 (POI=[1200, 2200]),
test: S2_K3_RW

Figure 6: NICV and KRC, Instruction Rewriting.

report the offset with the lowest KRC in Table 9 and more results
from different offsets are highlighted in Fig. 6c.

In general, we observe that the attack performance first increases
but then decreases (i.e., KRC first decreases but then increases — a
"U" shape) when we incrementally update the POI offset towards
the NICV offset during the attack. In addition, not every offset
reveals the key. Enumerating offsets that are close to the NICV
offset can be helpful to identify the offset with lowest KRC. While
the offset achieves the lowest KRC is often not the NICV offset
itself, it is close to the NICV offset. In other words, identifying the
NICV offset can inform us how we should adjust POI in general.

7

WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom C. Wang, M. Ninan, S. Reilly, J. Ward, W. Hawkins, B. Wang, and J. M. Emmert

Table 10: Datasets Associated with Optimization Levels

STM32 S1_K1 S2_K3, S2_K3_O1,
S2_K3_O2, S2_K3_O3

Table 11: Attack Performance of CNN; Optimization Levels,
STM32, Train with 40k (Source), Test: 10k (Target). Source:
S1_K1 POI=[1200, 2200]; ⊥: key is not revealed.

Target POI Offset KRC
S2_K3 0 6
S2_K3_O1 0 ⊥
S2_K3_O2 0 ⊥
S2_K3_O3 0 ⊥

S2_K3_O1
-94 (best) 1,683
-136 (NICV) ⊥

S2_K3_O2
-172 (best) 204
-176 (NICV) 253

S2_K3_O3 -756 (NICV) ⊥

Observation 2.2 Our results suggest that adjusting POI based on
NICV can mitigate the discrepancies caused by instruction rewriting
and recover keys. On the other hand, even adjusting POI can improve
attack performance, the number of test traces needed to recover keys
is still (much) higher than the one obtained from the cases with no
software discrepancies between training and test data.

6.3 Impacts of Optimization Levels
Evaluation Scope. We focus on the cases where training data and
test data are generated by binaries built from the same C code of
AES but with different optimization levels. Specifically, we examine
four optimization levels, including Os (default in ChipWhisperer),
O1, O2 and O3, with tinyAES on STM32.

Datasets. We leverage dataset S1_K1 and S2_K3, which were
collected using Os in Experiment 0. In addition, we collect three
datasets with S2 and key K3, using O1, O2, and O3 respectively.

Experiment 3.1: Impacts of Optimization Levels. As sum-
marized in Table 11, when training data and test data are generated
by the same optimization level (e.g., Os), a CNN can recover keys
easily. However, when the training data and test data are generated
by different optimization levels, a CNN does not recover keys given
the same POI. This is expected as different optimization levels lead
to different power patterns of AES (as shown in Appendix).

Observation 3.1 Our results suggest that discrepancies in op-
timization levels between two devices can significantly downgrade
attack performance, where a CNN does not even recover keys.

Experiment 3.2: Mitigating Discrepancies Caused by Opti-
mization Levels. Different optimizations fundamentally lead to
different instructions. It is likely that the leakage points remain
present but are shifted. Therefore, we first adjust POI based on NICV.
We examine the NICV across different optimizations on STM32 in
Fig. 7a. As shown in Table 11 and Fig. 7, when we apply offsets
to data from O1 or O2 optimization, the CNN can recover keys.
However, adjusting POI is not effective for O3. Failing to mitigate
software discrepancies for O3 even by adjusting POI is expected
as the NICV peaks are very different compared to the other three
optimization levels according to Fig. 7a.

We further examine domain adaptation with ADA. To make
it easier for ADA to mitigate discrepancies, we also apply offsets

(a) NICV, STM32 (b) Train: S1_K1, test: S2_K3_O1

(c) Train: S1_K1, test: S2_K3_O2 (d) Train: S1_K1, test: S2_K3_O3

Figure 7: NICV and KRC, Optimization Levels

Table 12: Attack Performance of ADA, Optimization Levels,
STM32, Train: 40k (Source) and 40k (Target); Test: 10k (Tar-
get), Source: S1_K1 POI=[1200, 2200], ⊥: key is not revealed.

Target POI Offset KRC
S2_K3_O1 -94 ⊥
S2_K3_O2 -172 ⊥
S2_K3_O3 -756 ⊥

Table 13: Attack Performance of CNN, Optimization Levels,
STM32, Train: 40k (Source), Test: 10k (Target). Source: {S1_K1,
S1_K1_O1, S1_K1_O2, S1_K1_O3}, POI=[800, 2000];

Target KRC Target KRC
S2_K3 9 S2_K3_O2 8
S2_K3_O1 19 S2_K3_O3 7

to the POI of each target dataset when we train and test with
ADA. Unfortunately, we did not observe improvements in attack
performance as shown in Table 12.

Next, we collect three additional datasets, including S1_K1_O1,
S1_K1_O2, S1_K1_O3, with different optimizations on S1 to perform
multi-domain training. Each dataset includes 100,000 power traces.
We train a single CNN with a total number of 40,000 traces with
10,000 traces per dataset collected on S1. Then, we test this CNN
with 10,000 test traces from each dataset collected on S2. We se-
lect POI=[800, 2000] for the training and all the tests as it covers
measurements associated with the third byte of SubBytes across
all four optimization levels. As presented in Table 13, the CNN can
easily recover keys within 20 test traces for each optimization.

Observation 3.2 Our results suggest that adjusting POI can mit-
igate the discrepancies caused by optimization levels in some cases.
Multi-domain training can overcome discrepancies caused by all opti-
mization levels and recover keys.

6.4 Impacts of Code Obfuscation
Evaluation Scope.We investigate the cases where training data
are generated by a C implementation of AES but the test data are

8

Portability of Deep-Learning Side-Channel Attacks against Software Discrepancies WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom

Table 14: Datasets Associated with Code Obfuscation

STM32 S1_K1 S2_K3, S2_K3_ENC,
S2_K3_FLA, S2_K3_SPL

Table 15: Attack Performance of CNN, Code Obfuscation,
STM32, Train: 40k (Source), Test: 10k (Target), Source: S1_K1,
POI=[1200,2200], ⊥: key is not revealed.

Target POI Offset KRC
S2_K3 0 6
S2_K3_ENC 0 ⊥
S2_K3_FLA 0 ⊥
S2_K3_SPL 0 ⊥

S2_K3_ENC
466 (best) 131
464 (NICV) 285

S2_K3_FLA
1,550 (best) 116
1,544 (NICV) 247

S2_K3_SPL 440 (NICV) ⊥

generated by an obfuscated version of it. Specifically, we lever-
age tinyAES as the original C implementation of AES. We utilize
Tigress to generate obfuscated C code and associated binaries.

There are overall 32 transformations provided by Tigress [2].
Given the original code and a given transformation, we obfuscate
only the SubBytes function. Due to the compatibility with Chip-
Whisperer and the architectures of microcontrollers, we are able to
examine three transformations, including Enc.Arithmetic, Flatten,
and Split on STM32. Enc.Arithmetic replaces integer arithmetic
with complex expressions. Flatten removes structured flow. Split
breaks a large function into smaller pieces.

Generating Obfuscated Code. Given a transformation, such as
Flatten, we run the command below to generate an obfuscated file
obf_aes.c from aes.c by obfuscating SubBytes function only.
$ tigress --Environment=armv7:Linux:Gcc :4.6 --Transform
=Flatten --Functions=SubBytes --out=obf_aes.c aes.c

Note that the above command does not directly derive an ob-
fuscated code that can be compiled and flashed successfully to a
microcontroller with ChipWhisperer. Additional customized modi-
fications are needed in the obfuscated file obf_aes.c. Details re-
garding these modifications can be found on our GitHub repository
[4]. We test the encryption is still correct after each transformation.

Datasets. We collect datasets of power traces based on each
transformation as shown in in Table 14.

Experiment 4.1: Impacts of Code Obfuscation.We train a
CNN with data from S1 with no obfuscation and then test it with
data from S2 with obfuscation. As we can observe from Table 15,
when there are obfuscation discrepancies between the two devices,
a CNN cannot recover keys given the same POI.

Observation 4.1 Our results suggest that discrepancies caused by
code obfuscation between two devices can significantly downgrade
attack performance, where a CNN does not even recover keys.

Experiment 4.2: Mitigating Discrepancies Caused by Code
Obfuscation. As code obfuscation also rewrites instructions, we
first mitigate the discrepancies by adjusting POI based on NICV. We
identify the NICV offsets based on Fig. 8a and perform the testing
by adjusting POIs. As shown in Table 15 and Fig. 8, the CNN can
recover keys for Flatten and Enc.Arithmetic with updated POIs.
However, for Split, the CNN still fails to recover keys.

(a) NICV, STM32 (b) Train: S1_K1, test: S2_K3_ENC

(c) Train: S1_K1, test: S2_K3_FLA (d) Train: S1_K1, test: S2_K3_SPL

Figure 8: NICV and KRC, Code Obfuscation
Table 16: Attack Performance of ADA, Code Obfuscation,
STM32, Train: 40k (Source) and 40k (Target); Test: 10k (Tar-
get), Source: S1_K1, POI=[1200, 2200], ⊥: key is not revealed.

Target POI Offset KRC
S2_K3_ENC 466 ⊥
S2_K3_FLA 1,550 ⊥
S2_K3_SPL 440 ⊥

Table 17: Attack Performance of CNN; Code Obfuscation,
STM32, Train: 40k (Source), Test: 10k (Target), Source: {S1_K1,
S1_K1_FLA, S1_K1_SPL, S1_K1_ENC}, POI=[1500, 3700];

Target KRC Target KRC
S2_K3 5 S2_K3_FLA 29
S2_K3_ENC 7 S2_K3_SPL 8

We further leverage ADA to mitigate discrepancies caused by
code obfuscation on STM32. We also apply offsets to the POI of
each target dataset to ease the discrepancies between source and
target data. However, ADA does not recover the keys as presented
in Table 16. Next, we leverage multi-domain training. We collect
three additional datasets, including S1_K1_ENC, S1_K1_FLA, and
S1_K1_SPL, on S1. Each dataset includes 100,000 power traces. We
train a single CNN with a total number of 40,000 traces with 10,000
traces per dataset from S1. We test this CNN with 10,000 test traces
per dataset from S2_K3, S2_K3_ENC, S2_K3_FLA, or S2_K3_SPL sep-
arately. We select POI=[1500, 3700] for the training and all the tests.
As presented in Table 17, the CNN can reveal keys within 30 test
traces for all obfuscations.

Observation 4.2 Our results indicate that adjusting POI can
mitigate the discrepancies caused by code obfuscation in some cases.
Multi-domain training can overcome discrepancies caused by all the
obfuscations we investigated.

7 DISCUSSIONS AND LIMITATIONS
More Findings on XMEGA.We also evaluate optimization lev-
els (O1, O2, and O3) and code obfuscations (Split and Flatten) on

9

WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom C. Wang, M. Ninan, S. Reilly, J. Ward, W. Hawkins, B. Wang, and J. M. Emmert

XMEGA. We find that adjusting POI based on NICV can always
recover keys. Some of the results are presented in Appendix.

Hardware Discrepancies v.s. Software Discrepancies. Given
a power trace in a two-dimensional space, as the ones in Fig. 11
in Appendix, x-dimension is the measurement index (or the time)
and y-dimension is the power consumption. Hardware and key dis-
crepancies lead to shifts in y-dimension and software discrepancies
(alone) result in shifts in x-dimension according to our observations.
The aggregation of key, hardware, and software discrepancies lead
to distribution shifts in both dimensions, which raise challenges for
neural networks to recover keys. Despite these distribution shifts
that neural networks need to address, we would like emphasize that
these discrepancies should not be considered as countermeasures
against side-channel attacks as they do not preserve leakage.

Better Methodology for Studying Software Discrepancies.
Besides the four factors we examine, there are other factors that can
lead to software discrepancies. For instance, the version of a cross-
compiler can lead to different machine instructions, and therefore,
shifts in terms of leakage points. Discrepancies caused by combina-
tions of multiple factors (e.g., random delays + optimization levels)
lead to more severe discrepancies between training and test data.

A better methodology would be first summarizing and categoriz-
ing all the primitives/factors that can cause software discrepancies
(in essence, different ways of modifying machine instructions) and
then identifying which factors should be investigated with a higher
priority. In addition, quantifying the distribution shifts (or side-
channel leakage shifts) caused by each software discrepancy factor
is also an important problem to explore in future work.

More Neural Networks.We only examine one CNN architec-
ture in our evaluation. Other CNN architectures or other neural
networks, such as Multi-Layer Perception, that are also effective
in side-channel attacks [6], can be investigated against software
discrepancies in future studies.

Scalability of Multi-Domain Training.While multi-domain
training seems to be the most effective way among the three meth-
ods, we would like to point it out that it is extremely difficult for
an attacker to scale (in terms of data acquisition and training time)
in order to cover all the potential software settings in advance. We
do not believe the number of software settings is infinite, however,
it is obviously challenging to enumerate all of them.

ImprovingDomainAdaptation.Domain adaptation has shown
promising results in other research areas, unfortunately, it is not
helpful in mitigating domain discrepancies caused by software dis-
crepancies in side-channel attacks based on our results. On the
other hand, we would like to acknowledge that the ADA we imple-
ment is certainly not optimal and there are also other approaches
to perform domain adaptation rather than ADA. How to further
optimize domain adaptation to address software discrepancies in
side-channel attacks remains open. We leave it as future work.

8 RELATEDWORK
In the following, we discuss studies that are mostly related to this
work. More detailed summaries on machine-learning side-channel
attacks can be found in [28, 31].

Deep-Learning Profiling Attacks. Cagli et al. [10] demon-
strated that CNNs can recover keys when traces are misaligned

due to jittering. Benadjila et al. [6] leveraged Multi-Layer Percep-
trons and CNNs in side-channel attacks and demonstrated that
CNNs can defeat masking. Maghrebi et al. [27] showed that deep
learning can outperform Template Attacks [12]. Several recent stud-
ies further investigated the explainability [38], imbalance of data
with Hamming Weight model [30], robustness of a neural network
[26, 29, 41, 42], as well as hyperparameter tuning [32] in the context
of deep-learning profiling side-channel attacks.

Portability of Deep-Learning ProfilingAttacks. Several stud-
ies [7, 13–15, 17, 18, 33, 40, 43, 44] examined the portability of deep-
learning side-channel attacks in the cross-device scenario, where
the training device and test device are not identical. These studies fo-
cus on cases where the discrepancies between training and test data
are primarily caused by hardware discrepancies. Specifically, stud-
ies in [7, 14] propose to utilize multi-device training. Pre-processing
over feature space [18] or in the frequency domain [44] has shown
promising results in overcoming hardware discrepancies. Rioja et
al. [33] investigated how to quantify discrepancies of power traces
across devices with Dynamic Time Warping. Studies in [11, 43]
demonstrate that transfer learning, such as meta-transfer learning
and unsupervised domain adaptation with Maximum Mean Dis-
crepancy, can also be utilized to address hardware discrepancies in
profiling side-channel attacks. However, none of these studies inves-
tigates the impact of software discrepancies on the portability of deep
learning profiling side-channel attacks.

Deep-Learning Non-Profiling Attacks. Studies in [23, 25, 35]
leverage deep learning to perform non-profiling attacks, in which
all the traces are captured from a single device but these traces
are unlabeled. For instance, Timon [35] proposed differential deep
learning analysis, which labels power traces with all the 28 possible
keys and trains 28 neural networks accordingly. The sensitivity of
the neural network obtained from the correct key is distinguishable
from the sensitivity of others, which allows an attacker to reveal
the correct key.

Since all the traces are assumed to be collected from a single
device with a fixed key, discrepancies caused by keys, hardware, and
software are not a concern in the context of non-profiling attacks.

9 CONCLUSION
In this study, we show that software discrepancies between two
devices can significantly affect the portability of deep-learning pro-
filing side-channel attacks. While adjusting POI and multi-domain
training have shown promising results in terms of promoting the
portability against software discrepancies, each of them still faces
limitations. Moreover, there are many problems that remain open re-
lated software discrepancies in deep-learning profiling side-channel
attacks. We hope that our findings and datasets can serve as a step-
ping stone for the community to further expand the research in
this direction.

ACKNOWLEDGEMENTS
The authors thank the anonymous reviewers and the shepherd for
their comments and suggestions. This work was partially supported
by National Science Foundation (CNS-2150086) and NSF IUCRC
Center for Hardware and Embedded System Security and Trust
(CHEST) under Grant 1018660.

10

Portability of Deep-Learning Side-Channel Attacks against Software Discrepancies WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom

Figure 9: Instruction rewriting on the ELF file of tinyAES for STM32.

REFERENCES
[1] [n. d.]. https://ghidra-sre.org/
[2] [n. d.]. https://tigress.wtf/
[3] [n. d.]. https://github.com/newaetech/chipwhisperer
[4] [n. d.]. https://github.com/UCdasec/SoftPower
[5] [n. d.]. https://github.com/ANSSI-FR/secAES-ATmega8515
[6] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas. 2020. Deep learn-

ing for side-channel analysis and introduction to ASCAD database. Journal of
Cryptographic Engineering 10, 2 (2020).

[7] S. Bhasin, A. Chattopadhyay, A. Heuser, D. Jap, S. Picek, and R. R. Shrivastwa. 2020.
Mind the Portability: A Warriors Guide through Realistic Profiled Side-channel
Analysis. In Proc. of NDSS’20.

[8] S. Bhasin, J. Danger, S. Guilley, and Z. Najm. 2014. NICV: Normalized inter-class
variance for detection of side-channel leakage. In 2014 International Symposium
on Electromagnetic Compatibility.

[9] E. Brier, C. Clavier, and F. Olivier. 2004. Correlation Power Analysis with a
Leakage Model. In Proc. of CHES’04.

[10] E. Cagli, C. Dumas, and E. Prouff. 2017. Convolutional Neural Networks with
Data Augmentation Against Jitter-Based Countermeasures. In Proc. of CHES’17.

[11] P. Cao, C. Zhang, X. Lu, and D. Gu. 2021. Cross-Device Profiled Side-Channel At-
tack with Unsupervised Domain Adaptation. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2021, 4 (2021), 27 – 56.

[12] S. Chari, J. R. Rao, and P. Rohatgi. 2002. Template Attacks. In Proc. of Cryptographic
Hardware and Embeeded Systems (CHES 2002).

[13] J. Danial, D. Das, A. Golder, S. Ghosh, A. Raychowdhury, and S. Sen. 2022. EM-X-
DL: Efficient Cross-device Deep Learning Side-channel Attack with Noisy EM
Signatures. ACM Journal on Emerging Technologies in Computing Systems 18, 1
(2022), 1–17.

[14] D. Das, A. Golder, J. Danial, S. Ghosh, A. Raychowdhury, and S. Sen. 2019. X-
DeepSCA: Cross-Device Deep Learning Side Channel Attack. In Proc. of 56th
ACM/IEEE Design Automation Conference (DAC’19).

[15] M. Elaabid and S. Guilley. 2012. Portability of templates. Journal of Cryptographic
Engineering 2 (2012), 63–74.

[16] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M.
Marchand, and V. Lempitsky. 2016. Domain-Adversarial Tranining of Neural
Networks. Journal of Machine Learning Research (2016).

[17] C. Genevey-Metat, A. Heuser, and B. Gerard. 2021. Train or Adapt a Deeply
Learned Profile?. In Proc. of International Conference on Cryptology and Informa-
tion Security in Latin America (Latin Crypt’21).

[18] A. Golder, D. Das, J. Danial, S. Ghosh, S. Sen, andA. Raychowdhury. 2019. Practical
Approaches Towards Deep-Learning Based Cross-Device Power Side Channel
Attack. IEEE. Trans. on Very Large-Scale Integration (VLSI) Systems 27, 12 (2019).

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. 2014. Generative Adversarial Networks. In Proc. of the
International Conference on Nerual Information Processing Systems (NIPS 2014).

[20] G. Hospodar, B. Gierlichs, E. D. Mulder, I. Verbauwhede, and J. Vandewalle. 2011.
Machine Learning in side-channel analysis: a first study. Journal of Cryptographic
Engineering 1, 4 (2011), 293–302.

[21] V. Immler, R. Specht, and F. Unterstein. [n. d.]. Your Rails Cannot
Hide From Localized EM: How Dual-Rail Logic Fails on FPGAs. ([n. d.]).
https://eprint.iacr.org/2017/608.pdf.

[22] P. Kocher, J. Jaffe, and B. Jun. 1999. Differential Power Analysis. In Proc. of
CRYPTO’99.

[23] D. Kwon, H. Kim, and S. Hong. 2021. Non-Profiled Deep Learning-based Side-
Channel Preprocessing with Autoencoders. IEEE Access (2021).

[24] M. Long and J. Wang. 2015. Learning transferable features with deep adaptation
networks. In Proc. of ICML’15.

[25] X. Lu, C. Zhang, and D. Gu. 2021. Attention - Based Non-Profiled Side-Channel
Attack. In Proc. of 2021 Asian Hardware Oriented Security and Trust Symposium

(AsianHost).
[26] Z. Luo, M. Zheng, P. Wang, M. Jin, J. Zhang, and H. Hu. [n. d.]. Towards

Strengthening Deep Learing-based Side Channel Attacks with Mixup. ([n. d.]).
https://arxiv.org/abs/2103.05833.

[27] H. Maghrebi, T. Portigliatti, and E. Proff. 2016. Breaking cryptographic imple-
mentations using deep learning techniques. In Proc. of International Conference
on Security, Privacy and Applied Cryptography Engineering (SPACE’16).

[28] M. Panoff, H. Yu, H. Shan, and Y. Jin. 2022. A Review and Comparison of AI-
enhanced Side Channel Analysis. J. Emerg. Technol. Comput. Syst. (2022).

[29] G. Perin, L. Chmielewski, and S. Picek. 2020. Strength in numbers: Improving
generalization with ensembles in machine learning-based profiled side-channel
analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems
(2020).

[30] S. Picek, A. Heuser, A. Jovic, and F. Regazzoni. 2019. The curse of Class Imbalance
and Conflicting Metrics with Machine Learning for Side-channel Evaluations.
IACR Transactions on Cryptographic Hardware and Embedded Systems 1 (2019),
209–237.

[31] S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina. 2022. Sok: Deep Learning-based
Physical Side-channel Analysis. ACM Computing Surveys (2022).

[32] J. Rijsdijk, L. Wu, G. Perin, and S. Picek. 2021. Reinforcement learning for
hyperparameter tuning in deep learning-based side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems (2021).

[33] U. Rioja, L. Batina, and I. Armendariz. 2020. When Similarities Among Devices
are Taken for Granted: Another Look at Portability. In Proc. of AFRICACRYPT
2020. 337 – 357.

[34] T. Schneider and A. Moradi. 2015. Leakage Assessment Methodology – A Clear
Roadmap for Side-Channel Evaluations. In International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES).

[35] B. Timon. 2019. Non-Profiled Deep Learning-based Side-Channel Attacks with
Sensitivity Analysis. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2019, 2 (2019), 107–131.

[36] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. 2017. Adversarial Discriminative
Domain Adaptation. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[37] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. 2014.
Deep domain confusion: Maximizing for domain invariance. (2014).
https://arxiv.org/pdf/1412.3474.pdf.

[38] D. van der Valk, S. Picek, and S. Bhasin. 2020. Kilroy Was Here: The First Step
Towards Explainability of Neural Networks in Profiled Side-Channel Analysis. In
International Workshop on Constructive Side-Channel Analysis and Secure Design.

[39] C. Wang, J. Dani, S. Reilly, A. Brownfield, B. Wang, and J. M. Emmert. 2023.
TripletPower: Deep-Learning Side-Channel Attacks over Few Traces. In Proc. of
IEEE HOST’23.

[40] H. Wang, M. Brisfors, S. Forsmark, and E. Dubrova. 2019. How Diversity Affects
Deep-Learning Side-Channel Attacks. In 2019 IEEE Nordic Circuits and Systems
Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip
(SoC).

[41] P. Wang, P. Chen, Z. Luo, G. Dong, M. Zheng, N. Yu, and H. Hu. [n. d.]. Enhancing
the Performance of Practical Profiling Side-Chanel Attacks Using Conditional
Generative Adversarial Networks. ([n. d.]). https://arxiv.org/abs/2007.05285.

[42] L. Wu, G. Perin, and S. Picek. 2022. The Best of Two Worlds: Deep Learning-
assisted Template Attack. IACR Transactions on Cryptographic Hardware and
Embedded Systems 3 (2022), 413–437.

[43] H. Yu, H. Shan, M. Panoff, and Y. Jin. 2021. Cross-Device Profiled Side-Channel
Attacks using Meta-Transfer Learning. In Proc. of the 58th ACM/IEEE Design
Automation Conference (DAC’21).

[44] F. Zhang, B. Shao, G. Xu, B. Yang, Z. Yang, Z. Qin, and K. Ren. 2020. From
Homogeneous to Heterogeneous: Leveraging Deep Learning based Power Anlysis
across Devices. In Proc. of 57th ACM/IEEEDesign Automation Conference (DAC’20).

11

https://ghidra-sre.org/
https://tigress.wtf/
https://github.com/newaetech/chipwhisperer
https://github.com/UCdasec/SoftPower
https://github.com/ANSSI-FR/secAES-ATmega8515

WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom C. Wang, M. Ninan, S. Reilly, J. Ward, W. Hawkins, B. Wang, and J. M. Emmert

(a) STM32, unmasked, Os (b) STM32, unmasked, O1

(c) STM32, unmasked, O2 (d) STM32, unmasked, O3

(e) STM32, unmasked, ELF rewritten (f) STM32, unmasked, Flatten

(g) STM32, unmasked, Split (h) STM32, unmasked, Enc.

Figure 11: Pattern of Power Traces on STM32

(a) XMEGA, unmasked, Os (b) XMEGA, unmasked, O1

(c) XMEGA, unmasked, O2 (d) XMEGA, unmasked, O3

Figure 12: Pattern of Power Traces on XMEGA.

(a) NICV, XMEGA. (b) Train: X1_K1, test: X2_K2_O1

(c) Train: X1_K1, test: X2_K2_O2 (d) Train: X1_K1, test: X2_K2_O3

(e) Train: X1_K1, test: X2_K2_FLA (f) Train: X1_K1, test: X2_K2_SPL

Figure 13: XMEGA, KRC, Optimization & Obfuscation

APPENDIX
Power Pattern. In Fig. 11 and Fig. 12, we present the pattern of
power traces of AES-128 on STM32 and XMEGA. For XMEGA, due
to space limitation, additional pattern of power traces obtained
from instruction rewriting and obfuscation can be found at [4].

Figure 10: Our data collection setup (was also used in [39])

Table 18: Hyperparameters of CNN [6]

Conv 1 filters: 64; kernel size: 11; stride: 2; Relu
Conv 2 filters: 128; kernel size: 11; stride: 2; Relu
Conv 3 filters: 256; kernel size: 11; stride: 2; Relu

Conv 4∼5 filters: 512; kernel size: 11; stride: 2; Relu
AvgPool 1∼5 pooling size: 2; stride: 2
Dense 1∼2 No. of neurons: 4096; Relu
Output No. of neurons: 9; softmax

12

	Abstract
	1 Introduction
	2 Background
	2.1 System and Threat Model
	2.2 Notations and Leakage Model

	3 Software Discrepancies
	4 Mitigation Methods
	4.1 Mitigation I: Adjusting POI
	4.2 Mitigation II: Domain Adaptation
	4.3 Mitigation III: Multi-Domain Training

	5 Data Collection Setup
	6 Evaluation
	6.1 Impacts of Random Delays
	6.2 Impacts of Instruction Rewriting
	6.3 Impacts of Optimization Levels
	6.4 Impacts of Code Obfuscation

	7 Discussions and Limitations
	8 Related Work
	9 Conclusion
	References

