
RustBound: Function Boundary Detection over
Rust Stripped Binaries

Ryan Evans, William Hawkins, and Boyang Wang

University of Cincinnati, Cincinnati, OH, USA
evans2ra@mail.uc.edu, hawkinwh@ucmail.uc.edu, boyang.wang@uc.edu

Abstract. Function boundary detection identifies start addresses and
end addresses of functions in a binary. It is a critical step in binary
analysis and is considered as a challenging task over stripped binaries.
While existing studies have shown that it is feasible to efficiently and
accurately perform function boundary detection over C stripped bina-
ries, it remains unknown whether these methods will perform well over
Rust stripped binaries. In this paper, we experimentally evaluate and
compare four methods/tools, including two industry reverse engineering
tools (Ghirda and IDA Pro) and two neural-network-based methods, in
the context of function boundary detection over Rust binaries. We estab-
lish a large-scale dataset consisting of 2,471 Rust binaries (with over 8.69
million functions) across five optimization levels and develop two tools
to perform analyses automatically. We derive two major findings based
on our experimental results. First, one of the two neural-network-based
methods, named XDA, can achieve promising results (e.g., 94.8% preci-
sion and 85.5% recall over binaries compiled with O0) and outperform
other methods/tools in detecting function boundaries over Rust binaries,
except over binaries from Oz optimization. Second, although Ghidra and
IDA Pro can accurately detect function starts, they are not effective on
precisely distinguishing function ends over Rust binaries.

1 Introduction

Function boundary detection identifies addresses of function starts and func-
tion ends over binaries. It is a fundamental component in binary analysis and is
critical for downstream tasks, such as function similarity analyses, binary rewrit-
ing, and malware detection [8] [15]. However, function boundary detection over
stripped binaries is considered as a challenging task as function information are
no longer available in stripped binaries.

Several studies [7] [18] [9] [5] [4] [16] [20] [8] have proposed to utilize neural
networks to address function boundary detection over stripped binaries. These
methods can even outperform state-of-the-art reverse engineering tools, includ-
ing Ghidra [1] and IDA Pro [2]. Despite promising results over binaries com-
piled from C programs in the current literature, it remains unknown whether
neural-network-based methods would perform well over Rust binaries — binaries
compiled from Rust programs.

2 R. Evans et al.

Rust is considered as a safer system-level programming language than C by
enforcing memory safety and concurrency safety [3] [12]. Rust has become more
popular in the past several years, especially for embedded systems [6]. Despite its
safety enhancement, some recent research also demonstrate that critical security
vulnerabilities can still be found in Rust programs [13] [14] [11]. Therefore, we
believe that understanding the capability of binary analysis, including function
boundary detection, over Rust binaries is critical and necessary.

In this paper, we leverage four existing methods/tools in the context of func-
tion boundary detection and experimentally compare their performance over
large-scale stripped Rust binaries. Specifically, we investigate two state-of-the-
art reverse engineering tools, including Ghidra and IDA Pro, and two neural-
network-based methods, denoted as BiRNN [18] and XDA [16]. Both BiRNN
and XDA are originally designed for function detection over C binaries. BiRNN
is built upon bi-directional Recursive Neural Networks while XDA is based on
masked Language Modeling. Our contributions and observations are summarized
as below:

– We establish a large-scale dataset, named RUBIN, which consists of 2,471
Rust binaries (x86-64 in ELF – Executable and Linkable Format) with over
8.69 million functions across five optimizations, including O0, O1, O2, O3,
and Oz. The entire dataset (including stripped and non-stripped binaries)
is over 66 GBs, where non-stripped binaries are kept for reproducibility and
future expansion.

– We develop two open-source tools, named ripkit and cargo picky, that
can automatically obtain Rust stripped binaries and obtain results of func-
tion boundary detection over the four methods we examine. These tools
can be utilized to reproduce our results and expand our findings over new
datasets/methods over Rust binaries. We believe that both our dataset and
the tools are valuable contributions to the research community.

– Our experimental results suggest that (1) XDA can achieve promising results
(e.g., 94.8% precision and 85.5% recall over binaries compiled with O0) in
function boundary detection and outperform the other 3 methods/tools, ex-
cept over stripped binaries from Oz optimization; (2) both Ghidra and IDA
Pro perform very well on detecting function starts (e.g., ≥92.7% precision
and ≥97.7% recall) but are less promising on identifying function ends (e.g.,
as low as 55.8% precision and 56.4% recall).

Reproducibility. Our source code and dataset are publicly available at
https://github.com/UCdasec/RustBound.

2 Background

Rust. Rust is a relatively new programming language which has a similar syn-
tax and performance as C and C++. However, Rust is safer than C and C++
by offering memory safety and concurrency safety. Specifically, Rust catches
vulnerabilities, such as memory corruption, race conditions, and data races, at

RustBound: Function Boundary Detection over Rust Stripped Binaries 3

compile time by leveraging the concept of ownership and the borrower checker.
To compile a Rust program into a binary (either a library or an executable),
Rust utilizes a specific compiler named rustc. Due to its enhanced safety, it
has become more popular among developers and has been recently added to the
Linux kernel and Microsoft Windows.

A crate is the smallest amount of code that the Rust compiler considers at
a time1. A crate can be a binary crate or a library crate. A binary crate must
have a main function and can be compiled to an executable. A library crate does
not consist of a main function and cannot be compiled to an executable. All the
crates we evaluated in this study are binary crates.

Stripped v.s. Non-Stripped. When producing a binary from a program,
a compiler has an option (-s) to remove debugging and symbol information that
are not essential for execution. This process, named stripping, is typically done
to greatly reduce the binary file size as well as making the binary much more
difficult to disassemble. If stripping is applied, a binary generated by a com-
piler is referred to as a stripped binary. Otherwise, it is a non-stripped binary.
In addition to applying at compiler time, stripping can also be performed inde-
pendently over a non-stripped binary after it has been compiled with the strip
command. Besides performance improvement, another major benefit of applying
stripping is to make it much more difficult for reverse engineering, either from a
benign perspective for better protecting intellectual property or from a malicious
perspective for hiding malicious code.

Function Boundary Detection. Given a binary (in essence, a sequence of
bytes), function boundary detection is a task for outputting a label to every byte
in this sequence, where a label is function start, function end, or neither. More
formally speaking, given a sequence of bytes B = (b1, ..., bn), function boundary
detection F outputs a sequence of labels L = (l1, ..., ln) as

F (B) → L = (l1, ..., ln), li ∈ {S, E, N} for 1 ≤ i ≤ n (1)

where li is the label of byte bi and li is either S (function start), E (function end),
or N (neither). Function boundary detection often happens concurrently with
disassembly or directly after. It is a fundamental component in binary analysis
and is critical for downstream tasks, such as function similarity analyses, binary
rewriting, and malware detection [8].

Function boundary detection is a trivial task over a non-stripped binary as
function names, addresses of function starts, and function lengths are available
in the headers of a binary. A debugger, such as gdb, can interpret these informa-
tion easily and locate the addresses of function starts and ends. However, it is
considered much more challenging to perform over stripped binaries, which do
not consist of the information of function names, addresses of function starts,
and function lengths.

Examples. We provide several examples of function starts in Rust and show
that the (potential) signatures, i.e., the beginning bytes, of functions vary and
are not trivial to distinguish. First, we present three examples of function starts

1 https://doc.rust-lang.org/book/title-page.html

4 R. Evans et al.

where the binaries are compiled with O0 optimization. In Listing 1.1, a function
starts with a sub instruction followed with a lea instruction. In Listing 1.2,
a function starts with an or instruction followed with a mov instruction. In
Listing 1.3, a function starts with a mov instruction.

1 0x71a0 <rpn_reckoner_function >:

2 sub $0x18 , %rsp

3 lea -0x1(%rsi), %rax

4 bsr %rax , %rcx

5 ...

Listing 1.1: Function Start Example 1 (Assembly O0)

1 6a90 <exa_function >:

2 or %esi , %edi

3 mov %edi , -0x4(%rsp)

4 mov -0x4(%rsp), %eax

5 ...

Listing 1.2: Function Start Example 2 (Assembly O0)

1 0x169800 <exa_function >:

2 mov 0x(%rdi), %ax

3 ret

4 cs nopw

5 ...

Listing 1.3: Function Start Example 3 (Assembly O0)

It is worth to mention that the signatures of function starts (and ends) are
constantly complex and difficult to observe across different optimizations. For
instance, the following three function starts in binaries compiled with Oz opti-
mization show various patterns of function starts.

1 0x52ff2 <exa_function >:

2 push %r14

3 push %rbx

4 sub $0x38 , %rsp

5 ...

Listing 1.4: Function Start Example 4 (Assembly Oz)

1 0x52ff2 <exa_function >:

2 push %rcx

3 cmp $0x2 , %edi

4 je 53018

5 ...

Listing 1.5: Function Start Example 5 (Assembly Oz)

RustBound: Function Boundary Detection over Rust Stripped Binaries 5

1 0xe40cb <mgart_function >:

2 shr %rsi

3 cmp 0x8(%rdi), %rsi

4 jae e40d7

5 ...

Listing 1.6: Function Start Example 6 (Assembly Oz)

Functions with Padding Bytes. It is typical for a compiler to add padding
bytes (0x00s or NOPs) at the end of a function. In this study, our definition of a
function end indicates the address of the last byte of a function excluding padding
bytes. As shown in the following example, a function (foo) with function length
0x2a starts at 0x8970 and ends at 0x8999 (i.e., 0x8970 + 0x2a - 1). There
are several padding bytes starting from 0x899a but before the start of the next
function (main) at 0x89a0.

1 0x8970 <foo >:

2 ...

3 0x8995: 48 83 c4 38 add $0x38 , %rsp

4 0x8999: c3 ret

5 0x899a: 66 0f 1f 44 00 00 nopw

6

7 0x89a0 <main >:

8 ...

Listing 1.7: Example of A Function with Padding Bytes (Assembly O0)

Evaluation Metric. By following the evaluation metric from existing studies
[7] [18] [9] [5] [4] [16] [20] [8], we examine the performance of a method from three
aspects (1) function starts, (2) function ends, and (3) function boundaries, using
precision, recall, and F1 score. Precision, recall, and F1 score are defined as
below.

Pecision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 · P ·R
P +R

where TP is true positive, FP is false positive, and FN is false negative.
For function starts, it measures the capability of a method on detecting start

addresses of functions in a binary. Let set S = {s1, ..., sm} be the start addresses
of all the m functions in binary B, where si is the start address of function fi
in B. Given a set of start addresses S′ = {s′1, ..., s′k} reported by a method over
binary B, the true positive, false positive, and false negative of function starts
are defined as below:

– TP: the number of start addresses that are in both set S and S′, where
TP = |S ∩ S′|.

6 R. Evans et al.

– FP: the number of start addresses that are in set S′ but not in set S, where
FP = |S′ − S|.

– FN: the number of start addresses that are in set S but not in set S′, where
FP = |S − S′|.

TP, FP, and FN of function ends are defined similarly by using the end addresses
of functions.

A function boundary is reported correctly if both the function start and
function end are correct. In other words, the performance of function bound-
aries can be aggregated based on the performance of function starts and ends.
Specifically, we assume that there are m functions in a binary B, where the
function starts and ends can be described with a set of start-end address pairs,
D = {(s1, e1), ..., (sn, em)}. Let si and ei be the start address and end ad-
dress of function fi respectively. Given a set of start-end address pairs D′ =
{(s′1, e′1), ..., (s′n, e′k)} reported by a method over binary B, we define the true
positive, false positive, and false negative of function boundaries over binary B
as below

– TP: the number of start-end address pairs that are both in set D and D′,
where TP = |D ∩D′|.

– FP: the number of start-end address pairs that are in set D′ but not in set
D, where FP = |D′ −D|

– FN: the number of start-end address pairs that are in set D but not in set
D′, where FN = |D −D′|.

3 Function Boundary Detection Methods

Existing Reverse Engineering Tools. Popular reverse engineering tools, such
as Ghidra and IDA Pro, have historically struggled with disassembling stripped
binary files. Traditionally, both tools rely on sophisticated dynamic analysis
techniques, heuristics, and complex algorithms to first reconstruct the source
code of a given binary file in order to perform program boundary detection.
When debugging information are unavailable, it introduces many challenges to
reconstruct code and detect function boundaries correctly.

Recently, both Ghidra and IDA Pro have began leveraging signature-based
approaches to complement dynamic analysis in function boundary detection for
functions in standard libraries. For instance, IDA Pro leverages FLIRT algo-
rithm2 and Ghidra utilizes Function ID in their signature-based approaches3

respectively. By searching a large-scale signature database and comparing hash
values of bytes in a given binary, these tools can detect function entries and exits
more effectively.

Function Boundary Detection using Neural Networks. There are sev-
eral studies have investigated neural networks in function boundary detection

2 https://hex-rays.com/products/ida/tech/flirt/in depth/
3 https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features/
FunctionID/src/main/doc/fid.xml

RustBound: Function Boundary Detection over Rust Stripped Binaries 7

over stripped binaries [7] [18] [9] [5] [4] [16] [20] [8]. However, all the findings
are based on binaries from C programs. In this study, we specifically discuss
two methods and examine their performance over Rust stripped binaries. One
method, referred to as BiRNN [18], is the first study utilizing neural networks for
function boundary detection. The other method, referred to as XDA [16], is one
of the state-of-the-art methods in disassembly and function boundary detection
using neural networks.

Details of BiRNN. Shin et al. [18] first leveraged neural networks to ad-
dress function boundary detection. Specifically, binaries are pre-processed into
1000-byte sequences, where each byte is encoded into a R256 binary vector with
one-hot encoding. These byte sequences are passed to a Bi-directional Recursive
Neural Network (BiRNN) to train in order to locate function starts or function
ends. Once a BiRNN is trained, it predicts labels over bytes in 1000-byte se-
quences. It is also worth mentioning that one BiRNN can only report function
starts or function ends but not both. When reporting results from both function
starts and ends, two BiRNNs will need to be trained separately.

Details of XDA. XDA leverages masked Language Modeling – to address
function boundary detection [16]. Specifically, XDA applies a specific implemen-
tation of BERT (Bidirectional Encoder Representations from Transformers), re-
ferred to as RoBERTa. Bytes in binaries are first pre-processed into 512-byte
sequences and each byte is encoded into a R256 binary vector with one-hot en-
coding.

The neural network model in XDA is trained in two phases, including (1) pre-
training phase and (2) fine-tuning phase. In the pre-training phase, the model
receives byte sequences as inputs where some bytes are marked as missing (i.e.,
blanked out intentionally). The model is pre-trained to predict the value of miss-
ing bytes. The goal of this pre-training phase is to learn semantics in binaries. In
the fine-tuning phase, the model is fine-tuned to transfer the knowledge learned
in the pre-training phase to a specific task — function boundary detection.
Specifically, each byte is assigned three probabilities, including the probabilities
of function start, function end, and neither. The one with the highest probabil-
ity among the three is the predicted label for the byte. The fine-tuning phase
updates the parameters of the model by minimizing discrepancies between pred-
icated labels and ground truth labels. Once the model is fine-tuned, it is utilized
to predicate labels over bytes in the testing phase.

4 Our Dataset and Tools

Overview of Our Rust Binary Dataset. To investigate function boundary
detection over stripped binaries, especially with neural networks, we need to first
build a large-scale dataset of Rust binaries as no public Rust binary datasets are
available in the current literature. In this paper, a Rust binary indicates that a
binary was compiled from a program written in Rust.

Our dataset, referred to as RUBIN dataset, includes a total of 2,471 Rust
binaries generated with multiple optimizations, including O0, O1, O2, O3, and

8 R. Evans et al.

Table 1: Overview of Binaries in RUBIN Dataset.

Training Set
Optimization No. of No. of Size (GB) Size (MB)

Binaries Functions Non-Stripped Stripped

O0 100 1,031,919 3.6 369
O1 100 425,596 4.7 235
O2 100 369,387 4.1 205
O3 100 436,519 5.1 232
OZ 100 433,901 2.5 143

Total 500 2,697,322 20.0 1,184

Test Set
Optimization No. of No. of Size (GB) Size (MB)

Binaries Functions Non-Stripped Stripped

O0 200 2,574,316 8.8 959
O1 195 891,936 10.0 474
O2 190 737,865 8.7 437
O3 193 644,359 8.2 410
OZ 193 1,218,525 7.3 462

Total 1,971 6,066,801 43.0 2,742

Oz, using compiler rustc (version 1.70) provided in Cargo — Rust’s build sys-
tem and package manager. Each stripped binary is a x86-64 ELF binary and its
associated non-stripped binary is also included in our dataset for generating/val-
idating ground truth labels. The total number of functions in .text sections of
all the stripped binaries in our dataset is 8,764,123. The size of our entire dataset
is over 66 GBs (including all the stripped binaries and non-stripped binaries).
We split the entire dataset into two subsets, one for training (if needed) and one
for testing. More specific information about our dataset is presented in Table 1.

In addition, we develop two tools, named ripkit and cargo picky, to gen-
erate our dataset and results automatically in a large scale. These two tools can
also be leveraged independently to expand our dataset or create new large-scale
datasets for function boundary detection over Rust stripped binaries. Specifi-
cally, cargo picky can automatically clone and compile crates with cargo using
various optimization levels in a large scale. ripkit serves as a pre-processing tool
to transform bytes in binaries into various formats (especially for neural network
approaches). In addition, ripkit also serves as a database for maintaining the
original binaries and their pre-processed data, profiles byte sequence patterns in
large binary datasets, and summarizes experimental results automatically.

How Binaries Are Generated in Our Dataset. The binaries in our
dataset are generated by following the steps below.

1. We randomly select and retrieve 300 Rust crates from crates.io — the
largest Rust crate registry. There are more than 133,000 crates available on
crates.io as of August 2024. A comprehensive list of all the 300 crates we
examine can be found at our GitHub repository along with our dataset.

RustBound: Function Boundary Detection over Rust Stripped Binaries 9

2. Given compiler rustc and compile target x86-64-unknown-linux-gnu, we
select one optimization level (either O0, O1, O2, O3, or Oz), compile all
the 300 crates, and obtain associated non-stripped binaries. Note that there
is a small number of crates that cannot be compiled successfully given each
optimization level (except O0). In addition, our test dataset excludes binaries
that have a .text section with less than 1,000 bytes4. We repeat this process
for every optimization level.

3. Next, we apply strip command over the non-stripped binaries we derived
in the previous step to obtain stripped binaries.

The stripped binaries are utilized for the evaluation of function boundary detec-
tion and their non-stripped binaries are kept to generate ground truth labels.

How Ground Truth Labels Are Generated in Our Dataset. As in
previous studies [8] [16], we leverage two existing tools, including lief5 and
pyelftools6, to create ground truth labels for bytes in .text sections. Specifi-
cally, given a non-stripped binary, we first leverage lief to extract all the bytes
in .text section. Next, we utilize pyelftools to extract the addresses of all the
function starts and function sizes from the headers of this binary. In addition, we
derive the address of each function end by adding its function size to the address
of its function start. Finally, we label each byte in .text section as function
start, function end, or neither based on the addresses. As all the bytes in .text

section do not change after applying stripping, the label for each byte remains
the same in the corresponding stripped binary.

In addition to pyelftools, other existing tools, such as odjdump, can also
be leveraged to identify ground truth labels for function boundaries over bytes
in a binary [8] [16]. It is worth mentioning that different tools could lead
to minor discrepancies in ground truth labels. For instance, given the
200 binaries compiled with O0 in our training data, odjdump reports 2,583,853
functions while pyelftools reports 2,574,316 functions (i.e., 0.37% less). Given
the large number of functions in binaries, it is infeasible for us to manually verify
which tool is more accurate than others for generating ground truth labels over
our dataset. On the other hand, since the discrepancy is minor and it has a
negligible impact to the overall evaluation and comparison among methods, we
believe choosing either tool to produce labels is sound and reasonable.

5 Evaluation

In this study, we evaluate and compare the performance of four methods/tools for
function boundary detection over stripped binaries compiled from Rust program
using our RUBIN dataset. Specifically, we reports results from two state-of-the-
art industry tools, including Ghidra and IDA Pro, and two neural-network-based
methods, including BiRNN and XDA. For a fair comparison, we compare results

4 BiRNN does not support a .text section with less than 1,000 bytes.
5 https://lief-project.github.io/
6 https://github.com/eliben/pyelftools

10 R. Evans et al.

of the four methods in terms of precision, recall, F-1 score, and running time
over our test data in every optimization.

5.1 Experiment Settings

All the analyses and experiments are performed on a Linux desktop running
Ubuntu 22.04.3 with Intel i9-14900K CPU, 128 GB Memory, and NVIDIA 4080
GPU.

Experiment Settings in Ghidra and IDA Pro. We leverage command-
line tools and APIs to automatically decompile a stripped binary and report
the addresses of function starts and ends (or function lengths). Specifically, we
leverage idautils.Function() and ida funcs.calc func size() to extract
function starts and lengths in IDA Pro. Similarly, we utilize FunctionManager,
getBody(), and getNumAddress() in Ghidra’s API to derive function starts and
lengths. Since both Ghidra v11.0 and IDA Pro v8.3 do not support compiler
rustc officially, we do not specific the compiler information but use the default
setting during the decompilation process.

Experiment Settings for BiRNN. For BiRNN, we implement it based
on the description from [18]. We follow the same pre-processing steps as in [18].
Specifically, given bytes from the .text section of a stripped binary, we divide the
bytes into byte sequences with no overlaps, where each byte sequence has 1,000
consecutive bytes. If a byte sequence does not have 1,000 bytes (e.g., towards
the end of the .text section), we discard it. We randomly select a total number
of 1,000 byte sequences from binaries in the training data of each optimization
to train a BiRNN. Each byte in a byte sequence is then encoded into a R256

binary vector with one-hot-encoding before passing it as an input to a BiRNN.
The BiRNNmodel consists of 1 bi-directional RNN layer with 16 RNN hidden

units, a single linear layer, and an output layer with sigmoid as the activation
function. We choose a learning rate of 0.0005 and Binary Cross-Entropy (BCE)
as the loss function. The model includes a total of 8,796 parameters.

When reporting the results of BiRNN for each optimization, we obtain all
the 1000-byte sequences from the stripped binaries reserved for testing and pass
these byte sequences to a BiRNN to obtain the output on each byte. Similar as in
[18], sequences with less than 1,000 bytes cannot report outputs and are excluded
from results. It is also worth to mention that one BiRNN can only report function
starts or function ends but not both. When reporting results from both function
starts and ends, two BiRNNs will need to be trained separately.

Experiment Settings for XDA. We follow the same pre-processing steps
as in [8] and leverage their source code7. Specifically, given one optimization,
we first randomly select 50 binaries as pre-training data and another 50 binaries
as fine-tuning data. These binaries are from RUBIN training set. Second, we
extract and form one super byte sequence by concatenating all the bytes from
.text sections of the 50 binaries in pre-training data. Next, we divide the super
sequence into 512-byte sequences and pass these sequences to the model for

7 https://github.com/CUMLSec/XDA

RustBound: Function Boundary Detection over Rust Stripped Binaries 11

Fig. 1: Example of deriving start-end address pairs based on reported function
starts and function ends (for neural-network-based methods only). Given four
function starts and three function ends, two start-end address pairs, (0x0100,
0x010c) and (0x0114, 0x0124), are assembled in this example.

pre-training. Masking is randomly applied to 20% of the bytes during the pre-
training by the original implementation of XDA. In the fine-tuning phase, a
super sequence is formed from the 50 binaries in the fine-tuning data and is
divided into 512-byte sequences. In addition, labels are attached to all the bytes.
All the 512-byte sequences with labels are passed to the model for fine-tuning.
We pre-train each model for 300 epochs and fine-tune each model for 20 epochs.

XDA leverages a transformer-based model, utilizing multi-headed self atten-
tion to increase the models attention to long range dependencies. In total, XDA
includes 12 self-attention layers, each with 12 self-attention heads. These self-
attention layers use the GeLu activation function. while the fine-tuning layers
use the tanh function. The encoding layer outputs an embedded with 786 di-
mensions. The final decoder layer has 2 feed forward networks stack one top of
it, one of which is used to predict mask bytes, the other is used to fine-tune to
predict the function boundary labels.

When reporting the results of XDA for each optimization, we obtain all
the 512-byte sequences from the stripped binaries reserved for testing and pass
these byte sequences to XDA to obtain the output on each byte. Similar as in
[8], sequences with less than 512 bytes cannot report outputs and are excluded
from results. A single XDA model can reports results in both function starts and
ends.

Reporting Results on Function Bounds. When we report the results on
function bounds from Ghidra or IDA, it is straightforward as each tool reports
a start address and the length for every function in a binary. This information
can be easily transform to the end address of a function as well as a start-end
address pair. In addition, there are no overlaps between start-end address pairs
reported from Ghidar or IDA. However, for neural-network-based methods, in-
cluding BiRNN and XDA, there could be cases that a method reports multiple
function starts before it identifies the next function end or a function start hap-
pens at a lower address than the function end of a previous function. Therefore,

12 R. Evans et al.

Table 2: The number of start 2-grams (first two bytes for function starts) and
the number of end 2-grams (last two bytes for function ends) in RUBIN Dataset
(training data only).

No. of No. of No. of Start No. of Start No. of End No. of End
Binaries Functions 2-Grams 2-Grams 2-Grams 2-Grams

(Elsewhere) (Elsewhere)

O0 100 1,031,919 212 212 27 26
O1 100 425,596 406 406 37 36
O2 100 369,387 394 394 26 25
O3 100 436,519 473 473 36 35
OZ 100 433,901 790 790 143 142

for neural-network-based methods, we perform additional post processing based
on the results of function starts and function ends to obtain start-end address
pairs such that the start address of a function is the first start address that
does not overlap with a previous function. Additional start addresses before the
next end address are also removed. An example of post-processing is presented
in Fig. 1.

5.2 Experiments

Experiment 1: Understanding the Variety of Function Start and Ends.
We first run analyses over our dataset to show the variety of bytes associated
with function starts and ends and why function boundary detection is non-
trivial. Specifically, we show the number of start 2-grams (the first two bytes of
a function) and the number of start 2-grams elsewhere (the first two bytes of a
function but are also found at non-function starts) for every optimization level
in Table 2. For instance, given 425,596 functions across 100 binaries from O1
optimization, there are 406 unique start 2-grams. However, all of these 2-grams
can also be found at other addresses which are not function starts. This indicates
that leveraging these 2-grams as trivial signatures for detecting function starts
is not sufficient. More comprehensive signatures should be considered to tackle
the problem. We have similar observations from function ends as well when we
compare the number of end 2-grams (the last two bytes of a function) and the
number of end 2-grams elsewhere (the last two bytes of a function but are also
found at non-function ends) in each optimization.

Experiment 2: Comparison among Different Methods. We report and
compare the precision, recall, and F1 score of each method, including Ghirda,
IDA Pro, BiRNN, and XDA, over stripped binaries from each optimization level.
The detailed results are summarized in Table 3. Overall, we have two major
observations.

– Observation 1.1: XDA performs the best in detecting function starts
across all the five optimizations with over 99.8% precision and 99.8% re-
call. In addition, it derives the best results in identifying function ends in

RustBound: Function Boundary Detection over Rust Stripped Binaries 13

Table 3: Comparison of the four methods/tools (cells highlighted with green are
the highest within each optimization).

Train (if needed)
Methods

Function Starts Function Ends Function Bounds
& Test PR RE F1 PR RE F1 PR RE F1

O0 Ghidra 0.996 0.996 0.996 0.771 0.771 0.771 0.771 0.771 0.771
IDA Pro 0.992 0.999 0.995 0.779 0.779 0.779 0.779 0.779 0.779
BiRNN 0.999 0.876 0.934 0.999 0.949 0.973 0.958 0.804 0.875
XDA 0.999 0.999 0.999 0.999 0.901 0.948 0.948 0.855 0.899

O1 Ghidra 0.998 0.997 0.998 0.631 0.632 0.632 0.631 0.631 0.631
IDA Pro 0.975 0.986 0.981 0.564 0.564 0.564 0.564 0.564 0.564
BiRNN 0.997 0.784 0.878 0.997 0.823 0.902 0.879 0.635 0.737
XDA 0.999 0.999 0.999 0.999 0.883 0.938 0.931 0.823 0.874

O2 Ghidra 0.940 0.941 0.940 0.574 0.574 0.574 0.574 0.574 0.574
IDA Pro 0.972 0.984 0.978 0.575 0.576 0.575 0.570 0.571 0.571
BiRNN 0.991 0.841 0.910 0.987 0.881 0.931 0.906 0.709 0.795
XDA 0.999 0.999 0.999 0.998 0.932 0.964 0.939 0.875 0.906

O3 Ghidra 0.927 0.932 0.929 0.558 0.561 0.559 0.557 0.561 0.559
IDA Pro 0.969 0.985 0.977 0.570 0.571 0.571 0.570 0.571 0.571
BiRNN 0.995 0.827 0.903 0.992 0.821 0.899 0.876 0.660 0.752
XDA 0.998 0.999 0.999 0.998 0.927 0.961 0.939 0.871 0.904

Oz Ghidra 0.998 0.998 0.998 0.739 0.739 0.739 0.739 0.739 0.739
IDA Pro 0.979 0.977 0.978 0.653 0.653 0.653 0.654 0.654 0.654
BiRNN 0.989 0.761 0.860 0.974 0.832 0.898 0.637 0.401 0.492
XDA 0.998 0.999 0.999 0.999 0.184 0.311 0.952 0.176 0.296

O1, O2, and O3. On the other hand, BiRNN performs the best in O0 and
Ghidra outperforms other methods in Oz in terms of detecting function ends.

– Observation 1.2: Ghidra and IDA Pro offers promising performance with
high precision and recall in function starts but performs much worse in de-
tecting function ends than XDA (except for binaries with Oz optimization).
For instance, IDA Pro achieves 99.2% precision and 99.9% recall in detect-
ing function starts but only 77.9% precision and 77.9% recall in identifying
function ends in O1.

In addition, we also present detailed results from Ghidra and IDA Pro to
provide more insights. First, we present true positives, false positives, and false
negatives of these two methods on function bounds in Table 4 to interpret why
the precision and recall of each tool is almost the same in Table 3. This is because
the number of functions reported by each tool is very close to the ground truth,
which leads to only a minor difference between false positives and false negatives.

Second, we also show to what degree IDA Pro (or Ghidra) fails to detect
function ends. Specifically, we report the PDF (Probability Dense Function) of
address offsets, where each address offset is the offset between a ground-truth
function end and an inferred function end from IDA Pro (or Ghidra). We define
an address offset (for function ends) as below. Given a set of (ground-truth) end
addresses E = {e1, ..., em} and a set of (inferred) end addresses E′ = {e′1, ..., e′k},

14 R. Evans et al.

Table 4: True Positive, False Positive, and False Negative of Function Bounds
(Ghidra and IDA Pro from Table 3).

Methods TP FP FN PR RE

O0 Ghidra 1,983,879 591,009 590,437 0.771 0.771
IDA Pro 2,004,180 568,008 570,136 0.779 0.779

O1 Ghidra 563,513 328,959 328,618 0.631 0.632
IDA Pro 503,400 389,207 388,731 0.564 0.564

O2 Ghidra 423,886 314,675 314,169 0.574 0.564
IDA Pro 367,857 277,053 276,695 0.570 0.571

O3 Ghidra 361,671 287,277 282,881 0.557 0.561
IDA Pro 367,857 277,053 276,695 0.570 0.571

Oz Ghidra 847,384 299,257 298,886 0.739 0.739
IDA Pro 748,798 398,408 397,472 0.654 0.654

(a) O0 optimization (b) O1 optimization (c) O2 optimization

Fig. 2: The PDFs of address offsets (distance) of IDA Pro on function ends

(a) O0 optimization (b) O1 optimization (c) O2 optimization

Fig. 3: The PDFs of address offsets (distance) of Ghidra on function ends

we obtain a set of address offsets O = {o1, ..., ok}, where

oi = e′i − ej , s.t. j = argmin
k∈[1,m]

|e′i − ek|

for 1 ≤ i ≤ m. As we can see from Fig. 2, although the precision and recall
of IDA Pro on function ends are less promising, the address offsets are small,
which suggests that the inferred addresses are not far from the ground truth
in general. We also have similar observations from Ghidra on function ends as
shown in Fig. 3.

While XDA performs the best among the four methods/tools, we would like
to acknowledge that XDA requires significant amount of training time (more
specifically, pre-training time and fine-tuning time). For instance, it takes about
144 hours to complete the pre-training phase (96 hours) and fine-tuning phase

RustBound: Function Boundary Detection over Rust Stripped Binaries 15

Table 5: Comparison of the Four Methods/Tools in Training Time and Test
Time.

Ghirda IDA Pro BiRNN XDA

Training Time (hours) NA NA 0.03 144
Test Time (KBs/sec) 2.6 4.2 14.13 9.99

(48 hours) per XDA model with our GPU machine. In terms of test time, the
four methods are all efficient and report results in large-scales within reasonable
amounts of time as shown in Table 5.

Experiment 3: Performance of XDA (Cross-Optimization Scenario).
One common limitation of neural-network-based methods is that the perfor-
mance of a model can drop significantly when there are domain shifts between
training data and test data. In binary analysis, a common factor that could lead
to domain shifts is compiler optimization [17] [19]. To examine whether XDA is
robust again domain shifts due to compiler optimization, we measure the perfor-
mance of XDA in cross-optimization scenarios. Specifically, we leverage a trained
model using binaries from one optimization (e.g., O0) in the previous experiment
but test the model with binaries from a different optimization (e.g., O1).

As shown in Table 6, when a trained neural network is tested over binaries
with lower optimization levels, such as O0 or O1, XDA still performs well (with
slightly performance drops) when training binaries and test binaries are compiled
with different optimizations. On the other hand, when a trained neural network
is tested over binaries with higher optimization levels, such as O2, O3 or Oz, but
the neural network is trained based on O0 or O1, noticeable performance drops
(e.g., more than 10% drops) can be observed.

Experiment 4: Performance of XDA (Multi-Optimization Training)
To overcome the limitation above, one typical approach is to train a neural
network with data from multiple domains, more specifically, bytes from multiple
optimizations, such that the neural network is able to generalize, at least for
each optimization that is considered during the training. Specifically, we pre-
train a unified model of XDA by utilizing bytes from 50 binaries from all the
5 optimizations (including O0, O1, O2, O3, O4, and O5) with 50 binaries per
optimization. Next, we fine-tune this model with bytes from 100 total binaries
from all the 5 optimizations (20 binaries per optimization). One the model is
fined tuned, we report the performance of the model on the test data from each
optimization.

We observe that training a single neural network with binaries from multiple
optimizations can effectively overcome domain shifts and offer high precision,
recall and F1 score over binaries from all optimization except for Oz optimiza-
tion. The performance of this unified model is almost the same as training each
optimization and test each optimization separately shown in Table 3. However,
training one unified neural network obviously can reduce computational over-
head rather than training five neural networks separately.

16 R. Evans et al.

Table 6: Performance of XDA in cross-optimization scenarios (cells highlighted
with green are results from same-optimization for easy comparison; cells high-
lighted with red are results with more than 10% drops than same-optimization
scenarios.)

Function Starts Function Ends Function Bounds
Train Test PR RE F1 PR RE F1 PR RE F1

O0 O0 0.999 0.999 0.999 0.999 0.901 0.948 0.948 0.855 0.899
O1 O0 0.997 0.985 0.991 0.999 0.897 0.946 0.944 0.843 0.891
O2 O0 0.996 0.985 0.990 0.992 0.898 0.942 0.938 0.841 0.887
O3 O0 0.994 0.989 0.991 0.998 0.901 0.947 0.945 0.850 0.895
Oz O0 0.989 0.986 0.988 0.999 0.896 0.945 0.943 0.842 0.890

O0 O1 0.989 0.989 0.989 0.998 0.883 0.937 0.929 0.820 0.871
O1 O1 0.999 0.999 0.999 0.999 0.883 0.938 0.931 0.823 0.874
O2 O1 0.999 0.995 0.997 0.999 0.838 0.938 0.999 0.883 0.938
O3 O1 0.999 0.995 0.997 0.999 0.883 0.938 0.931 0.822 0.874
Oz O1 0.996 0.999 0.997 0.999 0.883 0.938 0.932 0.823 0.874

O0 O2 0.977 0.995 0.986 0.976 0.931 0.953 0.909 0.859 0.883
O1 O2 0.970 0.234 0.378 0.998 0.216 0.355 0.941 0.204 0.335
O2 O2 0.999 0.999 0.999 0.998 0.932 0.964 0.939 0.875 0.906
O3 O2 0.998 0.999 0.999 0.999 0.932 0.964 0.999 0.932 0.905
Oz O2 0.993 0.999 0.996 0.994 0.932 0.962 0.933 0.872 0.902

O0 O3 0.977 0.995 0.986 0.974 0.926 0.950 0.909 0.856 0.882
O1 O3 0.304 0.004 0.008 0.604 0.001 0.001 0.221 0.000 0.000
O2 O3 0.998 0.999 0.998 0.999 0.927 0.961 0.939 0.871 0.903
O3 O3 0.998 0.999 0.999 0.998 0.927 0.961 0.939 0.871 0.904
Oz O3 0.993 0.999 0.996 0.994 0.927 0.959 0.933 0.868 0.900

O0 Oz 0.988 0.808 0.889 0.993 0.185 0.312 0.940 0.175 0.294
O1 Oz 0.766 0.014 0.027 0.556 0.000 0.001 0.389 0.000 0.000
O2 Oz 0.994 0.832 0.906 0.999 0.186 0.314 0.943 0.176 0.296
O3 Oz 0.993 0.885 0.936 0.998 0.213 0.352 0.840 0.214 0.295
Oz Oz 0.998 0.999 0.999 0.999 0.184 0.311 0.952 0.176 0.296

6 Related Work

Function Boundary Detection over C Binaries. Bao et al. [7] designed
a function boundary detection boundary method, named ByteWeight. It learns
signatures of function starts based on weighted prefix tree and identify function
starts by matching binary segments with signatures. Andriesse et al. [5] pro-
pose Nucleus, which can detection functions based on control flow graphs and is
compiler-agnostic. Alves-Foss and Song [4] developed a function boundary de-
tection method and integrated it into Jima, a tool suite for binary vulnerability
analysis and repair. This method leverages explicit calls and jumps as indica-
tors of function starts. It does not require extensive training time compared to
neural-network-based approaches. Bundt et al. [8] investigated black-box attacks
on neural-network-based binary function detection. Specifically, the authors con-

RustBound: Function Boundary Detection over Rust Stripped Binaries 17

Table 7: Performance of XDA (Multi-Optimization Training with O0, O1, O2,
O3 and Oz).

Function Starts Function Ends Function Bounds
Test PR RE F1 PR RE F1 PR RE F1

O0 0.998 0.999 0.999 0.999 0.901 0.948 0.948 0.854 0.899
O1 0.996 0.998 0.997 0.999 0.883 0.938 0.932 0.822 0.874
O2 0.997 0.998 0.997 0.998 0.932 0.964 0.937 0.874 0.905
O3 0.997 0.999 0.998 0.998 0.927 0.961 0.938 0.870 0.902
Oz 0.994 0.997 0.996 0.999 0.184 0.311 0.952 0.176 0.296

sider inadvertent attacks caused by compiler options and adversarial attacks by
instruction rewriting (e.g., replacing NOPs with jumps or mov instructions). Yu
et al. [20] proposed a method, named DeepDi, which leverages graph neural net-
works to capture instruction relations. DeepDi is primarily used for disassembly.
In addition, it also offers capabilities to identify function starts using heuristics.
All these existing studies report experimental results over C stripped binaries.

Vulnerabilities in Rust. Li et al. [13] designed a method to detect bugs in
Rust programs using static analysis. Liu et al. [14] proposed XRust, a method
that changes unsafe Rust code into safe Rust code by leveraging a novel heap
allocator. Felix et al. [11] developed a proof-of-concept to show that it is feasible
to force a bounds-checked Rust array variable access to read any byte in the
memory.

7 Discussions and Future Work

While we examine the performance of four methods/tools over different opti-
mization levels, we did not examine the impacts of the version of the compiler
(rustc) or compiler flags. Recent work in [8] shows that binaries produced by
various compiler flags can lead to domain shifts and could affect the perfor-
mance of boundary detection over C binaries. These impacts over Rust binaries
remain unknown and will be interesting to explore in future research. Whether
it is feasible for an attacker to modify Rust stripped binaries and force a neural-
network-based method to predict incorrectly on function starts and function
ends remains open. Techniques, such as binary rewriting [10], can be examined
to address this problem. One of the key challenges would be how to modify Rust
binaries automatically in a large scale without affecting functionalities of bina-
ries. It would also be interesting to explore the performance of function boundary
detection over Rust binaries with other standard instruction set architectures,
such as RISC-V, in future work.

GhidRust8 is a relatively new open-source tool, which is a Ghidra extension
specifically for analyzing Rust binaries. It can decide whether a binary is a
Rust binary and report functions in a binary based on signatures using Ghidra’s

8 https://github.com/DMaroo/GhidRust

18 R. Evans et al.

Function ID. Specifically, it creates a Function ID database for Rust’s libstd on
x86-64 for Rust version 1.58.0 and perform function detection (including function
starts, function size, and function names)9. Unfortunately, no comprehensive
analyses are reported regarding the accuracy of GhidRust’s function detection.
While the development of this tool has been paused, it will be still interesting to
examine the detection performance of this tool over our dataset RUBIN in our
future work.

8 Conclusion

We investigate the problem of function boundary detection over Rust stripped
binaries. Our experimental results show that a neural-network-based method can
achieve very high precision, recall and F1 score and outperform start-of-the-art
industry reverse engineering tools in function boundary detection. The neural-
network-based method can also render outstanding performance across different
optimization levels when it is trained with binaries from multiple optimization
levels. Moreover, we develop two automatic tools and one large-scale dataset
that can be utilized by the research community to expand and extend research
findings on function boundary detection over Rust binaries.

Acknowledgement

The authors thank the anonymous shepherd and reviewers for their comments
and suggestions. This work was partially supported by National Science Founda-
tion (CNS-2150086) and UC (University of Cincinnati) Undergraduate Research
Fellowship.

References

1. https://ghidra-sre.org/
2. Ida pro, https://hex-rays.com/ida-pro/
3. Rust, https://www.rust-lang.org/
4. Alves-Foss, J., Song, J.: Function Boundary Detection in Stripped Binaries. In:

Proc. of ACSAC’19 (2019)
5. Andriesse, D., Slowinska, A., Bos, H.: Compiler-Agnostic Function Detection in

Binaries. In: Proc. of Euro S&P’17 (2017)
6. Ayers, H., Laufer, E., Mure, P., Park, J., Rodelo, E., Rossman, T., Pronin, A.,

Levis, P., Why, J.V.: Tighten Rust’s Belt: Shrinking Embedded Rust Binaries.
In: Proc. of the 23rd ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES’22) (2022)

7. Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D.: ByteWeight: Learning to
Recongnize Functions in Binary Code. In: Proc. of USENIX Security’14 (2014)

8. Bundt, J., Davinroy, M., Agadakos, I., Oprea, A., Robertson, W.: Black-box At-
tacks Against Neural Binary Function Detection. In: Proc. of RAID’23 (2023)

9 https://github.com/DMaroo/GhidRust/blob/master/media/report.pdf

RustBound: Function Boundary Detection over Rust Stripped Binaries 19

9. Chua, Z.L., Shen, S., Saxena, P., Liang, Z.: Neural Nets Can Learn Function Type
Signatures From Binaries. In: Proc. of USENIX Security’17 (2017)

10. Duck, G.J., Gao, X., Roychoudhury, A.: Binary Rewriting without Control Flow
Recovery. In: Proc. of ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI’20) (2020)

11. Felix, C., Benti, D., Austin, T.: Spectre v1 proof-of-concept attack in the rust
language, https://github.com/toddmaustin/spectre-rust

12. House, T.W.: Black to the building blocks: A path toward secure and measure-
able software, https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-
ONCD-Technical-Report.pdf

13. Li, Z., Wang, J., Sun, M., Lui, J.C.: MirChecker: Detecting Bugs in Rust Programs
via Static Analysis. In: Proc. of ACM CCS’21 (2021)

14. Liu, P., Zhao, G., Huang, J.: Securing Unsafe Rust Programs with XRust. In: Proc.
of IEEE/ACM ICSE’20 (2020)

15. Pang, C., Yu, R., Chen, Y., Koskinen, E., Portokalidis, G., Mao, B., Xun, J.: SoK:
All You Ever Wanted to Know About X86/x64 Binary Disassembly But Were
Afraid to Ask. In: Proc. of IEEE S&P’21 (2021)

16. Pei, K., Guan, J., Williams-King, D., Yang, J., Jana, S.: XDA: Accurate, Robust
Disassembly with Transfer Learning. In: Proc. of NDSS’21 (2021)

17. Ren, X., Ho, M., Ming, J., Lei, Y., Li, L.: Unleashing the Hidden Power of Compiler
Optimization on Binary Code Difference: An Empirical Study. In: Proc. of PLDI’21
(2021)

18. Shin, E., Song, D., Moazzezi, R.: Recognizing Functions in Dinaries with Neural
Networks. In: Proc. of USENIX Security’15 (2015)

19. Wang, C., Ninan, M., Reilly, S., Ward, J., Hawkins, W., Wang, B., Emmert, J.M.:
Portability of Deep-Learning Side-Channel Attacks against Software discrepancies.
In: Proc. ACM WiSec’23 (2023)

20. Yu, S., Qu, Y., Hu, X., Yin, H.: DeepDi: Learning a Relational Graph Convolutional
Network Model on Instructions for Fast and Accurate Disassembly. In: Proc. of
USENIX Security’22 (2022)

