
FaultHunter: Automatically Detecting Vulnerabilities
in C against Fault Injection Attacks

Logan Reichling†, Ikran Warsame§, Shane Reilly§, Austen Brownfield§, Nan Niu§, Boyang Wang§
†Ohio Northern University, §University of Cincinnati

Abstract—Fault injection attacks can completely bypass typical
code defenses on embedded systems and lead to severe conse-
quences, such as leaking encryption keys and bypassing secure
boot. However, programmers lack awareness of fault injection
attacks and there are limited tools to automatically detect these
vulnerabilities. In this paper, we conduct an empirical evaluation
over 15 C files (5,005 lines of code) selected from GitHub projects
designed for embedded systems. We find that 3.72% of lines
(i.e., 186 lines) are vulnerable under fault injection attacks.
Moreover, we develop a new tool, named FaultHunter, which can
automatically detect fault injection vulnerabilities in C code. Our
detection method consists of two key building blocks, including
parse tree generation and token search. Our experimental results
show that FaultHunter can achieve a detection performance with
90.3% recall and 56.4% precision.

I. INTRODUCTION

Fault injection attacks [1], [2] can modify the voltage on
a target (e.g. a microcontroller) when it executes programs
by changing temperature [3], [4] or electromagnetic radiation
[5], [6] nearby. Modified voltage can change data/instructions
that a target processes, and therefore, forces the target to
misbehave. For instance, changing the voltage from low to
high can modify a bit from 0 to 1, which can modify the
result of an if statement and bypass password verification on
a target. Other real-world examples caused by fault injection
include compromising AES (Advanced Encryption Standard
[7]) encryption keys, bypassing secure boot on crypto wallets
[1], and modifying flash memory [6].

One effective approach of mitigating fault injection attacks
at the software level is to write secure programs that are more
difficult for attackers to perform the attacks successfully. For
instance, rather than checking an if statement with a Boolean
value, e.g., if(flag == 1), verifying it with a non-trivial
numerical value, e.g., if(flag == 0x3CA5), would be
more secure. This is because an attacker has to modify multiple
bits rather than a single bit to maliciously alter the value
of flag from one state to another state (changing 0x3CA5
to 0xC35A v.s. altering 1 to 0), which is considered much
more difficult to achieve in practice. As targets are embedded
systems, the mitigations can be integrated in C code. However,
compared to other vulnerabilities (e.g., buffer overflow) in C,
programmers lack awareness of fault injection and there are
limited tools to automatically detect these vulnerabilities.

In light of the limitations above, this paper examines the
following two research questions:

• RQ1: To what degree do fault injection vulnerabilities
exist in C code in the real world?

• RQ2: How could we automatically detect fault injection
vulnerabilities in C?

The overarching goal of this research is to raise awareness
of fault injection vulnerabilities and improve the security of
embedded systems against fault injection attacks. To answer
the two research questions, this paper consists of the following
contributions:

• We conduct an empirical evaluation over real-world C
code to understand how common fault injection vulner-
abilities exist in practice. Specifically, we examine fault
injection vulnerabilities over 15 C files (5,005 lines of
code in total) selected from 15 GitHub projects that
are designed for embedded systems and include security
components (e.g., password verification). Our analyses
show that every C file tested has at least one vulnerable
line, and 3.72% (i.e., 186 lines) of all the lines are
vulnerable under fault injection attacks. We examined
3 insecure patterns, including Branch, ConstantCoding,
and DefaultFail, defined in the Riscure whitepaper [1].
Among the 3 insecure patterns, ConstantCoding is the
most common one (53.2% of insecure lines).

• We design an automatic detection tool, named Fault-
Hunter, which can automatically detect fault injection
vulnerabilities in C code. Specifically, given a C file, our
tool first parses the C file and generates a parse tree.
Next, our tool performs a token search over the nodes
in the parse tree to identify lines with vulnerabilities
by following insecure patterns defined in the previously
mentioned Riscure whitepaper [1]. We leverage ANTLR
[8], a Java-based parse generator, to parse C files and
generate parse trees. Our experimental results over the 15
C files show that FaultHunter can achieve a performance
of 90.3% recall and 56.4% precision in detecting fault
injection vulnerabilities.

• The 15 C files (5,005 code lines in total without comments
lines or empty lines) we analyzed also form a valuable
dataset, referred to as FH dataset, which can be utilized
by the community to evaluate the performance of future
automatic detection tools. Each line of C code is labeled as
positive (insecure) or negative (secure). If a line is labeled
with insecure, the specific insecure pattern identified is
also provided. To the best of our knowledge, there is no
such type of dataset previously available for the research
community.

Reproducibility. Our source code and dataset are made pub-

licly available and can be found on GitHub [9].

II. BACKGROUND

Riscure whitepaper [1] has identified 11 insecure types
of patterns/vulnerabilities in C under fault injection attacks.
Riscure is a well-known security company specialized in ana-
lyzing and preventing side-channel attacks and fault injection
attacks on embedded systems. For each insecure pattern, the
whitepaper also provides secure coding practices that can
mitigate the attacks.

Our Scope. For the scope of our research study, we focus
on 3 insecure patterns, including Branch, ConstantCoding,
and DefaultFail. We select these 3 patterns as they are less
controversial to label. The other 8 patterns could be leveraged
to generate labels as well, but the results of the labeling could
vary significantly among users. We will leave the other 8
insecure patterns as one of our future work.

Next, we will briefly introduce the 3 insecure patterns
covered in this study. More details of these insecure patterns
can be found in [1].

Branch. This vulnerability is present when Boolean values
are used in if-statement evaluation expressions. A Boolean
value (e.g., 0 or 1) in an if-expression can be easily modified
by an attacker as shown in List. 1. A more secure pattern is
to use non-trivial numerical values in if-statement evaluation
expressions as illustrated in List. 2.

if(flag == true){
// Critical Code

}

Listing 1: Positive/Insecure Branch Example

if(flag == 0x5CA9){
// Critical Code

}

Listing 2: Negative/Secure Branch Example

ConstantCoding. This insecure pattern covers sensitive con-
stants that carry a limited set of values/states, e.g., 0, 1,
0xFF, where these constant values can be easily modified
from one to another within the set by modifying a single bit.
On the other hand, non-trivial numerical values with greater
hamming weights between two states are recommended for
secure coding against fault injection. This shares a similar
concept as Branch. Rather than focusing on if statements in
Branch, ConstantCoding focuses on constant variables. Both
insecure and secure examples are presented below
static final short STATE_INIT = 0;
static final short STATE_LOCKED = 1;

Listing 3: Positive/Insecure ConstantCoding Example

static final short STATE_INIT = 0x5A3C;
static final short STATE_LOCKED = 0xC3A5;

Listing 4: Negative/Secure ConstantCoding Example

DefaultFail. This insecure pattern refers to the vulnerability
present in branch statements when code related to a success
is located inside the else or default code block. Fault
injection can allow the attacker to easily access these portions
of the code with fault injection, as they can simply create a
state not handled, and therefore, fail into the success code.

if(flag == FAIL_FLAG){
// fail code

}else{
// success code

}

Listing 5: Positive/Insecure DefaultFail Example

if(flag == SECURE_FLAG){
// success code

}else{
// fail code

}

Listing 6: Negative/Secure DefaultFail Example

III. DATASET

To answer research question RQ1, we examine 15 real-world
C files collected from GitHub and label each line in these
C files by following the Riscure whitepaper. Specifically, we
use the following criteria to select each GitHub project that is
suitable for our study.

• The project is intended for use in embedded systems
• The project must contain C code files
• The project code has security-related components, such as

cryptography and authentication
• The project is not trivial (i.e., has at least 100 lines of C

code)
We select ‘C’ as the language filter and apply keywords,

including “embedded”, “iot”, “embedded hardware”, “smart
lock”, “embedded security”, etc to obtain the initial pool, which
has over 300 pages of search results with 10 projects per page.
Then, we examine these search results manually to confirm
the ones that meet our criteria. Finally, we selected 15 GitHub
projects for our current study. It takes around 4 days overall to
search and select these 15 projects from GitHub. Two students
participate in this process. A detailed list of all the 15 projects
and their GitHub links can be found in Table IV.

Once we obtain the 15 projects, we select 15 C files (one
from each project). There are 5,005 lines of code in total from
these 15 C files. Given each C file, we label each line as
positive (insecure) or negative (secure). If it is insecure, we
also specify which insecure pattern it is from among Branch,
ConstantCoding, and DefaultFail. Only one insecure pattern is
provided for each insecure line. Each student labels the 15 C
files independently. After the initial labeling, the two students
share their labeling results and discuss to reach a consensus on
all the labels.

Overall, 186 lines are labeled as positive (insecure), which
is 3.72% of all the 5,005 code lines we examine. Among the

2

TABLE I: Summary of the 3 fault injection vulnerabilities over
our 15 C files

Patterns No. of Insecure Lines
ConstantCoding 99
Branch 72
DefaultFail 15

3 insecure patterns, ConstantCoding is the most common one
as shown in Table I. Every C file has at least 2 lines that
are considered vulnerable. The detailed statistical information
of the fault injection vulnerabilities over the 15 C files is
summarized in Table II.

The 5,005 lines of code along with their labels consist of a
new dataset, referred to as FH dataset, which can be utilized
as a labeled dataset to evaluate the performance of automatic
detection tools for identifying fault injection vulnerabilities in
C code. To the best of our knowledge, there is no such type
of dataset previously available for the research community.
Establishing this FH dataset in this study aims to fill this gap.

IV. AUTOMATIC DETECTION

In this section, we describe the details of our automatic
detection tool, named FaultHunter. The main idea of our tool
can be highlighted in Fig. 1. Given a C file as input, our tool
first parses the file and generates a parse tree. After obtaining
the parse tree, our tool performs a token search over the nodes
in the tree to identify tokens with vulnerabilities. Once the
tokens are found, the corresponding lines and specific insecure
patterns are provided as the output of our tool.

Parse Tree

Generation

Token

Search

foo.c Tree line 2: ConstantCoding

line 10: Branch

line 54: DefaultFail

……

Fig. 1: Overview of FaultHunter

Our tool utilizes ANTLR (ANother Tool for Language
Recognition) [8], a powerful Java-based parse generator, to
parse a C file and generate a parse tree. An example of a parse
tree generated by ANTLR is presented in Fig. 2. ANTLR offers
an open source grammar file to parse C code and can create
a number of automatically generated Java functions from the
loaded grammar file. We override these automatically generated
functions with customized listeners to detect fault injection
vulnerabilities in a parse tree. For each insecure pattern, we
design multiple customized listeners. Each customized listener
is run when its specific grammar segment is parsed by ANTLR.

For instance, to detect Branch, we override 10 listeners
related to if grammar. When it is inside an if statement,
our tool examines the child nodes of “expression” and checks
if the logical comparison involves a trivial value (e.g., integers
with a low hamming distance, boolean values, etc). If a trivial
value is found, then the corresponding line is considered as
insecure. The line number and also the comment of Branch
will be reported. The token search rule for Branch is described
in Algo.1.

To detect ConstantCoding, 7 listeners are used. The token
search rule for ConstantCoding is described in Algo.2. Two
listeners are overridden to detect DefaultFail. The token search
rule for DefaultFail is described in Algo.3.

Algorithm 1 (Abstract) Token Search Rule for Branch

Input: a parse tree T and a set S = {0, 1, Low HW}, where
Low HW includes values with low hamming weights (≤ 3).
while node n ∈ T has not been visited do

if n is “selectionStatement” then
Find child node m == “expression”;
while node r is a child node of m do

if r ∈ S then
report this line as insecure due to Branch

end if
end while

end if
Mark node n as visited

end while

Algorithm 2 (Abstract) Token Search Rule for ConstantCoding

Input: a parse tree T and a set S = {0, 1, Low HW}, where
Low HW includes values with low hamming weights (≤ 3).
while node n ∈ T has not been visited do

if n is “labeledStatement” or “jumpStatement” or “assignment-
Expression” then

Find child node m == “expression”;
while node r is a child node of m do

if r ∈ S then
report this line as insecure due to ConstantCoding

end if
end while

end if
Mark node n as visited

end while

Algorithm 3 (Abstract) Token Search Rule for DefaultFail

Input: a parse tree T
while node n ∈ T has not been visited do

if n is “labeledStatement” or “selectionStatement” then
if n has child nodes then

report this line as insecure due to DefaultFail
end if

end if
Mark node n as visited

end while

Our tool also offers a GUI to users. The GUI is developed
based on JavaFX. A screenshot of the GUI is presented in
Fig. 3. Specifically, a user can use the “Load C File” button
to select a C file as input and click the “Run” button to obtain
the output, which includes the line numbers of vulnerabilities
and also the detailed comments and patterns. In addition to the
output, a user can also choose to view the parse tree of the C
file by checking the “Show Tree” checkbox.

V. EVALUATION

In this section, we evaluate the performance of our automatic
detection tool by using the FH dataset we established.

3

int main () { }

selectionStatement

int ;

i = 1

if (expression)

== 1i { }

;

print i=1()

return 0 ;

Fig. 2: The (abstract) parse tree of example.c generated by ANTLR.

Fig. 3: The GUI of FaultHunter

Evaluation Metric. We use precision and recall to measure
the performance of our tool. We define true positives, false
negatives, and false positives as below.

• True Positive (TP): our tool flags a line as positive
(insecure); the label of this line in the FH dataset is
positive.

• False Negative (FN): our tool flags a line as negative (not
included in the output); the label of this line in the FH
dataset is positive.

• False Positive (FP): our tool flags a line as positive; the
label of this line in the FH dataset is negative.

Precision is computed as

Precision =
TP

TP + FP
(1)

A higher precision indicates a better performance. Recall is
calculated as

Recall =
TP

TP + FN
(2)

A higher recall suggests a better performance.
Between recall and precision, we decide to focus on achiev-

ing a higher recall during the design of our tool. This is because
being able to detect as many insecure lines as possible is critical

in this context. On the other hand, if the precision is not high
(i.e., the false positive rate is high), a user can always further
manually examine false positives, which although takes some
additional time, is still much more effective than manually
examining all the lines in a file.

Performance of FaultHunter. Overall, our tool achieves
good performance for detecting fault injection vulnerabilities.
Specifically, it achieves 90.3% recall and 56.4% precision.
Details of the detection over each C file are summarized in
Table II, while detection over each pattern are summarized in
Table III. Our method takes 44.5 ms on average to examine
each file across 15 C files processed sequentially.

VI. DISCUSSION AND FUTURE WORK

Covering More Insecure Patterns. In this study, we only
examine three insecure patterns mentioned in the Riscure
whitepaper. There are still eight more insecure patterns that
can be further examined in the future. One key step would
be generating a much larger labeled dataset with all the 11
insecure patterns.

Automatic Repair. We focus on automatic detection in
this study. We believe that automatic repair of fault injection
vulnerabilities would also be an interesting problem to research
in the future.

VII. RELATED WORK

Typical fault injection resistance involves hardware and/or
software-based approaches that protect the underlying code
from sudden manipulation due to fault injection. Some standard
hardware-based approaches to fault injection resistance include
fault detection fuses [2], data redundancy circuits [10], optical
sensors, and wire meshes [11], which aim to deflect injection
or disable the device if malicious faults occur during normal
operation.

Software-based fault injection resistance instead involves
restructuring or addition to existing firmware code, including
verification of correct cryptography, replacing vulnerable con-
stants, restructuring branch statements, and more [1]. While

4

TABLE II: The precision and recall of our tool over the FH dataset.

Project/File Name No. of No. of TP FP FN Precision RecallLines Insecure Lines
smart-door-lock/main.c 161 11 11 4 0 73.33% 100%
sef-project/main.c 285 21 19 14 2 57.58% 90.48%
micro-bros-smart-home/main.c 134 9 9 1 0 90.00% 100%
embedded-fingerprint/main.c 174 2 2 2 0 50.00% 100%
TrustFlex/pub key rotate.c 229 2 2 9 0 18.18% 100%
microFourQ/schnorrq.c 148 5 5 6 0 45.45% 100%
iotkit-embedded/iotx http api.c 650 23 15 7 8 68.18% 65.22%
FMT-Firmware/i2c core.c 185 3 2 6 1 25.00% 66.67%
mbd-arduino-cashless/mdb.c 827 18 18 17 0 51.43% 100%
SmartLock HardwareDriver/main.c 382 16 15 7 1 68.18% 93.75%
AX3 Firmware/main.c 668 26 24 37 2 39.34% 92.31%
ESP8266-Firmware/main.c 150 8 8 3 0 72.73% 100%
hardware-bitcoin-wallet/xex.c 718 23 19 15 4 55.88% 82.61%
rauc/crypt.c 139 12 12 0 0 100% 100%
tc-iot-sdk-embedded/main.c 155 7 7 2 0 77.78% 100%
Total 5,005 186 168 130 18 56.38% 90.32%

TABLE III: True positives, false positives, and false negatives per pattern per file.

Project/File Name ConstantCoding Branch DefaultFail
TP FP FN TP FP FN TP FP FN

smart-door-lock/main.c 7 1 0 3 0 0 1 3 0
sef-project/main.c 6 8 1 12 4 1 1 2 0
micro-bros-smart-home/main.c 6 0 0 2 1 0 1 0 0
embedded-fingerprint/main.c 0 1 0 2 0 0 0 1 0
TrustFlex/pub key rotate.c 0 4 0 2 0 0 0 5 0
microFourQ/schnorrq.c 1 1 0 4 5 0 0 0 0
iotkit-embedded/iotx http api.c 12 3 4 3 0 4 0 4 0
FMT-Firmware/i2c core.c 1 5 0 1 0 1 0 1 0
mbd-arduino-cashless/mdb.c 8 17 0 10 0 0 0 0 0
SmartLock HardwareDriver/main.c 7 2 0 8 3 1 0 2 0
AX3 Firmware/main.c 12 11 0 10 11 2 2 15 0
ESP8266-Firmware/main.c 5 0 0 1 1 0 2 2 0
hardware-bitcoin-wallet/xex.c 7 5 4 4 2 0 8 8 0
rauc/crypt.c 11 0 0 1 0 0 0 0 0
tc-iot-sdk-embedded/main.c 7 1 0 0 0 0 0 1 0
Total: 90 59 9 63 27 9 15 44 0

both software and hardware-based resistance are complemen-
tary when used together, hardware-based approaches have the
distinct disadvantage of requiring a redesign of the circuitry or
silicon, in contrast to software-based resistance. In the age of
IoT and other embedded devices, additional time and money
constraints can prove untenable to embedded system manu-
facturers while software-based resistance can be implemented
quickly and cheaply through updated firmware on vulnerable
devices. However, depending on the size of the codebase,
a complete review of fault injection robustness can take a
considerable amount of time.

A sequence of studies have leveraged machine learning to
detect traditional vulnerabilities in C code with a variety of
abstractions including the use flow-sensitive ASTs (Abstract
Syntax Trees) [12], and the combination of ASTs, DFGs
(Data Flow Graphs), and CFGs (Control Flow Graphs) [13].
While these techniques are effective for detecting traditional
vulnerabilities, they are not effective for detecting fault in-
jection vulnerabilities, which need to examine the ease of
illogical execution flow, i.e. skipping nodes in control flow
and data flow graphs. Tradition techniques rely on the logical
flow of code as it was written, which fault injection attacks

disrupt. Lexing techniques were employed alongside machine
learning in [14], although they decide to remove functions
with duplicate CFGs from their dataset. In the case of fault
injection, two code snippets may have the same CFG, yet have
different vulnerabilities to fault attacks based on the constants
evaluated, as in List.1 vs. List.2. Such subtle differences need
to be included in a fault injection vulnerability dataset. A
survey on the effectiveness of various detection techniques
using machine learning was presented in [15]. Concluding their
review, they emphasize the necessity of a standardized dataset
to evaluate detection tools and warn that the black-box nature
of ML models may call into question the trustworthiness of
their results. Such concerns will be evaluated as we further
develop our automatic tool.

VIII. CONCLUSION

In this paper, we examine to what degree fault injection vul-
nerabilities exist and how to perform automatic detection over
these vulnerabilities. Our results show that a significant number
of lines in real-world C code are vulnerable to fault injection
vulnerabilities. In addition, static analysis, more specifically,
parsing C files into trees and running a token search, can

5

TABLE IV: The links of the 15 C GitHub projects.

Project/File Name Project Link Last Modified
smart-door-lock/main.c https://github.com/wywfalcon/smart-door-lock/tree/master/sdl embedded 03.2016
sef-project/main.c https://github.com/mario11596/sef-project/tree/master/sef-project 05.2022
micro-bros-smart-home/main.c https://github.com/Alifathysalama/Micro Bros-Smart-Home 05.2022
embedded-fingerprint/main.c https://github.com/padma510/M2-Embedded Fingerprint Based Security System 12.2021
TrustFlex/pub key rotate.c https://github.com/MicrochipTech/ cryptoauth trustplatform designsuite 03.2022
microFourQ/schnorrq.c https://github.com/geovandro/microFourQ-AVR/tree/master/src 09.2017
iotkit-embedded/iotx http api.c https://github.com/aliyun/iotkit-embedded/tree/v3.0.1/src/http 04.2021
FMT-Firmware/i2c core.c https://github.com/Firmament-Autopilot/FMT-Firmware/tree/master/src/hal/i2c 07.2022
mbd-arduino-cashless/mdb.c https://github.com/LanguidSmartass/mdb-arduino-cashless 03.2019
SmartLock HardwareDriver/main.c https://github.com/kiraYuukiAsuna/SmartLock HardwareDriver Code/tree/master/USER 03.2021
AX3 Firmware/main.c https://github.com/digitalinteraction/openmovement/tree/master/Firmware/AX3/Firmware/src 12.2017
ESP8266-Firmware/main.c https://github.com/devicehive/esp8266-firmware/tree/develop/firmware-src/sources 03.2019
hardware-bitcoin-wallet/xex.c https://github.com/someone42/hardware-bitcoin-wallet 04.2015
rauc/crypt.c https://github.com/rauc/rauc/tree/master/src 08.2022
tc-iot-sdk-embedded/main.c https://github.com/TencentCloud/tc-iot-sdk-embedded-for-esp8266/tree/master/main 05.2022

be an effective way to automatically detect fault injection
vulnerabilities.

ACKNOWLEDGEMENTS

Logan Reichling was supported by National Science Founda-
tion (CNS-2150086, NSF REU Site: Research Experiences for
Undergraduates in Hardware and Embedded Systems Security
and Trust, RHEST), Ikran Warsame was supported by NSF
Louis Stokes Alliances for Minority Participation (LSAMP)
Program, Shane Reilly and Austen Brownfield were supported
by National Science Foundation (CNS-1947913, REU supple-
ments).

REFERENCES

[1] M. Witteman, “Secure application programming in the presence of side
channel attacks,” Riscure, Tech. Rep., Aug 2017. [Online]. Available:
https://www.riscure.com/uploads/2017/08/Riscure Whitepaper Side
Channel Patterns.pdf

[2] N. Timmers, A. Spruyt, and M. Witteman, “Controlling pc on arm using
fault injection,” in 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2016, pp. 25–35.

[3] R. Kumar, P. Jovanovic, and I. Polian, “Precise fault-injections using
voltage and temperature manipulation for differential cryptanalysis,” in
2014 IEEE 20th International On-Line Testing Symposium (IOLTS),
2014, pp. 43–48.

[4] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “Ram-
jam: Remote temperature and voltage fault attack on fpgas using memory
collisions,” in 2019 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2019, pp. 48–55.

[5] J. Breier and X. Hou, “How practical are fault injection attacks, really?”
Cryptology ePrint Archive, Paper 2022/301, 2022. [Online]. Available:
https://eprint.iacr.org/2022/301

[6] R. Viera, J.-M. Dutertre, M. Dumont, and P.-A. Moëllic, “Permanent laser
fault injection into the flash memory of a microcontroller,” in 2021 19th
IEEE International New Circuits and Systems Conference (NEWCAS),
2021, pp. 1–4.

[7] F. Khelil, M. Hamdi, S. Guilley, J. L. Danger, and N. Selmane, “Fault
analysis attack on an fpga aes implementation,” in 2008 New Technolo-
gies, Mobility and Security, 2008, pp. 1–5.

[8] T. Parr, “Antlr, another tool for language recognition.” [Online].
Available: https://www.antlr.org/

[9] L. Reichling, I. Warsame, S. Reilly, A. Brownfield,
N. Niu, and B. Wang, “Faulthunter.” [Online]. Available:
https://github.com/UCdasec/FaultHunter

[10] H. Mestiri, N. Benhadjyoussef, and M. Machhout, “Fault attacks resistant
aes hardware implementation,” in 2019 IEEE International Conference
on Design and Test of Integrated Micro and Nano-Systems (DTS), 2019,
pp. 1–6.

[11] J. Boone and S. Q. Khan, “Alternative approaches for fault
injection countermeasures,” NCCGroup, Tech. Rep., July 2021. [On-
line]. Available: https://research.nccgroup.com/2021/07/09/alternative-
approaches-for-fault-injection-countermeasures-part-3-3/

[12] H. Wang, G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, Y. Feng,
L. Bian, and Z. Wang, “Combining graph-based learning with automated
data collection for code vulnerability detection,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 1943–1958, 2021.

[13] Y. Zhuang, S. Suneja, V. Thost, G. Domeniconi, A. Morari, and
J. Laredo, “Software vulnerability detection via deep learning over
disaggregated code graph representation,” CoRR, vol. abs/2109.03341,
2021. [Online]. Available: https://arxiv.org/abs/2109.03341

[14] R. L. Russell, L. Y. Kim, L. H. Hamilton, T. Lazovich, J. A. Harer,
O. Ozdemir, P. M. Ellingwood, and M. W. McConley, “Automated
vulnerability detection in source code using deep representation
learning,” CoRR, vol. abs/1807.04320, 2018. [Online]. Available:
http://arxiv.org/abs/1807.04320

[15] G. Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang, “Software vulner-
ability detection using deep neural networks: A survey,” Proceedings of
the IEEE, vol. 108, no. 10, pp. 1825–1848, 2020.

6

