FaultRISC-V: Detecting Fault Injection
Vulnerabilities in RISC-V Assembly

Prateek Kharangate!, Brayden Sheafer?, Guillermo Rached!, Harris Musungu?, Boyang Wang!
TUniversity of Cincinnati, $Cedarville University, {Rochester Institute of Technology
{kharanpv, rachedge}@mail.uc.edu, bsheafer@cedarville.edu, harrismusungu@gmail.com, boyang.wang @uc.edu

Abstract—Fault injection attacks can alter bits by manip-
ulating voltage, temperature, or electromagnetic (EM) radi-
ation on a target, such as a microcontroller. Altered bits
can potentially lead to changes in program execution, such
as bypassing a secure boot. However, tools for automatically
detecting these vulnerabilities in assembly code are limited. This
paper introduces FaultRISC-V, a static analysis tool designed
to automatically detect four types of vulnerable code patterns
in RISC-V assembly under fault injection attacks. It involves
(1) parsing and (2) token matching, with a customized RISC-
V assembly parser and specific token matching rules. We
established a dataset of 57 RISC-V assembly files related to
secure boot and embedded systems authentication, consisting of
46,111 lines of assembly code in total across three optimization
levels (including 00, O1, and O2). Our evaluation results
demonstrate the effectiveness and efficiency of our tool over
00, 01, and O2. For instance, our tool achieves 96.4% precision
and 97.7% recall over assembly files generated from O0. The
average time to parse an assembly file and report the detection
results is less than 200 milliseconds.

I. INTRODUCTION

Fault injection attacks [1], [2], can manipulate factors such
as voltage, temperature [3], [4], or electromagnetic (EM)
radiation [5], [6] on a target device (e.g., a microcontroller)
during program execution. These manipulations can cause
bit flips (e.g., changing a 0 to a 1) or instruction skips,
thereby altering program behavior and causing the target to
malfunction. Real-world examples of fault injection attacks
include revealing encryption keys [7], bypassing secure boot
[1], and altering flash memory [6].

To mitigate fault injection attacks, one approach is to write
code that is more resilient to such attacks [8]. For example,
using two complex values with a greater Hamming distance
(e.g., 0x7A3F and 0x85C0) to represent False and True is
preferable to using simple values 0 and 1 as more multiple
bits need to be flipped rather than a single bit.

A tool named FaultARM [9] was developed to automat-
ically detect vulnerable ARM assembly instructions under
fault injection attacks. While the tool is efficient and effective,
it does not support detection over RISC-V assembly.

Our Contributions. We present a tool named FaultRISC-
V, which can automatically identify vulnerable lines in RISC-
V assembly code that are susceptible to fault injection
attacks. Similarly to the design methodology of FaultARM,
our tool consists of two phases, including parsing and token

matching. Specifically, we develop a parser that processes
an assembly file and converts it into a list of tokens, which
includes elements such as instructions, functions, attributes,
global variables, and locations. Our parser can further break
down these tokens into registers, integers, strings, memory
addresses, and labels. Following this, we implement specific
token matching rules to identify each vulnerable pattern. Our
tool is capable of detecting four types of vulnerable patterns:
Branch, Bypass, Constant Coding, and Loop Check, which
are defined in [1]. In addition, our tool can automatically
detect the optimization level (either OO0, O1, or O2) and
customize detection at each given optimization level when
needed. In essence, FaultRISC-V is a static analysis tool,
which efficiently identifies vulnerable code to fault injections
without executing binaries.

We established a labeled dataset of 57 RISC-V assembly
files (46,111 lines in total) and evaluated the detection perfor-
mance of our tool across three optimization levels, including
00 (19 files, 17,726 lines of assembly code), O1 (19 files,
12,747 lines of assembly code) and O2 (19 files, 15,638
lines of assembly code). The results show that FaultRISC-
V is both effective and efficient. Specifically, it achieves
96.4% precision and 97.7% recall in O0, 98.5% precision
and 96.8% recall in Ol, and 97.4% precision and 96.1%
recall in O2. Our tool can process an assembly file and
report vulnerable lines within 200 milliseconds on average.
Our findings continue to support the feasibility of enhancing
the resilience of embedded systems against fault injection
attacks early in the software development stage.

Reproducibility. Source code and dataset can be found at
https://github.com/UCdasec/FaultRISC-V.

II. BACKGROUND

Riscure (now a part of Keysight), published a whitepa-
per [1] that outlines 11 vulnerable patterns in C that are
susceptible to fault injection attacks. For each vulnerable
pattern, the whitepaper also offers resilient coding practices
to help mitigate these attacks in C. Essentially, these resilient
coding examples ensure critical paths or data are double-
checked, making it necessary for an attacker to flip multiple
bits instead of flipping single bits.

We provide concrete code examples associated with four
vulnerable patterns, including Branch, Constant Coding,

Loop Check, and Bypass, which were defined in the Riscure
whitepaper [1]. For each pattern, we provide vulnerable and
resilient examples in both C and RISC-V assembly. The code
examples in C are similar to the one suggested in the Riscure
whitepaper. The code examples in RISC-V are compiled by
us from the C code using the RISC-V toolchain.

Branch. This vulnerability arises when Boolean values
are used in an if statement. An attacker can flip a single
bit to change a Boolean value from one state to another
(e.g., from 1 to 0). Using more complex numerical values
to represent different states in an if statement is considered
more resilient, as it would require flipping multiple bits rather
than just one. Given this pattern, a vulnerable and a resilient
example in C are shown in List. 1 and List. 2 respectively.

(e.g., static variables). We provide a vulnerable example and
a resilient example in C below.

//global

static short STATE_INIT = 0;
= 1; //global

static short STATE_LOCKED

Listing 5: Vulnerable Example (Constant Coding, C)

static short STATE_INIT = 0x5A3C;
static short STATE_LOCKED =

//global
0xC3A5; //global

if(flag == 1){ // flag is 0 or 1
// Critical Code, e.g., secure boot

}

Listing 6: Resilient Example (Constant Coding, C)

The distinction between trivial values and non-trivial val-
ues is also evident in RISC-V assembly. The corresponding
vulnerable and resilient examples in RISC-V assembly are
shown in List. 7 and List. 8.

Listing 1: Vulnerable Example (Branch, C)

STATE_INIT:

.half 0
STATE_LOCKED:
.half 1

if(flag == 0x3CA5){ // flag is 0x3CA5 or 0xC35A
// Critical Code, e.g., secure boot

}

Listing 2: Resillient Example (Branch, C)

An if statement in C can be associated with any of
the conditional branch statements, such as bne, blt, beq,
and bgt in RISC-V assembly. If we compile the above
vulnerable C code into RISC-V assmebly, we can observe
that a conditional branch instruction includes a register a4
with a trivial value 1 (stored in register a5) as shown in
List. 3. On the other hand, the resilient example compares
register a4 with a non-trivial value 15,525 (stored in
register a5) in List. 4.

Listing 7: Vulnerable Example (Constant Coding, RISC-V,
00)

STATE_INIT:

.half 23100
STATE_LOCKED:

.half -15451

1i a5, 1

bne ad4,a5,.L2 //L2 jumps to critical code

Listing 3: Vulnerable Example (Branch, RISC-V, O0)

Listing 8: Resilient Example (Constant Coding, RISC-V, O0)

Loop Check. This vulnerability occurs when the execution
of a for loop is not followed by a verification of completion
(usually with an if condition) to confirm that the loop has
completed with the expected number of iterations. If the
completion of a loop is not verified, an attacker could flip bits
on the counter, potentially resulting in the last few iterations
being skipped and causing data or state to become incorrect.

1i a5,16384
addi ab5,a5,-859 //16384 859 = 15525 => 0x3cab
bne ad4,a5,.L2 //L2 jumps to critical code

int i = 0,
for (1 = 0;
sum++;

sum = 1;
i<10; i++) {

}
// missing loop check
foo (sum) ;

Listing 4: Resillient Example (Branch, RISC-V, O0)

Constant Coding. This vulnerable pattern pertains to
sensitive constants that have a limited range of values or
states, such as 0, 1, OxFF. These constant values can be
easily altered from one to another within the set by flipping
a single bit. In contrast, non-trivial numerical values that
exhibit a greater Hamming distance between two states are
considered more resilient against fault injection attacks. This
pattern is similar to Branch. However, instead of focusing on
if statements, Constant Coding targets constant variables

Listing 9: Vulnerable Example (Loop Check, C)

int 1 = 0,
for (1 = 0;
sum++;

sum = 1;
i<=10; 1i++) |

}

// double check for loop is
if (i==10) {
foo (sum) ;

completed

}

Listing 10: Resilient Example (Loop Check, C)

In the corresponding examples in RISC-V assembly below,
the vulnerable example fails to compare the value of the
iterating variable (register a4) again after the initial compar-
ison in the ble instruction. In contrast, the resilient example
performs an additional check by loading the same operands
to verify whether the loop has completed as expected.

a sw instruction after the move instruction. In addition, it
subsequently loads the value on stack using a 1w instruction.

bl testl
mov a5, a0 // move return value to register a5
beq a5, zero, .L7

1w a5,-20(s0)

sext.w a4,ab

1i a5,9

ble a4,a5,.L4 // loop ends

1i a5,0 // missing loop check

Listing 15: Vulnerable Example (Bypass, RISC-V, O0)

Listing 11: Vulnerable Example (Loop Check, RISC-V, O0)

1w a5,-20(s0)

sext.w a4,ab

1i a5,9

ble a4,ab5, .L4d // loop ends

1w a5,-20(s0)

sext.w a4,ab

1i a5, 9

bgt a4,a5,.L5 // double check if loop ends

bl testl

mov a5, a0 // move return value to register ab
sw a5, -24(s0) // store return value to stack
bl testl // running the function again

mov a5, a0 // move return value to register ab
sw a5, —-28(s0) // store return value to stack
1w a4, -24(s0) // load return value 1lst call
1w a5, -28(s0) // load return value 2nd call
beg a4, a5, .L8 // compare return values

Listing 12: Resilient Example (Loop Check, RISC-V, 0O0)

Bypass. This vulnerable pattern arises when a condition
check is not performed at the same level as the protected
functionality. For instance, if a verification function is called
within an if statement, an attacker might be able to alter the
return value or the execution of a program, enabling critical
code to run with a single fault. The Riscure whitepaper rec-
ommends that faults be detected at the same level (function)
that executes the protected functionality, such as by storing
the return values of function calls in variables before they
are checked in conditions. To enhance security further, it is
advised to implement double condition checks using the same
logic to prevent single fault failures. A vulnerable example
and a resilient example in C are provided below.

if (!testl()) return; //
// critical code

denied

access

Listing 13: Vulnerable Example (Bypass, C)

bool rl = testl();

bool r2 = testl();

if (rl != r2) faultDetect(); // fault detected
if (!'rl || 'r2) return; // access denied

code

// critical

Listing 14: Resilient Example (Bypass, C)

If we compare the corresponding RISC-V code examples
in Listing 15 and Listing 16, we can see that the vulnerable
example simply moves the return value to a register (e.g.,
a5) without storing it on the stack and subsequently execute
a conditional branch (e.g., beq) instruction based on the
value in register a5. On the other hand, the resilient example
stores the return value in the register (register a5) with

Listing 16: Resilient Example (Bypass, RISC-V, O0)

Problem Formulation. We formulate the problem of
detecting vulnerable RISC-V assembly code as follows.
Given a sequence of lines of RISC-V assembly code A =
{a1,...,amm}, where m is the total number of lines in an
assembly file, a detection method assigns a label ! to each
line, where [€ {V,N}. If label [; = V, it indicates that the
i-th line with code a; is vulnerable. Otherwise, it suggests
that this line is not vulnerable.

Evaluation Metric. A true positive (TP) indicates that the
ground truth of a line is vulnerable and the detection method
predicts it as vulnerable. False positive (FP) indicates that
a line is not vulnerable but the detection method predicates
it as vulnerable. False negative (FN) indicates that a line is
vulnerable but the detection labels it as non-vulnerable.

We utilize precision and recall to assess the effectiveness
of a method detecting vulnerable lines to fault injection
attacks. Precision and recall are defined as follows:

TP TP
TP+ FP’ TP+ FN
III. OUR PROPOSED DETECTION

Pecision = Recall =

A. Detection Overview

In this section, we outline the details of our static analysis
tool, called FaultRISC-V. The main idea behind our tool
is illustrated in Fig. 2. Specifically, given an assembly file
written in RISC-V as input, our tool performs the following
steps: (1) it parses the assembly code line by line and gen-
erates tokens that include instructions, functions, attributes,
global variables, and locations, which can further contain
tokens such as registers, integers, strings, memory addresses,
and labels, and (2) it detects lines with vulnerable patterns
through token matching given each vulnerable pattern.

We implemented a parser specifically for RISC-V assem-
bly and developed customized token matching for each type
of vulnerable pattern. Each fault pattern employs a distinct

string i = %d\n"

text

.align 1

.globl main
! type main, @function
' main:
! addi sp,sp,-32

sd ra,24(sp)

sd s0,16(sp) H

addi s0,sp,32 H

sw zero,-20(s0) H

i L3
E L4:

lw a5,-20(s0)

mv ail,a5

lui a5,%hi(.LCO) H
addi a0,a5,%lo(.LC0) '
call printf H
lw a5,-20(s0) I
addiw a5,a5,1 1
sw a5,-20(s0) |

>

sfing i = %d\n" : [Global Variable

text v [0 String Literal

.align 1 : .

.globl main [Attribute
J -type main, @function H p
! i [] Integer Literal

addi sp,sp,-32 [Argument

sd ra,24(sp) .

sd s0,16(sp) [Function

addi s0,sp,32 ! .

o R) ¢ [Instruction
) [0 Register
(L4

Iw a5,-20(s0) [Memory Address

mv ail,a5

lui a5,%hi(LCO) i @ Label

addi a0,a5,%lo(.LCO) ' [Location

call printf |

lw a5,-20(s0) :

addiw a5,a5,1 :

sw ab,-20(s0) :

Fig. 1: Example of tokens parsed by our RISC-V parser for file loop_simple_insecure.s in O0

Branch:

List of line 112: li a5, 1
line 113: bne a4, a5, .L2
foo.s RISC-V Parser tokens Token
—_— —_— 3 ;
& Tokenizer Search ConstantCoding
line 19: STATE_INIT:

line 20:

Fig. 2: Overview of FaultRISC-V

‘half 0

detection algorithm. The algorithm is also further tailored
for each optimization level, namely OO0, Ol, and O2, we
considered in this study. Certain vulnerable patterns require
identifying a specific set of successive lines in the code,
while other patterns utilize an algorithm that conducts a bi-
directional search across lines that indicate or confirm vul-
nerability. The relevant lines and specific vulnerable patterns
will be included in output of our proposed tool.

B. RISC-V Assembly Parser

We implement a customized parser for RISC-V assembly.
Specifically, our parser is a linear parser, which scans assem-
bly code line by line and tokenizes each instruction based
on its broader type, including Instruction, Function,
Attribute, Global Variable and Location. We
also tokenize each element of an instruction or attribute
into Register, IntegerLiteral, StringLiteral,
MemoryAddress, and Label. A list of tokens output by
our parser is linearly searched by our detection algorithm for
each vulnerable pattern. An example of our parser parsing
an assembly file is presented in Fig. 1.

C. Our Proposed Detection

Detection of Branch. Our method classifies a line as
Branch vulnerable if (1) the line contains a load integer
instruction followed by a conditional branch instruction (i.e.,
an 1i instruction followed by a bx instruction), or (2)
the 1i instruction involves an integer argument with a low
Hamming weight value. Alternatively, a line can be classified
as vulnerable if it is a conditional branch instruction with
one of the arguments being of type IntegerLiteral
and having a low Hamming weight value. In this study, we

consider a Hamming weight of 4 or less to be vulnerable
by default. On the other hand, this Hamming weight of 4
is an adjustable threshold, which can be tuned for speific
applications. A high-level overview of our detection method
for Branch vulnerabilities is shown in Fig. 3.

At least
Tokens Yes P one Yes Vulnerable
) Is loa_d (1) Has int with loyv HW?_
instruction? (2) Is next branch instruction?
No Neither Not Vulnerable

Fig. 3: Our proposed detection for Branch.

In some optimizations, such as Ol and O2, it is possible
that branch vulnerabilities can exist without an initial load
instruction. In other words, a branch statement exists inde-
pendently with the integer value directly in the conditional
operator of the branch, or a store operation that stores either
a 0 or 1 in a register conditionally based on a simple
boolean condition (instruction s1ti or seqz, for example).
Our detection method incorporates these instructions. This
diversity of detection pattern, in essence, is because different
combinations of instructions can offer same functionalities.

Detection of Constant Coding. Our method de-
tects a Constant Coding vulnerability if (1) a token is
GlobalVariable or a non-overlapping Attribute with
an IntegerLiteral argument; and (2) some or all of the
IntegerLiteral values accessible by the global variable
have a low Hamming weight. Each value with low Hamming
weight value will be marked as a vulnerable line separately
even if they belong to the same global variable. An overview
of our detection for Constant Coding is described in Fig. 4.

It is worth mentioning that our proposed detection focuses
on global variables only. A GlobalVariable is unique
type of token that expands beyond a single line, i.e., it
consists of a location unique name and a list of attributes
that store integer literals. Our detection determines whether
an Attribute comes under a GlobalVariable if it is within a
contiguous block of lines that are identified by the Attribute
without emphasis on what type of attribute is stored. Only

IntegerLiteral or StringLiteral attributes are recorded within
the global variable for our detection purpose.

Yes
—_—

Yes Vulnerable
———

Tokens
—_—

Is Global or Attribute
with IntegerLiteral?

IntegerLiteral has
low HW?

No Neither Not Vulnerable

Fig. 4: Our proposed detection for Constant Coding.

Detection of Loop Check. Detecting Loop Check vulnera-
bilities involves two phases. The first phase identifies whether
there is a for loop in the assembly code, and the second
phase checks whether a condition exists immediately after the
loop to verify its completion. In the first phase, our method
detects a loop if a branch instruction points backwards, i.e.,
to an earlier location in the file that has already been visited
during the file traversal from top to bottom. Continuity is
defined as a sequential set of instructions that are executed
in the order in which they appear. An unconditional jump or a
return instruction would break this continuity, as they indicate
that the instructions before the jump or return are either
unrelated or inaccessible from those after it. This backward
branching confirms the presence of a loop.

The next step in the first phase is to identify whether
the loop is a for loop. To achieve this goal, our detec-
tion identifies an increment statement, i.e., a statement that
increments the value of the iterating variable r, which is
stored in one of the operands of the branch instruction. This
increment statement must be found between the lines of the
branch instruction and location being branched backwards
to. If a for loop exists, our detection also identifies how
many iterations v there potentially are. This can be found by
inspecting the other operand of the branch instruction. It can
either be loaded as an immediate value, or be a value found
in the stack, or otherwise, be assumed to be loaded into the
register prior to the beginning of the loop.

If the detection from the first phase is positive, the process
continues to the second phase. In this phase, the register
r and the value v connected with the branch instruction
from phase 1 are stored. Our method then identifies if a
conditional branch instruction appears within a defined gap
sensitivity, which refers to the number of lines following the
branch instruction where we anticipate seeing a check for
the Loop Check. If the recorded register r and value v are
compared again without either being modified and within
the gap sensitivity, we consider it secure. Otherwise, the
pattern is flagged as Loop Check vulnerable, and the branch
instruction of the loop is labeled vulnerable. An overview of
this process is depicted in Fig. 5.

Detection of Bypass. Our detection method for Bypass
focuses on determining whether the return value from a
function call (stored in register 70) is saved to the stack
(e.g., using sx) or loaded from the stack (e.g., 1drb) after
the function call (i.e., call) but before a conditional branch

Tokens . Yes . . Yes Vulnerable
Whether there is A branch instruction checks
a for loop? loop completion?
No Neither Not Vulnerable

Fig. 5: Our proposed detection for Loop Check.

instruction (i.e., bx) that would use the return value. If this
is the case, the code is considered not vulnerable. Otherwise,
the bx instruction is flagged as vulnerable. It is important to
note that these instructions do not necessarily have to appear
consecutively, as unrelated instructions may be present in
between. An overview of this process is presented in Fig. 6.

Tokens Return value is Yes Before conditional Yes Not Vulnerable
D — —_— _—
saved on stack? branch?
No No Vulnerable

Fig. 6: Our proposed detection for Bypass.

IV. EVALUATION

Dataset. We create a dataset of RISC-V assembly files
across multiple optimization levels, including OO0, O1, and
02. Specifically, we search relevant GitHub repositories
with keywords, including embedded systems authentica-
tion and/or secure boot. We identified 50 repositories that
match our keywords. Next, we compile each of the C files
from these repositories running the cross-compiler toolchain
riscvé64-unknown-elf-gcc on a Linux machine. Un-
fortunately, many of them are not compilable for a variety
of reasons, such as missing external header files. In all, we
are able to compile 19 C files into RISC-V assembly from
13 repositories. Given each C file, we compile it with OO,
Ol1, and O2 optimization, respectively. Overall, we obtain 19
assembly files at each optimization level with 17,726 lines of
assembly in OO0, 12,747 lines of assembly in O1, and 15,638
lines of assembly in O2.

Ground Truth. We manually label each line in these
assembly files given each vulnerable patterns we consider.
This involves examining instructions in each file. Each as-
sembly file was labeled by two undergraduate researchers,
and then discrepancies of labels were resolved. It is worth
mentioning that a vulnerability can span multiple lines, or
one line can have multiple vulnerabilities. We aggregate
the number of vulnerable lines across all the assembly files
we generated. The total number of the vulnerable lines we
manually identified is listed in Table I. Constant Coding is
the most popular vulnerable pattern from our dataset.

Results. Given the dataset and ground truth we obtain, we
test the effectiveness of our tool, FaultRISC-V, by passing
each of the assembly file to it and recording the overall results
in terms of precision and recall. We summarize our results
in Table I. We have two major observations.

First, our detection proves to be effective across all three
optimization levels for all the four vulnerable patterns we

TABLE I: Precision and Recall for FaultRISC-V

Fault Pattern # Detected TP FP | FN | # Ground Truth | Precision | Recall

Branch 378 357 21 12 369 94.4% 96.7%
ConstantCoding 475 467 8 0 467 98.3% 100.0%

00 LoopCheck 85 78 3 81 91.8% 96.3%
Bypass 87 86 1 8 94 98.8% 91.5%

Total 1025 988 37 23 1011 96.4% 97.7%

Branch 342 335 7 23 358 97.9% 93.6%
ConstantCoding 578 573 5 0 573 99.1% 100.0%

o1 LoopCheck 63 62 1 3 65 98.4% 95.4%
Bypass 107 104 3 9 113 97.2% 92.0%

Total 1090 1074 | 16 35 1109 98.5% 96.8%

Branch 448 426 22 43 469 95.1% 90.8%
ConstantCoding 578 571 7 2 573 98.8% 99.7%

02 LoopCheck 201 197 4 6 203 98.0% 97.0%
Bypass 56 56 0 0 56 100.0% 100.0%

Total 1283 1250 | 33 51 1301 97.4% 96.1%

considered in this study. For instance, given all the assembly REFERENCES

files in OO0, our tool can achieve 97.4% precision and 98.1%
recall. Moreover, the findings are relatively consistent across
all the three optimizations. Our detection is robust across
different optimizations. Second, our detection is efficient and
it takes less than 200 milliseconds to complete the analysis
on each file on average.

V. RELATED WORK

Some recent studies [10], [11], [12], [13], [14] focus on
addressing the detection of vulnerable code through dynamic
analysis. For instance, Lacombe et al. [10] present a hybrid
approach that combines static analysis with dynamic sym-
bolic execution. Their methodology employs static analysis
to pinpoint potential fault injection points within C source
code, subsequently utilizing dynamic symbolic execution to
validate the feasibility of these vulnerabilities. Lancia et
al. [11] introduce a methodology that leverages symbolic
execution to identify fault injection vulnerabilities directly
within binaries. By simulating fault scenarios at the binary
level, the approach enables the detection of potential vulner-
abilities without requiring access to source code. Grycel and
Schaumont [12] introduce SimpliFI, a simulation framework
designed to evaluate the impact of fault injection attacks
on embedded software through hardware-level simulation.
Unlike traditional high-level fault models that may overlook
microarchitectural nuances, SimpliFI leverages detailed hard-
ware simulations to capture the effects of faults.

VI. CONCLUSION

We develop a tool automatically detecting lines vulnerable
to fault injection attacks in RISC-V assembly. Our evaluation
demonstrates that the method is both effective and efficient.
For future research, we will focus on developing methods
with automatic repair and comparisons between static anal-
ysis and dynamic analysis for fault injection detection.

Acknowledgments. This work was partially supported by
National Science Foundation (CNS-2150086, DGE-2043106,
and CNS-1916722).

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

M. Witteman, “Secure application programming in the presence of side
channel attacks,” Riscure, Tech. Rep., Aug 2017. [Online]. Available:
https://www.riscure.com/uploads/2017/08/Riscure_Whitepaper_Side_
Channel_Patterns.pdf

N. Timmers, A. Spruyt, and M. Witteman, “Controlling PC on ARM
Using Fault Injection,” in 2016 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2016, pp. 25-35.

R. Kumar, P. Jovanovic, and I. Polian, “Precise Fault-Injections using
Voltage and Temperature Manipulation for Differential Cryptanalysis,”
in 2014 IEEE 20th International On-Line Testing Symposium (IOLTS),
2014.

M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte,
“Ram-jam: Remote temperature and voltage fault attack on fpgas
using memory collisions,” in 2019 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2019.

J. Breier and X. Hou, “How Practical are Fault Injection Attacks,
Really?” IEEE Access, 2022.

R. Viera, J.-M. Dutertre, M. Dumont, and P.-A. Moéllic, “Permanent
Laser Fault Injection into the Flash Memory of a Microcontroller,” in
2021 19th IEEE International New Circuits and Systems Conference
(NEWCAS), 2021.

F. Khelil, M. Hamdi, S. Guilley, J. L. Danger, and N. Selmane, “Fault
Analysis Attack on an FPGA AES Implementation,” in 2008 New
Technologies, Mobility and Security, 2008.

L. Reichling, I. Warsame, S. Reilly, A. Brownfield, N. Niu, and
B. Wang, “FaultHunter: Automatically Detecting Vulnerabilities in
C against Fault Injection Attacks,” in 2022 IEEE/ACM International
Conference on Big Data Computing, Applications and Technologies
(BDCAT’22), 2022.

P. Kharangate, G. Rached, H. Musungu, N. Niu, and B. Wang,
“FaultArm: Detecting Fault Injection Vulnerabilities in Arm Assem-
bly,” in NAECON 2024 - IEEE National Aerospace and Electronics
Conference, 2024, pp. 285-290.

G. Lacombe, D. Feliot, E. Boespflug, and M.-L. Potet, “Combining
Static Analysis and Dynamic Symbolic Execution in a Toolchain
to Detect Fault Injection Vulnerabilities,” Journal of Cryptographic
Engineering, vol. 14, no. 1, 2023.

J. Lancia, “Detecting Fault Injection Vulnerabilities in Binaries with
Symbolic Execution,” in /4th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), 2022.

J. Grycel and P. Schaumont, “SimpliFl: Hardware Simulation of
Embedded Software Fault Attacks,” Cryptography, 2021.

K. Murdock, M. Thompson, and D. Oswald, “FaultFinder: Lightning-
fast, Multi-architectural Fault Injection Simulation,” in 2024 Workshop
on Attacks and Solutions in Hardware Security (ASHES 24), 2024.
A. Adhikary, G. T. Petrucci, P. Tanguy, V. Lapdtre, and I. Buhan,
“SoK: The Apprentice Guide to Automated Fault Injection Simulation
for Security Evaluation,” https://eprint.iacr.org/2024/1944.

