
FaultArm: Detecting Fault Injection Vulnerabilities
in Arm Assembly

Prateek Kharangate†, Guillermo Rached†, Harris Musungu§, Nan Niu†, Boyang Wang†
†University of Cincinnati, §Ashland University

{kharanpv, rachedge}@mail.uc.edu, harrismusungu@gmail.com, nan.niu@uc.edu, boyang.wang@uc.edu

Abstract—Fault injection attacks can flip bits by changing
voltage, temperature or EM radiation on a target (e.g., a mi-
crocontroller), and therefore, modify program execution on the
target, such as bypassing secure boot. However, there are limited
tools to automatically detect these vulnerabilities in source code
at the development stage. In this paper, we develop a new tool,
named FaultArm, which can automatically detection four types
of vulnerable code under fault injection attacks in Arm assembly.
Our approach includes (1) parsing and (2) token matching.
Specifically, we design a customized parser for Arm assembly
and design specific token matching rules. We create a dataset of
32 Arm assembly files with 8,493 lines across three optimization
levels, including O0, O1 and O2. Our evaluation show that our tool
is effective and efficient. Specifically, our tool can achieve 100%
precision and 98% recall in O0, 98.6% precision and 90.9% recall
in O1, and 96.5% precision and 88.2% recall in O2.

I. INTRODUCTION

Fault injection attacks (or glitching attacks) [1], [2] can
change the voltage, temperature [3], [4] or EM radiation [5], [6]
on a target (e.g. a microcontroller) when it executes programs.
As a result, the attack can flip bits (e.g., 0 to 1), and therefore,
modify the execution of a program and forces the target to
misbehave. There are several real-world examples of fault
injection attacks, such as revealing AES (Advanced Encryption
Standard [7]) encryption keys, bypassing secure boot on crypto
wallets [1], and modifying flash memory [6].

One proactive approach of mitigating fault injection attacks
at the development stage is to produce code that are resilient
under fault injection attacks. For instance, two comprehensive
values with a greater number of Hamming distance (e.g.,
0x3CA5 and 0xC35A) are preferred to represent False and
True rather than using two trivial values (e.g., 0 and 1). This
is because modifying 0x3CA5 to 0xC35A requires flipping 16
bits, which is much challenging to achieve than flipping 1 bit
to change 0 to 1.

A recent study developed a tool, named FaultHunter [8],
which can automatically detection vulnerable code under fault
injection attacks in C. This tool parses a C file into a parsing
tree by leveraging ANTLR, a JAVA-based generator, and then
search nodes in the parsing tree to detect vulnerable lines. The
tool can detect 3 types of vulnerable patterns, including Branch,
ConstantCoding, and DefaultFail, achieve 90.3% precision and
56.4% recall. However, how to detect vulnerable lines under
fault injection attacks at the assembly level remains unknown.

Our Contributions. In this paper, we design a new tool,
referred to as FaultArm, which can automatically detect vul-

nerable lines under fault injection attacks in Arm assembly.
Our design consists of two phases, including parsing and token
matching. Specifically, we first design a parser that can parse a
given assembly file into a list of tokens, including instructions,
registers, addresses, strings, and integers. Next, we design
specific token matching rules to detect each vulnerable pattern.
Our tool can detect four vulnerable patterns, including Branch,
ConstantCoding, DoubleCheck, and LoopCheck [1].

We create a labeled dataset of 32 Arm assembly files (8,493
lines) and evaluate the detection performance of our tool
across three optimization levels, including 00, O1, and O2.
Our evaluation indicates that our tool is effective and efficient.
Specifically, our tool can achieve 100% precision and 98%
recall in O0, 98.6% precision and 90.9% recall in O1, and
96.5% precision and 88.2% recall in O2. Our findings suggest
that it is feasible to improve the robustness and resiliency of
embedded systems and mitigate fault injection attacks early in
the development stage at the assembly level.

Reproducibility. Our source code and dataset are
made publicly available and can be found on GitHub
https://github.com/UCdasec/FaultArm.

II. BACKGROUND

A. Vulnerable Patterns

Riscure whitepaper [1] identifies 11 vulnerable patterns in
C under fault injection attacks. Riscure is a security company
specialized in analyzing and preventing side-channel attacks
and fault injection attacks on embedded systems. For each vul-
nerable pattern, the whitepaper also provides resilient coding
practices that can mitigate the attacks in C. In essence, resilient
coding examples double check critical paths or data and force
an attacker flipping multiple bits rather than a single bit.

In this section, we specifically present 4 vulnerable patterns,
including Branch, ConstantCoding, LoopCheck, and Bypass,
that we examine in this study and provide concrete examples
in both C and Arm assembly. For the detection of remaining
vulnerable patterns, we will leave those as future work.

Branch. This vulnerability presents when Boolean values
are used in an if statement. A Boolean value in an if

statement can be modified from one state to the other (e.g.,
from 1 to 0) when an attacker flips one bit. On the other hand,
using non-trivial numerical values to represent two different
states in an if statement is considered more resilient (flipping
multiple bits v.s. flipping 1 single bit). The vulnerable and

resilient examples related to Branch in C are described in
List. 1 and List. 2 respectively.

if(flag == 1){ // flag is 0 or 1

// Critical Code, e.g., secure boot

}

Listing 1: Vulnerable Example (Branch, C)

if(flag == 0x3CA5){ // flag is 0x3CA5 or 0xC35A

// Critical Code, e.g., secure boot

}

Listing 2: Resillient Example (Branch, C)

An if statement in C can be associated with two instructions
in Arm assembly, including a comparison instruction (e.g.
cmp) and a branch instruction (e.g., bne). The associated
vulnerable example of Branch in Arm compares register r3
with a trivial value 1 in List. 3. On the other hand, the resilient
example compares register r3 with a non-trivial value 15,525
in List. 4.
cmp r3, #1

bne .L2 // L2 jumps to critical instructions

Listing 3: Vulnerable Example (Branch, Arm, compiled from
List. 1 with O0

cmp r3, #15525 // 0x3CA5

bne .L2 // L2 jumps to critical instructions

Listing 4: Resillient Example (Branch, Arm, compiled from
List. 2 with O0)

ConstantCoding. This vulnerable pattern covers sensitive
constants carrying a limited set of values/states, e.g., {0, 1,
0xFF}, where these constant values can be easily modified
from one to another within the set by modifying a single bit.
On the other hand, non-trivial numerical values with greater
hamming distance between two states are believed to be more
resilient under fault injection attacks. This vulnerable pattern
is similar as Branch. Instead of focusing on if statements in
Branch, ConstantCoding focuses on constant variables (e.g.,
static variables). A vulnerable example and resilient example
in C are presented below.
static short STATE_INIT = 0; //global variable

static short STATE_LOCKED = 1; //global variable

Listing 5: Vulnerable Example (ConstantCoding, C)

static short STATE_INIT = 0x5A3C; //global variable

static short STATE_LOCKED = 0xC3A5; //global variable

Listing 6: Resilient Example (ConstantCoding, C)

The difference between trivial values and non-trivial values
still presents in Arm assembly. The corresponding vulnerable
example and resilient example in Arm assembly are presented
in List. 7 and List. 8.

STATE_INIT:

.short 0

STATE_LOCKED:

.short 1

Listing 7: Vulnerable Example (ConstantCoding, Arm, com-
piled from List. 5 with O0)

STATE_INIT:

.short 23100

STATE_LOCKED:

.short -15451

Listing 8: Resilient Example (ConstantCoding, Arm, compiled
from List. 6 with O0)

LoopCheck. This vulnerability exists when an for loop is
not followed with an if condition to verify if the for loop
completed with the expected number of iterations. Without
checking the completion of the loop, an attacker could flip
bits such that the last few iterations are skipped and data/state
is incorrect/corrupted.

int i = 0;

int sum = 1;

for (i = 0; i<10; i++) {

sum++;

}

// missing loop check

foo(sum);

Listing 9: Vulnerable Example (LoopCheck, C)

int i = 0;

int sum = 1;

for (i = 0; i<=10; i++) {

sum++;

}

// check for loop is completed before call foo

if (i==10) {

foo(sum);

}

Listing 10: Resilient Example (LoopCheck, C)

In the corresponding examples in Arm assembly, the resilient
example of LoopCheck leads to the repeat of a load instruction
(ldr) on register r3 and a comparison instruction (cmp) on
register r3 with the same integer value (e.g., 10). On the other
hand, the vulnerable example only performs the comparison
instruction on register r3 with value 10 once.
ldr r3, [r7, #20]

cmp r3, #10

ble .L7

ldr r0, [r7, #16] // missing loop check

bl foo

Listing 11: Vulnerable Example (LoopCheck, Arm, compiled
from List. 9 with O0)

ldr r3, [r7, #20]

cmp r3, #10

ble .L7

ldr r3, [r7, #20] // checking if loop is completed

cmp r3, #10

bne .L8

ldr r0, [r7, #16]

bl foo

Listing 12: Resilient Example (LoopCheck, Arm, compiled
from List. 10 with O0)

Bypass. This vulnerable pattern is present when a condition
check does not occur at the same level as protected func-
tionality. For example, a verification function call is made
within an if statement. This may allow an attacker to modify
the return value or execution of a program and run critical
code with a single fault. Instead, Riscure whitepaper suggests
that faults should be detected at the same level (function)
that executes protected functionality, e.g. storing the return
values of function calls to variables before being checked in
conditions. To make it even more secure, double condition
checks with the same logic should be applied to avoid single
fault failures. A vulnerable example and resilient example in
C are presented below.

if (!test1()) return; // access denied

// critical code

....

Listing 13: Vulnerable Example (Bypass, C)

bool r1 = test1();

bool r2 = test1();

if (r1 != r2) faultDetect(); // fault detected

if (!r1 || !r2) return; // access denied

// critical code

....

Listing 14: Resilient Example (Bypass, C)

The resilient example of Bypass (in Listing 16) first saves a
return value of a function to register r3 with a mov instruction,
stores the value to stack with a strb instruction, and loads a
return value from stack with a ldrb instruction. On the other
hand, the vulnerable example moves the return value to register
r3 without storing it to stack or performing comparison with
a cmp instruction based on register r3.
bl test1

mov r3, r0 // save return value to register r3

eor r3, r3, #1

and r3, r3, #255

cmp r3, #0

Listing 15: Vulnerable Example (Bypass, Arm, compiled from
Listing 13) with O0)

bl test1

mov r3, r0 // save return value to register r3

strb r3, [fp, #-5] // store return value to stack

bl test1

mov r3, r0

strb r3, [fp, #-6] // store return value to stack

ldrb r2, [fp, #-5] // load return value from stack

ldrb r3, [fp, #-6] // load return value from stack

cmp r2, r3

beq .L8

bl faultDetect

......

Listing 16: Resilient Example (Bypass, Arm, compiled from
Listing 14 with O0)

B. Problem Formulation

We formulate the problem of identifying Arm assembly
code that are vulnerable under fault injection attacks as below.
Specifically, given a sequence of lines of Arm assembly code
A = {a1, ..., am}, where m is the total number of lines in
an Arm assembly file, a method identifying vulnerable code
assigns a label to every line. Let li be the label of line ai,
where 1  i  m. Label li is either V (vulnerable) or N (not
vulnerable).

C. Evaluation Metric

We leverage precision and recall to measure the effectiveness
of a method identifying vulnerable lines under fault injection
attacks. Specifically, a line is considered as a true positive if its
ground truth is vulnerable and its predicted label from a method
is vulnerable. Precision and recall are defined as below.

Pecision =
TP

TP + FP
, Recall =

TP

TP + FN

where TP is true positive, FP is false positive, and FN is false
negative.

III. PROPOSED AUTOMATIC DETECTION

A. Detection Overview

In this section, we describe the details of our automatic
detection tool, named FaultArm. The main idea of our tool
can be highlighted in Fig. 1. Given an assembly file as input,
our tool (1) parses the assembly code based on each line, (2)
generates tokens based on registers, instructions, integers, and
strings, and (3) detects lines with vulnerable patterns based
on token matching across multiple lines. The associated lines
and specific vulnerable patterns will be included in the output
of our tool. We implement the parser, specifically for Arm
assembly, and develop customized token matching for each
type of vulnerable patterns.

Arm Parser

& Tokenizer

Token

Search

foo.s

List of

tokens

Branch:

line 136: cmp r3, #0

line 137: bne .L8

Bypass

line 46: bl open

line 47: subs r8, r0, 0

line 48: beq .L4

……

Fig. 1: Overview of FaultArm

Fig. 2: Example of tokens parsed by our Arm parser for file loop_simple_secure.s in O0

B. Arm Assembly Parser

We implement a customized parser for Arm assembly as
we could not find an existing parser that satisfies our re-
quirement. Specifically, our parser is a linear parser, which
scans assembly code line by line and tokenize each in-
struction based on its broader type, including Location,
Instruction, and Address. We also tokenize each ele-
ment of an instruction into Register, IntegerLiteral,
and StringLiteral. A list of tokens output by our parser
is linearly searched by our detection algorithm for each vul-
nerable pattern. An example of our parser parsing an assembly
file is presented in Fig. 2.

C. Our Proposed Detection

Detection of Branch. Our method decides a line is Branch
vulnerable if (1) this line consists of a conditional instruc-
tion (e.g. a comparison instruction cmp), (2) this conditional
instruction consists of an integer augment with low Hamming
weight value, and (3) its next instruction is a branch instruction
(bne, ble, or bx). In this paper, if the Hamming weight of
an integer is lower than 4, we consider it as low. A high-level
overview of our detection for Branch is present in Fig. 3.

It is worth to mention that, in some optimizations, such as O1
and O2, instruction subs or rsbs can be used as conditional
instruction rather than cmp. Similarly, a branch instruction can
be achieved by using an instruction movx instead of bne, ble,
or bx. Our method incorporates these instructions as well when
it performs the detection. This diversity of detection pattern, in
essence, is because different combinations of instructions can
offer same functionalities.

Detection of ConstantCoding. Our method detects a Con-
stantCoding vulnerability if (1) the type of a token is Location;
(2) its next line consists of data type and an integer with low
Hamming weight value. The line with low Hamming weight
value will be marked as vulnerable. A high-level overview
of our detection for ConstantCoding is present in Fig. 4. In

Fig. 3: Our detection method for Branch.

Fig. 4: Our detection method for ConstantCoding.

addition to global variables, we also detect local variables with
low Hamming weights.

Detection of LoopCheck. Our detection of LoopCheck
consists of two phases. The first phase identifies whether there
is a for loop in assembly. The second phase examines whether
there is an if statement right next to the for loop in assembly.
Specifically, for the first phase, our method detects there is a
for loop if a combination of load instruction (e.g., ldr), a
comparison instruction (e.g., cmp) and a branch instruction
(e,g., bx) is repeated and the branch instruction returns to
the same address. A high-level overview of this detection is
illustrated in Fig. 5.

If the detection of the first phase is positive, our detection
moves to the second phase. Specifically, the register r and
value v associated with the comparison instruction in phase
1 are recorded. Our method detects there is an if statement
for LooCheck if there is a later comparison on the recorded
register r with the recorded value v again. If negative, then
a LoopCheck vulnerable pattern is detected. The line right
after the last branch instruction of the for loop is predicted
as vulnerable. On the other hand, if the later comparison
instruction is still on register r but with a different value than

Fig. 5: Our detection method for LoopCheck (Phase 1).

Fig. 6: Our detection method for LoopCheck (Phase 2).

v, then it indicates the for loop is still on-going and value v is
updated accordingly. A high-level overview of this detection is
illustrated in Fig. 6.

Detection of Bypass. Our detection on Bypass is character-
ized by identifying whether the value of a register is stored to
the stack (e.g., strb) or loaded from the stack (e.g., ldrb)
after a branch to a function (e.g., bx and mov) and prior to
a comparison instruction (e.g., cmp). If positive, then it is
considered not vulnerable. Otherwise, the line right after the
mov instruction is considered as vulnerable.

Fig. 7: Overview of our detection method for Bypass.

IV. DATASET AND EVALUATION

A. Our Dataset

To measure the detection performance of our design, we cre-
ate a dataset of 96 Arm assembly files across three optimization
levels (O0, O1, and O2). Specifically, we first create 24 C files
manually. In addition, we leverage ChatGPT (version 3.5) to
create 8 C files that are associated with security functions in
embedded systems. The description of each C file generated
by ChatGPT is presented below.

• caesarCipher.c – A program that performs the Caesar
Cipher encryption method.

• calibration.c – A program that calibrates the position of
an embedded component.

• data encryption xor.c – A program that encrypts a string
message with an XOR operation.

• data integrity checksum.c – A program that generates a
checksum given a string message.

• file searcher.c – A program that returns information of a
specific file or folder given its path.

• rate limiting brute force.c – A program that reads a
password and blocks after 3 failed attempts.

• rpm plot.c – A program that creates data for a plot for
the rpm (revolutions per minute) of a hypothetical motor.

• secure data wipe.c – A program that deletes a data in a
program securely.

• simple password check.c – A program that just reads and
compares the password in a single attempt.

Given these 32 C files, we compile each one of them
with cross-compiler arm-none-eabi-gcc with multiple
optimizations, including O1, O2, and O3. We obtain 32 Arm
assembly files for each optimization.

Ground Truth. To generate the ground truth labels, we
first label each line in each C file by following the vulnerable
patterns defined in Riscure whitepaper. Only four vulnerable
patterns, including Branch, ConstantCoding, LoopCheck, and
Bypass, are considered through this labeling process. Next, we
find one corresponding line in assembly based on every vul-
nerable line labeled in the C file. The labelling was performed
by two students independently and then cross-referenced to
minimize disagreements. It is worth to mention that a single
line in C can map to multiple lines in assembly. Among these
multiple lines, we choose the assembly line that is the most
associated with each vulnerable pattern. Although each line
is labeled as vulnerable or non-vulnerable, we would like to
emphasize that a line is not labeled independently but based
on a few lines before or/and after it. We clarify which line is
labeled as vulnerable in our assembly dataset by presenting the
examples below from the four vulnerable patterns.
cmp r3, #1 // labeled as vulnerable

bne .L2

Listing 17: Groud Truth Labeling (Branch, Arm, compiled
from List. 1 with O0.

STATE_INIT:

.short 0 // labeled as vulnerable

STATE_LOCKED:

.short 1 // labeled as vulnerable

Listing 18: Groud Truth Labeling (ConstantCoding, Arm,
compiled from List. 5 with O0)

ldr r3, [r7, #20]

cmp r3, #10

ble .L7

ldr r0, [r7, #16] // labeled as vulnerable

bl foo

Listing 19: Groud Truth Labeling (LoopCheck, Arm, compiled
from List. 9 with O0)

bl test1

mov r3, r0

eor r3, r3, #1 // labeled as vulnerable

and r3, r3, #255

cmp r3, #0

Listing 20: Ground Truth Labeling (Bypass, Arm, compiled
from Listing 13) with O0)

TABLE I: Precision and Recall for FaultArm

Fault Pattern # Detected TP FP FN # Ground Truth Precision Recall

O0

Branch 53 53 0 0 53 100.0% 100.0%
ConstantCoding 57 57 0 2 59 100.0% 96.6%

LoopCheck 6 6 0 1 7 100.0% 85.7%
Bypass 15 15 0 0 15 100.0% 100.0%
Total 131 131 0 2 133 100.0% 97.8%

O1

Branch 37 37 0 0 37 100.0% 100.0%
ConstantCoding 13 13 0 2 15 100.0% 86.7%

LoopCheck 3 3 0 5 8 100.0% 37.5%
Bypass 18 17 1 0 17 94.4% 100.0%
Total 71 70 1 7 77 98.6% 90.9%

O2

Branch 48 48 0 0 48 100.0% 100.0%
ConstantCoding 10 10 0 4 14 100.0% 71.4%

LoopCheck 9 9 0 7 16 100.0% 56.3%
Bypass 18 15 3 0 15 83.3% 100.0%
Total 85 82 3 11 93 96.5% 88.2%

TABLE II: Summary of the number of vulnerable lines over
our C and assembly files

C O0 O1 O2
Branch 24 53 37 48
ConstantCoding 58 59 15 14
LoopCheck 3 7 8 16
Bypass 14 15 17 15
Total No of Vulnerable Lines 99 133 77 93
Total No. of Lines 705 3,594 2,396 2,503

Note that the reason we first create C files and then produce
assembly files is mainly because it is feasible to manually label
vulnerable lines in C and then accurately map these labels to
assembly code. It provides more accurate and reliable ground
truth than labeling assembly code directly. While there are
C files (related to security functions for embedded systems)
available on GitHub, these files cannot always be compiled
directly due to missing libraries or files. This is why we create
in-house C files for evaluation. Besides, creating in-house C
files also allows us to compile with different optimization levels
and examine the changes of the number of vulnerable lines
across different optimizations.

Overall, there are 133 lines, 77 lines, and 93 lines that
are labeled as vulnerable in O0, O1, and O2 Arm assembly
respectively. A summary of our labeled dataset is described in
Table II.

B. Evaluation

We measure the detection performance of our methods in
precision and recall and report the results in Table I. Overall,
we have two main findings. First, our detection is effective
across the 3 optimization levels. Second, our detection per-
formance decreases slightly when it gets to a higher level of
optimization. This is expected as a higher level of optimization
leads to more optimized instructions, which increases the
difficulty of our detection. Specifically, our detection achieves
100% precision and 98% recall in O0. It is also worth men-
tioning that our detection runs in almost real time. The analysis
of each file takes within 2 seconds on average.

V. DISCUSSION AND FUTURE WORK

For our future work, we plan to extend our current meth-
ods to detect more vulnerable patterns mentioned in Riscure
whitepaper [1]. In addition, we would like to further extend our
dataset and investigate assembly written in other instruction
sets, such as RISC-V assembly.

VI. CONCLUSION

We design a tool that can automatically detect vulnerable
lines under fault injection attacks in Arm assembly. Our
evaluation shows our method is effective and efficient. We also
make our source code and dataset publicly available for the
research community to reproduce and expand the findings.

ACKNOWLEDGEMENTS

This work was partially supported by National Science Foun-
dation (CNS-2150086, DGE-2043106, and CNS-1916722).

REFERENCES

[1] M. Witteman, “Secure application programming in the presence of side
channel attacks,” Riscure, Tech. Rep., Aug 2017. [Online]. Available:
https://www.riscure.com/uploads/2017/08/Riscure Whitepaper Side
Channel Patterns.pdf

[2] N. Timmers, A. Spruyt, and M. Witteman, “Controlling pc on arm using
fault injection,” in 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2016, pp. 25–35.

[3] R. Kumar, P. Jovanovic, and I. Polian, “Precise fault-injections using
voltage and temperature manipulation for differential cryptanalysis,” in
2014 IEEE 20th International On-Line Testing Symposium (IOLTS), 2014,
pp. 43–48.

[4] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “Ram-
jam: Remote temperature and voltage fault attack on fpgas using memory
collisions,” in 2019 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2019, pp. 48–55.

[5] J. Breier and X. Hou, “How practical are fault injection attacks, really?”
Cryptology ePrint Archive, Paper 2022/301, 2022. [Online]. Available:
https://eprint.iacr.org/2022/301

[6] R. Viera, J.-M. Dutertre, M. Dumont, and P.-A. Moëllic, “Permanent laser
fault injection into the flash memory of a microcontroller,” in 2021 19th
IEEE International New Circuits and Systems Conference (NEWCAS),
2021, pp. 1–4.

[7] F. Khelil, M. Hamdi, S. Guilley, J. L. Danger, and N. Selmane, “Fault
analysis attack on an fpga aes implementation,” in 2008 New Technologies,
Mobility and Security, 2008, pp. 1–5.

[8] L. Reichling, I. Warsame, S. Reilly, A. Brownfield, N. Niu, and B. Wang,
“FaultHunter: Automatically Detecting Vulnerabilities in C against Fault
Injection Attacks,” in 2022 Symposium for Undergraduate Research in
Data Science, Systems, and Security (REU Symposium 2022), 2022.

