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Abstract—Detecting malicious communication in modern
networks has become increasingly challenging due to the
widespread adoption of encryption protocols, where attackers
can hide malicious behaviors. Existing detection methods on
encrypted network traffic are often supervised-based and
require labeled malicious traffic, which is difficult to obtain.
This paper proposes a lightweight, unsupervised method to
detect malicious activities over encrypted network traffic.
We leverage Principal Component Analysis to reduce the
dimensionality of data and utilize Elliptic Envelope to detect
anomalies without needing labeled malicious encrypted traffic
data. We demonstrate the efficiency and effectiveness of
our method through empirical evaluations performed on a
large-scale real-world dataset. Specifically, our method shows
high precision (98.6%) and high recall (97.6%), surpassing
the performance of leading supervised ones. Moreover, our
lightweight approach allows it to run 15 times faster in
detection than other unsupervised methods, confirming low
latency and memory usage even on resource-constrained
devices such as Raspberry Pi.

I. INTRODUCTION

Detecting malicious communication in modern networks
has become increasingly challenging due to the widespread
adoption of encryption protocols such as Transport Layer
Security (TLS). Encryption allows attackers to conceal ma-
licious behavior within seemingly benign traffic, rendering
traditional deep packet inspection ineffective. As a result,
rule-based intrusion detection systems (IDS) that rely on
static signatures or handcrafted features often fail to adapt
to modern obfuscation techniques and evolving malware
communication patterns [1].

To address these limitations, recent research has ex-
plored using machine learning models to detect encrypted
malicious traffic. In particular, approaches based on su-
pervised neural networks have gained popularity due to
their ability to model complex traffic patterns [2]. Despite
their performance, these neural network models are often
computationally heavy, opaque, and ill-suited for real-time
or edge deployment. They struggle to adapt to unseen
traffic due to distribution shifts between training and de-
ployment network environments, a fundamental limitation
in supervised learning. While some studies, e.g., Rosetta et
al. [1], attempted to improve generalization via pre-training
or augmentation, they still require careful tuning and large
amounts of training data.

In contrast, unsupervised learning approaches avoid these
pitfalls by identifying statistical deviations from learned
benign behavior without labeling attack network traffic
samples [3]. However, many of these methods remain
complex or resource-intensive, making them impractical for
running detection on IoT or edge devices.

In this paper, we address the technical challenge of
detecting malicious communication in encrypted network
traffic by developing EVADE, an Elliptic Envelope and
PCA-based Anomaly Detection Engine that balances ac-
curacy, adaptability, and efficiency for deployment in
resource-constrained environments. Our method is an unsu-
pervised approach combining Principal Component Anal-
ysis (PCA) [4] for dimensionality reduction and the El-
liptical Envelope algorithm [5] for anomaly detection.
PCA enhances computational efficiency by projecting high-
dimensional feature spaces into a compact subspace [6]. At
the same time, Elliptic Envelope estimates the distribution
of benign traffic [7] and uses the Mahalanobis distance [§]
to flag anomalous deviations without relying on labeled
data. Our contributions are summarized as follows:

e We present a novel method combining PCA and
Elliptic Envelope for detecting malware on encrypted
network traffic, optimized for efficiency and efficacy.

o« We demonstrate that our proposed method outper-
forms recent supervised models using a real-world
data set containing more than 12.8 GB of network
traffic generated by 105 physical IoT devices deployed
in a smart home environment [9], achieving a higher
accuracy of 98.6% compared to their 96.8%. In ad-
dition, our method runs over 15 times faster than
competing unsupervised methods (2 ms vs. 31 ms).

e We demonstrate the practical deployment of our
method on embedded systems, including Raspberry
Pi, confirming low latency and memory usage for real-
time endpoint security applications.

Reproducibility. Our implementation can be found in

https://github.com/haynesd/evade.

Paper Organization. The remainder of this paper intro-
duces the system and threat model in Sec. II, reviews re-
lated work in Sec. III, and provides background in Sec. IV.
Sec. V details our proposed method, Sec. VI evaluates
it through experiments and comparisons, and Sec. VII



discusses limitations. We conclude with a summary in
Sec. VIIL

II. SYSTEM AND THREAT MODEL

We consider a network where all traffic is encrypted us-
ing standard protocols such as TLS. A recent industry study
shows that over 90% of web traffic is encrypted, and more
than 70% of malware leverages TLS for command-and-
control (C2) communications [10]. The proposed detection
method aims to identify encrypted traffic generated by
malware and operates in two phases: training and detection.

In the training phase, we assume that all traffic is
benign, reflecting common practice in anomaly detection.
During the detection phase, we assume that benign traffic
dominates while malware represents a minority. Public
datasets [11], [12], [13] show that malicious flows ac-
count for less than 10-15% of total traffic, and industry
reports [14], [15] confirm that malicious activity constitutes
only a small fraction of overall flows.

We assume that malware has already been installed on
a device and is sending encrypted communications to a re-
mote Command and Control (C2) server, operated by either
an individual adversary or a nation-state group. Because our
proposed detection method cannot decrypt packet payloads,
its objective is to differentiate encrypted packets generated
by malware from those produced by benign applications.
Threat intelligence reports consistently show that mod-
ern malware families (e.g., Zeus, TrickBot, Cobalt Strike,
APT campaigns) use application-layer encryption such as
HTTPS/TLS to conceal C2 traffic within normal encrypted
flows. Attacks relying on network-layer encryption (e.g.,
IPsec) are beyond the scope of this paper, as they require
different detection strategies. Thus, assuming encrypted
C2 channels reflects the prevailing adversary tradecraft
observed in operational environments. [15], [14], [16].

In other words, given a network packet with encrypted
payload, the detection method must rely on unencrypted
metadata—such as headers, protocol type, packet size, and
timing—to perform effective detection.

III. RELATED WORK

The rapid growth of cyber threats targeting encrypted
traffic, particularly in IoT networks, has led to significant
advancements in malware detection. For example, in [17],
Okur and Dener explore classifying normal and malicious
traffic in IoT networks using classical supervised learning.
Recent studies [2], [18], [19], [20], [21] increasingly use
neural networks for malware detection with deep learning
to identify malicious activities in network traffic, binaries,
and system behaviors. In particular, Choudhury et al. [2]
proposed a supervised approach using convolutional neural
networks (CNNs) to detect encrypted malicious traffic.
Their model extracted spatial features from the packet
metadata and achieved high accuracy in the CIC IoT 2022

dataset [22], a cutting-edge dataset designed for profiling,
behavior analysis, and vulnerability assessment of various
IoT devices operating over diverse communication proto-
cols, including IEEE 802.11 (Wi-Fi), Zigbee, and Z-Wave
Liu and Cao [18] utilized a recurrent neural network (RNN)
with a feature selection layer to classify encrypted network
traffic. Their approach improved recall and robustness to
obfuscated attack vectors on the CIC-IDS 2017 dataset,
which contains the most up-to-date benign common attacks,
similar to real-world data (PCAP) [11] Sun et al. [19]
introduced GNN-IDS, a graph neural network—based in-
trusion detection system that models relationships between
packets and devices. By leveraging topological patterns in
encrypted network flows, the system detects intrusions with
high performance in large-scale network environments.

Deldar and Abadi [20] surveyed deep learning ap-
proaches for zero-day malware detection, emphasizing
the importance of AutoEncoders, GANs, and ensemble
models in generalizing to novel threats. King and Huang
[21] proposed Euler, a temporal link prediction model
that detects lateral movement across network sessions.
By capturing time-sensitive relational patterns, it supports
early detection of evasive malware over encrypted traffic.
Liu and Cao [18] examined using LSTM networks and
neural language models to classify HTTPS-encrypted traffic
without relying on payload inspection. These models use
time series characteristics and TLS handshake metadata
to distinguish between benign and malicious sessions. A
recent framework, named Rosetta, leverages TCP-aware
augmentation and self-supervised pretraining to enhance
encrypted traffic classification, especially in scenarios with
limited labeled data and variable session behavior [1].

Despite the promising results of these supervised neural
network—based methods, several deficiencies limit their
long-term effectiveness in real-world cybersecurity sce-
narios. First, these models rely heavily on large volumes
of labeled training data, often failing to represent emerg-
ing or zero-day attack patterns. Second, neural networks
frequently suffer from overfitting to specific datasets or
attack types, making them brittle when exposed to ad-
versarially crafted inputs or traffic from different envi-
ronments. Third, their black-box nature complicates in-
terpretability and hinders trust in high-assurance settings
where transparent decision-making is critical. Finally, the
computational overhead of deep learning architectures can
impede deployment in edge or resource-constrained IoT
environments. As adversaries evolve and obfuscate their
behaviors, these limitations highlight the need for more
adaptive, interpretable, and lightweight anomaly detection
methods to generalize beyond known threat signatures.

In contrast to existing literature, we propose a
lightweight unsupervised method that outperforms super-
vised neural network approaches and runs 15 times faster
on resource-constrained devices. The next section will



detail background information followed by our design
section, and Sec. VI will compare our work with related
methods, highlighting our novel contributions in efficiency
and effectiveness.

IV. BACKGROUND

A key challenge in cybersecurity is that encrypted net-
work traffic prevents payload inspection. With over 70% of
malware using encryption [10], detection instead relies on
packet-level features (timing, size, metadata). We address
this with an unsupervised method that combines PCA [4]
for dimensionality reduction and the Elliptical Envelope [5]
model for anomaly detection.

A. Principal Component Analysis

PCA is a statistical technique used to reduce the di-
mensionality of data by projecting data onto a lower-
dimensional subspace while preserving as much variance
as possible [6].

Let X € R"*? be a dataset (in essence, a matrix).
Dataset X contains n data samples {xi,...,X,}, where
each data sample x; € R? contains d features. PCA first
computes the empirical mean vector as pu = %Z?:l X;
and this mean is subtracted from each data point to obtain
a zero-centered matrix as

X' =X—-1u' (1)

where 1 € R™*! is a vector of ones.
Next, PCA computes the sample covariance matrix as

v Ly Ty e gixd )
n

and performs eigenvalue decomposition on the covariance
matrix as

Y =VAVT (3)

Here, V € R%*? is a matrix of eigenvectors (principal
directions), and A € R?*9 is a diagonal matrix containing
the corresponding eigenvalues Ay > Ay > > A
which represent the amount of variance captured by each
direction.
To reduce the dimensionality, PCA selects the top k
eigenvectors corresponding to the largest eigenvalues:
Vi = [v1,Va,...,vi] € R&XK

The zero-centered matrix is then projected onto this k-
dimensional subspace:

Z =XV, e R™*F

Each row z; € R¥ in Z is a lower-dimensional representa-
tion of its original data sample x; € R%.

B. Elliptic Envelope

Elliptic Envelope is an unsupervised anomaly detection
method that assumes normal data samples follow a multi-
variate Gaussian distribution. It identifies anomalies based
on how far a given data sample deviates from the estimated
distribution of the majority (benign) data [7].

Let the dataset X consist of n samples, where each data
sample x; € R? represents a d-dimensional feature vector.
In the training phase, Elliptic Envelope first calculates the
empirical mean vector p € R? as p = % ?:1 x;. This
mean vector represents the estimated center (centroid) of
the Gaussian distribution. Next, Elliptic Envelope computes
the empirical covariance matrix ¥ € R%*? as below

Y — lX/TX/ c Rdxd 4)
n

During the detection phase, given a new data sample
x € R?, mean vector 1 and covariance matrix X, Elliptic
Envelope computes the Mahalanobis distance between this
new data sample and the mean vector as below

A E) = \Jx— @) S x =) 9)

This distance, in essence, measures how many standard
deviations that data sample x lie from the center of the
distribution, accounting for feature correlations.

Under the Gaussian assumption, the square of the Ma-
halanobis distance djs(x)? approximately follows a chi-
squared distribution with d degrees of freedom:

dar(x)? ~ X3 (6)

Elliptic Envelope selects a critical threshold ¢ from the chi-
squared distribution such that if dps(x)? > 6, it outputs 1,
which suggests data sample x is an anomaly sample (or an
outlier). Otherwise, it outputs 0, indicating the data sample
is benign (or an inlier).

V. OUR PROPOSED DESIGN

We develop an unsupervised malware detection approach
that combines PCA with Elliptic Envelope. Specifically,
PCA first reduces the dimensionality of extracted features
from encrypted network traffic. Next, Elliptic Envelope
is applied to identify outliers using the Mahalanobis dis-
tance [8] over the dimension space obtained by PCA. Our
proposed detection method operates in three main phases:
pre-processing, training, and detection.

Step 1: Pre-processing. Given a dataset of encrypted
network packets, our method begins by extracting a set
of statistical and protocol-level features from each packet.
This pre-processing phase creates a structured feature ma-
trix, where each row represents a single packet. This matrix
serves as a numerical representation that is suitable for
downstream analyses, such as dimensionality reduction and
anomaly detection.



In this study, we extract 40 features per packet,
capturing both low-level protocol indicators and higher-
level traffic characteristics. These features include:
Header length, Protocol type, Time_To_Live,
Rate, fin_flag_number, syn_flag_number,
rst_flag_number, psh_flag_number, ack_flag_
number, ece_flag_number, cwr_flag_number,
ack_count, syn_count, fin_count, rst_count, HTTP,
HTTPS, DNS, Telnet, SMTP, SSH, IRC, TCP,
UDP, DHCP, ARP, ICMP, IGMP, IPv, LLC,
Tot_sum, Min, Mazx, AVG, Std, Tot_size, TAT,
Number, and Variance.

Step 2: Training. We apply PCA to the extracted feature
matrix to effectively reduce its dimensionality while pre-
serving the majority of the variance present in the data. The
lower-dimensional representation is then used to train an
Elliptic Envelope model, which fits a multivariate Gaussian
distribution to the benign data by accurately estimating
its mean and covariance. These statistical parameters are
crucial, as they form the core of our anomaly detection
process, enabling us to identify deviations from normal
behavior with high precision.

Step 3: Detection. During the detection phase, incoming
packets are transformed using the same PCA projection
and evaluated by the trained Elliptic Envelope model. The
model assigns an anomaly score based on how much the
packet deviates from the learned distribution. A packet is
flagged as malicious if its score falls below a predefined
threshold §, which can be tuned based on the dataset. The
packet is classified as benign if the score is above this
threshold.

VI. EVALUATION
A. Evaluation Metric

We assess the performance of our detection using pre-
cision, recall, Fl-score, and ROC-AUC metrics defined
below.

Precision: Measures the proportion of correctly pre-
dicted positive cases out of all predicted positives.

TP
TP+ FP

Recall: Measures how many positive cases were cor-
rectly predicted.

Precision =

TP
TP+ FN

F1-score: The harmonic mean of Precision and Recall.

Recall =

2 x Precision x Recall

F =
! Precision + Recall

Where:

e TP stands for True Positives: The number of cor-
rectly predicted positive instances.

o F'P stands for False Positives: The number of nega-
tive instances incorrectly classified as positive.

e F'N stands for False Negatives: The number of
positive instances incorrectly classified as negative.

ROC-AUC (Receiver Operating Characteristic — Area
Under the Curve) is a metric that evaluates how well
a classifier distinguishes between positive and negative
classes. The ROC curve plots the True Positive Rate
against the False Positive Rate across various thresholds.
The AUC value ranges from 0.5 (random guessing) to
1.0 (perfect classification), with higher scores reflecting
stronger performance [23].

B. Dataset

We use a large-scale real-world dataset known as the
Canadian Institute of Cybersecurity Internet of Things (CIC
IoT) Dataset 2023 [9] for our evaluation. This dataset
consists of large merged CSV files that contain features
extracted from extensive packet capture (PCAP) data. It
includes 33 different attack types executed in an IoT topol-
ogy comprising 105 devices. The dataset categorizes these
attacks into seven major classes: DDoS (Distributed Denial
of Service), DoS (Denial of Service), Reconnaissance (Re-
con), Web-based Attacks, Brute Force Attacks, Spoofing,
and Mirai-based Attacks. Previous studies have widely used
this dataset for anomaly detection over encrypted network
traffic [2], [24].

C. Training and Testing

Our evaluation applies a 5-fold cross-validation scheme
across five distinct files, from merged01.csv through
merged05.csv, provided in the CIC IoT Dataset
2023 [9]. Each file contains a mixture of benign and
anomalous network traffic. During each fold, one file is set
aside for testing, while the other four are used for training,
resulting in five independently trained models.

It is important to note that we only use samples labeled
as benign for training to simulate a realistic unsupervised
setting where anomaly labels are not available. Although
we assume the training data is benign, this approach still
relies on ground truth labels during the pre-processing
phase to enforce the purity of the training set. In real-world
scenarios, such labels are often unavailable, and we recog-
nize the risk that traffic containing anonymous training data
might degrade the performance or bias the learned baseline.
Therefore, our evaluation represents the best-case scenario,
and future work should consider methods that are robust
and resilient to potential contamination in the training set.

Across the folds, typical packet counts per file are as
follows:

o Benign packets used for training: ~15,000

o Benign packets used for testing: ~1,700
o Anomalous packets in testing: ~340



This setup enables the evaluation of each model’s ability
to generalize from benign-only training data to unseen
malicious behaviors during testing.

Evaluation Settings. We utilize a desktop with an Intel
Core i7-9700 CPU (3.60 GHz), 16 GB RAM, and Windows
11. In addition, we also use a Raspberry Pi 5 with a Quad-
core ARM Cortex-A76 CPU (2.4 GHz), 4 GB RAM, and
Ubuntu 24.04.2. We implement our method in Python.

D. Experiments

Experiment 1: Performance Comparison with Recent
Studies. To evaluate the the efficiency and effectiveness of
our proposed method compared to existing literature, we
replicate several prior studies, including: (1) a supervised
learning approach using a Decision Tree [17], where both
benign and malicious labels are used during training to
fit a classification model; (2) an unsupervised anomaly
detection method based on Deep AutoEncoders [25], where
the Mateen method is trained on benign data and evaluated
on sequential slices of test data using reconstruction error,
with adaptive model updates triggered by performance
drops or concept drift; and (3) a Graph Neural Network
(GCN) model [19], which trains a supervised GNN on IoT
packet features and constructs a k-nearest neighbor graph
to define edge connectivity, enabling the model to perform
binary classification of malicious activity.

We use the same dataset and a consistent data split across
all methods to ensure a fair comparison. Specifically, we
train each model using benign or labeled data according
to its original design and evaluate it on a shared test
set containing both benign and malicious packets. We
utilize the publicly available source code from [25] and re-
implement the methods from [17] and [19], as their code
has not been made publicly available.

Table I summarizes our experimental results, showing the
comparison with related studies. As the table illustrates, our
method EVADE achieved the highest accuracy (98.6%),
surpassing both supervised and unsupervised baselines. The
results show that lightweight statistical models can outper-
form more complex learning approaches when combined
with effective dimensionality reduction.

Experiment 2: Comparison with Unsupervised
Learning. In this experiment, we compare the results of our
method against several widely used unsupervised learning
methods, including Isolation Forest, Local Outlier Factor
(LOF), and One-Class Support Vector Machine (SVM).
Specifically, we evaluate the training time, memory usage
during training, and detection performance across these
four methods on a desktop computer and a Raspberry Pi
device.

As shown in Table IV, our method EVADE necessitates
a longer training time and higher memory usage than other
unsupervised methods. However, EVADE significantly
outperforms these methods during the detection phase, as

it operates much faster and consumes considerably less
memory, as demonstrated in Table II and Table III.

Experiment 3: Visualization of our Detection Results.
Fig. 1 illustrates the outlier detection capabilities of our
EVADE framework, which utilizes an Elliptic Envelope
model in a PCA-transformed space. The decision function
generates a score for each test instance: higher values near
zero (red +) suggest conformity with the training distribu-
tion. In contrast, lower (more negative) values (blue +)
indicate anomalous behaviors as illustrated, most benign
training samples (green circles) cluster within the red
ellipse—the model’s estimated boundary for inliers. Test
instances outside this region, particularly those with lower
decision scores, are identified as anomalies.
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Fig. 1: EVADE: Elliptic Envelope Decision Boundary.

This visualization confirms that EVADE effectively dis-
tinguishes benign behavior from malicious outliers. We
note that the decision threshold is selected based on the
15th percentile of the decision scores during evaluation.
Future evaluations will investigate how changes to this
threshold impact detection performance.

Experiment 4: Contamination Threshold In this exper-
iment, we evaluated the sensitivity of our method to dif-
ferent contamination thresholds by systematically varying
the contamination parameter used in the Elliptic Envelope
model. Specifically, we assessed the detection performance,
including precision, recall, F1-score, and ROC-AUC at four
contamination levels: 0.5%, 10%, 15%, and 25%. This
assessment allows us to quantify the trade-off between false
positives and false negatives based on different assumptions
about the proportion of anomalies in the network traffic.

Our findings reveal a consistently high ROC-AUC of
0.99, indicating that the algorithm reliably distinguishes
between normal and anomalous traffic across the different
contamination thresholds, as shown in Table V. A contam-
ination of 15% achieves the best balance in this experiment
in the trade-off between precision and recall sensitivity.
Our EVADE method would benefit from incorporating
adaptive thresholding or online contamination estimation



TABLE I: Comparison between our method and previous studies.

Category Algorithm Feature Selection Accuracy
[17] Supervised Decision Tree PCA 96%
[19] Supervised GNN Autoencoder 95.5%
[25] Unsupervised Mateen Deep AutoEncoders 96.8%
EVADE (Ours) | Unsupervised | Elliptic Envelope PCA 98.6%

TABLE II: Detection Performance (Desktop)

Algorithm Precision Recall F1 Score ROC-AUC Detect Time (ms) Memory (KB)
Elliptic Envelope 0.986 0.976 0.982 0.994 1.80 66
Isolation Forest 0.986 0.976 0.976 0.994 31.00 521

LOF 0.986 0.976 0.976 0.992 123.00 6,301
One-Class SVM 0.990 0.976 0.986 0.990 82.60 66

TABLE III: Detection Performance (Raspberry Pi 5)

Algorithm Precision  Recall

F1 Score

ROC-AUC Detect Time (ms) Memory (KB)

Elliptic Envelope 0.988 0.978 0.988
Isolation Forest 0.986 0.976 0.978
LOF 0.986 0.976 0.976
One-Class SVM 0.990 0.976 0.986

0.992 2.74 66
0.994 47.41 526
0.992 347.47 6,314
0.990 86.22 66

TABLE IV: Training Time and Memory Usage (Desktop)

Model Train Time (s) Train Mem (KB)
Elliptic Envelope (Ours)  4.68 12,705

Isolation Forest 0.91 1,943

Local Outlier Factor 0.15 19,227

One-Class SVM 0.14 1,903

TABLE V: Contamination Thresholds

Contam. (%) Precision Recall F1 Score ROC-AUC
5 0.30 1.00 0.47 0.99
10 1.00 0.66 0.79 0.99
15 0.99 0.98 0.99 0.99
25 0.60 0.98 0.74 0.99

for practical and real-world applications to maintain its
effectiveness in dynamic network conditions.

VII. DISCUSSION AND LIMITATIONS

We acknowledge two limitations of this study. First, as a
statistical method, it may not adapt well if attackers employ
Al-driven techniques to mimic benign traffic. Second, our
evaluation relies on a fixed dataset, which limits general-
izability. In future work, we plan to evaluate the method
on more diverse datasets, such as CSE-CIC-IDS2018 with
botnet traffic, and to integrate adaptive learning techniques
such as incremental sliding windows, to improve robustness
against evolving adversarial behaviors.

VIII. CONCLUSIONS

This paper presented a lightweight unsupervised learning
approach that integrates Principal Component Analysis and
Elliptic Envelope for anomaly detection. Using the CIC IoT
Dataset 2023, our method extracts key network features,
reduces dimensionality with PCA, and applies Mahalanobis
distance-based anomaly detection to distinguish malicious
activity from benign traffic. Compared to the existing

literature, the experimental results demonstrated high pre-
cision and recall, reducing false positives and negatives
while maintaining computational efficiency for real-time
deployment. Our approach also improves network security
by detecting zero-day threats without relying on labeled
attack data, making it a scalable and adaptive solution for
analyzing encrypted traffic.
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