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Abstract—This paper investigates evasion attacks on end-
to-end deep-learning malware detection over ELF (Executable
and Linkable Format) binaries. We show that an attacker can
deliberately modify bytes in a malware ELF binary such that a
well-trained neural network is misled and predicts it as benign.
We examine five methods that can modify ELF binaries without
affecting functionalities and leverage them in evasion attacks. We
explore two state-of-the-art end-to-end deep learning malware
detectors, including MalConv and FireEyeNet, over a real-world
dataset with 1,422 ELF binaries. Our experimental results show
that evasion attacks with 3 out of the 5 methods are effective
and can force the two CNNs to predict incorrectly. For instance,
the most effective modification achieves up to 76.6% evasion
rate on FireEyeNet and 8.4% evasion rate on MalConv. We
also demonstrate that retraining CNNs with deliberately modified
binaries can significantly mitigate evasion attacks.

I. INTRODUCTION

End-to-end deep learning malware detection is a new ap-
proach of detecting malicious binaries [1], [2]. Specifically, all
the bytes from a binary are formulated as a vector and utilized
as an input to a malware detector, where the malware detector
is a neural network. Compared to existing static analysis
methods, end-to-end deep learning malware detection does not
need to perform time-consuming feature engineering.

Despite the promising results, recent studies suggest that
end-to-end deep learning malware detection is vulnerable under
evasion attacks [3], [4], [5], [6], [7], [8], [9]. In an evasion
attack, an adversary intentionally modifies certain bytes in a
malicious binary such that the modified binary still carries
the same functionalities but can force a well-trained neural
network to predict incorrectly (more specifically, outputting
benign rather than malware). Evasion attacks have been suc-
cessfully demonstrated over PE (Portable Executable) binaries
in Windows [3], [4], [5], [6], [7], [8], [9].

In this paper, we investigate evasion attacks on end-to-end
deep learning malware detection over ELF binaries, which
have not been well-investigated. Compared to PE binaries, ELF
binaries used in Linux are more comprehensive in terms of
structures, and therefore, more challenging to modify. Specif-
ically, we examine black-box evasion attacks, in which an
adversary does not have access to the details (weights or
hyperparameters) of a neural network but can query it with
various modified binaries and obtain associated predictions.
Our findings are summarized below:

• We examine five modification methods, referred to as
Header Alteration, Debug Alteration, Padding Alteration,

End Appendix, and Dynamic Extension, which can mod-
ify bytes in ELF binaries without affecting functionalities.

• We explore two state-of-the-art end-to-end deep learning
malware detectors, including MalConv [1] and FireEyeNet
[2], over a real-world dataset containing 1,422 ELF bina-
ries (711 benign and 711 malware). Experimental results
show that the baseline detectors can achieve promising
results in malware detection when there are no evasion
attacks. For instance, MalConv can achieve a 95.5% F1
score and 99.6% AUC (Area Under the Curve).

• We demonstrate that evasion attacks using modified ELF
binaries are effective. Specifically, evasion attacks with the
most effective modification method – Padding Alteration
– can achieve up to 76.6% evasion rate on FireEyeNet
and 8.4% evasion rate on MalConv.

• We find that Padding Alteration, End Appendix and Dy-
namic Extension are all able to evade baseline detectors
successfully. On the other hand, Header Alteration and
Debug Alterations are not effective.

• We find MalConv is much more resilient than FireEyeNet,
where an attack on it achieves a much lower evasion
rate. For instance, evasion rate only reaches 1.6% on
MalConv with an input size of 1 million bytes. We also
show that retraining malware detectors with deliberately
modified ELF binaries is an effective way to mitigate
evasion attacks, especially over MalConv (e.g., mitigating
evasion rate to 0.2% or less).

Reproducibility. Our source code and dataset can be found
at https://github.com/UCdasec/EvilELF.

II. RELATED WORK

White-box evasion attacks [3], [4], [5], [6], [7], [8], [9] have
been proposed in the context of end-to-end malware detection
over PE binaries. White-box attacks require an attack knowing
the details of a neural network while black-box attacks do not.

Specifically, Kolosnjaji et al. [3] proposed an evasion attack
against MalConv by padding optimized values at the end of
each input. Demetrio et al. [4] designed a similar evasion
attack against MalConv by modifying bytes in the DOS header.
Kreuk et al. [5] developed a gradient-based evasion attack that
perturbs bytes in either the slack space or the end-of-file space.
This attack can achieve around 30% evasion rate against Mal-
Conv. Suciu et al. [6] further improved the evasion rate to 70%
against MalConv based on the work in [5]. Sharif et al. [10]



Fig. 1: System and threat model

proposed an attack to defeat neural-network based malware
detectors by transforming the instructions, more specifically,
binary diversification, without breaking functionalities. This
method applies in-place randomization to replace opcodes
inside a .text section with semantic equivalent opcodes or uses
the jump function to move opcodes into a different section
without altering original functions. Liu et. al. [11] leveraged
different modifications over binaries to evade multiple neural
networks simultaneously. A more comprehensive survey on
evasion attacks over PE binaries can be found in [12]. However,
these attacks are all based on modifications over PE binaries
in Windows and cannot be directly applied to ELF binaries in
Linux.

One recent study [13] proposed two methods to maliciously
modify ELF binaries for evasion attacks on end-to-end deep
learning malware detection. Their first method modifies zero
bytes that are padded to the end of a binary when the size
of a binary is less than the input size of a neural network.
However, it only perturbs data in the input space and no real-
world modified binaries are generated.

Their second method inserts a new section between two
sections by modifying section offsets in the Section Header
Table. However, offsets in the Program Header Table are not
modified correspondingly. As a result, the modification may
result in ELF binaries that are unable to execute. Compared to
[13], our work is able to produce deliberately modified binaries
that can still run in the real world.

III. BACKGROUND

A. System and Threat Model

System Model. The system model includes a malware
detector, which is a neural network. An input to a neural
network is a vector of all the bytes from an ELF binary. The
output is either 0 (benign) or 1 (malicious). All the binaries
utilize the same input size, which is defined in advance. The
input size is the number of bytes in a vector passed to a neural
network. If the actual number of bytes in a binary is less than
the input size, 0x00s are padded at the end. If the actual
number of bytes in a binary is greater than the input size,
additional bytes beyond the input size are trimmed.

Threat Model. A black-box adversary can deliberately
modify a malicious ELF binary, generate a modified malicious
ELF binary, pass the modified ELF binary to the malware

Fig. 2: The high-level structure of an ELF binary

detector, and obtain the prediction result (either 0 or 1). The
goal of this adversary is to evade the malware detector, such
that the malware detector will predict the modified malicious
ELF binary as benign. This is referred to as an evasion attack.
Black-box indicates that the adversary does not know the
details of the neural network but can submit modified ELF
binaries and obtain associated prediction results.

Metric. We use accuracy, precision, recall, F1 score, and
Area Under the Curve (AUC) to measure the performance
of a malware detector. In addition, we use evasion rate to
measure the effectiveness of an attack. Evasion rate is defined
as the ratio between the number of modified binaries bypassing
a neural network and the total number of modified binaries
generated by an adversary.

B. Structure of ELF Binaries

Executable and Linkable Format (ELF) is a standard ex-
ecutable file format typically used in Unix/Linux operating
systems. An ELF binary normally consists of multiple compo-
nents, including the ELF Header, the Program Header Table,
segments/sections, and the Section Header Table [14]. the ELF
Header is strictly defined at the beginning of an ELF binary
while the locations of other components are arbitrary and are
defined in the ELF Header. A high-level description of the ELF
format is illustrated in Fig. 2.

ELF Header. An ELF Header consists of 52 or 64 bytes
for 32-bit or 64-bit binaries respectively. The first few bytes
in an ELF Header contains information regarding file classes,
data encoding, object file types, architecture, and version
information. In addition, an ELF Header also contains the
offsets and sizes of the Program Header Table and Section
Header Table, the number of sections in the ELF binary, etc.

Program Header Table. The Program Header Table de-
scribes segments contained in an ELF binary. It defines the
number of segments contained in the ELF binary, the offset
of each segment, etc. It also enables the operating system to
execute the binary by informing where specific segments need
to be loaded into memory.

Segments/Sections. ELF offers two logical views/organiza-
tions over the same data within a binary: the execution view
and the linking view. The execution view, which is organized
mainly based on segments, informs the operating system how
to load segments when executing an ELF binary. The linking
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Fig. 3: An example of Header Alteration: all the 9 padding
bytes and the first byte of e_flags are modified to 0xFF.

Fig. 4: An example of Debug Alteration: all the 45 bytes of
.comment section are modified to 0xFF.

view, which is based on sections, offers information (e.g.,
metadata for debugging) at the link time.

Common sections include initialized data (.data), version
control (.comment), dynamic linking information (.dynamic),
symbolic debugging information (.debug), executable instruc-
tions (.text), a string table (.strtab), and a symbol table
(.symtab). A segment contains one or multiple sections. Com-
mon segments include a loadable segment (PT LOAD) and the
dynamic linking segment (PT DYNAMIC).

Section Header Table.The Section Header Table defines the
size and offset of each section in an ELF binary and contains
all information about the contents of a file. It is not loaded
during the program execution, but it is necessary for linking
and creating the original files.

IV. MODIFICATIONS ON ELF BINARIES

Modifying an ELF binary without affecting its functionalities
is non-trivial. It requires a deep understanding about the struc-
ture of ELF binaries and significant amounts of engineering
efforts. However, existing research [13] has shown that it is
feasible. In this study, we investigate 5 modification methods
and examine their impacts on end-to-end deep-learning mal-
ware detection. These 5 modification methods can modify a
(relatively) large number of bytes and are general, as each one
can be applied to most (if not all) ELF binaries created using
a standard compiler (gcc, clang, etc). For each modification
method we examine, we manually validate that a modified ELF
binary remains functional.

Fig. 5: An example of Padding Alteration: all the 6 padding
bytes are modified to 0xFF.

It is worth mentioning that our list of modification methods
on ELF binaries is obviously not complete. There are more
comprehensive modification methods that could perturb bytes
in ELF binaries, especially when analyzing each ELF binary
individually.

Header Alteration (HA): Header Alteration can modify
bytes in the header of an ELF binary. Specifically, e_flags
has 4 bytes (all 0x00 by default) that can be freely modified.
In addition, there are 9 padding bytes (EI_PAD) in the ELF
identification portion that can be modified without affecting
functionalities. Overall, there are up to 13 modifiable bytes
using Header Alteration. An example of Header Alteration is
illustrated in Fig. 3.

Debug Alteration (DA): Debug Alteration can modify
bytes in multiple sections, including “.comment”,“.note”, and
“.debug” sections, where these sections include version control,
vendor compliance, and debugging information respectively.
All the bytes in these 3 sections can be modified without
affecting the execution, but the particular number of bytes
varies across ELF binaries. In general, it is around 50-300
bytes (in total) in one ELF binary. It is worth mentioning that
these sections are available in non-stripped binaries but not in
stripped binaries1. We assume all the ELF binaries in this study
are non-stripped, which is the default in practice2.

An example of Debug Alteration applied to a .comment
section is presented in Fig. 4. The specific steps for generating
the modified ELF binary are described below.

• We first scan the ELF Header to find the string table index.
Given the index, we scan the Section Header Table to find
the offset of the string table. From the string table, we can

1To generate a stripped binary, one can use -s option when compile the C
code with gcc or use strip command on a non-stripped binary.

2Modifying bytes in stripped binaries is extremely challenging. Although it
is an interesting problem, it is out of the scope of this study.
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Fig. 6: An example of End Appendix: a new section with 64 dummy bytes is appended starting at offset 0x00003708.

learn the index of the .comment section (details skipped
in Fig. 4).

• Given the index of the .comment section, we scan the
Section Header Table to find the offset of the .comment
section (0x00003010) and its size (45 or 0x002D).

• We modify 45 bytes starting from offset 0x00003010.

Padding Alteration (PA). Padding Alteration modifies
padding bytes, which are dummy zero (0x00) bytes before
the end of each section in an ELF binary. Specifically, if the
number of bytes associated with program instructions in a
section is not a multiple of the word size, a compiler will
automatically append a minimal number of zero bytes to the
end of a section. We denote these zero bytes as padding
bytes. The offset and size of a section defined in the Section
Header Table ensure these padding bytes are not involved in the
program execution. As a result, padding bytes can be modified
arbitrarily without affecting functionalities. The number of
padding bytes at the end of a section can be computed based
on the offset of this section, the size of this section, and the
offset of the next section.

A concrete example of altering 6 bytes with Padding Alter-
ation is illustrated in Fig. 5. The specific steps for generating
the modified ELF binary are described below.

1) We pick a section and find its offset (0x00000542) and
size (0x0010) in the Section Header Table.

2) We find the next section offset (0x00000558) in the
Section Header Table.

3) We calculate the number of padding bytes in the section
as 0x0558 - 0x0542 - 0x0010 (i.e., 1368 - 1346 -
16) = 6.

4) We modify the 6 padding bytes before offset
0x00000558.

End Appendix (EA). End Appendix can append a new
section with an arbitrary number of dummy bytes near the
end of the file (i.e., after the last section but before the Section
Header Table). Specifically, given an original ELF binary, we
first decide how many bytes we need to include in this new
section. Then, we modify multiple bytes associated with this
new section in the ELF Header (including the number of
sections and the offset of Section Header Table) and also
multiple bytes in the Section Header Table (including the size
and offset of this new section) . Next, the new section with
dummy bytes is appended to the last section of the original
binary. These dummy bytes can be arbitrary bytes. Particularly,
for ease of implementation, we implement two options: (1)
constant bytes (e.g., all 0xFF) or (2) variable bytes (e.g., bytes
from benign binaries).

A concrete example of appending 64 bytes with End Ap-
pendix is illustrated in Fig. 6. The specific steps for generating
the modified ELF binary are described below.

1) We choose to create a new section with 64 dummy bytes,
where each byte is 0xFF.

2) We record the Section Header Table offset
(0x00003708) in the original ELF Header and
leverage this offset as the offset of the new section.

3) All the bytes starting at 0x00003708 in the original
ELF binary are shifted down with an offset of 64 (i.e.,
0x40), which is the number of dummy bytes. As a result,
we need to increase the Section Header Table offset by
64 (0x00003708 to 0x00003748) and increase the
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Fig. 7: An example of Dynamic Extension: 64 dummy bytes are inserted starting at offset 0x00002FB0.

number of sections by 1 (0x1F to 0x20) in the ELF
Header.

4) We insert the new section with 64 dummy bytes starting
at 0x00003708

5) We create 64 header bytes for the new section at the end
of the Section Header Table. We add these 64 bytes by
copying the 64 header bytes from the last section of the
original ELF binary but assigning the new section offset
as 0x00003708 and the new section size as 0x0040.

Dynamic Extension (DE). Dynamic Extension extends
the size of the dynamic segment (i.e., PT DYNAMIC) by
appending dummy bytes at the end of it. The dynamic segment
specifies dynamic linking information for an ELF binary and
appears (relatively) late in an ELF binary, typically after most
PT LOAD segments. The dynamic segment contains only one
section, named the .dynamic section. Since the bytes of the
dynamic segment are not loaded into memory but only read
by the dynamic linker during execution, an arbitrary number
of dummy bytes can be appended at the end of the dynamic
segment without affecting execution.

To append bytes successfully, associated information regard-
ing the size of this segment, the size of the .dynamic section,
the offsets of all the subsequent segments and sections, and
the offset of the Section Header Table will all need to be
updated in the ELF Header, the Program Header Table, and
the Section Header Table respectively. This modification shares
a similar concept as End Appendix but modifies bytes earlier
in a binary. The main difference is that this modification also
needs to modify bytes in the Program Header Table while End
Appendix does not.

A concrete example of adding 64 bytes in the dynamic
segment with Dynamic Extension is illustrated in Fig. 7. The

specific steps for generating the modified ELF binary are
described below.

1) We choose to extend the dynamic segment (i.e., .dynamic
section) with 64 dummy bytes, where each byte is 0xFF.

2) We find the offset of the segment,0x00002FB0, next to
the dynamic segment by scanning each segment defined
in the Program Header Table (skipped in Fig. 7).

3) We increase the offset of all bytes starting at
0x00002FB0 in the original ELF binary by 64 (0x40),
which is the number of dummy bytes.

4) We insert 64 dummy bytes starting at 0x00002FB0.
5) We increase the size of the dynamic segment in the

Program Header Table by 64 (0x10F0 to 0x2030). We
increase the size of the .dynamic section in the Section
Header Table by 64 (0x10F0 to 0x2030).

6) We increase the offset of the Section Header Table by
64 (0x00003708 to 0x00003748).

7) Besides the Section Header Table, if there are more
sections or segments that are after the dynamic segment,
we increase the offset of each of these sections by 64 in
the Section Header Table and increase the offset of each
of these segments by 64 in the Program Header Table
(skipped in Fig. 7).

V. EVALUATION

Dataset. We leverage a public dataset3, referred to as the
Labeled-Elfs dataset. It contains a total of 39,521 ELF binaries
(711 malicious binaries and 38,810 benign binaries) produced
using x86-64 architecture (little endian)4. The 711 malicious

3https://github.com/nimrodpar/Labeled-Elfs
4There is also a small number of benign binaries generated for ARM 32 in

the original dataset, we exclude those in our study.
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ELF binaries were produced from 4 malware (written in C),
including Mirai-vanilla, BASHLITE-1.0, BASHLITE-lizkebab,
and lightaidra-1.0. Multiple compilers (gcc, clang, and
llvm) with different versions and various optimization levels
(O1, O2, O3, and Os) were applied when producing these
binaries. All the ELF binaries are non-stripped, and some of
the malware binaries are obfuscated5. The distribution of file
size of this dataset is presented in Fig. 8.

(a) All Binaries (b) Malicious Binaries Only

Fig. 8: Distribution of ELF binary size (Labeled-Elfs).

We establish one subset from this dataset for our evaluation.
We refer this subset as Labeled-Elfs-Balanced. It contains all
the 711 malicious binaries and 711 random benign binaries
from the original dataset.

Neural Networks. We use two CNNs, including MalConv
and FireEyeNet, as baseline detectors that a black-box adver-
sary could attack. Both networks are originally designed for
deep-learning malware detection over PE files in Windows.

MalConv. MalConv [1] is a neural network that combines
a convolutional neural network with a global max-pooling
before transferring to connected layers. This model uses one
8-dimensional embedding layer, two 1-dimensional gated con-
volutional layers, a temporal max pooling layer, and a fully
connected layer with softmax. The embedding layer maps each
byte to a fixed length feature vector, which reduces bias in byte
values. Also, the convolutional layers holds a large filter width
of 500 bytes and a stride of 500 bytes, with 128 filters total. The
maximum input size examined in [1] is 1 MB. We set window
size as 500, epochs as 50, batch size as 32, and learning rate
as 0.0001.

FireEyeNet. FireEyeNet [2] was proposed by researchers
from FireEye. It consists of one 10-dimensional embedding
layer, five stacked 1-dimensional convolutional and max pool-
ing layers, followed by a fully connected layer with sigmoid
function. The maximum input size of each program examined
in [2] is 102,400 and it achieves 98% AUC and 96% accuracy
over a private large-scale PE binary dataset.

Experiment Setting. We use a Linux machine with an
i5 CPU, 32GB memory, and one Nvidia Titan RTX GPU
to perform all the experiments. We develop a tool, named
EvilELF, to perform each modification automatically over an
ELF binary.

Experiment 1: Performance of Baseline Detectors. We
investigate the performance of baseline detectors for end-to-end

5Our modification methods also work for obfuscated non-stripped binaries.

deep-learning malware detection over ELF files. Specifically,
we leverage MalConv as the architecture of baseline neural
networks and we explore multiple detectors with various input
sizes, including 100K, 200K, 500K, and 1000K respectively,
by using Labeled-Elfs-Balanced.

When we train each baseline detector, we use 80% of data
for training, 10% for validation, and 10% for testing. Detailed
results are presented in Table I. In addition to MalConv, we
also train baseline detector with FireEyeNet using input size
102400, 204800, and 409600 respectively. Overall, we observe
that these baseline detectors have promising performance in
malware detection.

TABLE I: The performance of baseline detectors over Labeled-
Elfs-Balanced

Detector ACC Precision Recall F1 AUC
MalConv 100k 97.2% 98.5% 95,8% 97.2% 99.5%
MalConv 200k 97.2% 100.0% 100.0% 97.2% 99.5%
MalConv 500k 97.9% 98.5% 92.1% 95.2% 99.6%
MalConv 1000k 95.1% 97.1% 95.8% 96.5% 99.7%
FireEye 102400 98.5% 97.2% 97.1% 97.1% 99.5%
FireEye 204800 99.2% 100.0% 100.0% 99.3% 99.5%
FireEye 409600 97.8% 95.7% 95.8% 97.8% 98.7%

Experiment 2: Evasion Attacks on Baseline Detectors.
We examine evasion attacks on baseline detectors. We apply
each of the 5 modification methods separately. We examine
both MalConv and FireEyeNet with different input sizes.

Specifically, given each modification method, we randomly
pick 5 malware binaries that are predicted as malicious by
all 4 MalConv baseline detectors, Then, we generate 1,000
modified versions of these 5 malware binaries by using the
given modification method. Next, we pass these 1,000 modified
binaries to each baseline detector to measure the evasion rate.
We repeat the attacks with 5 trials and record the mean evasion
rate. All the 1,000 modified binaries are different across the 5
trials. We repeat the same process for FireEyeNet detectors.

For End Appendix or Dynamic Extension, we examine two
ways, including (1) constant dummy bytes and (2) variable
dummy bytes from benign binaries, for altering bytes. For
constant dummy bytes, we randomly choose a byte from
[0x40, 0xFF]. We set the number of dummy bytes as 200,000
in this experiment.

Observations from Experiment 2. As shown in Table II, we
have 3 major observations

• End Appendix (Constant), Dynamic Extension (Constant),
and Padding Alteration are able to defeat baseline de-
tectors. For example, Padding Alteration achieves 8.4%
evasion rate on MalConv 100k and 76.6% evasion rate
on FireEye 102400.

• We also observe that the evasion rate decreases when
the input size of MalConv increases. This suggests that
MalConv with a higher input size is more resilient against
evasion attacks with our modifications. Conversely, we
observe FireEyeNet is more vulnerable with a larger input.

• Header Alteration and Debug Alteration are ineffective
(i.e., evasion rate is or is close to 0%). This is likely
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TABLE II: Evasion Rate (mean) on Baseline Detectors

Detector Header Padding Debug End Appendix End Appendix Dynamic Extension Dynamic Extension
Alteration Alteration Alteration (Constant, 200k) (Variable, 200k) (Constant, 200k) (Variable, 200k)

MalConv 100k 0% 8.4% 0% 7.3% 0% 8.1% 0%
MalConv 200k 0% 5.3% 0% 4.5% 0.5% 4.8% 1.1%
MalConv 500k 0% 2.6% 0% 1.1% 0.2% 1.0% 0%
MalConv 1000k 0% 1.6% 0% 0.8% 0% 0.8% 0.1%
FireEye 102400 0% 76.6% 0.7% 42.5% 0.7% 51.9% 52.4%
FireEye 204800 0% 27.3% 2.0% 32.1% 2.0% 31.7% 31.1%
FireEye 409600 0% 20.2% 0.1% 48.8% 0.1% 73.9% 74.6%

TABLE III: The Impact of the Number of Dummy Bytes in End Appendix on Evasion Rate (mean)

Constant Bytes Variable Bytes (Benign)
100 1k 10k 100k 200k 100k 200k 400k

MalConv 100k 0% 7.3% 7.2% 7.3% 7.3% 0% 0% 0%
MalConv 200k 0% 4.5% 4.5% 4.5% 4.5% 0.1% 0.4% 0.4%
MalConv 500k 0% 1.1% 1.1% 1.1% 1.1% 0% 0.1% 0.2%
MalConv 1000k 0% 0.8% 0.8% 0.8% 0.8% 0% 0% 0.1%
FireEye 102400 2.2% 21.4% 24.0% 42.5% 42.5% 0.7% 0.7% 0.7%
FireEye 204800 15.7% 27.7% 28.2% 32.8% 32.1% 2.0% 2.0% 2.0%
FireEye 409600 2.2% 20.5% 20.5% 23.0% 48.9% 0.1% 0.1% 0.1%

TABLE IV: The Impact of the Number of Dummy Bytes in Dynamic Extension on Evasion Rate (mean)

Constant Bytes Variable Bytes (Benign)
100 1k 10k 100k 200k 100k 200k 400k

MalConv 100k 0% 7.2% 7.2% 8.1% 8.1% 0% 0% 0%
MalConv 200k 0% 3.3% 3.3% 4.6% 4.8% 0.1% 1.1% 1.1%
MalConv 500k 0% 0.9% 0.9% 1.0% 1.0% 0% 0% 0.1%
MalConv 1000k 0% 0.5% 0.5% 0.8% 0.8% 0% 0.1% 0.1%
FireEye 102400 6.4% 29.3% 33.4% 51.9% 51.9% 52.4% 52.4% 52.4%
FireEye 204800 13.5% 27.5% 27.9% 34.7% 31.7% 31.1% 31.1% 31.1%
FireEye 409600 58.6% 21.3% 20.2% 41.6% 74.0% 74.6% 74.6% 74.6%

because the two methods modify a small number of bytes.
• MalConv is much more robust than FireEyeNet under

evasion attacks.

Experiment 3: Impacts of the Number of Dummy Bytes
(End Appendix and Dynamic Extension). We examine the
impacts of the number of dummy bytes in End Appendix and
Dynamic Extension. Specifically, given a modification method,
we again produce 1,000 malicious binaries and pass them to
a baseline detector to measure the evasion rate. We investigate
the impact of different amounts of dummy bytes.

As presented in Table III, we notice that if the number of
dummy bytes is greater than 1,000, increasing the number of
dummy bytes further in End Appendix (with constant bytes)
does not affect the evasion rate for MalConv. We have a
consistent observation for Dynamic Extension in Table IV. For
FireEyeNet, the evasion rate continues to increase with the
number of dummy bytes for constant byte modifications.

Experiment 4: Mitigating Evasion Attacks. In previous
experiments, we have shown that MalConv with an input size
of 1 million bytes is resillient under evasion attacks. In this
experiment, we retrain a baseline detector by using the original
binaries and also perturbed malicious binaries in order to
reduce evasion rate in evasion attacks.

Specifically, given 711 malicious ELF binaries and 711 be-
nign ELF binaries, we first generate 1,250 modified malicious
binaries given each modification by following the steps in
previous experiments. Then, we retrain a detector with 961

TABLE V: Evasion rate on detectors that are retrained with
modified malicious binaries)

Detector Padding Alteration
MalConv 100k 0%
MalConv 200k 0.2%
MalConv 500k 0%
MalConv 1000k 0%
FireEye 102400 3.1%
FireEye 204800 2.0%
FireEye 409600 1.0%

malicious binaries (711 original and 250 modified) and 711
benign binaries and measure the evasion rate on the retrained
detector with the remaining 1,000 modified malicious binaries.
We evaluate both MalConv and FireEyeNet with different input
size. We find that retraining a neural network with deliberately
modified binaries can effectively mitigate evasion attacks as
shown in Table V. On the other hand, generating sufficient de-
liberately modified binaries with various modification methods
could be difficult to scale, especially when there are a large
number of malicious binaries in a dataset.

Experiment 5: Evading Real-World Malware Detec-
tors on VirusTotal. We investigate whether our deliberately
modified binaries could evade real-world malware detectors
that may (or may not) use end-to-end malware detection.
Specifically, we choose five original malicious binaries, and
for each one, we generate one modified malicious binaries
using Padding Alteration. Then, we submit the 5 original
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TABLE VI: Evasion on Real-World Malware Detectors (Virus-
Total, 62 detectors in total, examined in August 2023)

Name of Malware Binary No. of Detectors
Reporting Malware

Original

lightaidra-1.0 (clang-6.0.1, Os) 23
BASHLITE-client-1.0 (gcc-7.1.0, O0) 35
BASHLITE-client-1.0 (gcc-9.1.0, O2) 29

Mirai-vanilla (gcc-8.4.0, O0) 35
Mirai-vanilla (gcc-8.4.0, Os) 9

Modified

lightaidra-1.0 (clang-6.0.1, Os) 7
BASHLITE-client-1.0 (gcc-7.1.0, O0) 33
BASHLITE-client-1.0 (gcc-9.1.0, O2) 17

Mirai-vanilla (gcc-8.4.0, O0) 7
Mirai-vanilla (gcc-8.4.0, Os) 8

malicious binaries and the 5 modified ones to VirusTotal6,
an online virus detection website. For each binary, VirusTotal
returns detection results, either malicious or benign, from 62
major malware detection services, including Avast, Microsoft,
Kaspersky, McAfee, etc.

We observe that (1) Each original malicious ELF binaries
can be detected by about half of the real-world malware
detectors; (2) The number of detectors that can detect each
modified malicious ELF binary drops significantly.

For instance, 35 detectors can label the original binary
of Mirai-vanilla (compiled with 8.4.0 with O0 optimization).
However, after our modification with Padding Alteration, only
7 detectors can still identify the modified one as malicious.
It is also worth mentioning that, among all the 62 detectors,
only 6 detectors, including AVG, Kaspersky, Avast, Microsoft,
ZoneAlarm, and ESET-NOD32, are able to detect all the 5
modified binaries in this experiment.

VI. DISCUSSION AND FUTURE WORK

Combining Multiple Modification. We only investigate
the cases where modified binaries are generated by a single
modification method. Combinations of multiple modification
methods can alter more bytes in a binary, and therefore, may
lead to a higher evasion rate. We will leave this as future work.

More Modification Methods. There are other methods that
can also modify ELF binaries. For instance, patching [15] is
often used to modify specific instructions in a binary. It would
be interesting to explore whether evasion attacks with patching
are effective and to what degree. On the other hand, the bytes
that can be modified with patching are specific in each binary
while the methods we examine are generic.

Modifying Benign Binaries. We only examine modifica-
tions over malicious binaries in this study. An attack can
also modify benign binaries such that it can include malicious
instructions. It is even more challenging to achieve, especially
with a great number of bytes. We leave it as future work.

Static Analysis Only. We demonstrate that our evasion
attacks are effective on detectors based on static analysis. On
the other hand, we acknowledge that our modified binaries
cannot bypass detectors based on dynamic analysis (e.g., API
calls) as our modifications do not change program execution.

6https://www.virustotal.com/gui/home/upload

Larger Datasets. We use a dataset with less than 1,500
binaries in our evaluations. Having a larger dataset and ob-
serving the results over it would be interesting. However, large-
scale datasets with malware ELF binaries are often not publicly
available or difficult to acquire.

VII. CONCLUSION

We examine five modification methods that can generate ma-
licious ELF binaries without affecting original functionalities.
In addition, we leverage these modifications in evasion attacks
on end-to-end deep learning malware detection. Experimental
results show that evasion attacks on end-to-end deep learning
malware detection is feasible. We also observe that retraining
malware detectors with deliberately modified malicious bina-
ries can significantly mitigate evasion attacks.
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