
MicroPower: Micro Neural Networks for
Side-Channel Attacks

Logan Reichling†, Ryan Evans†, Mabon Ninan†, Phuc Mai†, Boyang Wang†, Yunsi Fei§, John M. Emmert†
†University of Cincinnati, §Northeastern University

{reichlln, evans2ra, ninanmm, maipd}@mail.uc.edu, boyang.wang@uc.edu, y.fei@northeastern.edu, john.emmert@uc.edu

Abstract—Side-channel attacks recover encryption keys from
a target by analyzing power consumption. Deep learning side-
channel attacks require less pre-processing and can defeat coun-
termeasures compared to traditional methods. However, neural
networks utilized in side-channel attacks are often complex,
which requires substantial storage and memory. In this paper,
we propose an iterative pruning algorithm, named MicroPower,
which can significantly reduce the size and memory usage of
neural networks for side-channel attacks. Our algorithm auto-
matically adjusts pruning parameters of the next iteration based
on the results of its previous iteration to derive extremely small
neural networks that can still recover keys successfully. We
conduct comprehensive evaluation over three existing datasets
and demonstrate the effectiveness of our algorithm. For instance,
our algorithm can remove 99.86% of parameters in a CNN
and the pruned CNN can still recover keys over ASCADv1
dataset with only 321 traces. Given ASCADv2 dataset, we can
remove 91.74% of parameters in a ResNet and reveal encryption
keys with only 519 traces. Our pruning is also compatible with
quantization, which can further reduce the size of a neural
network. Moreover, we demonstrate that our pruned neural
networks can run efficiently and effectively on embedded devices,
including Nvidia Jetsons and AMD/Xilinx ZCU104 FPGA boards.

I. INTRODUCTION

Side-Channel Attacks (SCAs) [1], [2], [3], [4] recover en-
cryption keys from a target (e.g., a microcontroller) based
on correlations between power consumptions and intermediate
results of encryption, such as AES (Advanced Encryption
Standard). Recent studies [5], [6], [7], [8], [9], [10] have shown
that Deep Learning Side-Channel Attacks surpass traditional
methods in effectiveness, as they can overcome countermea-
sures, including masking and random delays, and can operate
on raw power/EM traces with minimal or no preprocessing.

Despite the promising findings, neural networks adopted in
side-channel attacks are often complex with millions of pa-
rameters. For instance, the ResNet (Residual Neural Network)
utilized over the recent ASCADv2 dataset consists of over
137 million parameters [11]. Executing side-channel attacks
with a complex neural network demands substantial storage
and memory [12].

In this paper, we introduce MicroPower, an iterative pruning
algorithm that can significantly reduce the size and memory
usage of a neural network for side-channel attacks. Specifically,
our algorithm removes less important filters in a neural network
through multiple iterations, where a neural network is pruned
and fine-tuned in each iteration. The pruned neural network

from one iteration serves as input for the next iteration. Our
algorithm automatically adjusts the pruning parameters for the
next iteration based on the results of the previous iteration. Our
pruning completes when pruning parameters cannot be further
updated or a neural network cannot be further reduced. Our
main findings are summarized below:

• We perform comprehensive evaluations of our iterative
pruning on three existing datasets, including the AS-
CADv1 dataset [7], ASCADv2 dataset [11], and Tiny-
Power dataset [12]. Over 3 million power/EM traces are
examined. These traces were acquired from microcon-
trollers (AVR XMEGA and ARM STM32F) and FP-
GAs (AMD/Xilinx Artix-7) running unmasked or masked
AES-128. We leverage two neural networks, including a
CNN (Convolutional Neural Network) and a ResNet, from
existing studies as two baseline models.

• Experimental results show that our iterative pruning can
dramatically reduce the number of parameters in a neural
network with a minor impact on attack results. For in-
stance, given the ASCADv1 dataset, our iterative pruning
can remove 99.86% of the parameters (from 43 million to
62 thousand) in a CNN and the pruned CNN still recovers
one key byte with only 321 traces during the attack. Given
the ASCADv2 dataset, we can remove 91.74% of the
parameters (from 137 million to 11 million) in a ResNet
and reveal all the 16 key bytes with only 519 traces.

• Compared to an existing study [13], which derives the
smallest neural networks for Side-Channel Attacks using
neural network architecture search, our iterative pruning
derives a similar number of parameters in a neural net-
work. On the other hand, our method requires a much
shorter search time (3.7∼5.5X faster) and reveals keys
with a significantly lower number of traces. Moreover,
the pruned neural networks derived by our method can
still recover keys in cross-device scenarios while the ones
obtained by neural network architecture search cannot.

• We also demonstrate that our iterative pruning is com-
patible with quantization (more specifically, post-training
quantization), which can further reduce the size of a neural
network by lowering weights from 32 bits to 8 bits.
Moreover, we show the effectiveness of our pruned neural
networks on embedded devices, including a Nvidia Jetson
Orin Nano and an AMD/Xilinx ZCU104 FPGA board.

Reproducibility. The source code of our design can be found



at https://github.com/UCdasec/MicroPower

II. BACKGROUND ON SIDE-CHANNEL ATTACKS

Side-Channel Attacks are categorized into two types: Profil-
ing Side-Channel Attacks [3], [4], [5] and Non-Profiling Side-
Channel Attacks [2], [14]. We focus on profiling attacks in
this paper as most of the existing Deep Learning Side-Channel
Attacks are profiling.

System Model. As shown in Fig. 1, a Profiling Side-Channel
Attack involves two devices: a training device and a test
device. The attacker has complete control over the training
device, allowing the creation of a profile/classifier. Specifically,
the attacker controls the plaintexts and key on the training
device and can capture power or electromagnetic (EM) traces.
Conversely, the attacker does not know the key on the test
device, but can observe plaintexts and can passively capture
its power consumption or EM radiation while these plaintexts
are encrypted. The objective of the attacker is to reveal the
unknown key on the test device.

Fig. 1: System model of profiling side-channel attacks.

A Profiling Side-Channel Attack comprises of two phases:
the profiling phase and the attack phase. In the profiling
phase, the attacker trains a profile/classifier using labeled traces
collected from the training device. These labels correspond to
intermediate encryption results, which are derived from the
known key and plaintexts following the encryption algorithm.
In the attack phase, the attacker obtains unlabeled traces from
the test device and uses the trained profile to recover the
unknown key. A classifier is a neural network in this study. In
essence, the attacker relies on the trained classifier to predict
intermediate encryption results based on power consumption,
and then distinguishes the correct key based on confidence
scores of intermediate results and given plaintexts.

Notations. A trace is a sequence of samples collected from
a device when it operates one execution of encryption given a
key and a plaintext. Each sample is the power measurement or
EM radiation at a given timestamp. We useM and K to denote
the plaintext space and the key space, respectively. Given a
plaintext m ∈M and a key k ∈ K, a device runs an encryption
algorithm and a trace t = (t[1], ..., t[l]) is recorded, where t[i]
is the sample at timestamp i. We leverage z, which is the
output of function φ(m, k), to denote an intermediate value
of encryption, where function φ(·) is a leakage step carrying
side-channel leakage. Points of Interest (POIs) are samples in
a trace that are associated with the leakage step.

AES. We focus on attacks targeting AES-128, where the
entire encryption key consists of 16 bytes. A side-channel

attack on AES-128 typically recovers one key byte each time.
If one key byte can be recovered, then it is trivial to recover the
remaining bytes by repeating the training and attacks. Hence,
we consider key k, plaintext m, or intermediate value z has
only one byte. Let k∗1 , k

∗
2 , ...., k

∗
256 be all the possible 256 key

candidates for key k. We consider the SubBytes operation
of the first round of AES-128 as the leakage step φ(·) [12].

Leakage Model. We model side-channel leakage using the
Identity (ID) model. The ID model assumes that there is a
correlation between power consumption and intermediate value
z (i.e., the output of SubBytes of the first round). As there
are 256 possible values for intermediate value z, each trace
can have one of these 256 values serving as its label.

Evaluation Metrics. During the attack, the attacker obtains
test traces and their associated plaintexts. Given a test trace
t and its plaintext m, the trained classifier first outputs a
confidence score for every possible label (i.e. every possible
intermediate value) by using trace t as the input to the classifier.
Then, each score is further assigned to a key candidate follow-
ing the inverse of SubBytes and AddKey given plaintext m
and each possible intermediate value. The score of every key
candidates is further aggregated across test traces. The 256
aggregated scores, one for each key candidate, are then sorted
in a descending order.

We leverage Key Rank (or guessing entropy) [15], [10] and
Measurements To Disclosure (MTD) to measure the effective-
ness of Side-Channel Attacks. Key rank r, where r ∈ [1, 256],
is the rank of the correct key given the sorted scores of all
256 possible key candidates. A key rank of 1 suggests that
the attack distinguishes the correct key from other incorrect
candidates. MTD indicates the number of test traces needed
for the key rank to converge to 1. An attack is more effective
if MTD is lower.

III. OUR PROPOSED DESIGN

A. Background in Pruning

Pruning Categories. Neural network pruning, or pruning
in short, refers to the process of selectively removing less
important parameters/weights in a neural network to reduce
size and memory usage in prediction [16], [17]. We focus
on structured pruning, which removes parameters in groups.
Specifically, we remove filters at each layer in a neural network.
We focus on iterative pruning, which prunes a neural network
through multiple iterations rather than pruning a neural network
with a single iteration. In other words, the pruned neural
network from a previous iteration is utilized as the input for
the next iteration to further reduce the number of parameters.
Essentially, our design is an iterative structured pruning.

Pruning Rate. A pruning rate p indicates the ratio of filters
that will be removed to the total number of filters in a given
layer. While the pruning rate can be different across layers
within an iteration, we keep it the same for all the layers within
an iteration for ease of design. Given a pruning rate p and a set
of n filters F = {F1, ..., Fn} at a layer in a neural network,
the pruning, in essence, is an optimization algorithm to find



a subset F∗of F with ⌈(1 − p) × n⌉ filters such that these
⌈(1−p)×n⌉ filters achieve the maximum sum of importance,
which can be formulated as below

argmax
F∗⊂F

=
∑

Fj∈F∗

α(Fj) (1)

where j ∈ [1, n] and α(·) is a pruning score algorithm
measuring the importance of each filter.

Filter Score Algorithm. We use an existing filter score
algorithm l2-norm [18], which measures the importance of a
filter independently. Given a filter Fj ∈ Rn′×s×s, where n′ is
the number of filters from the previous layer (or the number of
input channels if it is the first layer) and s is the kernel size,
the l2 norm of this filter is calculated as

α(Fj) = ||Fj ||2 =

√√√√ n′∑
x=1

s∑
y=1

s∑
z=1

(wj [x][y][z])
2 (2)

where wj [x][y][z] is an element/weight of filter Fj , for 1 ≤
x ≤ n′, 1 ≤ y ≤ s, and 1 ≤ z ≤ s. A higher l2-norm indicates
that a filter is more important. It is worth mentioning that our
design also allows other score algorithms to be utilized.

B. The Challenge and Our Main Idea

To design an iterative pruning algorithm, we need to address
two key questions. First, given one iteration, what is the
criteria for an algorithm to proceed to the next iteration?
Second, how many iterations should we perform before we
end pruning? A straightforward solution would be manually
defining a pruning rate for each iteration and choosing a
number of iterations in advance given a dataset. Unfortunately,
this manual process would be extremely time-consuming and
not scalable given a large search space (i.e., all the possible
combinations of the pruning rate and the number of iterations).

We address these two questions above by designing an
automatic iterative pruning algorithm that is customized for
side-channel attacks. Specifically, given a dataset, a trained
complex neural network, and some pruning parameters as
inputs, our iterative pruning eventually outputs a pruned neural
network after a certain number of iterations. Within each
iteration, our algorithm includes two steps: pruning and fine-
tuning. Pruning removes less important filters based on l2
norms and fine-tuning updates the weights of the pruned neural
network of this iteration. For ease of description, we denote the
neural network before the pruning of an iteration as the parent
network and the pruned neural network after the fine-tuning of
an iteration as the child network. At the end of an iteration,
if the accuracy of this child network over validation traces is
higher than a threshold, our algorithm marks this iteration as
successful and moves on to the next iteration by using this child
network as the parent network of the next iteration without
updating pruning parameters. Otherwise, our algorithm marks
this iteration as unsuccessful and moves on to the next iteration
by using the same parent network as input, but adjusting
pruning parameters. This threshold, denoted as the accuracy

threshold, is a parameter that our algorithm defines in advance.
It should be higher than random guess (i.e., 1/256 given the ID
model) but lower than the accuracy of a well-trained complex
neural network. An in-depth discussion regarding the selection
of accuracy threshold is presented in Sec. IV.

When pruning parameters need to be updated due to an
unsuccessful iteration, our algorithm increases the number of
epochs used in fine-tuning (e.g. by 25 epochs; this number is
chosen in regards to the original model’s hyperparameters) as
long as it does not exceed a maximal number of epochs (pre-
defined in advance, e.g. 600 epochs) while keeping the current
pruning rate. With the updates, our algorithm moves on to the
next iteration. However, once the maximal number of epochs is
reached given the current pruning rate, our algorithm decreases
the pruning rate (e.g. by 0.1) and resets the number of epochs
to an initial value (e.g. 150 epochs) for the next iteration.

Algorithm 1: Our Iterative Pruning: MicroPower
Input: D, N , pinit, pdec, einit, emax, einc, accthres
Output: Npruned

Nparent ← N , Nchild ← none, e← einit, p← pinit
flag ← true

while flag == true do
if |Nparent| == |Nchild| then

flag ← false, break
end
Nchild ← Prune&FineTune(D,Nparent, p, e)
acc← GetAccuracy(Nchild)

if acc ≥ accthres then
Nparent ← Nchild

else
e← e+ einc
if e ≥ emax then

p← p− pdec, e← einit
if p ≤ 0 then

flag ← false, break
end

end
end

end
Npruned ← FineTune(D,Nchild)

We present the pseudo-code of our algorithm in Algo. 1
based on the above description. We denote the dataset as D,
the trained complex neural network as N , the pruning rate
as p, the initial pruning rate as pinit, the number of epochs
as e, the number of maximal epochs as emax, the initial
number of epochs as einit, the increment number of epochs
as einc, the pruning rate decrement as pdec, the accuracy
threshold as accthres, and the output, i.e. the pruned neural
network, as Npruned. We utilize |Nparent| == |Nchild| to
indicate the parent and children neural networks having the
same number of parameters. We use Prune&FineTune(·)
to describe the pruning and fine-tuning process of a single
iteration and GetAccuracy(·) to present an algorithm to
obtain accuracy of a neural network over validation traces,



TABLE I: Overview of Datasets Utilized in Our Evaluation

Target Dataset Name No. of POIs Channel Same Cross CountermeasuresTraces Device Device

ARM STM32F

S1 K1 200k 200k [1200,2200] Power ✓ No
S2 K2 100k 100k [1200,2200] Power ✓ No

S1 K1 150k EM 150k [1200,2200] EM ✓ No
S2 K2 150k EM 150k [1200,2200] EM ✓ No
S1 K1 200k RD 200k [1200,2200] Power ✓ Random Delay
S2 K2 100k RD 100k [1200,2200] Power ✓ Random Delay

AVR XMEGA

X1 K1 200k 200k [1800,2800] Power ✓ No
X2 K2 100k 100k [1800,2800] Power ✓ No

X1 K1 150k EM 150k [1800,2800] EM ✓ No
X2 K2 150k EM 150k [1800,2800] EM ✓ No
X1 K1 200k RD 200k [1800,2800] Power ✓ Random Delay
X2 K2 100k RD 100k [1800,2800] Power ✓ Random Delay

Xilinx Artix-7 F1 K1 200k 200k [0,100] Power ✓ No
F2 K2 200k 200k [0,100] Power ✓ No

AVR ATMEGA ASCADv1 60k [45400, 46100] Power ✓ ✗ Masking (1st order)
ARM STM32F ASCADv2 770k [0,15000] Power ✓ ✗ Masking (3rd order) and Shuffling

Fig. 2: An example of pruning a complex neural network to
a pruned neural network with our algorithm throughout seven
iterations. Iteration 1, 2, 5, and 7 are successful and iteration
3, 4, and 6 are marked as unsuccessful.

which do not overlap with training traces. A final fine-tuning
(or tempering) step FineTune(·) is applied to further boost
the accuracy of the final pruned neural network. An example
of how a complex neural network could be pruned through
multiple iterations with our algorithm is illustrated in Fig. 2.
We also define a pruning round as a sequence of consecutive
pruning iterations, which includes a successful iteration and
any unsuccessful iterations right before it.

IV. EVALUATION

A. Datasets

We examine three datasets from existing research [7], [11],
[12]. These datasets consists of over 3 million power and EM
traces acquired from microcontrollers and FPGAs, including
the AVR XMEGA (8-bit), AVR ATMEGA (8-bit), ARM
STM32F (32-bit), and AMD/Xilinx Artix-7 FPGA. Micro-
controllers run unmasked or masked software implementation
of AES written in C or assembly. FPGAs run a hardware
implementation of AES written in Verilog. The details of the
datasets, including the targets, the number of traces, and Points
of Interest (POIs) can be found in Table I.

TinyPower Dataset. TinyPower dataset [12] consists of
power and EM traces collected using ChipWhisperer with
targets including the AVR XMEGA, ARM STM32, and Artix-
7 FPGA. It includes multiple subsets. Each subset includes

traces from two distinct targets of the same type for both same-
device and cross-device evaluations, where the keys on the two
targets are different. Additionally, TinyPower dataset includes
subsets consisting of traces with random delays, where the
samples in each trace are randomly delayed by a number of
r samples and r ∈ [0, 50]. For microcontrollers, the POIs are
identified as samples from the SubBytes of the first round
of AES-128. Specifically, POIs are [1800, 2800] for XMEGA
and [1200, 2200] for STM32. For FPGA, the POIs are [0,
100], which are samples from the entire AES-128 execution.
Each subset in the TinyPower dataset is named in the format
of Target_Key_NumberOfTraces [12].

ASCADv1 Dataset. ASCADv1 dataset [7] provides 100,000
power traces acquired from an AVR ATMEGA running a first-
order masked software AES-128. The dataset consists of two
subsets, one from a fixed key and one from multiple random
keys. In our evaluation, we leverage the fixed key subset, which
includes 50,000 training traces and 10,000 test traces. The POI
is pre-selected as [45400, 46100], which consists of samples
associated with the 3rd byte of SubBytes from the first round
of AES-128. We report attack results in the same-device setting
only over the ASCADv1 dataset as there are no traces provided
from another device.

ASCADv2 Dataset. ASCADv2 dataset [11] consists of
800,000 power traces collected from an ARM STM32F mi-
crocontroller running a third-order affine-masked AES-128
implementation with an additional shuffling countermeasure.
As the raw data composes over 800 GB, the authors provide
an extracted dataset consisting of the concatenation of POIs
from the mask shares [205000, 210000] and the SubBytes
from the first round [455000, 465000]. In total, a POI window
of 15000 samples per trace is used for side-channel analysis.
Similarly to the ASCADv1 dataset, we report attack results in
the same-device setting only over the ASCADv2 dataset as no
traces are provided for cross-device evaluations.

B. Experiment Setting and Neural Network Architectures

Our experiments are mainly conducted on an Ubuntu 24.04
machine with an Intel i9 14900K, 128GB memory, and



TABLE II: Hyperparameters of Baseline CNN [7]

Layer Hyperparameters
Conv 1 to Filters: {64, 128, 256, 512, 512}, Size: 11,

Conv 5 Activation: ReLu + AveragePooling, Pool: 2, Strides: 2
Dense 1 Units: 4096, Activation: ReLU
Dense 2 Units: 4096, Activation: ReLU
Output Units: 256, Activation: softmax

TABLE III: Hyperparameters of Baseline ResNets [11]

Layer Hyperparameters
Input Input shape: (15000, 1)

Initial Conv 1 Filters: 16, Kernel size: 11, ReLU,

Residual

Conv – Filters: {16, 32, 64, 128, 256,... 256},

Blocks (x9)

Size: 11, ReLU, Strides: 1, 2, ... 2
BatchNormalization

Conv – Filters: {16, 32, 64, 128, 256,... 256},
Size: 11, Activation: None, Strides: 1

Prediction Units: 1024, Activation: ReLu (x34 for v1, x18 for v2)
Branches BatchNormalization

Output Units: 256 – {alpha, beta, 16 * sbox preds},
(Units: 16 – 16 * {index pred} if v1), softmax

NVIDIA RTX 4090. We leverage the Identity (ID) model as
the leakage model in all experiments as our preliminary results
suggest that the ID model derives better results (i.e. lower
MTD) than the Hamming Weight model over most the datasets.

We investigate two baseline neural networks in our evalu-
ation: the CNN utilized over the ASCADv1 dataset, and the
ResNet examined over the ASCADv2 dataset. The baseline
CNN [7] is a VGG-type architecture, consisting of 5 convo-
lutional block layers and 2 dense layers. Each convolutional
block includes a convolutional layer followed by an average
pooling layer. It has been widely used in recent research of
deep-learning side channel attacks. The entire model consists
of about 54 million parameters. Hyperparameters of this CNN
can be seen in Table II. This baseline CNN reports attack
results over one byte. We utilize this CNN for attack results
over all the datasets except the ASCADv2 dataset.

For the baseline ResNet, we explore both versions, referred
to as MultiSCAv1 and MultiSCAv2, described in [11]. Both
versions leverage Multi-Task Learning to attack all 16 key
bytes of an AES encryption key simultaneously with a sin-
gle neural network over the ASCADv2 dataset. MultiSCAv1
predicts all the 16 bytes, two mask values, and all 16 shuffling
indices. It consists of 1 convolutional layer, 9 residual blocks, 1
average pooling layer, and 34 parallel prediction branches (for
two masked values rm, rout, 16 key bytes k1..., k16, and 16
shuffling indices s1..., s16). Each prediction branch consists
of one dense layer, a batch normalization layer, and a final
softmax. On the other hand, MultiSCAv2 reveals all the 16
bytes and mask values without predicting the shuffling indices.
It shares the same architecture as MultiSCAv1 excluding the
16 prediction branches for the 16 shuffling indices. Hyperpa-
rameters of the baseline ResNets are listed in Table III.

Training and Pruning Parameters. When we train a
baseline CNN, we always train it with 150 epochs. When we
train a baseline ResNet, we train for 20 epochs adhering to
an early stop strategy. The number of training traces varies

and depends on each specific dataset. In general, a more
challenging dataset needs a greater number of training traces.
We will specify the number of training traces for each dataset in
our later experiments. The number of validation traces and the
number of test traces are both fixed as 5,000 for the evaluation
over every dataset. When we perform pruning, we always set
the initial number of pruning epochs einit as the same as the
one used by the baseline architecture, i.e. 150 epochs for CNNs
and 20 epochs for ResNets. We set the increment pruning
epochs einc as 25 for CNNs and 10 for ResNets respectively.
We set the maximum number of epochs emax as 650 and 60 for
CNNs and ResNets respectively. We also set the pruning rate
decrement pdec as 0.1 for both CNNs and ResNets. We use up
to 500 and 60 epochs with an early stop in the tempering (the
final fine-tuning) step for CNNs and ResNets, respectively.

We also need to choose two critical parameters, including the
accuracy threshold accthres and initial pruning rate pinit, for
our pruning. We discuss the selection of these two parameters
in detail in our later experiments. For each dataset, we use the
same training traces for the fine-tuning step. For instance, if
we use 140k traces for training, we will leverage those 140k
traces for the fine-tuning step as well.

For the TinyPower and ASCADv1 dataset, we report the
attack results from one byte of the AES key. We select the 3rd
byte for results as other bytes will be similar as demonstrated
in existing studies [7], [8], [19]. For the ASCADv2 dataset,
we report attack results from all the 16 bytes as the baseline
ResNet reveals all key bytes simultaneously [11]. Given a
trained neural network and a set of test traces, we always
report the average MTDs over 100 iterations of testing, where
the order of test traces is randomly shuffled in each iteration.
For same-device evaluations, training traces and test traces are
selected from the same dataset but do not overlap. For cross-
device evaluations, we choose traces collected with a different
device and different key for testing. For instance, given a neural
network trained with S1 K1 200k, we leverage traces from
S2 K2 100k for testing in cross-device evaluations.

C. Experiments

Experiment 1: Comparison between Baseline and Our
Pruned Neural Networks. We first obtain attack results with
the baseline CNNs and ResNets over the datasets we examine.
As we can observe from Table IV and Table V, these baseline
neural networks can effectively recover keys given each dataset
and our results are consistent with the ones reported in recent
studies [7], [12]. We also include the number of training traces
for the evaluation over each dataset in the tables. The number
of training traces for each dataset is recommended by previous
studies. It is also worth mentioning that MultiSCAv2 derives
higher MTD than the ones from MultiSCAv1. However, as
mentioned in [11], it does not require knowing shuffling index
values during the training phase compared to the MultiSCAv1.
While each baseline neural network recovers keys, the number
of neural network parameters is extremely high.



TABLE IV: Comparison between Baseline and Our Pruned CNNs (Initial Pruning Ratio: 0.3, Accuracy Threshold: 0.006 for
F1 K1 200k and ASCADv1 and 0.008 for others datasets)

Target Training No. of Training/ CNN MTD (3rd Byte) Parameters Reduction Training/Pruning
Dataset Pruning Traces Same-Device Cross-Device Rate (%) Time (s)

XMEGA

X1 K1 200k 50k Baseline 2 3 54,069,632 – 712
Pruned 13 12 1,044 99.998 6,659

X1 K1 150k EM 50k Baseline 2 25 54,069,632 – 704
Pruned 6 75 2,579 99.995 12,459

X1 K1 200k RD 50k Baseline 2 2 54,069,632 – 722
Pruned 5 7 2,724 99.995 14,605

STM32F

S1 K1 200k 50k Baseline 2 3 54,069,632 – 710
Pruned 5 19 3,126 99.994 20,936

S1 K1 150k EM 140k Basline 25 80 54,069,632 – 1,963
Pruned 34 130 3,059 99.994 42,170

S1 K1 200k RD 50k Baseline 6 7 54,069,632 – 706
Pruned 17 15 1,044 99.998 29,378

Artix-7 F1 K1 200k 180k Baseline 439 2,614 24,709,504 – 1,050
Pruned 346 3,086 98,711 99.60 118,505

ATMEGA ASCADv1 50k Baseline 356 NA 43,583,872 – 550
Pruned 321 NA 62,136 99.86 30,837

TABLE V: Comparison between Baseline and Our Pruned ResNets over ASCADv2 dataset (STM32F, No. of Training/Pruning
Traces: 420k, B: Baseline; P: Pruned; RR: Reduction Rate, T/P Time: Training/Pruning Time, Initial Pruning Rate: 0.3, Accuracy
Threshold: 0.006)

MTD across all the 16 bytes (Same-Device Only) Parameters RR(%) T/P
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th Time (s)

v1(B) 56 79 72 65 64 71 73 63 78 72 69 67 68 64 72 73 137,471,808 – 15,351
v1(P) 223 253 254 291 237 368 208 309 314 519 334 239 218 286 320 282 11,349,292 91.74% 196,048
v2(B) 140 382 268 211 134 362 225 194 195 529 382 668 127 246 199 142 78,407,232 – 12,365
v2(P) 268 379 512 537 200 487 295 436 535 527 433 278 263 394 393 176 8,502,342 89.16% 120,371

Next, we perform our iterative pruning algorithm on each
baseline CNN or ResNet. During our pruning in this experi-
ment, we choose initial pruning rate pinit as 0.3 for all the
datasets and accuracy threshold accthre as 0.008 for all the
datasets except F1 K1 200k, ASCADv1 and ASCADv2. We
choose accuracy threshold accthre as 0.006 for F1 K1 200k,
ASCADv1 and ASCADv2. We defer the discussions on the
selection of these two pruning parameters in later experiments.

As presented in Table IV and V, our pruning can successfully
derive an extremely high parameter reduction rate and the
pruned neural network can still recover keys effectively over
every dataset we examine in both the same-device setting and
cross-device setting (when applicable). Compared to the MTDs
obtained in baseline neural networks, the ones derived by our
pruned neural networks, in general, only increase slightly. In
other words, our pruning algorithm can significantly reduce the
number of parameters in a neural network with a minor impact
on the results of side-channel attacks. As a necessary tradeoff,
our pruning algorithm requires longer time than simply training
a baseline neural network.

For instance, given the ASCADv1 dataset, our pruned neural
network achieves a parameter reduction rate of 99.86% (62,136
v.s. 43.58 million) and can still recover keys with a similar
number of test traces (321 v.s. 356) compared to its baseline
CNN. Given the ASCADv2 dataset, our pruned ResNet can
achieve 89.16% parameter reduction rate (8.50 million v.s.
78.41 million) on MultiSCAv2 and can still recover keys
over all the 16 key bytes. We also observe that our pruning
algorithm achieves a lower reduction rate over traces from
masked AES. This is expected as traces from masked AES

carry less side-channel leakage and are more challenging to
attack compared to traces acquired from unmasked AES.

Experiment 2: The Impact of Accuracy Threshold. We
investigate the impacts of accuracy threshold on attack results,
parameter reduction rate, and the overall pruning time. Specif-
ically, we perform our iterative pruning over four datasets,
including S1 K1 150k EM, S1 K1 200K RD, F1 K1 200k,
and ASCADv1, with accuracy thresholds {0.006, 0.008, 0.010,
0.012} respectively. We select these four datasets as they
are relatively representative; covering various scenarios with
traces from EM, random delay, FPGAs, and masked AES. For
each pruning process, given each dataset’s own baseline CNN
reported in Table IV, we set the initial pruning rate pinit as
0.5 in this experiment. We summarize our pruning results in
Table VI. It is also worth mentioning that, according to our
experience, we should avoid selecting the accuracy threshold
lower than 0.006 as it would be too close to random guess
(i.e. 1/256 ≈ 0.0039 given ID model) and a neural network
achieving an accuracy similar to random guess, typically, fails
to distinguish correct keys.

First, we observe the selection of accuracy threshold is
extremely sensitive for F1 K1 200k and ASCADv1 (consisting
of traces collected from FPGAs or masked AES), where only
an accuracy threshold of 0.006 can prune a CNN successfully.
When we increase it to 0.008 or higher, our pruning fails to
derive a pruned CNN for both datasets (i.e. our pruning still
runs but no parameters are removed). In essence, this is because
the two datasets carry much lower leakage and achieving an
accuracy greater or equal to 0.008 is infeasible during the fine-
tuning process (as with the baseline models). The pruning time



TABLE VI: The Impact of Accuracy Threshold (⊥: failing to derive a pruned neural network; Initial Pruning Rate: 0.5)

Target Training Accuracy MTD (3rd Byte) Parameters Reduction Pruning
Dataset Threshold Same-Device Cross-Device Rate (%) Time (s)

STM32F

S1 K1 150k EM

0.006 36 175 55,227 99.90 104,759
0.008 30 129 2,769 99.995 78,733
0.010 47 218 2,501 99.995 79,978
0.012 34 105 3,126 99.994 94,041

S1 K1 200K RD

0.006 9 11 3,059 99.994 31,402
0.008 4 4 2,691 99.995 27,930
0.010 4 5 2,613 99.995 32,874
0.012 16 15 2,049 99.996 34,691

Artix-7 F1 K1 200k 0.006 342 2,580 218,424 99.12 141,790
0.008 ⊥ ⊥ 24,709,504 ⊥ 165,459

ATMEGA ASCADv1 0.006 229 NA 11,878 99.97 48,943
0.008 ⊥ ⊥ 43,583,872 ⊥ 67,852

TABLE VII: The Impact of Initial Pruning Rate (Accuracy threshold: 0.006 for S1 K1 150k EM and S1 K1 200k RD and
0.008 for F1 K1 200k and ASCADv1)

Target Training Initial MTD (3rd Byte) Parameters Reduction Pruning
Dataset Pruning Rate Same-Device Cross-Device Rate (%) Time (s)

STM32F

S1 K1 150k EM

0.1 45 352 101,876 99.812 32,692
0.3 34 130 3,059 99.994 42,170
0.5 74 659 2,613 99.995 83,939
0.7 31 63 3,126 99.994 128,790

S1 K1 200K RD

0.1 21 16 15,126 99.972 14,965
0.3 17 15 1,044 99.998 29,378
0.5 5 11 3,126 99.994 30,986
0.7 21 23 1,337 99.998 45,375

Artix-7 F1 K1 200k

0.1 455 2,325 575,053 97.67 34,849
0.3 346 3,086 98,711 99.60 118,505
0.5 362 2,509 322,829 98.69 172,859
0.7 330 3,833 2,153,374 91.29 154,519

ATMEGA ASCADv1

0.1 2,376 NA 19,033,834 56.33 16,654
0.3 321 NA 62,136 99.86 30,837
0.5 236 NA 24,135 99.94 37,149
0.7 1,087 NA 39,377 99.91 42,590

for F1 K1 200k dataset is longer than the one from ASCADv1
dataset as it requires a much greater number of traces in the
fine-tuning process (180k vs. 50k). Based on the observation,
we set the accuracy threshold as 0.006 for all the datasets from
FPGAs or masked AES, including F1 K1 200k, ASCADv1,
and ASCADv2, in our remaining evaluations.

Second, we find that for less challenging datasets, such
as S1 K1 150k EM and S1 K1 200k RD, all the selected
accuracy thresholds we examine are able to derive a pruned
CNN, which can recover keys effectively and achieve ex-
tremely high parameter reduction rates. This is expected as
the accuracy of the baseline CNN can achieve accuracy as
high as 0.02 (i.e., 2%). The accuracy thresholds we select in
this experiment are still sufficiently higher than random guess
but lower than the accuracy of the baseline CNN. Between
the two datasets, S1 K1 150k EM and S1 K1 200k RD, we
notice that the pruning time is longer on the S1 K1 150k EM
dataset. This is mainly because it requires a greater number of
traces during the fine-tuning process (140k vs. 50k). Overall,
there is a minor impact on the performance (MTDs, parameter
reduction rate, and pruning time) of a pruned CNN given the
accuracy threshold values we examined. When choosing 0.008,
it requires a slightly shorter pruning time than the others.
Therefore, for all the remaining experiments over datasets
collected from STM32F (and XMEGA) running unmasked AES,

we select 0.008 as the accuracy threshold.
Experiment 3: The Impact of Initial Pruning Rate. We

experimentally investigate the impact of initial pruning rate
pinit on the performance of our pruning algorithm. Specif-
ically, we fix all the other pruning parameters and perform
our pruning over four datasets, including S1 K1 150k EM,
S1 K1 200K RD, F1 K1 200k, and ASCADv1, with initial
pruning rates of {0.1, 0.3, 0.5, 0.7} respectively. We summarize
our results in Table VII and have three main observations.

First, given each of the initial pruning rates we provide,
our pruning algorithm can eventually obtain a pruned neural
network that can still effectively recover keys in the same-
device setting and the cross-device setting (when applicable).
Second, the overall pruning time, in general, increases sig-
nificantly when the initial pruning rate increases across all
the four datasets. For instance, given the ASCADv1 dataset,
when the initial pruning rate is 0.1, the entire pruning time is
only 16,654 seconds (4.63 hours). However, when we choose
pruning rate as 0.7, the entire pruning time jumps to 42,590
seconds (11.83 hours). Third, the parameter reduction rate is
the highest when the initial pruning rate is 0.3 or 0.5 given each
of the four datasets. In other words, providing an extremely low
initial pruning rate (0.1) or an extremely high initial pruning
rate (0.7) does not lead to a minimal (or nearly minimal)
number of parameters in a neural network, especially given



1 10 19 28 37 46
No. of Rounds

102

103

104

105

Ti
m

e 
(s

)

Total time: 127,970 s

103

104

105

106

107

108

No
. o

f P
ar

am
et

er
s

(a) Initial pruning rate as 0.7

1 9 17 25 33
No. of Rounds

102

103

104

105

Ti
m

e 
(s

)

Total time: 31,817 s

103

104

105

106

107

108

No
. o

f P
ar

am
et

er
s

(b) Iinitial pruning rate as 0.1

Fig. 3: Comparison of our pruning time per round over
S1 K1 150k EM given different initial pruning rates.

more challenging datasets (F1 K1 200k and ASCADv1).
The above observation on pruning time is mainly because

a greater initial pruning rate prunes a baseline neural network
aggressively in the first round, which leads to more iterations
searching for a child network to meet a given accuracy thresh-
old. In addition, a greater initial pruning ratio leads to a greater
number of rounds in our pruning, which also increases the
total pruning time. A further breakdown of the pruning time
per round from one dataset S1 K1 150k EM is presented in
Fig. 3a given the initial pruning rate is large (e.g., 0.7). The
pruning spends a much longer time in the first few rounds and
requires 46 rounds in total to complete the entire pruning.

On the other hand, a smaller initial pruning rate prunes a
baseline neural network less aggressively in the first round,
which allows a child network to be pruned quickly with
less need on updating pruning parameters. As a result, our
pruning algorithm can move to the next round quickly and
leads to a lower number of rounds overall, which reduces the
entire pruning time. A further breakdown of the pruning time
per round from one dataset S1 K1 150k EM is presented in
Fig. 3b given the initial pruning ratio is small (e.g., 0.1). The
pruning spends less time in the first few rounds and only needs
33 rounds in total to finish the entire pruning.

Based on our observations, we believe that both 0.3 and 0.5
are good selections as the initial pruning rate. We select the
initial pruning rate as 0.3 in the rest of our experiments as it
requires less overall pruning time than the one with 0.5.

Experiment 5: Variance of Our Pruning Results. As
our pruning algorithm involves multiple iterations of pruning
and fine-tuning neural network parameters, the pruned neural
networks we obtain are naturally non-deterministic. In other
words, running our pruning algorithm twice will derive two
distinct pruned neural networks, even given the same set of
pruning parameters and the same dataset.

In this experiment, we run our pruning algorithm with
multiple trials on the same dataset with the same set of prun-
ing parameters to investigate variances on MTDs, parameter
reduction rates, and pruning time. Specifically, we repeat our
algorithm over four trials on ASCADv1 dataset with accuracy
threshold 0.006 and initial pruning rate 0.3. In addition, we
also repeat our algorithm four trails on S1 K1 200k RD with
accuracy threshold 0.008 and initial pruning rate 0.3. The
detailed results are summarized in Table VIII.

TABLE VIII: Variance of Our Algorithm across Multiple Trials

Training Trial MTD (3rd Byte) Reduction Pruning
Dataset Same Cross Rate (%) Time (s)

S1 K1 200k RD

1 17 15 99.998 29,378
2 11 10 99.998 14,167
3 19 23 99.994 16,970
4 6 6 99.974 29,544

ASCADv1

1 321 NA 99.86 30,837
2 213 NA 99.54 16,508
3 247 NA 99.73 16,346
4 797 NA 99.84 25,269

TABLE IX: Comparison Among the Smallest (but Still Effec-
tive) CNNs Obtained by Different Methods (Network Search:
[13], Single-Shot Pruning: [12], Target: STM32, ⊥ : failing to
converge to a key within 5,000 traces)

Training Method MTD (3rd Byte) Parameters Pruning/Search
Dataset Same Cross Time (hrs)

S1 K1 200k RD
[13] 3,462 ⊥ 149 22.01
[12] 4 5 3.75×106 0.27
Ours 11 10 1,044 3.94

S1 K1 150k EM
[13] 2,577 ⊥ 567 52.11
[12] 31 33 4.85×106 0.72
Ours 34 130 3,059 11.71

ASCADv1
[13] 4,207 NA 753 32.23
[12] 307 NA 2.13×106 0.30
Ours 321 NA 62,136 8.57

We can observe that variances of MTDs, parameter reduction
rate, and pruning time on S1 K1 200k RD are minor. On
the other hand, the variances of MTDs, parameter reduction
rate, and pruning time on ASCADv1 are slightly higher. These
results indicate that our iterative pruning algorithm derives
higher variances given a more challenging target.

Experiment 6: Comparison with Previous Studies. We
compare our iterative pruning with two existing studies, includ-
ing single-shot pruning in [12] and neural network architecture
search [13]. Li et al. [12] adopted single-shot pruning, where
a neural network is pruned with a single iteration but each
layer is pruned with a customized pruning rate. The pruning
rate is automatically derived by their algorithm based on the
distributions of the filter scores at each layer. We run their
source code and utilize l2 norm as the score algorithm. Rijsdijk
et al. [13] applied network architecture search for side-channel
attacks by leveraging reinforcement learning to search the
optimal neural network architecture given a dataset. We run
their source code [13] over our datasets to find small CNNs to
compare the ones we obtained from our pruning. Specifically,
we tune the hyperparameters of a CNN using Reward Small
setting described in [13] and search for up to 500 CNNs
given each dataset, where each CNN is trained with 150
epochs. We also utilize Hamming Weight model rather than
ID model in this neural network architecture search as the HW
model derives lower MTDs. We adopt the same hyperparameter
search space as the one in [13].

As shown in Table IX, both ours and neural network
architecture search [13] derive extremely small neural net-
works. However, our algorithm requires less pruning/search
time (3.7∼5.5X faster) and derives neural networks with much
lower MTDs than neural network architecture search in both



TABLE X: Compatibility of Our Pruning with Quantization
(P: Pruned; Q: Quantized)

Training CNN MTD (3rd Byte) CNN
Dataset Same Cross Size (KBs)

S1 K1 200k RD P 11 10 82.77
P&Q 12 13 14.67

S1 K1 150k EM P 34 130 104.49
P&Q 35 140 18.88

F1 K1 200k P 346 3,086 847.23
P&Q 466 2,472 113.88

ASCADv1 P 321 NA 561.34
P&Q 351 NA 75.84

same-device and cross-device settings. Single-shot pruning [12]
requires a much shorter pruning time than the other two
methods, but the neural networks generated by single-shot
pruning still carry millions of parameters.

Experiment 7: Compatibility with Quantization. Quan-
tization, which reduces the number of bits of parameters, is
another common technique to compress the size of neural
network, either independently or after pruning is applied. We
show that our pruning algorithm is compatible with existing
quantization methods, where our pruned neural networks can
be further reduced in size due to quantization but still re-
cover keys effectively. Note that quantization, in general, does
not change the number of parameters in a neural network.
Specifically, we leverage Tensorflow’s TFLite dynamic range
quantization algorithm [20], where the weights of a pruned
neural network are quantized from 32 bits to 8 bits. As shown
in Table X, after applying quantization to our pruned neural
networks, MTDs increase slightly but the size of each neural
network is further reduced by a factor of 5.5∼7.4.

Experiment 8: Pruned Neural Networks on Embedded
Devices. We demonstrate that our pruned neural networks
can perform side-channel attacks efficiently and effectively on
embedded devices, including a NVIDIA Jetson Orin Nano and
an AMD/Xilinx Zynq ZCU104 Evaluation Board. The Jetson
consists of a NVIDIA Ampere GPU, a 6-core ARM CPU, and
8GB memory. The ZCU104 FPGA board is equipped with
a quad-core ARM Cortex-A53 applications processor, dual-
core Cortex-R5 real-time processor, Mali-400 MP2 graphics
processing unit, and 16nm FinFET+ programmable logic.

For the NVIDIA Jetson Orin Nano, we first train baseline
networks and obtain pruned neural networks on our Nvidia
4090 GPU machine. Next, we run both baseline models and our
pruned neural networks on Jetson to primarily compare their
size, memory usage, and inference time. As shown in Table XI,
our pruned neural networks require significantly lower storage
and memory usage compared to baseline networks on Jetson.
The inference time per trace of our pruned neural networks are
slightly lower than baseline neural networks.

To be able to compile and run neural networks on the
ZCU104 FPGA board, we use the Xilinx Vitis AI framework
[21]. As a result, we have to make the following changes in
our experiment pipeline, including (1) updating 1dCNN layers
to 2dCNN layers in the baseline CNN (this does not change
the number of parameters); (2) scaling samples in each trace

TABLE XI: Comparison between Baseline and Our Pruned
CNNs/ResNets on Nvidia Jetson (B: Baseline; P: Pruned)

Training CNN/ Size Memory Attack Time
Dataset ResNet(v2) (MBs) (MBs) Per Trace (ms)

S1 K1 200k RD B 412.59 501.57 5.96
P 0.08 12.43 5.95

S1 K1 150k EM B 412.59 501.55 2.16
P 0.10 12.68 1.87

F1 K1 200k B 188.59 310.43 1.01
P 0.83 16.18 0.97

ASCADv1 B 332.59 410.55 1.12
P 0.55 17.17 0.98

ASCADv2 B 897.84 1,606.61 2.37
P 98.10 210.35 1.70

TABLE XII: Comparison between Baseline and Our Pruned
CNNs on AMD/Xilinx ZCU104 FPGA Board (B: Baseline; P:
Pruned; Q: Quantized; C: Compiled)

Training CNN MTD (3rd Byte) Size Attack Time
Dataset Same Cross (MBs) Per Trace (ms)

S1 K1 200k RD

B 1 371 412.59 0.21 [GPU]
P 7 35 0.09 0.16 [GPU]

P&Q 17 38 0.15 0.34 [GPU]
P&Q&C 14 48 0.19 0.49 [FPGA]

S1 K1 150k EM

B 18 272 412.59 0.28 [GPU]
P 79 256 0.08 0.16 [GPU]

P&Q 87 276 0.14 0.34 [GPU]
P&Q&C 101 298 0.19 0.48 [FPGA]

F1 K1 200k

B 847 2,582 188.59 0.22 [GPU]
P 803 2,738 0.31 0.16 [GPU]

P&Q 916 3,854 0.26 0.33 [GPU]
P&Q&C 947 3,781 0.20 0.37 [FPGA]

ASCADv1

B 488 NA 332.59 0.25 [GPU]
P 266 NA 0.57 0.15 [GPU]

P&Q 358 NA 0.38 0.34 [GPU]
P&Q&C 309 NA 0.24 0.45 [FPGA]

in advance from float32 to int8 format (i.e., quantizing
each sample from 32 bits to 8 bits). Given these changes,
we first train and prune a baseline CNN on the Nvidia 4090
GPU machine over quantized traces with our iterative pruning.
Given the pruned CNN, we then perform quantization (power
of 2 scale quantization, pos2, a post-training quantization
provided by the Vitis-AI framework) over the pruned CNN
and compile the pruned & quantized CNN with the Xilinx
Vitis-AI framework. Finally, the compiled CNN is uploaded to
the ZCU104 FPGA board, where all the operations before the
last layer are done within the FPGA and the operations of the
last layer are computed within the CPU. The splitting of the
operations is done automatically by Vitis AI. We then run the
calculation of key ranks with the CPU on the ZCU104 board.

We compare the MTDs, the size of neural networks, the
attack time per trace across multiple stages of generating a
neural network in Table XII. We find that the compiled CNN
on the FPGA, in general, can effectively recover keys with
a slightly higher MTDs than the pruned one. This is likely
because quantization and compilation process moderately re-
duce the performance of neural networks. For S1 K1 RD and
S1 K1 EM, the size of the compiled neural network increases
slightly compared the pruned one as Vitis AI adds additional
meta data to the files uploaded to FPGAs. The number of
parameters in the compiled neural network remains the same
compared to the pruned one. The attack time per trace on the
FPGA is slightly slower than the on GPUs but still highly



efficient with less than 0.49 milliseconds per trace.

V. DISCUSSIONS AND LIMITATIONS

Micro Neural Networks for Side-Channel Analysis. From
the perspective of an adversary, being able to effectively
perform side-channel attacks with pre-trained micro neural
networks running on embedded devices would allow this
attacker to recover keys in a more stealthy approach rather than
forwarding and processing traces on machines with massive
GPUs. On the other hand, from the perspective of a security an-
alyzer, being able to operate tiny neural networks on embedded
devices to analyze side-channel information could facilitate on-
device verification to monitor potential key leakage and ben-
efit side-channel-based on-device detection against malicious
behaviors, such as malware [22], [23], hardware Trojans [24],
[25], adversarial examples [26], and side-channel attacks [27].

Optimization on Pruning Time. Compared to single-shot
pruning, one major tradeoff in our iterative pruning is the
longer pruning time. There are ways to further optimize the
total pruning time. For instance, increasing increment number
of epochs and lowering the maximal number of epochs can
reduce the number of iterations and optimize total pruning
time. In addition, introducing early stop to halt the iterative
pruning when multiple consecutive unsuccessful iterations hap-
pen could also reduce the total pruning time. Due to space
limitation, we are not able to examine these aspects and their
impacts on attack results and parameter reduction rate.

VI. RELATED WORKS

Pruning for SCA. Perin et al. [28] apply unstructured
pruning to reduce neural network size for side-channel attacks
by leveraging the Lottery Ticket Hypothesis. Unstructured
pruning sets less important weights in a neural network as zeros
rather than removing them. As a result, this method does not
reduce model memory usage during the attack. A recent study
by Li et al. [12] investigates single-shot structured pruning to
reduce the size of neural networks for side-channel attacks
by removing less important filters. They examine two score
algorithms, including l2 norm and FPGM [29], and design
an algorithm named MiniDrop to automatically determine a
customized pruning rate for each layer based on filter scores.
They observe that there are no significant difference between
l2 norm and FPGM in terms of parameter reduction rate.

Hyperparameter/Architecture Search for SCA. Several
recent works [8], [30], [13], [31] have attempted to create small
neural networks directly using hyperparameter or architecture
search rather than pruning a pre-trained neural network. Zaid
et al. [8] apply neural network virtualization methods to obtain
hyperparameters needed for side-channel attacks. For instance,
they obtain a small CNN with 87,279 parameters and this
CNN recovers keys with 244 test traces given the ASCADv1
dataset with a random delay up to 50. This work is extended
by Wouters et al. in [30], which can further reduce the
number of parameters from the model with additional trace
pre-processing. They derive a smaller CNN with only 41,052

parameters (but no reports on MTDs) given ASCADv1 dataset
with a random delay up to 50. However, both methods require
expert-in-the-loop to manually examine/visualize parameter
importance and the time that is needed to search for these small
neural networks is not reported. Acharya et. al. [32] leverage
neural network search and information theoretic metrics to
guide the search of hyperparameters, the number of training
epochs, and the number of training traces.

Other studies apply automatic hyperparameter search meth-
ods, including reinforcement learning [13], Bayesian parameter
optimization [31], and budget-based Bayesian optimization
with hyperband search [33] to seek small neural networks. Wu
et al. [31] explore Bayesian optimization for neural network
architecture search. In essence, they run Bayesian optimization
to update hyperparameters through multiple iterations of neural
network training, where the neural network with the best attack
performance is selected at the end. A CNN with 1.08 million
parameters over ASCADv1 dataset is reported. Yap et al.
[33] further extend Bayesian optimization but adopt a budget
scheme to bound the exhaustive hyperparameter search.

Other Aspects of SCA. Besides optimizing the size of
neural networks, the portability of neural networks is another
critical aspect of deep learning side-channel attacks extensively
examined in existing research [34], [35], [36], [37], [38],
[39], [40], [41], [42], [43], where domain shifts exist between
training and test data due to hardware, software, and data
acquisition variations. Other aspects, such as explainability
[44], [45], selection of POIs [46], [47], limited number of traces
[48], [49], leakage model [50], imbalanced data [51], scheme-
aware modeling [52], more complex neural networks [19], and
pre-silicon side-channel analysis with neural networks [53],
[54], [55] have also been investigated. Non-profiling attacks
with neural networks are feasible as shown in [14], [56], [57],
[58], [59]. More comprehensive surveys on deep learning side-
channel attacks can be in [9], [10].

Recent research also investigate SCA in general, such as the
combination of power and EM channels [60], weakly profiling
attacks [61], and automatic leakage model selection [62], to
optimize attack performance. Design tools for side-channel-
aware implementations are discussed in [63]. Recent studies
of utilizing SCA to reveal architectures and weights of neural
networks are summarized in [64].

VII. CONCLUSION

We propose an iterative pruning algorithm to optimize the
size and memory usage of neural networks for side-channel
attacks. Experimental results show that our algorithm is effec-
tive over existing datasets. We also demonstrate it is feasible
to operate these micro neural networks on embedded devices.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their sug-
gestions. This work was supported in part by National Science
Foundation (CNS-2150086, CNS-2212010, DGE-2043106)
and CHEST — NSF IUCRC Center for Hardware and Embed-
ded System Security and Trust (CNS-1916722, CNS-1916762).



REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Proc.
of CRYPTO’99, 1999.

[2] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with
a Leakage Model,” in Cryptographic Hardware and Embeeded Systems
(CHES’04), 2004.

[3] S. Chari, J. R. Rao, and P. Rohatgi, “Template Attacks,” in Cryptographic
Hardware and Embeeded Systems (CHES’02), 2002.

[4] W. Schindler, K. Lemke, and C. Paar, “A stochastic model for differential
side channel cryptanalysis,” in Cryptographic Hardware and Embedded
Systems (CHES’05), 2005.

[5] H. Maghrebi, T. Portigliatti, and E. Proff, “Breaking cryptographic im-
plementations using deep learning techniques,” in Proc. of International
Conference on Security, Privacy and Applied Cryptography Engineering
(SPACE’16), 2016.

[6] E. Cagli, C. Dumas, and E. Prouff, “Convolutional Neural Networks with
Data Augmentation Against Jitter-Based Countermeasures,” in Proc. of
CHES’17, 2017.

[7] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep
learning for side-channel analysis and introduction to ASCAD database,”
Journal of Cryptographic Engineering, vol. 10, no. 2, 2020.

[8] G. Zaid, L. Bossuet, H. A, and A. Venelli, “Methodology for Efficient
CNN Architectures in Profiling Attacks,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2020.

[9] M. Panoff, H. Yu, H. Shan, and Y. Jin, “A Review and Comparison of
AI-enhanced Side Channel Analysis,” J. Emerg. Technol. Comput. Syst.,
2022.

[10] S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina, “SoK: Deep
Learning-based Physical Side-channel Analysis,” ACM Computing Sur-
veys, vol. 55, no. 11, 2023.

[11] L. Masure and R. Strullu, “Side channel analysis against the ANSSI’s
protected AES implementation on ARM,” 2021. [Online]. Available:
https://eprint.iacr.org/2021/592

[12] H. Li, M. Ninan, B. Wang, and J. M. Emmert, “TinyPower: Side-Channel
Attacks with Tiny Neural Networks,” in Proc. of HOST’24, 2024.

[13] J. Rijsdijk, L. Wu, G. Perin, and S. Picek, “Reinforcement learning
for hyperparameter tuning in deep learning-based side-channel analysis,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021.

[14] B. Timon, “Non-Profiled Deep Learning-based Side-Channel Attacks
with Sensitivity Analysis,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, vol. 2019, no. 2, pp. 107–131, 2019.

[15] F. Standaert, T. Malkin, and M. Yung, “A unified framework for the anal-
ysis of side-channel key recovery attacks,” in Proc. of EUROCRYPT’09,
2009.

[16] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and
Quantization for Deep Neural Network Acceleration: A Survey,” in
Neurocomputing, vol. 461. Elsevier, 2021.

[17] H. Cheng, M. Zhang, and J. Shi, “A survey on deep neural network
pruning-taxonomy, comparison, analysis, and recommendations,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2024.

[18] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient ConvNets,” in Proc. of ICLR 2017, 2017.

[19] S. Hajra, S. Chowdhury, and D. Mukhopadhyay, “EstraNet: An Efficient
Shift-Invariant Transformer Network for Side-Channel Analysis,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2024.

[20] TensorFlow, “Dynamic range quantization.” [Online]. Available:
https://ai.google.dev/edge/litert/models/post training quantization

[21] “Vitis-AI.” [Online]. Available: https://github.com/Xilinx/Vitis-AI
[22] H. Sayadi, Y. Gao, H. M. Makrani, J. Lin, P. C. Costa, S. Rafatirad,

and H. Homayoun, “Towards Accurate Run-Time Hardware-Assisted
Stealthy Malware Detection: A Lightwegith yet Effectuve Time Series
CNN-Based Approach,” Crypography, vol. 5, no. 4, 2021.

[23] A. Kuruvila, S. Karmakar, and K. Basu, “Time Series-based Malware
Detection using Hardware Performance Counters,” in Proc. of IEEE
HOST’22, 2022.

[24] K. I. Gubbi, B. S. Latibari, A. Srikanth, T. Sheaves, S. A. Beheshti-
Shirazi, S. M. PD, S. Rafatirad, A. Sasan, H. Homayoun, and S. Salehi,
“Hardware Trojan Detection Using Machine Learning: A Tutorial,” ACM
Transactions on Embedded Computing Systems, vol. 22, no. 3, 2023.

[25] T. Goruousis, Z. Zhang, M. Yan, M. Zhang, A. Mittal, A. Shrivastava,
F. Restuccia, Y. Fei, and M. Onabajo, “Identification of Stealthy Hard-
ware Trojans through On-Chip Temperature Sensing and an Autoencoder-
Based Machine Learning Algorithm,” in IEEE 66th International Mid-
west Symposium on Circuits and Systems (MWSCAS), 2023.

[26] R. Ding, C. Gongye, S. Wang, A. Ding, and Y. Fei, “EMShepherd:
Detecting Adversarial Samples via Side-Channel Leakage,” in Proc. of
ACM ASIACCS’23, 2023.

[27] Z. Pan and P. Mishra, “Automated Detection of Spectre and Meltdoan At-
tacks using Explainable Machine Learning,” in Proc. of IEEE HOST’22,
2022.

[28] G. Perin, L. Wu, and S. Picek, “Gambling for Success: The Lottery Ticket
Hypothesis in Deep Learning-Based Side-Channel Analysis,” Artificial
Intelligence for Cybersecurity (Springer), 2022.

[29] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter Pruning via Geometric
Median for Deep Convolutional Neural Networks Acceleration,” in Proc.
of CVPR’19, 2019.

[30] L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel, “Revisting a
Methodology for Efficient CNN Architectures in Profiling Attacks,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020.

[31] L. Wu, G. Perin, and S. Picek, “I Choose You: Automated Hyperpa-
rameter Tuning for Deep Learning-Based Side-Channel Analysis,” IEEE
Transactions on Emerging Topics in Computing, vol. 12, no. 2, 2024.

[32] R. Y. Acharya, F. Ganji, and D. Forte, “Information Theory-based Evolu-
tion of NeuralNetworks for Side-channel Analysis,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2023.

[33] T. H. E. Yap, S. Bhasin, and L. Weissbart, “Train Wisely: Multifidelity
Bayesian Optimization Hyperparameter Tuning in Side-Channel Analy-
sis,” in Proc. of Selected Areas in Cryptography (SAC’24), 2024.

[34] D. Das, A. Golder, J. Danial, S. Ghosh, A. Raychowdhury, and S. Sen,
“X-DeepSCA: Cross-Device Deep Learning Side Channel Attack,” in
Proc. of 56th ACM/IEEE Design Automation Conference (DAC’19),
2019.

[35] A. Golder, D. Das, J. Danial, S. Ghosh, S. Sen, and A. Raychowd-
hury, “Practical Approaches Towards Deep-Learning Based Cross-Device
Power Side Channel Attack,” IEEE. Trans. on Very Large-Scale Integra-
tion (VLSI) Systems, vol. 27, no. 12, 2019.

[36] S. Bhasin, A. Chattopadhyay, A. Heuser, D. Jap, S. Picek, and R. R.
Shrivastwa, “Mind the Portability: A Warriors Guide through Realistic
Profiled Side-channel Analysis,” in Proc. of NDSS’20, 2020.

[37] U. Rioja, L. Batina, and I. Armendariz, “When Similarities Among
Devices are Taken for Granted: Another Look at Portability,” in Proc. of
AFRICACRYPT 2020, 2020, pp. 337 – 357.

[38] H. Yu, H. Shan, M. Panoff, and Y. Jin, “Cross-Device Profiled Side-
Channel Attacks using Meta-Transfer Learning,” in Proc. of the 58th
ACM/IEEE Design Automation Conference (DAC’21), 2021.

[39] J. Danial, D. Das, A. Golder, S. Ghosh, A. Raychowdhury, and S. Sen,
“EM-X-DL: Efficient Cross-device Deep Learning Side-channel Attack
with Noisy EM Signatures,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 18, no. 1, pp. 1–17, 2022.

[40] C. Wang, M. Ninan, S. Reilly, J. Ward, W. Hawkins, B. Wang, and J. M.
Emmert, “Portability of Deep-Learning Side-Channel Attacks against
Software Discrepancies,” in Proc. ACM WiSec’23, 2023.

[41] H. Yu, S. Wang, H. Shan, M. Panoff, M. Lee, K. Yang, and Y. Jin, “Dual-
Leak: Deep Unsupervised Active Learning for Cross-Device Profiled
Side-Channel Leakage Analysis,” in Proc. of IEEE HOST’23, 2023.

[42] M. Krcek and G. Perin, “Autoencoder-enabled Model Portability for
Reducing Hyperparameter Tuning Efforts in Side-channel Analysis,”
Journal of Cryptographic Engineering, vol. 14, 2024.

[43] M. Ninan, E. Nimmo, S. Reilly, C. Smith, W. Sun, B. Wang, and
J. M. Emmert, “A Second Look at the Portability of Deep Learning
Side-Channel Attacks over EM Traces,” in Proc. of 27th International
Symposium on Research in Attacks, Instrusions and Defenses (RAID’24),
2024.

[44] D. van der Valk, S. Picek, and S. Bhasin, “Kilroy Was Here: The
First Step Towards Explainability of Neural Networks in Profiled Side-
Channel Analysis,” in International Workshop on Constructive Side-
Channel Analysis and Secure Design, 2020.

[45] T. Yap, A. Benamira, S. Bhasin, and T. Peyrin, “Peek into the Black-
Box: Interpretable Neural Network using SAT Equations in Side-Channel
Analysis,” IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, 2023.



[46] T. Yap, S. Bhasin, and S. Picek, “OccPoIs: Points of Interest based
on Neural Network’s Key Recovery in Side-Channel Analysis through
Occlusion,” https://eprint.iacr.org/2023/1055.pdf.

[47] G. Perin, L. Wu, and S. Picek, “Exploring Feature Selection Scenarios
for Deep Learning-based Side-channel Analysis,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2022.

[48] C. Wang, J. Dani, S. Reilly, A. Brownfield, B. Wang, and J. M. Emmert,
“TripletPower: Deep-Learning Side-Channel Attacks over Few Traces,”
in Proc. of IEEE HOST’23, 2023.

[49] L. Wu, L. Weissbart, M. Krcek, H. Li, G. Perin, L. Batina, and S. Picek,
“Label Correlation in Deep Learning-Based Side-Channel Analysis,”
IEEE Transactions on Information Forensics and Security, 2023.

[50] L. Wu, A. Ali-Pour, A. Rezaeezade, G. Perin, and S. Picek, “Breaking
Free: Leakage Model-free Deep Learning-based Side-channel Analysis,”
https://eprint.iacr.org/2023/1110.pdf.

[51] S. Picek, A. Heuser, A. Jovic, and F. Regazzoni, “The curse of Class
Imbalance and Conflicting Metrics with Machine Learning for Side-
channel Evaluations,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 1, pp. 209–237, 2019.

[52] L. Masure, V. Cristiani, M. Lecomte, and F.-X. Standaert, “Don’t Learn
What You Already Know Scheme-Aware Modeling for Profiling Side-
Channel Analysis againstMasking,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2023.

[53] D. Shanmugam and P. Schaumont, “Improving Side-Channel Leakage
Assessment Using Pre-Silicon Leakage,” in International Workshop on
Constructive Side-Channel Analysis and Secure Design (COSADE),
2023.

[54] L. Lin, D. Zhu, J. Wen, H. Chen, Y. Lu, N. Cheng, C. Chow, H. Shri-
vastav, C. W. Chen, K. Monta, and M. Nagata, “Multiphysics Simulation
of EM Side-Channels from Silicon Backside with ML-based Auto-POI
Identification,” in IEEE HOST’21, 2021.

[55] A. Srivastava, S. Das, N. Choudhury, R. Psiakis, P. H. Silva, D. Pal, and
K. Basu, “SCAR: Power Side-Channel Analysis at RTL Level,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 32,
no. 6, 2024.

[56] D. Kwon, H. Kim, and S. Hong, “Non-Profiled Deep Learning-based
Side-Channel Preprocessing with Autoencoders,” IEEE Access, 2021.

[57] L. Wu, S. Tiran, G. Perin, and S. Picek, “An End-to-end Plaintext-
based Side-channel Collision Attack without Trace Segmentation,”
https://eprint.iacr.org/2023/1109.pdf.

[58] L. Wu, G. Perin, and S. Picek, “Hiding in Plain Sight: Non-profiling
Deep Learning-based Side-channel Analysis with Plantext/Ciphertext,”
https://eprint.iacr.org/2023/209.pdf.

[59] M. Staib and A. Moradi, “Deep learning side-channel collision attack,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2023.

[60] Y. Bai, J. Park, M. Tehranipoor, and D. Forte, “Dual Channel EM/Power
Attack Using Mutual Information and Its Real-time Implementation,” in
Proc. of IEEE HOST’23, 2023.

[61] L. Wu, G. Perin, and S. Picek, “Weakly Profiling Side-Channel Analysis,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2024.

[62] O. Bazangani, A. IOOSS, I. Buhan, and L. Batina, “ABBY: Automat-
ing leakage modelling for side-channel analysis,” in Proc. of ACM
AISACCS’24, 2024.

[63] I. Buhan, L. Batina, Y. Yarom, and P. Schaumont, “SoK: Design Tools for
Side-Channel-Aware Implementations,” in Proc. of ACM AISACCS’22,
2022.

[64] P. Horvath, D. Lauret, Z. Liu, and L. Batina, “SoK: Neural Network
Extraction Through Physical Side Channels,” in Proc. of USENIX Secu-
rity’24, 2024.


