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Abstract—Side-channel attacks leverage correlations between
power consumption and intermediate encryption results to infer
encryption keys. Recent studies show that deep learning offers
promising results in the context of side-channel attacks. However,
neural networks utilized in deep-learning side-channel attacks are
complex with a substantial number of parameters and consume
significant memory. As a result, it is challenging to perform deep-
learning side-channel attacks on resource-constrained devices.

In this paper, we propose a framework, TinyPower, which lever-
ages pruning to reduce the number of neural network parameters
for side-channel attacks. Pruned neural networks obtained from
our framework can successfully run side-channel attacks with
significantly fewer parameters and less memory. Specifically, we
focus on structured pruning over filters of Convolutional Neural
Networks (CNNs). We demonstrate the effectiveness of structured
pruning over power and EM traces of AES-128 running on
microcontrollers (AVR XMEGA and ARM STM32) and FPGAs
(Xilinx Artix-7). Our experimental results show that we can
achieve a reduction rate of 98.8% (e.g., reducing the number of
parameters from 53.1 million to 0.59 million) on a CNN and still
recover keys on XMEGA. For STM32 and Artix-7, we achieve a
reduction rate of 92.9% and 87.3% on a CNN respectively. We
also demonstrate that our pruned CNNs can effectively perform
the attack phase of side-channel attacks on a Raspberry Pi 4 with
less than 2.5 millisecond inference time per trace and less than
41 MB memory usage per CNN.

I. INTRODUCTION

Deep-learning side-channel attacks [1], [2], [3], [4] utilize
neural networks to infer encryption keys on a target, such as a
microcontroller or a FPGA (Field Programmable Gate Array).
Specifically, a neural network infers intermediate encryption
results based on correlations between power consumption and
intermediate results. Once intermediate results are inferred,
correct keys can be recovered based on associated plaintexts
and the encryption algorithm. Compared to traditional side-
channel attacks, such as Template Attack [5], deep-learning
side-channel attacks can defeat countermeasures, such as mask-
ing and random delays, and require less pre-processing over
raw traces [2].

However, existing neural networks utilized in side-channel
attacks are often complex. For instance, the Convolutional
Neural Network (CNN) used over ASCAD datasets [2] can
consist of more than 53.1 million parameters given 1,000 power
samples/measurements per trace (see details in Sec. VI). When
performing the attack phase with a trained neural network, a
significant amount of memory is needed. This is often not an
issue when extensive computation resources (e.g., GPUs) are

available. On the other hand, it is challenging to run these
complex neural networks and perform side-channel attacks on
resource-constrained devices.

In this paper, we propose a framework, TinyPower, which
significantly reduces the number of neural network parameters
for side-channel attacks by leveraging the idea of structured
pruning [6], [7], [8]. Specifically, we focus on structured
pruning over filters, where less important filters are pruned
given a trained CNN. We investigate both pre-defined struc-
tured pruning and automatic structured pruning [7]. Pre-defined
structured pruning selects a unique pruning rate across all
the layers of a neural network while automatic structured
pruning automatically decides a customized pruning rate for
each layer. We examine two score algorithms, including l2-
norm [9] and FPGM (Filter Pruning via Geometric Medium)
[10], to measure the importance of filters. Our efforts and
findings are summarized below:

• We propose a new automatic structured pruning, named
MiniDrop, which automatically identifies more important
filters in a CNN based on the minimal absolute value of
discrete derivative.

• We conduct comprehensive evaluations on public datasets
and also datasets collected by us. Specifically, we collect
over 2.6 million power and electromagnetic (EM) traces
of unmasked AES-128 from multiple targets, including
microcontrollers (AVR XMEGA and ARM STM32) and
FPGAs (Xilinx Artix-7) using ChipWhisperer. We utilize
EM traces of masked AES-128 on AVR ATMEGA mi-
crocontrollers from the well-known ASCAD dataset [2].

• We leverage a CNN used over the well-known ASCAD
dataset [2] as a baseline (i.e., a CNN without pruning)
for comparison. Our experimental results show that we
can achieve a reduction rate of 98.8% (e.g., reducing the
number of parameters from 53.1 million to 0.59 million)
on the CNN and still recover keys of AES-128 running
on XMEGA. For STM32 and Artix-7, we achieve a
reduction rate of 92.9% and 87.3% respectively. We also
show that structured pruning is effective when traces are
desynchronized, EM, or from masked AES-128.

• Between pre-defined structured pruning and automatic
structured pruning, we find that automatic structured prun-
ing achieves a higher reduction rate in the context of side-
channel attacks. Between the two score algorithms we
examine, we observe that FPGM performs slightly better



than l2-norm in the majority of our experiments.
• We demonstrate that the pruned CNNs we obtain can ef-

fectively perform the attack phase of side-channel attacks
on Raspberry Pi 4 Model B (4 GB memory). Specifically,
our pruned CNNs are 10X faster in inference time and
over 10X lower in memory usage than baseline CNNs.

• Compared to a recent work [11], which reduces the num-
ber of parameters of a CNN based on network architecture
search with reinforcement learning, our pruned CNNs still
have a greater number of parameters. On the other hand,
our pruned CNNs require less time to search/prune (e.g.,
45 minutes v.s., 3 days) and can still recover keys in the
cross-device setting.

• Compared to a recent study (denoted as PWP22) [12]
based on unstructured pruning, our pruned CNNs can
achieve up to 92.1% reduction rate and still recover
keys over EM traces from XMEGA while PWP22 can
only achieve up to 1.0% reduction rate over EM traces.
Moreover, our method can significantly save memory
usage while PWP22 does not.

Reproducibility. Our source code and datasets can be found
at https://github.com/UCdasec/TinyPower

II. BACKGROUND ON SIDE-CHANNEL ATTACKS

Side-Channel Attacks (SCAs) can be categorized into profil-
ing side-channel attacks and non-profiling side-channel attacks.
We focus on profiling side-channel attacks in this study.

A. System and Threat Model

System Model. The system model of a profiling side-
channel attacks includes a training device and a test device.
Specifically, this attacker can capture power/EM traces and
associated plaintexts (i.e., inputs of the encryption) from both
devices. The attacker knows the key on the training device but
not the one on the test device. The attack goal is to reveal the
unknown but fixed key on the test device.

A profiling side-channel attack includes two phases, the
training phase (or profiling phase) and the test phase (or attack
phase). In the profiling phase, this attacker trains a profile with
labeled traces from the training device. Labels of traces are
intermediate results of encryption (or the Hamming weights
of these intermediate results), which are derived based on the
known key and plaintexts. In the attack phase, the attacker
acquires traces and plaintexts from the test device and tries to
recover the unknown key on the test device by leveraging the
profile. We focus on deep-learning side-channel attacks, where
a profile is a (trained) neural network.

The evaluation of a profiling side-channel attack can be
conducted in two settings, including the same-device setting
and cross-device setting. In the same-device setting, we assume
that a single device (and a single key) is used for training and
attack. In the cross-device setting, two different devices (and
two different keys) are used for training and testing respec-
tively. The cross-device setting considers potential distribution
shifts caused by discrepancies in keys, hardware, software, and
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Fig. 1: The system model of profiling side-channel attacks.

data acquisition. Several studies [13], [14], [15], [16], [17],
[18], [19], [20] have shown the importance of evaluating deep-
learning side-channel attacks in the cross-device setting.

For a non-profiling attack, an attacker does not have access
to a training device to build a profile in advance. It only has
unlabeled traces from the test device to perform the attack.

B. Notations and Leakage Model

A trace t is denoted as a vector t = (t[1], ..., t[l]), where t[i]
is the measurement of power consumption (or EM radiation)
of a device at time i and l is the total number of measurements
of a trace. We use M and K to denote the plaintext space and
the key space respectively. A trace t is acquired when a device
runs encryption with plaintext m and key k, where m ∈ M
and k ∈ K. We use z = φ(m, k) to denote an intermediate
value of encryption, where function φ(·) is a leakage step.

AES-128. We conduct side-channel attacks on AES-128 en-
cryption (Advanced Encryption Standard), where an encryption
key has 128 bits (i.e., 16 bytes). The attack performs in a
divide-and-conquer approach, where it reveals one key byte
each time. Following problem descriptions in the literature [3],
[4], we assume key k, plaintext m, or intermediate value z
has one byte in the rest of this paper. We use k∗1 , k

∗
2 , ...., k

∗
256

to denote all the possible 256 key values. We consider the
SubBytes of the 1st round of AES as the leakage step φ(·).

Leakage Model. We leverage Hamming Weight (HW) model
or Identity (ID) model to formulate side-channel leakage [2],
[3]. Both models can formulate the side-channel leakage prop-
erly. The selection between the two leakage models in later
evaluations depends on the architecture of a target (microcon-
troller v.s. FPGA) and the leakage channel (power v.s. EM).

The HW model assumes that there are correlations between
the power consumption of an intermediate value and the
Hamming weight of this intermediate value. The label of a
trace t is HW(z) — the Hamming weight of the intermediate
value z = φ(m, k) given plaintext m and key k. There are 9
possible Hamming weights (or 9 possible labels) as we assume
intermediate value z has one byte. The ID model assumes that
there are correlations between the power consumption and the
intermediate value itself. The label of a trace is the intermediate
value z, and there are 256 possible labels.

Attack Metrics. Given a profile (e.g., a neural network)
and a trace, the profile outputs a score for every possible
label (either an intermediate value or its HW depending on
the leakage model). Then, each score is further assigned to a
corresponding possible key based on the label, an associated



plaintext, and the encryption algorithm. Every possible key’s
scores across all the test traces are further aggregated during
the attack. As there are 256 possible keys over a byte, 256
aggregated scores are obtained. Next, the 256 aggregated scores
are sorted in a descending order.

We leverage Key Rank and Measurements To Disclosure
(MTD) to measure the effectiveness of side-channel attacks
[21], [22]. Key rank r, where r ∈ [1, 256], is the rank of the
aggregated score of the correct key among all the 256 possible
keys given a certain number of test traces. A key rank of 1
suggests that the correct key has the highest score and the
attacker reveals the key. MTD indicates the number of test
traces that is needed for the key rank to converge to 1.

III. BACKGROUND ON PRUNING

A. Neural Networks

A neural network consists of a set of layers. A layer consists
of a set of filters. A filter is, in essence, an array of weights.
A weight w ∈ R is a real number indicating the strength of
a connection between two neurons in a neural network. In
other words, a weight decides how much impact the input of
a connection will have on the output of this connection.

Given a neural network consisting of L layers, we use Ni−1

and Ni to denote the number of input channels and output
channels at the i-th layer, where 1 ≤ i ≤ L. Ni is also the
number of filters at the i-th layer. N0 is the number of input
channels at the first layer. Let Fi,j be the j-th filter of the i-th
layer, where Fi,j ∈ RNi−1×si×si and si is the kernel size at
the i-th layer1. The weights of the neural network at the i-th
layer can be denoted as Wi, where Wi = {Fi,1, ..., Fi,Ni

}.
The weights of the entire network can be described as W =
{W1, ...,WL}.

B. Neural Network Pruning

Neural Network Pruning [7], [8], or pruning for short, is
a way of reducing the size of a neural network by removing
less important parameters/weights. Pruning can be categorized
into two types, unstructured pruning and structured pruning.
Unstructured pruning (i.e., weight pruning) removes individual
weights. Structured pruning removes parameters in groups
(e.g., channels or filters), which is more effective than unstruc-
tured pruning. We focus on structure pruning over filters in
Convolutional Neural Networks in this study.

Structured pruning removes filters that are less important
and keeps filters that are more critical to the predictions of a
neural network. A score algorithm is utilized to measure the
importance of a filter. Pruning rate p of a layer is defined as
the ratio between the number of filters that are pruned/removed
and the total number of filters (before pruning) at this layer.

Specifically, given a set of filters Wi = {Fi,1, ..., Fi,Ni} at
the i-th layer and an integer Mi, a pruning algorithm keeps

1For a 1D convolutional layer, which is normally utilized over time-series
data (e.g., power/EM traces for side-channel attacks), a filter can be represented
as Fi,j ∈ RNi−1×si×1. For a fully-connected layer, a filter can be described
as Fi,j ∈ RNi−1×1×1.

a subset Wi∗ of Mi filters from all the Ni filters such that
the Mi filters have the maximum sum of importance. In other
words, the pruning algorithm finds a subset Wi∗ such that

argmax
Wi∗⊂Wi

=
∑

Fi,j∈Wi∗

S(Fi,j) (1)

where |Wi∗| = Mi and S(·) is a score algorithm. Filters that
are in set Wi but not in subset Wi∗ are removed. The pruning
rate of this layer is defined as 1− Mi

Ni
.

Structured pruning can be further divided into pre-defined
structured pruning and automatic structured pruning [7], [8].
Pre-defined structured pruning defines a unique pruning rate
across all the layers in advance. On the other hand, automatic
structured pruning decides a customized pruning rate per layer
depending on the score distribution of filters at each layer.

Pruning Process. Given a score algorithm, a pruning
process normally includes three steps: (1) training a neural
network to converge; (2) pruning less important filters based
on a score algorithm and a pruning rate (either pre-defined or
automatic); (3) fine-tuning a pruned neural network to regain
accuracy in predictions.

Score Algorithms. We investigate two existing score algo-
rithms, including l2 norm [9] and FPGM (Filter Pruning via
Geometric Medium) [10], to measure the importance of filters
of a neural network in both pre-defined structure pruning and
automatic structure pruning. l2 norm measures the importance
of a filter independently while FPGM evaluates the importance
of a filter by considering other filters from the same layer.

Specifically, given a filter Fi,j ∈ RNi−1×si×si at the i-th
layer, its l2 norm (or Euclidean norm) is calculated as

S(Fi,j) = ||Fi,j ||2 =

√√√√Ni−1∑
x=1

si∑
y=1

si∑
z=1

(wi,j [x][y][z])
2 (2)

where wi,j [x][y][z] is an element/weight of filter Fi,j , for 1 ≤
x ≤ Ni, 1 ≤ y ≤ si, and 1 ≤ z ≤ si. A higher l2 norm
indicates that a filter is more important.

FPGM [10] utilizes the geometric median of filters at a
layer to determine the importance of filters. A filter that is
closer to the geometric median is considered less important
and can be removed. As computing geometric median directly
in a great dimensional space is extremely time-consuming, the
authors [10] also proposed an approximate version of FPGM,
which calculates the sum of the l2 distances from a filter to
other filters of the same layer. Specifically, given a set of
filters Wi = {Fi,1, ..., Fi,Ni

} at the i-th layer, the approximate
FPGM score of filter Fi,j is computed as

S(Fi,j) =
∑

Fi,l∈Wi,l ̸=j

||Fi,j − Fi,l||2 (3)

A higher FPGM score suggests that a filter is more important.
We use the approximate version of FPGM in this paper.

Pruning Metrics. We levearge two metrics, including (1)
the number of parameters and (2) the number of Floating
Point Operations, to measure the complexity of a neural



network. A FLOP (Floating Point Operation) is an addition,
subtraction, division, multiplication, or any other operation
involving a floating point value. Reduction Rate is defined as
the ratio between the number of parameters removed after the
pruning and the number of parameters in a baseline network
before pruning. In addition to measuring reduction rate over
parameters, we can also report reduction rate over FLOPs.

IV. TINYPOWER: TINY NEURAL NETWORKS FOR SCA

In this section, we introduce our framework, TinyPower,
which reduces the size of neural networks for side-channel
attacks by pruning filters. We leverage l2 norm and FPGM as
the underlying score algorithms in both pre-defined structured
pruning and automatic structured pruning.

A. TinyPower with Pre-Defined Structured Pruning

The pre-defined structured pruning for SCA is straightfor-
ward. Given a dataset of traces from a target, a baseline
neural network is trained in order to recover the key. Given
this baseline neural network, we first select a score algorithm
(either l2 norm or FPGM) and choose a pre-defined pruning
rate p. Then, a pruned neural network is produced accordingly
by removing filters with pruning rate p at every layer of the
baseline neural network.

B. TinyPower with Automatic Structured Pruning

For automatic structured pruning, the key question is how
can we decide a customized pruning rate for each layer?
In other words, at each layer, how do we decide which
filters should be removed given the scores measured by a
score algorithm. We answer this question by proposing a new
automatic structured pruning, referred to as MiniDrop.

Details of MiniDrop. Given a layer of a trained neural
network, MiniDrop first measures scores of filters at this layer
based on a score algorithm (l2 norm or FPGM). Next, given
these filter scores, MiniDrop sorts the filters in a descending
order based on scores, and finds the filter index with the
minimal absolute value of the discrete derivative over all the
sorted filter scores. We denote this filter index as the mini-drop
filter index. The filters that are after this mini-drop filter index
are considered less important and are removed. On the other
hand, the filters that are before (and equal to) this mini-drop
filter index are kept. An example is illustrated in Fig. 2.

MiniDrop can be mathematically formulated as below. Given
a set of Ni filters Wi = {Fi,1, ..., Fi,Ni} at i-th layer and
a score function S(·), MiniDrop sorts the filters based on
their scores in a descending order as {F ′

i,1, ..., F
′
i,Ni

}, where
S(F ′

i,j) ≥ S(F ′
i,j+1), for 1 ≤ j ≤ Ni − 1 and F

′

i,j ∈ W i for
1 ≤ j ≤ Ni. Next, MiniDrop computes

Mi = argmin
j∈[1,Ni−h]

∣∣∣∣∣∣
S
(
F ′
i,j+h

)
− S

(
F ′
i,j

)
h

∣∣∣∣∣∣
where h = 1 by default. Mi is the mini-drop filter index
and also the number of filters that will be kept. Filters

Fig. 2: An example of MiniDrop over 8 filters, where the
minimal absolute value of discrete derivative happens at filter
index 4 (i.e., | 0.68−0.7

1 | = 0.02). Filters with index 1, 2, 3, and
4 are kept while the rest are pruned.

{F ′
i,1, ..., F

′
i,Mi

} are kept and filters {F ′
i,Mi+1, ..., F

′
i,Ni

} are
removed.

The intuition of our idea is that the minimal absolute value
of the discrete derivative reflects the minimal drop between
two consecutive filter scores at a given layer. This suggests
that the sorted scores drop dramatically after the mini-drop
filter index, and therefore, filters with much higher scores are
included before it. Therefore, the filters before the mini-drop
filter index are considered more important and kept. If there are
multiple indices minimizing the absolute value of the discrete
derivative, the one with the minimal index can be selected.

V. DATA ACQUISITION

Our Power Trace Collection. We examine the results of
side-channel attacks on AES-128 over power traces collected
from microcontrollers (AVR XMEGA and ARM STM32) and
FPGA (Xilinx Artix-7) using ChipWhisperer Level 1 Kits. A
ChipWhisperer Level 1 Kit includes a ChipWhisperer-Lite, a
CW308 UFO Board, and a target board with a target (either
XMEGA or STM32F3).

Given the same type of targets, we collect data from two
different targets for the evaluation of both same-device and
cross-device profiling attacks. Specifically, we collect power
traces from two XMEGA (X1 and X2), two STM32F3 (S1 and
S2), and two FPGAs (F1 and F2). We use the default sampling
rate on each target from ChipWhisperer2. We always use two
different keys between two targets of the same type (e.g., X1
and X2). We leverage TinyAES, which is an unmasked C
implementation of AES-128 from ChipWhisperer repository
[23]. The setup of power trace collection is straightforward.
ChipWhisperer Lite is powered by a PC through USB. The
CW308 UFO Board mounts the target and is connected to
ChipWhisperer Lite.

Our EM Trace Collection. We also collect EM traces from
microcontrollers, including AVR XMEGA and ARM STM32.
We still use the same C code of unmasked AES-128. In

2The sampling rate of data collection on each target: XMEGA: 29.34MHz;
STM32: 30.97MHz; FPGA: 96.00MHz. We obtained those by running
scope.clock.adc_freq command in ChipWhisperer script.



Fig. 3: Our EM trace collection setup

addition to ChipWhisperer, additional hardware are integrated
for EM trace collection. The setup is illustrated in Fig. 3.

Specifically, we first leverage Riscure XYZ stage to fasten
the CW308 UFO Board. Next, we place a Langer EMV RF K
7-4 Near-Field Probe around 2∼5 millimeters above the center
of a target and utilize a Keysight 3D Probe Holder to hold
the probe. The probe captures EM traces from the target and
passes EM traces to ChipWhisperer Lite (and eventually the
PC) through a Langer EMV PA 306 Amplifier. We use the
same sampling rate for each target as in power trace collection).
We set the gain of the scope of ChipWhisperer as 60 (i.e.,
scope.gain.gain = 60).

TinyPower Datasets (Ours). Each dataset we collect is a set
of tuples. A tuple is recorded in the form of (plaintext,
trace, key). Each trace contains of 5,000 measurements
(for FPGAs, 200 measurements per trace). We name each of
our datasets by following the format below

Target_Key_ExtraInfo_NoOfTraces

where Target refers to the target device, Key indicates the
encryption key, NoOfTraces is the number of traces in
a dataset, ExtraInfo indicates additional information. For
instance, a dataset named X1_K1_EM_150K indicates that it
contains 150,000 EM traces collected from target X1 running
key K1. A list of datasets we collected is presented in Table I.
The associated keys are reported in Table II.

In addition to the datasets we collected directly, we also gen-
erate datasets with random delays. Applying random delays is
considered as a countermeasure against traditional side-channel
attacks (e.g., Correlation Power Analysis [24]). Specifically, as
in previous studies [2], we simulate random delays by delaying
measurements of each trace with a random number of r, where
r ∈ [0, 50] and r is uniformly distributed.

Points of Interest. We use Points of Interest (POI) to indi-
cate measurements associated with the leakage step in a trace.
For example, POI = [200, 500] suggests that measurements
from index 200 to index 500 of a trace are associated with
the leakage step. For our datasets, we utilize the SubBytes
of the first round of AES-128 as the leakage step. We select
POI = [1800, 2800] for XMEGA, POI = [1200, 2200]
for STM32, and POI = [0, 100] for FPGA. The POIs are
identified in advance by manually analyzing the pattern of

TABLE I: TinyPower Datasets (2.6 million traces, 22.4 GBs)

XMEGA X1_K1_200K X2_K2_100K,
X1_K1_Delay_200K X2_K2_Delay_100K
X1_K1_EM_150K X2_K2_EM_150K

STM32 S1_K1_200K S2_K3_100K
S1_K1_Delay_200K S2_K3_Delay_100K
S1_K1_EM_150K S2_K3_EM_150K

FPGA F1_K1_200K F2_K4_200K

TABLE II: Encryption Keys

K1 0x2b7e 1516 28ae d2a6 abf7 1588 09cf 4f3c
K2 0xaa80 d8a7 84d3 3f5c 0b90 a985 208e ff4a
K3 0xd2d5 0168 8283 9143 969e e9a2 53a7 52e1
K4 0xe6de 35a9 a523 19df c6cc bbba c136 c3bf

power traces (with and without the leakage step in C code) and
also running statistic analysis, including NICV (Normalized
Inner-Class Variance) [25] and SNR (Signal-to-Noise Ratio)
[21], if possible. When we train a neural network, we only use
measurements within POI of a trace as inputs and measure-
ments outside POI are skipped.

ASCAD Dataset. ASCAD dataset [2] includes 50,000
training traces and 10,000 test traces collected from AVR
ATMEGA running masked AES-128, which was implemented
in assembly. Each trace contains 100,000 measurements. We
use the same POI = [45400, 46100] as in [2], where the 700
measurements from [45400, 46100] are associated with the 3rd
byte of the output of SubBytes in 1st round of AES. We only
evaluate ASCAD dataset in the same-device setting as there
are no cross-device data available.

VI. EVALUATION

Experiment Setting. We conduct our experiments on a
desktop with Ubuntu 18.04, Intel i9 CPU, 64GB memory,
and a NVIDIA Titan RTX GPU. We utilize Hamming Weight
(HW) model for XMEGA, and Identity (ID) model for STM32,
FPGA, and ASCAD to formulate side channel leakage. We
always report attack results on the 3rd byte of an AES key.
When we train a CNN, we always use 150 epochs. By default,
we use 50,000 traces for training and use 5,000 traces for
testing. Depending on the target (e.g., FPGA) or leakage
channel (e.g., EM), we also increase the number of training
traces when necessary.

For the evaluation of the same-device setting, the training
traces and test traces are from the same dataset, which was
collected on target X1, S1 or F1. For the cross-device setting,
the test traces are selected from a corresponding dataset
captured on target X2, S2 or F2. For instance, we choose
traces from X1 K1 200k for training and take traces from
X2 K2 100k for testing in the cross-device evaluation of the
attacks on XMEGA. When we report MTD (Measurements To
Disclosure), we always report the average MTD by running
tests over the same set of test traces 20 times but randomly
shuffling the order of test traces each time. When we compare
multiple neural networks attacking the same target, the same
randomly-shuffled test traces are used across multiple networks
for a fair comparison.



TABLE III: Attack Performance of Baseline CNNs

Target Leakage Training
Traces

MTD Parameters
(millions)

FLOPs
(millions)

Training Time
(seconds per epoch)Model Same-Device Cross-Device

XMEGA HW 50k 5 5
53.1 96.54 10.46XMEGA Delay HW 50k 5 6

XMEGA EM HW 50k 15 1,621
STM32 ID 50k 2 4

54.1 98.57 9.41STM32 Delay ID 50k 6 6
STM32 EM ID 140k 26 85 32.50
FPGA ID 180k 428 3,058 24.7 39.85 9.51
ASCAD ATMEGA ID 50k 921 NA 43.6 77.59 13.21

(a) XMEGA (X1 K1) (b) STM32 (S1 K1) (c) XMEGA (X1 K1 EM) (d) STM32 (S1 K1 EM)

(e) XMEGA (X1 K1 Delay) (f) STM32 (S1 K1 Delay) (g) FPGA (F1 K1) (h) ASCAD ATMEGA

Fig. 4: Side-channel leakage of each dataset measured with NICV.

TABLE IV: Hyperparameters of Baseline CNN [2]

Conv 1 filters: 64; kernel size: 11; stride: 2; Relu
Conv 2 filters: 128; kernel size: 11; stride: 2; Relu
Conv 3 filters: 256; kernel size: 11; stride: 2; Relu

Conv 4∼5 filters: 512; kernel size: 11; stride: 2; Relu
AvgPool 1∼5 pooling size: 2; stride: 2
Dense 1∼2 No. of neurons: 4096; Relu

Output No. of neurons: 9 (HW) or 256 (ID); softmax

Baseline CNN. We leverage the CNN that was utilized over
the ASCAD dataset [2] as the baseline CNN in our evaluation.
This CNN consists of 5 convolutional blocks (including 1
convolutional layer and 1 average pooling layer per block), 2
fully connected layers, and 1 output layer. The hyperparameters
of this CNN are listed in Table IV. This CNN has been widely
utilized in recent deep-learning side-channel attacks.

Experiment 1: Performance of Baseline CNN. We first
report the attack performance of the baseline CNN across
difference targets. As we can see in Table III, this baseline
CNN can recover keys from all the targets, even when the
side-channel leakage is low (e.g., random delays, EM traces,
FPGAs, or masked AES). The side-channel leakage of these
targets measured based on NICV are reported in Fig. 4. The
number of test traces that is needed to recover keys in the
cross-device setting, in general, is greater than the one in the
same-device setting. This is consistent with previous studies

as there are distribution shifts between the training and test
data, especially for EM traces and FPGAs. On the other hand,
the number of parameters involved in this baseline CNN is
extremely large (e.g., over 53 millions for microcontrollers and
over 24 millions for FPGAs).

Experiment 2: Performance of Pruned CNN (Pre-Defined
Structured Pruning). We evaluate the performance of pruned
CNNs, where these pruned CNNs are obtained using pre-
defined structured pruning. We leverage l2 norm and FPGM
respectively as the score algorithm. Given a trained baseline
CNN from Experiment 1, we choose a pruning rate p to
remove filters per convolutional layer or neurons per dense
layer accordingly. After the pruning, the pruned CNN is fine-
tuned with 150 epochs using the same traces used during the
training of the baseline CNN. In our experiments, fine-tuning
means that the parameters of a pruned CNN are initialized
based on the ones obtained after the training of a baseline
CNN rather than random values.

As presented in Table V, pre-defined structured pruning
can effectively reduce the number of parameters in a CNN.
For instance, it reduces the number of parameters from 53.1
millions to 2.1 millions (i.e., only 3.96% of the baseline
CNN) and still recover keys over power traces on XMEGA.
Up to 83.5% (STM32) and 95.8% (ASCAD ATMEGA) of
parameters can be reduced respectively while still being able to



TABLE V: Attack Performance of Pruned CNNs, Pre-Defined Structured Pruning (MTD = ⊥ indicates failing to recover
keys within 5,000 test traces.)

Target p
Parameters

(Reduction Rate)
FLOPs

(Reduction Rate)

l2 norm FPGM
MTD MTD

Same Cross Same Cross

XMEGA
0.7 4.77M (90.9%) 8.67M (91.0%) 7 8 6 7
0.8 2.12M (96.0%) 3.86M (96.0%) 95 102 10 10
0.9 0.53M (99.0%) 0.97M (98.9%) ⊥ ⊥ ⊥ ⊥

XMEGA Delay
0.7 4.77M (90.9%) 8.67M (91.0%) 7 9 7 9
0.8 2.12M (96.0%) 3.86M (96.0%) 12 14 12 14
0.9 0.53M (99.0%) 0.97M (98.9%) ⊥ ⊥ ⊥ ⊥

STM32
0.5 13.78M (74.4%) 25.16M (76.0%) 4 3 3 3
0.6 8.88M (83.5%) 16.20M (83.5%) ⊥ ⊥ 15 15
0.7 5.07M (90.6%) 9.28M (90.5%) ⊥ ⊥ ⊥ ⊥

STM32 Delay
0.5 13.78M (74.4%) 25.16M (76.0%) 12 10 4 4
0.6 8.88M (83.5%) 16.20M (83.5%) ⊥ ⊥ 4 4
0.7 5.07M (90.6%) 9.28M (90.5%) ⊥ ⊥ ⊥ ⊥

XMEGA EM
0.4 19.09M (64.0%) 34.74M (64.0%) 17 2,459 14 1,570
0.5 13.28M (74.9%) 24.15M (74.9%) 15 ⊥ 17 3,855
0.6 8.47M (84.0%) 15.42M (74.9%) 1,525 ⊥ 23 ⊥

STM32 EM
0.2 34.72M (35.8%) 63.34M (35.7%) 22 156 21 133
0.3 26.69M (50.6%) 48.70M (50.6%) 22 108 22 167
0.4 19.70M (63.6%) 35.96M (63.5%) 27 124 ⊥ ⊥

FPGA
0.3 12.32M (50.1%) 19.96M (49.9%) 416 4,337 391 4,439
0.4 9.14M (62.9%) 14.84M (62.8%) 526 4,347 484 ⊥
0.5 6.44M (73.9%) 10.49M (73.7%) ⊥ ⊥ ⊥ ⊥

ASCAD ATMEGA
0.7 4.13M (90.9%) 7.40M (90.5%) 743 NA 614 NA
0.8 1.91M (95.8%) 3.43M (95.6%) 516 NA 578 NA
0.9 0.53M (98.8%) 0.96M (98.7%) ⊥ NA ⊥ NA

reveal keys. In general, when we increase the pruning rate per
layer, the attack performance drops (i.e., MTD increases), and
eventually fails to recover keys at some point. This observation
is consistent across different targets.

For pruned CNNs over EM traces from microcontrollers or
power traces from FPGAs, pruning is also effective but the re-
duction rate is not as high as others. For example, we achieve a
reduction rate of 74.9% (XMEGA EM), 50.7% (STM32 EM),
and 62.9% (FPGA) respectively. This is expected as it is
more challenging to recover keys from these targets/cases,
and therefore, less parameters can be pruned. For most of the
targets, FPGM shows slightly better attack performance than
l2-norm given the same pruning rate.

Experiment 3: Performance of Pruned CNN (Automatic
Structured Pruning). We evaluate the performance of pruned
CNNs, which are obtained using automatic structured pruning
with MiniDrop. We still leverage l2 norm or FPGM as the score
algorithm. Given a trained baseline CNN from Experiment 1,
MiniDrop produces a pruned CNN. A maximal pruning rate
of 0.99 is set in our experiment to avoid over-pruning at each
layer. After the pruning, the pruned CNN is fine-tuned with
150 epochs (same as in Experiment 2).

As presented in Table VI, automatic structured pruning with
MiniDrop is effective and can reduce more parameters than
pre-defined structured pruning. For instance, automatic struc-
tured pruning with MiniDrop can reduce 92.3% of parameters
(v.s. 74.9% in pre-defined structure pruning) and still recover
keys on XMEGA EM. In general, when we decrease the value
of pruning parameter h in MiniDrop, more parameters can be
removed and attack performance drops. Moreover, we examine
the specific pruning rate at each layer given MiniDrop. As

(a) XMEGA (h=8)

(b) ASCAD ATMEGA (h=8)

Fig. 5: The pruning rate at each layer of a pruned CNN
produced by MiniDrop (score algorithm: FPGM).

presented in Fig. 5, more filters and nodes can be pruned in
later layers of a CNN.

Experiment 4: Comparison between Ours and Previous
Studies. We compare structured pruning with two recent
methods [12], [11] by using our datasets from XMEGA. Perin
et al. [12] examine unstructured pruning in the context of
side-channel attacks. They utilize unstructured pruning (with



TABLE VI: Attack Performance of Pruned CNN, Automatic Structured Pruning (MTD = ⊥ indicates failing to recover keys
within 5,000 test traces.)

Target h
l2 norm FPGM

Parameters
(Reduction Rate)

FLOPs
(Reduction Rate)

MTD Parameters
(Reduction Rate)

FLOPs
(Reduction Rate)

MTD
Same Cross Same Cross

XMEGA
8 0.76M (98.6%) 1.21M (98.7%) 7 8 0.96M (98.2%) 1.34M (98.6%) 7 8
4 0.54M (99.0%) 0.97M (99.0%) ⊥ ⊥ 0.59M (99.0%) 0.97M (99.0%) 10 11
2 0.53M (99.0%) 0.96M (99.0%) ⊥ ⊥ 0.53M (99.0%) 0.96M (99.0%) ⊥ ⊥

XMEGA Delay
4 0.56M (99.0%) 0.96M (99.0%) 14 12 0.56M (99.0%) 0.96M (99.0%) 10 12
2 0.54M (99.0%) 0.96M (99.0%) 312 285 0.53M (99.0%) 0.97M (99.0%) 1,268 783
1 0.53M (99.0%) 0.97M (99.0%) ⊥ ⊥ 0.53M (99.0%) 0.97M (99.0%) ⊥ ⊥

STM32
16 4.30M (92.1%) 5.06M (94.9%) 4 4 3.81M (93.0%) 3.75M (96.2%) 3 5
8 1.31M (97.6%) 2.11M (97.9%) ⊥ ⊥ 1.28M (97.6%) 1.86M (98.1%) ⊥ 5
4 0.69M (98.7%) 1.23M (98.8%) ⊥ ⊥ 0.69M (98.7%) 1.23M (98.8%) ⊥ ⊥

STM32 Delay
8 1.39M (97.4%) 1.98M (98.0%) ⊥ ⊥ 1.00M (98.2%) 1.42M (98.6%) 5 5
4 0.68M (98.7%) 1.17M (98.8%) ⊥ ⊥ 0.68M (98.7%) 1.17M (98.8%) 4 6
2 0.63M (98.8%) 1.16M (98.8%) ⊥ ⊥ 0.64M (98.8%) 1.17M (98.8%) ⊥ ⊥

XMEGA EM
32 6.14M (88.4%) 5.80M (94.0%) 14 1,033 4.94M (90.7%) 5.80M (94.0%) 16 4,538
16 4.93M (90.7%) 5.18M (94.6%) 15 3,005 4.11M (92.3%) 5.29M (94.5%) 19 2,913
8 1.09M (98.0%) 1.65M (98.3%) ⊥ ⊥ 1.33M (97.5%) 1.83M (98.1%) 2,180 ⊥

STM32 EM
128 15.16M (72.0%) 20.76M (78.9%) 18 149 11.82M (78.1%) 17.99M (81.7%) 23 211
64 6.07M (88.8%) 6.93M (99.0%) 25 189 5.78M (89.3%) 6.33M (93.6%) 24 138
32 3.83M (92.9%) 4.11M (95.8%) ⊥ ⊥ 3.27M (94.0%) 4.11M (95.8%) ⊥ ⊥

FPGA
32 3.16M (87.2%) 0.83M (97.9%) 415 3,826 3.13M (87.3%) 0.84M (97.9%) 470 3,317
16 2.48M (90.0%) 0.82M (97.9%) 397 ⊥ 1.64M (93.4%) 0.82M(97.9%) ⊥
8 1.02M (95.9%) 0.58M (98.5%) ⊥ ⊥ 0.66M (97.3%) 0.58M (98.5%) ⊥ ⊥

ASCAD ATMEGA
8 0.68M (98.4%) 1.04M (98.7%) 872 NA 0.75M (98.3%) 0.96M (98.8%) 3,253 NA
4 0.58M (98.7%) 0.96M (98.8%) 759 NA 0.58M (98.7%) 0.96M (98.8%) 720 NA
2 0.53M (98.8%) 0.96M (98.8%) 1,628 NA 0.53M (98.8%) 0.96M (98.8%) ⊥ NA

TABLE VII: Comparison among the smallest (but still effective) CNNs obtained by different methods. Target: XMEGA

Target Method Parameters Pruning/Search CNN Memory MTD
Time (hrs) Usage (MBs) Same Cross

XMEGA
Network Search [11] 519 70.67 0.45 18 ⊥

Unstructured Pruning [12] 534,600 (99.0% pruned) 1.30 414.05 145 124
Structured Pruning (Ours) 587,628 (98.9% pruned) 0.75 5.64 10 11

XMEGA EM
Network Search [11] 1,077 68.29 3.45 50 ⊥

Unstructured Pruning [12] 52.53M (1.0% pruned) 1.30 424.08 45 ⊥
Structured Pruning (Ours) 4.11M (92.3% pruned) 0.50 36.30 19 2,913

TABLE VIII: Hyperparameters Search Space for Network
Architecture Search with Reinforcement Learning [11]

Maximum Total Layers 14
Maximum Fully Connected Layers 3

Fully Connected Layer Size [2, 4, 8, 16, 32, 64, 128, 256]
Convolutional Padding Type SAME
Convolutional Layer Depth [2, 4, 8, 16, 32, 64, 128]

Convolutional Layer Kernel Size [1, 2, 3, 25, 50, 75, 100]
Convolutional Layer Stride 1
Pooling Layer Filter Size [2, 4, 7, 25, 50, 75, 100]

Pooling Layer Stride [2, 4, 7, 25, 50, 75, 100]
SoftMax Initializer Glorot Uniform

Initializer for other layers He Uniform
Activation function SeLU

Lottery Ticket Hypothesis [26]) to reduce the number of
parameters of CNNs. As no public source code is provided,
we implement the unstructured pruning by following the de-
scriptions in [12].

In addition to pruning, network architecture search is also a
way of reducing the size of a neural network by searching
groups of parameters in an substantial space. Compared to
pruning, network architecture search, in general, is extremely
time-consuming. Rijsdijk et al. [11], which is an existing
study addressing network architecture search for side-channel

attacks, leverage reinforcement learning to search the optimal
CNN architecture given a dataset. We utilize their source code
[11] over our datasets to search for small CNN architectures
in order to compare pruning and network architecture search
in the context of side-channel attacks.

Specifically, given a dataset collected from XMEGA
(X1 K1 200k), we tune the hyperparameters of a CNN fol-
lowing the Reward Small setting described in [11]. Given the
dataset, we select 50,000 traces as training data and 5,000
traces as test data (same as pruning). As the search is extremely
time-consuming, we only search over 700 unique CNN models
and train each CNN model for 150 epochs. The hyperparameter
search space is listed in Table VIII. The search time takes about
70.67 hours in total.

We report the smallest CNN that can still recover keys
from each method in our comparison. As shown in Table VII,
network architecture search can obtain a much smaller CNN
compared to pruning. However, it takes much longer time to
search and it does not recover keys in the cross-device setting3.

Compared to unstructured pruning in [12] (denoted as

3We tested the top-50 CNN models obtained from network architecture
search, none of them recover keys in the cross-device setting.



TABLE IX: Comparison between Baseline CNN and Pruned CNN on Raspberry Pi 4 (Target: XMEGA, STM32)

Dataset Pruning Parameters CNN Size Attack Time CNN Memory MTD
Option (MBs) Per Trace (ms) Usage (MBs) (Cross-Device)

XMEGA
No Pruning 27.89M 212.9 10.6 356.7 4 (Setup 1)

Automatic (h=4) 0.3M 2.4 1.37 23.3 7 (Setup 1)
20 (Setup 2)

STM32
No Pruning 28.90M 220.6 10.5 367.7 3 (Setup 1)

Automatic (h=16) 1.3M 10.7 2.28 40.2 9 (Setup 1)
22 (Setup 2)

(a) XMEGA (Same-Device) (b) XMEGA (Cross-Device)

(c) XMEGA EM (Same-Device) (d) XMEGA EM (Cross-Device)

Fig. 6: Comparison between unstructured pruning (PWP22
[12]) and structured pruning (ours). MTD = ⊥ indicates failing
to recover keys within 5,000 test traces.

PWP22), our method can achieve a much higher reduction rate
when recovering keys over EM traces as shown in Table VII.
A more comprehensive comparison between PWP22 and ours
is illustrated in Fig. 6. We observe that both PWP22 and our
method can significantly reduce the size of a CNN over power
traces while still being able to recover keys. Our method can
still achieve up to 92.3% reduction rate (for both same-device
and cross-device) over EM traces. Unfortunately, PWP22 can
only achieve 1.0% reduction rate in the same-device setting
and fails to reduce the size of a CNN in the cross-device
setting over EM traces. It is worth mentioning that PWP22 (or
unstructured pruning in general) does not save memory usage
as removed parameters are set as zeros but not removed.

Experiment 5: Performance of Pruned CNN on Rasp-
berry Pi. We show that a pruned CNN can be effectively
operated on a resource-constrained device for the attack phase
of side-channel attacks. Specifically, we use a Raspberry Pi 4
Model B running Debian Version 11 (64-bit) with Broadcom
BCM2711, quad-core Cortex-A72 64-bit SoC@1.8GHz, and
4GB SDRAM. We first train and prune a CNN on our GPU
machine (as in our previous experiments). Then, we load the
pruned CNN and pre-collected test traces on the Raspberry Pi
to perform the attack phase (by using Setup 1 in Fig. 7). We

Fig. 7: Our two setups for running profiling side-channel
attacks on Raspberry Pi 4. Setup 1 runs the attack phase over
pre-collected test traces. Setup 2 runs the attack phase over
on-the-fly test traces with ChipWhisperer.

measure the number of parameters, MTDs (cross-device only),
network size, network memory usage, and inference/attack
time per trace. We examine power traces from XMEGA and
STM32. To deploy a baseline neural network on Raspberry
Pi, we reduce the POIs (POI = [2400, 2600] for XMEGA
and POI = [1700, 1900] for STM32) during the training and
attack for baseline CNNs. POIs of pruned CNNs are adjusted
accordingly for a fair comparison. We only examine automatic
structured pruning with FPGM as the score algorithm.

As shown in Table IX, both baseline and pruned CNNs
are able to run on Raspberry Pi and recover keys. However,
the baseline CNNs require much higher memory usage and
perform much slower. For instance, the baseline CNN over
power traces from XMEGA requires 356.7 MBs memory while
our pruned CNN only needs 23.3 MBs memory. In addition,
the inference time per trace is only 1.37 milliseconds with
our pruned CNN while the baseline CNN needs over 10
milliseconds. We have consistent observations from STM32.

Besides loading pre-collected test traces with Setup 1, we
also capture test traces on-the-fly and perform the attacks with
Setup 2 shown in Fig. 7, where a pruned CNN is loaded on
Raspberry Pi in advance but ChipWhisperer is connected to
Pi to acquire test traces. While test traces are being collected,
they are directly passed to a pruned CNN to reveal keys. Our
results show that a pruned CNN can still recover keys within
20 traces despite different acquisition setups between training
and test power traces.



VII. RELATED WORK

Maghrebi et al. [1] first leverage CNNs for side-channel
attacks and show that CNNs outperform Template Attacks.
Cagli et al. [27] demonstrate that CNNs can recover keys
over desynchronized traces. Benadjila et al. [2] introduce the
ASCAD dataset and show CNNs and MLPs (Multi-Layer
Perceptrons) can reveal keys over traces from masked AES.
Subsequent studies investigate deep-learning side-channel at-
tacks by focusing on different aspects, including portability
[13], [14], [15], [16], [20], [17], [18], [28], explainability [29],
[30], lack of training (or test) traces [31], loss function [32],
training time [33], selection of POIs [34], [35], leakage model
[36], or imbalanced data [37]. Recent studies [38], [39], [40],
[41] also show that it is feasible to perform non-profiling
attacks with deep neural networks. Two comprehensive surveys
on deep-learning side-channel attacks can be found in [3],
[4]. In addition to applying deep learning to post-silicon side-
channel attacks mentioned above, some recent research [22],
[42] leverage deep learning for pre-silicon side-channel attacks
over simulated power/EM traces in order to mitigate side-
channel leakage during the design stage of chips.

Pruning for SCA. Perin et al. [12] are the first ones to
explore pruning in the context of side-channel attacks. They
utilize weight pruning (a.k.a. unstructured pruning) to reduce
the number of parameters of CNNs and apply the Lottery
Ticket Hypothesis [26], which uses re-initialize weights rather
than randomized weights or trained weights before retraining
a pruned CNN. Compared to unstructured pruning, structure
pruning (explored in this paper) is generally more efficient
in terms of reducing the number of parameters and saving
memory usage for inference. Detailed surveys summarizing the
latest state on pruning can be found in [7], [8].

Network Architecture Search for SCA. Several studies
[43], [44], [44], [45], [11], [12] examine automatic hyperpa-
rameter tuning (or network architecture search), which also
leads to efficient and small neural networks for side-channel
attacks. For instance, Zaid et al. [43] utilize visualization
methods, including weight visualization, gradient visualization,
and heat maps, to improve feature selection and hyperparam-
eter selection, and therefore, reduce the complexity of CNNs
for side-channel attacks. Wouters et al. [44] further improve
hyperparameter selection for CNNs based on the methods in
[43]. Wu et al. [11] leverage reinforcement learning to search
hyperparameters. Wu et al. [45] use Bayesian optimization to
tune hyperparameters.

Pruning v.s. Network Architecture Search. Compared to
pruning, network architecture search can also lead to smaller
neural networks but the searching/tuning process is much
longer. It is because the searching/tuning needs to be carried
out in a substantial search space in order to find efficient
combinations of hyperparameters. In addition, neural networks
obtained from network architecture search are often extremely
customized for training datasets, and may not work well for
cross-device settings where distribution shifts exist between
training data and test data [46].

VIII. LIMITATIONS AND DISCUSSIONS

Other Model Compression Methods. Pruning can be con-
sidered as one of the model compression techniques in deep
learning [47], [4]. In addition to pruning, there are several other
model compression approaches, including quantization [48],
knowledge distillation [49], and low-rank factorization [50].
These remaining compression techniques (either individually
or with combinations of multiple approaches) have not been
well-investigated in the context of side-channel attacks, and
could lead to much smaller neural networks.

Our Pruning is Not Optimal. Even within the scope of
pruning, the pruned CNNs we obtained are obviously not
optimal. There is still research that can be investigated to
further improve the reduction rate. For instance, pre-processing
over traces, such as selecting a smaller number of POIs, can
also minimize the dimension of the inputs, and therefore,
reduce the size of a neural network.

Examining One Baseline CNN Only. We only examine
one CNN architecture as the baseline. While we believe our
pruning methods can also be applied to other CNNs and MLPs,
the specific reduction rates derived from other architectures can
be different from the ones we report in this paper.

Cross-Device Evaluation is Critical. When reducing the
size of neural networks for side-channel attacks, we would
like to emphasize the importance of carrying out cross-device
evaluations. Otherwise, a pruned neural network is extremely
customized for one dataset, but will fail to recover keys from
another dataset from the same type of target, especially for EM
traces and challenging targets (e.g. FPGA).

Impacts of Tiny Neural Networks for SCA. From the per-
spective of a malicious attacker, being able to perform the at-
tack phase of deep-learning side-channel attack on a resource-
limited device can make the attack stealthy and mobile. From
the perspective of a security analyzer, understanding that tiny
neural networks are feasible for side-channel attacks is critical
for system designs and countermeasure implementations.

IX. CONCLUSION

We investigate structured pruning in the context of deep-
learning side-channel attacks. With extensive experiments over
power and EM traces from multiple targets running unmasked
and masked AES-128, we demonstrate that much smaller
neural networks can be utilized in the attack phase of side-
channel attacks. We also show that the pruned CNNs we
obtained can be deployed on a Raspberry Pi.
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