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Abstract—Deep learning has been utilized as a promising
technique in side-channel attacks. However, to recover keys
successfully, deep-learning side-channel attacks often require
thousands of training traces, which could be challenging for an
attacker to obtain in the real world. This paper proposes a new
deep-learning side-channel attack which only requires hundreds of
training traces. Our proposed method, referred to as TripletPower,
trains a triplet network, which learns a robust embedding for side-
channel attacks with few traces. We demonstrate the advantage
of our method in profiling attacks over power traces collected
from AVR XMEGA and ARM STM32 microcontrollers using
ChipWhisperer. Specifically, experimental results show that our
method only needs as low as 250 training traces to train a classifier
successfully recovering keys of unmasked AES on XMEGA (or
STM32) while a Convolutional Neural Network needs at least
4,000 training traces in profiling attacks. In addition, we extend
our method to non-profiling attacks with on-the-fly labeling.
Experimental results suggest that our method can effectively
recover keys of unmasked AES on XMEGA with only 525
unlabeled power traces in non-profiling attacks. Our method is
also effective over power traces collected from masked AES and
traces generated with random delay.

I. INTRODUCTION

Side-channel attacks [1]–[4] can reveal encryption keys on
a target device, e.g., a microcontroller or FPGA, by examin-
ing correlations between power consumption and intermediate
outputs of an encryption algorithm. Studies [5]–[19] have
demonstrated that machine learning, particularly deep learning,
can offer new advantages compared to traditional approaches,
such as Correlation Power Analysis [3]. For instance, deep-
learning side-channel attacks can recover keys when masking
or random delays are applied [9], [10].

However, one primary limitation of existing studies is that
a significant number of training traces is required to train a
classifier successfully recovering keys. Specifically, to break
a key of AES (Advanced Encryption Standard) running on a
microcontroller, a Convolutional Neural Network (CNN) often
requires at least several thousands of training traces [10].
While obtaining thousands of training traces from a target is
feasible in a lab environment, it could be challenging for a
real-world attacker. For instance, a real-world attacker may not
have sufficient attack windows to capture thousands of training
traces from a target.

In this paper, we propose TripletPower, a new deep-learning
side-channel attack that requires fewer training traces to train a
classifier to successfully recover keys. Specifically, our method

learns an embedding by leveraging triplet networks [20] and
trains a classifier built upon the embedding. A triplet network
consists of three sub-networks in parallel, where each sub-
network is a deep neural network. It requires less training data
and learns a more robust embedding such that data from the
same classes are close while data from different classes are
apart in the embedded space. These features are utilized in
this paper to distinguish power consumption of intermediate
outputs of AES, and therefore, recover keys using a classifier
trained with few traces.

The main contributions of this paper are summarized below:

• We propose TriplePower, a method that requires only hun-
dreds of training traces to train a classifier successfully
recovering keys in side-channel attacks. We demonstrate
that our method can recover AES keys in profiling attacks.
Moreover, our method can be extended to non-profiling
attacks to recover keys.

• For a profiling attack with TriplePower, we first learn an
embedding with triplet networks and then attach a k-nn
(k-nearest-neighbor) to the end of the embedding to form
a classifier performing side-channel attacks. We conduct
extensive evaluations in both same-device profiling attacks
and cross-device profiling attacks over power traces col-
lected from microcontrollers using ChipWhisperer [21].
We examine power traces of unmasked AES on AVR
XMEGA (8-bit RISC) and ARM STM32 (32-bit Cortex-
M4). Experimental results show that our method requires
a much lower number of training traces than a CNN. For
instance, a CNN requires at least 4,000 training traces to
train a classifier while our method needs as low as 250
traces to train a classifier recovering keys of unmasked
AES on XMEGA. Our method is also effective against
masked AES and random delay on XMEGA.

• For a non-profiling attack with TripletPower, we extend
our method in the profiling attack with an existing tech-
nique, named on-the-fly labeling [18], [22] (also known as
partition-based Differential Power Analysis [23]). Specif-
ically, given a set of power traces without labels (as the
key remains unknown to an attacker) in a non-profiling
attack, our method first produces 256 labeled sets of power
traces, trains 256 embeddings with triplet networks, and
forms 256 classifiers accordingly. Each labeled set of
power traces, its embedding, and its classifier are derived



based on each guess key byte value from 0 to 255 (
0x00 to 0xff in hex). We leverage attack accuracy as
the Distinguisher of on-the-fly labeling, where the attack
accuracy of the classifier obtained from the correct guess
key byte value distinctly outperforms the attack accuracy
of other classifiers trained from incorrect guesses key byte
values. Our experimental results show that TripletPower
can recover keys with as low as 525 traces (500 for
training and 25 for testing) over unmasked AES on
XMEGA and 700 traces (500 for training and 200 for
testing) over unmasked AES on STM32 in non-profiling
attacks. Our method also recovers keys over traces from
masked AES and random delay on XMEGA.

Reproducibility. The source code and datasets of our study
can be found at [24].

We would like to acknowledge that Wu et al. [25] first
proposed to utilize triplet networks in the context of side-
channel attacks. The work was published recently by CHES’22.
Different from our work, Wu et al. leveraged triplet networks to
learn a robust embedding for template attacks. Their primary
motivation is to reduce training time by running one-epoch
training over triplet networks while our goal is to reduce the
number of training traces. Wu et al. also proposed a new
metric named Hybrid Distance, which can improve the quality
of the embedding. Despite the differences, both [25] and our
study indicate that triplet networks, or essentially deep metric
learning [26], offer new opportunities for deep-learning side-
channel attacks. Our work was conducted in parallel and we
were not aware of the study published in [25] at the time of
our paper submission.

II. BACKGROUND

A. Machine-Learning Profiling Attacks.

System and Threat Model. As shown in Fig 1, the system
model of machine-learning profiling side-channel attacks in-
cludes two targets, including a training target and a test target.
Both of the targets run the same encryption algorithm. There is
an adversary — either a security analyzer or malicious attacker
— who aims to recover an unknown but fixed key on the test
target. This adversary does not have control of the test target
but can passively capture its power consumption and associated
plaintexts and/or ciphertexts.

On the other hand, this adversary has complete control of the
training target to assist her to learn a profile (e.g., a classifier)
to recover the unknown key on the test target. Specifically, this
adversary knows the key on the training target and can change
it if needed. In addition, this adversary can choose plaintexts
and collect a significant amount of power traces when the
training target runs an encryption algorithm.

The attack consists of two phases, the training phase (a.k.a.,
profiling phase) and the test phase (a.k.a., attack phase). In
the training phase, this adversary trains a classifier leveraging
machine learning algorithms with (labeled) power traces col-
lected from the training target. In the test phase, the adversary
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Fig. 1: The system model of profiling side-channel attacks.

collects (unlabeled) power traces from the test target and aims
to recover the key on the test target with the trained classifier.

Same-Device v.s. Cross-Device. The evaluation of a pro-
filing attack can be carried out in two settings, including the
same-device setting and cross-device setting. We examine both
same-device and cross-device profiling attacks in this paper.

In the same-device setting, the training target and test target
are exactly the same. In other words, training data and test data
are collected from the same target running the same key. This
setting can simplify the setup and lower hardware expense of
data acquisition. On the other hand, the same-device setting
ignores discrepancies caused by hardware imperfections, dif-
ferent keys, and different setups between two targets.

In the cross-device setting, the training target and test target
are still the same type but not identical. In addition, the
training target and test target use two different keys. It requires
additional hardware and more time in data acquisition. Several
recent studies [27]–[32] highlight the importance of evaluating
deep-learning profiling attacks in the cross-device setting.

B. Notations and Leakage Model

A power trace t is a one-dimensional time series data
t = (t[1], ..., t[l]), where t[i] is the measurement of power
consumption at time i and l is the number of measurements
in a power trace. A set T consisting of N power traces is
denoted as T = (t1, ..., tN ). A power trace t contains the
power consumption of a target when it runs encryption with a
plaintext m ∈ M and key k ∈ K, where m is the input and
k is the key of an encryption algorithm. M is the plaintext
space and K is the key space. Given plaintext m and key k,
an intermediate output of the encryption algorithm is denoted
as z = φ(m, k), where function φ(·) is a leakage step.

We focus on attacks on AES, where a side-channel attack
operates at the byte level and reveals the entire key byte by byte.
For example, to compromise all the 16 bytes of one AES-128
key, the attack will repeat 16 rounds on the same set of power
traces to reveal one byte in each round. In the j-th round,
where j ∈ [1, 16], the label of a power trace is obtained based
on the j-th byte of the intermediate output.

Following the conventions of existing literature, the descrip-
tion of side-channel attacks in the rest of this paper will focus
on one byte, where we assume key k, plaintext m or inter-
mediate output z only has one byte. We use k∗1 , k

∗
2 , ...., k

∗
256

to denote all the possible 256 key values of one byte. We
use SubBytes (i.e., S-box) of the 1st round of AES as the
leakage step φ(·) for computing intermediate outputs. In other



words, we assume that the power consumption of the output
of SubBytes can leak the information of a key.

We leverage Hamming Weight (HW) model [10], [33]
to formulate the leakage, where the power consumption of
two intermediate outputs are considered distinguishable if the
Hamming weights of the two intermediate outputs are different.
As one byte has 8 bits, there are 9 unique Hamming weights,
i.e., {0, 1, ..., 8}. Each power trace t can be labeled with,
HW(z = φ(m, k)), the Hamming weight of the intermediate
output generated by plaintext m and key k. We use HW(·) to
denote the function of calculating Hamming weights. Besides
Hamming Weight model, other leakage models, such as the
identity model and the least/most significant bit model, can
also be used to formulate side-channel leakage [10].

C. Evaluation Metrics

The performance of machine-learning side-channel attacks
can be measured with two metrics, attack accuracy and key
rank (a.k.a. guessing entropy [33]). Attack accuracy is the same
concept as accuracy of a classifier in machine learning. Key
rank is the rank of the correct key among all the possible keys
based on aggregated scores over a set of power traces. Key
rank is considered as a primary metric while attack accuracy
is secondary. This is because attack accuracy in side-channel
attacks can be much lower (e.g., 30%) compared to other areas
(e.g., over 95% in image recognition), but the attack can still
recover keys effectively when it is measured with key rank.

In the training phase, given a training dataset Dtrain =
{T,M, k}, which consists of power traces T = (t1, ..., tN ),
plaintexts M = (m1, ...,mN ) and key k, where mi is associ-
ated with ti, an attacker computes intermediate outputs Z =
(z1, ..., zN ), where zi = φ(mi, k), and assigns hi = HW(zi) as
the label of power trace ti. An attacker trains a classifier F
with (T,H) = {(t1, h1), ..., (tN , hN )}.

In the attack phase, there is a test dataset Dtest =
{T ′,M ′, k′}, which consists of power traces T ′ = (t′1, ..., t

′
N ′),

plaintexts M ′ = (m′
1, ...,m

′
N ′) and key k′, where m′

i is
associated with t′i. Given power trace t′i, an attacker first
obtains a score for each Hamming weight from classifier F .
Next, each possible intermediate output obtains its score based
on its Hamming weight. Then, each possible key obtains its
score based on its associated intermediate output, plaintext m′

i,
and function φ(·).

Attack Accuracy. Given a power trace t′i, classifier F
outputs a HW score vector (si[0], ..., si[8]), where si[j] is
the score for Hamming weight j. If si[g] is the highest
score among (si[0], ..., si[8]) and the Hamming weight of
intermediate output z′i = φ(m′

i, k
′) is g, the prediction of

classifier F is considered correct for power trace t′i. Attack
accuracy is computed as x/N ′, where x is the number of
power traces obtaining the correct Hamming weight among
N ′ power traces.

Key Rank. Given a HW score vector (si[0], ..., si[8]) ob-
tained from trace t′i, an attacker obtains a key score vector
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Fig. 2: The system model of non-profiling side-channel attacks.

(ri[k
∗
1 ], ..., ri[k

∗
256]) by calculating

ri[k
∗
g ] = si[j], if HW(φ(m′

i, k
∗
g)) == j (1)

for 1 ≤ g ≤ |K| = 256, where ri[k
∗
g ] is the score of possible

key k∗g based on trace t′i and plaintext m′.
The aggregated key score vector (r[k∗1 ], ..., r[k

∗
256]) over N ′

power traces are computed as

r[k∗j ] =

N ′∑
i=1

ri[k
∗
j ], for 1 ≤ j ≤ 256 (2)

The aggregated key scores (r[k∗1 ], ..., r[k
∗
256]) are further sorted

in descending order. Key rank is denoted as w, where w ∈
[0, 255], if key k′ is ranked as the (w + 1)-th key among all
the 256 possible keys based on the aggregated scores. A key
rank of 0 over N ′ traces suggests that an attacker can recover
key k′ with N ′ traces. If key rank converges to 0 with a lower
number of traces, it indicates that an attack is more effective.

D. Machine-Learning Non-Profiling Attacks

In a non-profiling attack, an attacker can only obtain a set
of power traces and associated plaintexts from a test target but
it does not know the key (in Fig. 2). In other words, there
are no labeled traces. The goal of this attacker is to recover an
unknown but fixed key on the test target. A non-profiling attack
is more challenging than a profiling attack as the attacker no
longer has access to a training target.

There are different ways to perform non-profiling attacks.
One effective approach is on-the-fly labeling [18], [22] (also
known as partition-based Differential Power Analysis [23]),
which can transform a non-profiling attack into 256 profiling
attacks by enumerating all the possible 256 keys. In each
instance of a profiling attack, a classifier is trained accordingly.
The training (or/and the testing) of all the 256 classifiers is
considered as the attack phase of the non-profiling attack.

Specifically, given power trace set T = (t1, ..., tN ),
its associated plaintexts M = (m1, ...,mN ), and all
the 256 possible keys k∗1 , ..., k

∗
256, the attacker generates

label sets H[k∗1 ], ...,H[k∗256] where label set H[k∗i ] =
(h1[k

∗
i ], ..., hN [k∗i ]) is computed based on guess key k∗i and

hj [k
∗
i ] = HW(φ(mj , k

∗
i )) is the Hamming weight of guess

intermediate output based on plaintext mj and guess key k∗i .
hj [k

∗
i ] is also the guess label of trace tj given guess key k∗i .

As a result, on-the-fly labeling produces 256 labeled
datasets (T,H[k∗1 ]), (T,H[k∗2 ]), ..., (T,H[k∗256]), where the
power traces remain the same but the labels are different due
to each guess key. Given each labeled dataset (T,H[k∗i ]),
an attacker trains a classifier F [k∗i ]. A metric, such as the
sensitivity of a neural network (if a neural network is utilized



as a classifier) [18], is utilized as a Distinguisher to reveal
the correct key. Other metrics, such as Mutual Information,
can be used as the Distinguisher in traditional partition-based
Differential Power Analysis [23].

We use HW model to partition unlabeled traces in on-the-fly
labeling in this study. It is worth mentioning that the identity
model should not be used with on-the-fly labeling as all the
partitions of unlabeled traces generated by the identity model
would remain the same regardless of which guess key it is
[23]. When all the partitions remain the same for all the guess
keys, the Distinguisher fails to distinguish the correct key from
incorrect ones.

III. THE DESIGN OF TRIPLETPOWER

A. Background on Triplet Networks

A triplet network [20] contains three parallel sub-networks
sharing identical weights and hyperparameters. An input of a
triplet network is referred to as a triplet. It consists of an anchor
sample AS , a positive sample PS , and a negative sample NS .
Triplets are selected from a set of samples, either randomly
or based on certain mining strategy [34]. Note that an anchor
sample, a positive sample, or a negative sample is a power
trace in the context of side-channel attacks.

Training a triplet network with triplets can obtain an em-
bedding, such that the distance between anchors and positive
samples is smaller than the distance between anchors and
negative samples in an embedded space. One advantage of
triplet networks is that the training, in general, requires less
data compared to other neural networks.

Triplet loss is utilized to measure the loss during the training
[20]. Given a triplet (AS , PS , NS), triplet loss is defined as

L(AS , PS , NS) = max(dAP − dAS + α, 0)

dAP = ||f(AS)− f(PS)||2

dAS = ||f(AS)− f(NS)||2

where f(·) is the embedding, α is a margin between positive
and negative samples. The training aims to minimize the triplet
loss. Cosine distance can be utilized [20] to measure distances
between anchors and positive samples (or negative samples).

Since the training of a triplet network only obtains an
embedding, an additional training for a classifier is needed in
order to perform classifications. Specifically, after the training
of a triplet network, a trained sub-network is extracted and
utilized as the embedding. A classifier, such as k-nn or SVM
(Support Vector Machine), is attached to the sub-network to
form the whole classifier. The parameters of k-nn or SVM are
trained using additional samples while hyperparameters and
weights of the sub-network are frozen. Once trained, the whole
classifier (consisting of the embedding and k-nn) can be used
to perform classifications.

B. Profiling Attacks with TripletPower

We first describe how to perform profiling side-channel
attacks with triplet networks. Specifically, given a number of
N training power traces, our method TripletPower first labels
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Fig. 3: Overview of a triplet network

each power trace by calculating the Hamming weight of the
intermediate output based on the associated plaintext and key
as mentioned in Sec. II. Next, it takes at most U traces per
class (per Hamming weight) to mine triplets and train a triplet
network. We refer U as the Per-Class Threshold in this paper.

There are two reasons that we set this threshold U during
the training of a triplet network. First, given a number of N

training traces, there are approximately 71% (i.e., C3
8+C4

8+C5
8

256 )
of these traces will be labeled with Hamming weight 3, 4, or
5. We refer to Hamming weight 3, 4, and 5 as dominating
classes. If we include a much greater number of traces from
these dominating classes compared to the number of traces
selected for other classes (e.g., HW=0 or HW=8), we could end
up with many easy triplets generated from these dominating
classes. An easy triplet is a triplet where the distance between
an anchor sample and a positive sample is already less than
the distance between an anchor sample and a negative sample
in the input space. Easy triplets do not help a triplet network
effectively improve the embedding, and therefore, should be
avoided. Second, setting the per-class threshold can also reduce
the mining time and training time of a triplet network, and
therefore, optimize the overall training time of our method.

Once a triplet network is trained, our method extracts the
sub-network and attaches a k-nn to the end of it to form a
classifier. We train the classifier by updating the weights of k-
nn but freezing weights in the sub-network. Once the classifier
is trained, TripletPower takes a number of V test power traces
to calculate the accuracy and key rank as defined in Sec. II.

C. Non-Profiling Attacks with TripletPower.

Our method can also be extended to perform non-profiling
attacks by leveraging on-the-fly labeling. Specifically,
given a set of power traces T = (t1, ..., tN , ..., tN+V ),
its associated plaintexts M = (m1, ...,mN , ...,mN+V ),
our method first produces 256 labeled datasets
(T,H[k∗1 ]), (T,H[k∗2 ]), ..., (T,H[k∗256]) by following on-
the-fly labeling, where H[k∗i ] = (h1[k

∗
i ], ..., hN+V [k

∗
i ]) and

hj [k
∗
i ] is the guess label of trace tj based on guess key k∗i .

Given each labeled dataset (T,H[k∗i ]), TripletPower leverages
the first N traces (t1, ..., tN ) and their guess labels to train a
classifier Fk∗

i
, where it trains a triplet network with at most



Fig. 4: Highlight of non-profiling attacks with TripletPower: The steps for training and testing one classifier Fk∗
0

based on guess
key k∗0 = 0x00. The steps above are repeated for 256 iterations and each iteration uses a different guess key but with the same
N + V power traces and N + V plaintexts.

U traces per class and train classifier F [k∗i ] with all the N
traces as in a profiling attack. Next, the remaining V traces
(tN+1, ..., tN+V ) and their guess labels are utilized in testing
to measure the attack accuracy of each classifier F [k∗i ]. Fig. 4
shows the steps for one classifier F [k∗0 ].

TripletPower leverages the attack accuracy of a classifier
during the testing as the Distinguisher. The intuition is that if
the guess key is correct, the embedding of a trained triplet
network can distinguish traces across different classes, and
therefore, lead to better performance for the classifier during
the testing. On the other hand, if the guess keys are incorrect,
the embedding of a trained triplet network cannot distinguish
traces across different classes, and therefore, lead to poor
performance during attacks.

Specifically, given test accuracy Acc[k∗1 ], ..., Acc[k
∗
256] ob-

tained from all the 256 classifiers and the unknown key k′ on
the test target, where Acc[k∗i ], for 1 ≤ i ≤ 256, is the testing
accuracy of classifier F [k∗i ] over traces (tN+1, ..., tN+V ) and
associated guess labels derived from guess key k∗i , the non-
profiling attack with TripletPower is considered successful if

k′ = argmax
k∗
i

(Acc[k∗i ]) (3)

In other words, if the test accuracy derived from the classifier
trained with the correct guess key achieves the highest accu-
racy, the non-profiling attack is successful.

IV. EVALUATION

A. Data Collection

We examine side-channel attacks by analyzing the power
consumption of a target running AES-128 encryption. Specif-
ically, we utilize ChipWhisperer Level 1 Kit as capture
boards to collect power traces from multiple targets, including
XMEGA (8-bit RISC) microcontrollers and STM32F3 (32-bit
Cortex-M4) microcontrollers. Both XMEGA and STM32F3
are widely adopted in embedded systems and IoT devices.
ChipWhisperer Level 1 Kit offers a sampling rate of 105
million measurements per second [21].

As shown in Fig. 5, we leverage two computers (PC1 and
PC2) and two Chipwhisperer Level 1 Kits (CL1 and CL2) to
collect power traces. PC1 is equipped with Intel i5 CPU, 16GB
RAM, and USB 3.0; PC2 is equipped with Intel i7 CPU, 32GB
RAM, and USB 3.0. Both of them run Ubuntu 18.04.

Two XMEGA targets (X1 and X2) and two STM32F3 targets
(S1 and S2) are examined. We always use PC1 and CL1 to

Fig. 5: The data collection setup

collect data from X1 (and S1) and we always use PC2 and
CL2 to obtain data from X2 (and S2). For ease of description,
we will only keep the name of a target when we refer to a
dataset. For the name of each dataset we collect, we use the
following convention to describe it

Target_Key_MaskedInfo_NoOfTraces

where Target indicates which target it is, Key suggests
which key was used, NoOfTraces shows how many traces
are included, MaskedInfo={U, M} suggests whether it is
collected from unmasked AES (U) or masked AES (M). For
instance, X1_K1_M_20k indicates that a dataset was collected
from X1 running masked AES using secret key K1 and this
dataset includes 20,000 traces.

We collect power traces from unmasked AES-128 on
XMEGA and STM32F3 and masked AES-128 on XMEGA.
For unmasked AES, we use tinyAES (written in C) provided
by ChipWhisperer APIs [35]. For masked AES on XEMGA,
we use the implementation (version 1) from [36], which is
written in assembly. How to compile this assembly code
for ChipWhisperer can be found on our GitHub repository
[24]. Each (raw) power trace includes a sequence of power
measurements when a target runs AES encryption.

Points of Interest. We use Points of Interest to denote the
corresponding power measurements associated with SubBytes
of the first round of AES-128. For unmasked AES-128 on
XMEGA, we use the default offset (offset=0) in ChipWhisperer
APIs during the data collection and select [1800, 2800] as the
Points of Interest as shown in Fig. 6. For unmasked AES-
128 on STM32F3, we select [1200, 2200] as the Points of
Interest. For masked AES-128 on XMEGA, we are not able to
observe power measurements associated with SubBytes of the



(a) XMEGA, unmasked AES (b) STM32, unmasked AES (c) XMEGA, masked AES (offset 17,500)

Fig. 6: Power Pattern of AES-128 on Microcontrollers.

TABLE I: Our TP Dataset

XMEGA, Unmasked STM32, Unmasked XMEGA, Masked XMEGA, Unmasked, Random Delay
X1_K0_U_200k S1_K0_U_200k X1_K0_M_200k X1_K0_U_Delay_200k
X1_K0_U_20k S1_K0_U_20k X1_K0_M_20k X1_K0_U_Delay_20k
X2_K1_U_20k S2_K2_U_20k X2_K3_M_20k X2_K1_U_Delay_20k

TABLE II: Keys used in TP Dataset

K0 0x2b, 7e, 15, 16, 28, ae, d2, a6, ab, f7, 15, 88, 09, cf, 4f, 3c
K1 0x95, 19, 7f, 66, b0, 6d, 6e, 21, 67, 8a, fa, 8f, 87, a9, 64, e5
K2 0x10, 6c, 38, 41, d5, e8, a5, 6e, 22, b1, c9, 9f, cc, 4b, 25, f8
K3 0xa6, 9f, c8, 50, 7d, f6, 60, 03, ce, 44, 45, b1, 70, 47, f0, 50

Fig. 7: NICV and SNR of X1_K0_U_20k (3rd byte)

first round with offset 0. Therefore, we set offset=17,500 and
select [1600, 4500] as the Points of Interest.

We identify Points of Interest in advance, where we use
consecutive dummy operations, e.g., 20∼30 NOPs (No Opera-
tions), before and after SubBytes of the first round of AES
in C or assembly code, to create a visible gap in power
consumption. We adjust the offset incrementally in order to
observe the gap if needed. The Points of Interest are further
validated with Normalized Inter-Class Variance (NICV) [37]
and Signal to Noise Ratio (SNR) [38] to ensure leakage points
(i.e., high peaks) are included. The NICV and SNR of dataset
X1_K0_U_20k over 3rd byte are shown in Fig. 7. For all our
side-channel attacks, given a (raw) power trace, we extract the
Points of Interest to form one input to a classifier.

TP Dataset. We collect a large-scale power trace dataset,
denoted as TripletPower (TP) dataset. It contains 960,000
power traces in total with an overall size of 43 GBs. The entire
TP dataset consists of 12 datasets using different targets and
keys. Different keys and messages were generated randomly
and recorded. Each dataset consists of tuples, where each tuple
is recorded in the form of (trace, plaintext, key).

TABLE III: Hyperparameters of Neural Networks

CNN Sub-Network (Ours)
Conv 1 filters: 64; kernel size: 11; stride: 2; Relu
Conv 2 filters: 128; kernel size: 11; stride: 2; Relu
Conv 3 filters: 256; kernel size: 11; stride: 2; Relu

Conv 4∼5 filters: 512; kernel size: 11; stride: 2; Relu
AvgPool 1∼5 pooling size: 2; stride: 2
Dense 1∼2 No. of neurons: 4096; Relu

Output No. of neurons: 9; No. of neurons: 256;
softmax Relu

The number of tuples in a dataset is the same as the number
of traces. The list of our datasets is summarized in Table I.
The keys involved in TP dataset are presented in Table II.

We also generate power traces by simulating random delays.
For instance, we generate dataset X1_K0_U_Delay_200k
based on dataset X1_K0_U_200k by shifting Points of Inter-
est of each power trace with a delay randomly selected from
[0, 10]. We use the same approach to generate the other two
datasets with random delays.

B. Experiments

Experiment Setting. We implement our method with
Python 3.6. Specifically, we utilize Scikit-learn and Tensorflow
2.3 to implement machine learning algorithms. The experi-
ments are conducted on a desktop with Ubuntu 18.04, Intel
Core i7 CPU, NVIDIA Titan RTX GPU, and 64GB RAM. For
all of our experiments, we always report attack results on the
3rd byte of an AES key and we use Hamming Weight model
to formulate the leakage.

Architectures of Neural Networks. For CNN, we use the
CNN from the ASCAD paper [10]. It consists of 5 blocks and 2



(a) No. of training traces N = 250 (b) No. of training traces N = 2, 000 (c) No. of training traces N = 4, 000

Fig. 8: Comparison of Key Ranks between CNN and TripletPower (XMEGA, unmasked AES, 3rd byte).

fully connected layers and an output layer. Each block consists
of 1 convolutional layer and 1 average pooling layer. Detailed
hyperparameters of this CNN can be found in Table III. For
TripletPower, we choose the same CNN as a sub-network of a
triplet network. We slightly modify the output layer of the CNN
as the sub-network serves as embedding, not classification. For
k-nn classifier in TripletPower, we set k = 10.

Experiment 1. Comparison between CNN and Triplet-
Power (Profiling, Same-Device). We compare the attack per-
formance of CNN and TripletPower in same-device profiling
side-channel attacks, where the training and test data are
collected from the same target with the same key. We first
examine unmasked AES on XMEGA and STEM32.

For unmasked AES on XMEGA, we use X1_K0_U_200k
for training and X1_K0_U_20k for testing. Given the training
dataset, we randomly choose N traces for training, where N =
{125, 250, 500, 1k, 2k, 4k, 8k, 16k}. Given each N , we train a
CNN with 100 epochs. For a fair comparison, we use the same
N traces to train our method TripletPower. Specifically, we
first train a triplet network for 100 epochs by setting per-class
threshold as U = 300. We defer the discussion on the impact of
per-class threshold in a later experiment. We use offline semi-
hard mining to select triplets. Once we train a triplet network,
we use all the N traces to train a k-nn classifier.

As shown in Table IV, for unmasked AES on XEMGA,
when the number of training traces N is 125, neither CNN
or TripletPower can recover the key, i.e., the key rank does
not converge to 0. When we increase N , both CNN and
TripletPower are able to perform better. However, TripletPower
outperforms CNN when N remains relatively low. Note that
we leverage key rank (or parameter R, the number of test
traces that key rank converges to 0) in the attack phase as
the primary metric to compare the attack performance of CNN
and TripletPower. Attack accuracy is utilized as a secondary
metric in the comparison. Key ranks are always reported on
average by running the evaluation five times, where the order
of test traces is randomly shuffled every time.

Specifically, when 250 ≤ N ≤ 2, 000, TripletPower can re-
cover keys while CNN cannot. For instance, given N = 1, 000,
TripletPower can recover the key within 123 test traces in
the attack phase while CNN cannot. The detailed key ranks
for some of the values of N are presented in Fig. 8. As a
necessary tradeoff, TripletPower requires a longer training time

TABLE IV: Comparison of CNN and TripletPower, Same-
Device Profiling Attacks, Hamming Weight Model, XMEGA,
Unmasked AES, 3rd byte, Train: X1_K0_U_200k, Test:
X1_K0_U_20k, N : No. of Training Traces, R: No. of Test
Traces Key Rank Converging to 0 (– indicates that key rank
does not converge to 0), TT: Training Time (seconds).

CNN TripletPower
N ACC R TT ACC R TT

(traces) (sec) (traces) (sec)
125 21.69% – 8 17.20% – 102
250 28.18% – 11 24.12% 2,983 333
500 28.18% – 17 30.21% 978 1,311

1,000 28.18% – 30 43.97% 123 3,730
2,000 28.18% – 56 53.89% 32 9,763
4,000 41.16% 30 130 57.29% 33 12,388
8,000 53.48% 16 299 58.57% 26 14,827
16,000 62.91% 16 524 55.01% 27 17,322

TABLE V: Comparison of CNN and TripletPower, Same-
Device Profiling Attacks, Hamming Weight Model, STM32F3,
Unmasked AES, 3rd byte, Train: S1_K0_U_200k, Test:
S1_K0_U_20k, N : No. of Training Traces, R: No. of Test
Traces Key Rank Converging to 0 (– indicates that key rank
does not converge to 0), TT: Training Time (seconds).

CNN TripletPower
N ACC R TT ACC R TT

(traces) (sec) (traces) (sec)
125 21.20% – 8 25.88% – 100
250 27.50% – 11 25.96% 594 321
500 27.50% – 17 40.72% 78 1,255

1,000 27.29% – 28 56.87% 43 5,040
2,000 27.29% – 54 55.78% 52 9,454
4,000 27.29% – 105 49.97% 36 12,445
8,000 50.26% 23 260 47.75% 24 14,927
16,000 64.42% 9 502 51.39% 26 18,724

than CNN given the same N . CNN can eventually outperform
TriplePower when there are 4,000 or more training traces.

It is worth mentioning that a higher accuracy does not
necessarily lead to a better performance in key rank, especially
when accuracy is at a similar level. For instance, as shown in
Table IV, given N = 250, CNN achieves 28.18% accuracy
while TripletPower achieves a lower accuracy of 24.14%.
However, key rank shows that TriplePower can recover the
key with 2,983 traces while CNN cannot.

We have consistent observations between CNN and Triplet-
Power from unmasked AES on STM32 (Table V), masked



TABLE VI: Comparison of CNN and TripletPower, Same-
Device Profiling Attacks, Hamming Weight Model, XMEGA,
Masked AES, 3rd byte, Train: X1_K0_M_200k, Test:
X1_K0_M_20k, N : No. of Training Traces, R: No. of Test
Traces Key Rank Converging to 0 (– indicates that key rank
does not converge to 0), TT: Training Time (seconds).

CNN TripletPower
N ACC R TT ACC R TT

(traces) (sec) (traces) (sec)
125 22.13% – 14 34.56% 171 243
250 26.98% – 28 32.19% 42 916
500 26.98% – 34 65.39% 45 3,668

1,000 26.98% – 61 88.65% 9 11,734
2,000 29.79% 488 131 93.46% 7 22,886
4,000 57.56% 20 375 97.02% 5 30,748
8,000 90.58% 7 705 98.71% 6 47,312

16,000 98.26% 6 1,217 98.32% 5 50,423

TABLE VII: Comparison of CNN and TripletPower, Same-
Device Profiling Attacks, Hamming Weight Model, XMEGA,
Random Delay, Unmasked AES, 3rd byte, Train:
X1_K0_U_Delay_200k, Test: X1_K0_U_Delay_20k, N :
No. of Training Traces, R: No. of Test Traces Key Rank
Converging to 0 (– indicates that key rank does not converge
to 0).

N
CNN TripletPower

ACC R (traces) ACC R (traces)
250 28.18% – 22.62% –
500 28.18% – 25.37% 3,745

1,000 24.71% – 26.55% 1,427
2,000 28.08% – 39.64% 123
4,000 28.31% – 43.27% 54
8,000 47.87% 19 42.32% 63

AES on XMEGA (Table VI), and unmasked AES on XMEGA
with random delay (Table VII). We skip the training time for
unmasked AES on XMEGA with random delay as it is the
same as the ones without random delays reported in Table IV.

Observation 1: The results suggest that TripletPower can
achieve better attack performance when there are few training
traces in same-device profiling attacks. In addition, it can
also defeat countermeasures, including masking and random
delays. On the other hand, when N is sufficiently large to
train a CNN successfully recovering a key, there is no need
to utilize TriplePower as it requires much longer training time
and achieves lower attack performance.

Experiment 2. The Impact of Per-Class Threshold for
TripletPower. To examine the impact of per-class threshold
on the performance of our method, we select the number
of training traces as N = 2, 000 and we choose per-class
threshold U = {100, 150, 200, 250, 300}. Given each N and
U , we retrain TripletPower with X1_K0_U_200k as training
dataset and test with X1_K0_U_20k as test dataset.

As shown in Fig. 9a, when we increase per-class threshold
U , the training time of TripletPower increases significantly.
On the other hand, accuracy increases much slower or remains
similar. For instance, when U = 300, it takes close to 10,000
seconds to train TripletPower and offers 53.89% accuracy.

(a) XMEGA (b) STM32

Fig. 9: Training time and attack accuracy of TripletPower given
N = 2, 000, unmasked AES, 3rd byte.

However, when U = 150, the training time can be reduced to
around 4,000 seconds while TripletPower can achieve 43.69%
accuracy, which is still sufficient for recovering keys. We also
examine unmasked AES on STM32 with S1_K0_U_200k
as training dataset and S1_K0_U_20k as test dataset. The
observation is even more obvious in Fig. 9b.

Observation 2: Given N , selecting a greater value of U can
help improving the attack performance of TripletPower but the
tradeoff between training time and attack performance should
be kept in mind to avoid unnecessarily long training time.

Experiment 3. Comparison between CNN and Triplet-
Power (Profiling, Cross-Device). We compare the attack per-
formance of CNN and TripletPower in cross-device profiling
side-channel attacks, where the training and test data are
collected from different targets with different keys. We examine
unmasked AES on XMEGA and STEM32, respectively.

For unmasked AES on XMEGA, we use X1_K0_U_200k
as the training dataset and X2_K1_U_20k as the test dataset.
As we use the same dataset for training in Experiment 1, we di-
rectly leverage the trained classifiers obtained in Experiment 1
for both CNN and TripletPower. Other details of the experiment
remain the same as the ones mentioned in Experiment 1. As
described in Table VIII, we have consistent observation, where
TriplePower can outperform CNN in terms of the number of
traces key rank converging to 0 given 250 ≤ N ≤ 2, 000.

In addition, we observe that both CNN and TripletPower
suffer minor attack performance drops (in both attack accuracy
and key rank) when we compare the results between same-
device profiling attacks in Table IV and cross-device profiling
attacks in Table VIII. For instance, given N = 500, our method
can recover the key with 978 traces in the same-device setting
but requires 1,478 traces in the cross-device setting. Given N =
4, 000, CNN can recover keys with 30 traces in the same-
device setting but needs 43 traces in the cross-device setting.
This is expected as previous studies [27]–[32] have shown that
discrepancies between training and test data in the cross-device
setting can lead to performance drops. We also observe the
same from unmasked AES on STM32 (in Table IX) when we
use S1_K0_U_200k as training dataset and S2_K2_U_20k
as test dataset.

Observation 3: The results of this experiment suggest that
our method outperforms CNN even in cross-device profiling
attacks when there are few training traces.



(a) No. of training traces N = 250,
XMEGA, unmasked, 3rd byte

(b) No. of training traces N = 500,
XMEGA, unmasked, 3rd byte

(c) No. of training traces N = 250,
STM32, unmasked, 3rd byte

(d) No. of training traces N = 500,
STM32, unmasked, 3rd byte

(e) No. of training traces N = 125,
XMEGA, masked, 3rd byte

(f) No. of training traces N = 250,
XMEGA, masked, 3rd byte

(g) No. of training traces N = 1, 000,
XMEGA, random delay, 3rd byte

(h) No. of training traces N = 2, 000,
XMEGA, random delay, 3rd byte

Fig. 10: Attack results of non-profiling attacks: unmasked AES on XMEGA (a-b); unmasked AES on STM32 (c-d); masked
AES on XMEGA (e-f); unmasked AES with random delay on XMEGA (g-h).

TABLE VIII: Comparison of CNN and TripletPower, Cross-
Device Profiling Attacks, Hamming Weight Model, XMEGA,
Unmasked AES, 3rd byte Train: X1_K0_U_200k, Test:
X2_K1_U_20k, N : No. of Training Traces, R: No. of Test
Traces Key Rank Converging to 0.

N
CNN TripletPower

ACC R (traces) ACC R (traces)
125 21.93% – 8.65% –
250 27.52% – 22.98% 4,988
500 27.52% – 29.54% 1,478

1,000 27.52% – 42.46% 122
2,000 27.52% – 56.80% 49
4,000 40.95% 43 55.84% 45
8,000 50.42% 23 56.13% 39

16,000 63.01% 13 53.05% 34

Experiment 4. Attack Performance of TripletPower in
Non-Profiling Attacks. We demonstrate that our method is
effective in non-profiling side-channel attacks. We examine
unmasked AES on XMEGA and STM32F3, masked AES on
XMEGA, and unmasked AES with random delay on XMEGA.

For unmasked AES on XMEGA, we use X1_K0_U_20k
as the dataset from a test target in a non-profiling attack.
We still attack the 3rd byte. According to the results from
our profiling attacks, we select the number of training traces
as N = {250, 500}, and perform on-the-fly labeling to train
256 triplet networks and 256 classifiers. Then, we select the
number of test traces as V = {25, 50, 100, 200}. We leverage
the attack accuracy as the Distinguisher. As shown in Fig. 10a
and Fig. 10b, when N = 250, our method is not able to
distinguish the classifier generated by the correct key and
classifiers trained by incorrect keys. On the other hand, when
we increase the number of training traces to N = 500, the
classifier trained from the correct key has the highest accuracy

TABLE IX: Comparison of CNN and TripletPower, Cross-
Device Profiling Attacks, Hamming Weight Model, STM32F3,
Unmasked AES, 3rd byte, Train: S1_K0_U_200k, Test:
S2_K2_U_20k, N : No. of Training Traces, R: No. of Test
Traces Key Rank Converging to 0.

N
CNN TripletPower

ACC R (traces) ACC R (traces)
125 21.61% – 26.08% –
250 27.54% – 26.44% 695
500 27.54% – 40.97% 89

1,000 27.54% – 57.31% 58
2,000 27.54% – 56.03% 60
4,000 27.54% – 49.79% 39
8,000 50.19% 17 47.56% 41

16,000 64.71% 12 51.41% 34

and is distinguishable from other classifiers when the number
of test traces V ≥ 25. In other words, our method can recover
keys in non-profiling attacks over unmasked AES on XMEGA
with as low as 525 traces (500 training + 25 test).

In addition, we use S1_K0_U_20k, X1_K0_M_20k, and
X1_K0_U_Delay_20k respectively as the dataset from a
test target for unmasked AES on STM32, masked AES on
XMEGA, and unmasked AES with random delay on XMEGA
in non-profiling attacks. Our results show that our method
only needs 700 traces (500 training + 200 test, in Fig. 10d),
350 traces (250 training + 100 test, in Fig. 10f), and 2,025
traces (2,000 training + 25 test, in Fig. 10h) respectively, to
distinguish the correct key from incorrect ones.

For the attacks over traces without random delays, as the
number of training traces N remains relatively small (e.g.,
N ≤ 500), training 256 triplet networks in one non-profiling
attack completes around 1311×256

3600×24 ≈ 3.9 days (according to the
training time reported in Table IV). This is still feasible with



one GPU machine. For the attack over traces with random
delays from XMEGA, N = 2000 is sufficient to distinguish
the correct key. However, training 256 triplet networks given
N = 2000 with a single GPU machine would be extremely
time-consuming (around 9763×256

3600×24 ≈ 29 days). We optimize
the running time by reducing the number of epochs from 100
to 50, reducing Points of Interest to [2100, 2600], and utilizing
4 GPU machines (including 2 local machines with a Titan RTX
per machine and 2 Amazon EC2 instances with an NVIDIA
Tesla V100 GPU per instance) running in parallel. With those
optimizations, we are able to complete one non-profiling attack
within 4 days for random delays on XMEGA.

Observation 4: Our results suggest that our method is
effective in non-profiling attacks, where traces are unlabeled.

V. RELATED WORK

We briefly discuss existing studies that are mostly related to
this paper. Comprehensive surveys on machine-learning side-
channel attacks can be found in [33], [39], [40].

Machine-Learning Profiling Attacks (Same-Device Set-
ting). Several studies [5], [8], [41], [42] utilized traditional
machine learning algorithms, such as SVM or Random Forest,
to perform side-channel attacks. Cagli et al. [9] showed that
CNNs can defeat jittering (i.e., random delays). Benadjila et
al. [10] examined profiling attacks with Multi-Layer Percep-
trons and CNNs and released ASCAD dataset, which is one
of the largest datasets for side-channel analysis. They also
demonstrated that CNNs can defeat masking. Maghrebi et
al. [7] demonstrated deep learning can outperform Template
Attacks [2]. Van der Valk et al. [43] examined the explainability
of neural networks in side-channel attacks. Picek et al. [11]
studied data imbalance when performing side-channel attacks
with Hamming Weight model. Rijsdijk et al. [44] proposed
to leverage reinforcement learning to automatically tune hy-
perparameters. Perin et al. [45] utilized ensemble learning to
improve the generalization of neural networks.

Wang et al. [14] proposed to utilize Conditional Generative
Adversarial Networks to produce augmented training traces
when there are limited training traces, and then train CNNs
with both original traces and augmented traces. However, these
augmented traces are generated only in the data domain but do
not happen on targets in the real world. In other words, aug-
mented traces do not necessarily follow the same side-channel
leakage distribution, which could lead to suboptimial attack
performance. This is a general limitation of data augmentation.
In addition, there are no results in [14] suggesting the method
can be effective in non-profiling attacks.

Machine-Learning Profiling Attacks (Cross-Device Set-
ting). Several studies [27]–[32], [46]–[49] investigated
machine-learning side-channel attacks in the cross-device sce-
nario. Das. et al. [32] proposed multi-device training – uti-
lizing power traces collected from multiple devices to train a
neural network. In their extended study [31], pre-processing
techniques, including Principal Component Analysis and Dy-
namic Time Warping, were utilized in addition to multi-device

training. The authors further proposed an algorithm for optimal
selection of multiple training devices in [28].

Zhang et al. [48] proposed to leverage Fast Fourier Trans-
form to pre-process power traces and locate Points of Interest to
tackle discrepancies across different types of microcontrollers.
Bhasin et al. also [27] proposed to train a neural network
with traces from multiple devices. Yu et al. [30] utilized
meta-transfer learning to address side-channel attacks across
different chip models (STM32F0 v.s. STMF32F1) or different
channels (power v.s. EM signals). Rioja et al. [29] investigated
how to quantify discrepancies of power traces across devices
with Dynamic Time Warping. Cao et al. [17] utilized transfer
learning built upon unsupervised domain adaptation to over-
come discrepancies in the cross-device scenario. Specifically,
they introduced Maximum Mean Discrepancy as a part of the
loss function to fine-tune the last few layers of a neural network
without the need of labeled traces from a test target.

Deep-Learning Non-Profiling Attacks. Some studies [12],
[18], [22], [50] address non-profiling attacks using deep learn-
ing, where all the traces are from a single target but unlabeled.
The author in [18] proposed differential deep learning analysis,
which labels a set of power traces with 256 possible keys, trains
256 deep neural networks, and leverages sensitivity analysis
over a neural network during the training as the Distinguisher
to reveal the correct key.

A recent study [51] shows that leveraging pre-processing
(e.g., scaling and t-test) and combining multiple Distinguishers
(e.g., Correlation Power Analysis and Mutual Information
Analysis) can also reduce the number of unlabeled traces in
non-profiling attacks. For instance, the proposed approach can
recover keys of unmasked AES-128 on an 8-bit microcontroller
within 50 traces. We believe that applying pre-processing in
[51] may further improve the performance of our method. We
will leave it as future work.

VI. CONCLUSION

We propose a new deep-learning side-channel attack, which
requires only hundreds of training traces to recover AES
encryption keys. We conduct comprehensive experiments and
demonstrate the advantage of our method over CNNs in same-
device profiling attacks, cross-device profiling attacks, and non-
profiling attacks. We also demonstrate this proposed method
can defeat masking and random delays.
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