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Abstract—End-to-end malware detection analyzes raw bytes of
programs with deep neural networks. It is considered as a new
promising approach to simplify feature selection in static analysis
but still provide accurate detection. Unfortunately, recent studies
show that evasion attacks can modify raw bytes of malware and
force a well-trained detector to predict the crafted malware as
benign. In this paper, we propose a new evasion attack and validate
the vulnerability of end-to-end malware detection in the context
of multiple detectors, where our evasion attack MultiEvasion
can defeat two (or even three) classifiers simultaneously without
affecting functionalities of malware. This raises emerging concerns
to end-to-end malware detection as running multiple classifiers
was considered as one of the major countermeasures against
evasion attacks. Specifically, our experimental results over real-
world datasets show that our proposed attack can achieve 99.5%
evasion rate against two classifiers and 18.3% evasion rate against
three classifiers. Our findings suggest that the security of end-to-
end malware detection need to be carefully examined before being
applied in the real world.

I. INTRODUCTION

End-to-end malware detection [1]–[6], i.e., detecting mal-
ware by analyzing raw bytes of programs using deep neural net-
works, is considered as a new promising approach to simplify
feature selection in static analysis while still provide accurate
detection. However, recent research [7]–[12] has shown that
end-to-end malware detection is vulnerable under evasion at-
tacks, where an adversary could modify raw bytes of a malware
without affecting its functionality but force a neural network
classifier predicting it as benign. As existing evasion attacks
generate crafted malware based on single classifiers, one of the
suggested countermeasures against evasion attacks is to utilize
multiple classifiers to examine raw bytes of a program, where
the classifiers jointly predict the result of malware detection
[13], [14].

In this paper, we propose a new evasion attack, referred to
as MultiEvasion, which can defeat multiple classifiers simul-
taneously. Specifically, our attack can modify a malware to a
crafted program, which still has the same functionalities but
can force two (or even three) well-trained neural networks to
predict it as benign. Our main idea is to first obtain intermediate
crafted perturbations from each neural network. Next, our
method generates final perturbations based on intermediate
perturbations such that the final perturbations can defeat multi-
ple neural networks. Our findings indicate that, although end-
to-end malware detection has many advantages compared to

existing methods, we should be cautious about its potential
vulnerabilities and more analyses on the security of end-to-
end malware detection should be investigated before we apply
it in the real world. Our main contributions and results are
summarized below:

• We propose a new evasion attack which can defeat mul-
tiple neural network classifiers simultaneously without
affecting the functionalities of malware.

• We evaluate our method against multiple malware detec-
tors over two Windows PE program datasets. We show that
existing evasion attacks based on single classifiers are not
able to defeat multiple classifiers at the same time. On
the other hand, our method can achieve an evasion rate of
99.5% against two classifiers and an evasion rate of 18.3%
against three classifiers.

• We conduct comprehensive evaluations by leveraging dif-
ferent crafted byte ratio, functionality-preserving func-
tions, gradient-based algorithms, and different formats
(including vectors and images) of raw bytes of malware.
For instance, even two classifiers use two different formats
of raw bytes, our method can still achieve an evasion rate
of 96.4%.

Reproducibiltiy. The code and datasets can be found at https:
//github.com/UCdasec/MultiEvasion.

II. BACKGROUND

A. System and Threat Model

System Model. The system model is described in Fig. 1. A
malware submitted to the malware detection service, and the
detection service performs malware analysis, decides whether
the program is a malicious program or a benign program. The
detection service makes the decision by running multiple pre-
trained classifiers (or also referred to as malware detectors)
over the raw bytes of a program. Each classifier makes its
own prediction. The final prediction is the ensemble of the
predictions across all the classifiers, where we assume each
classifier has an equal weight. The malware detection, in
essence, is a binary classification.

Threat Model. We assume that an attacker can modify the
malware before sending it to the malware detection service. The
goal of this attacker is to modify the raw bytes of a malware
and force all the classifiers on the server side to predict it as
benign. In addition, the modifications on the raw bytes would

https://github.com/UCdasec/MultiEvasion
https://github.com/UCdasec/MultiEvasion


Detector 1

Detector N

……

Detector 1

Detector N

……

Malware

Benign
Attacker

Original PE File

Modified PE File

Fig. 1. Evasion Attacks against Multiple Malware Detectors.

not affect the functionality of the malware, i.e., the malware is
still functional. This attack is commonly known as an evasion
attack.

We assume that each classifier is a neural network. Every
classifier is pre-trained and does not change during the attack.
We assume that the attacker has the white-box access, where
the information of each target classifier, including architecture
and parameters, are public and known to the attacker.

Scope. In this study, we consider programs that are in
Portable Executable format in Windows, and we consider static
analysis over raw bytes only. In addition, we assume that all
the programs are unpacked as some previous studies [15]–[17].

Data Representation. We assume that the raw bytes of a
program is represented as a one-dimensional vector of integers
starting from the first byte of a program. Each integer represents
one byte and it is a decimal number within [0, 255]. The order
of the integers in a vector follows the same order of their
associated bytes in a program. This vector is utilized as an
input to a neural network, where the vector length is pre-defined
and fixed across programs. For instance. some studies [1], [2]
suggest to use 102,400 or even 2,000,000 as the vector length
to achieve promising performance in malware detection. If the
actual size of a program is greater than the vector length, the
bytes after the vector length will be ignored. If the actual size
of a program is less than the vector length, padding 0s will
be applied. Leveraging raw bytes of programs as inputs to a
classifier offers several advantages in malware detection [1]–
[3]. For instance, it can skip manual feature selections, which
can be time-consuming.

B. Portable Executable Format

The Portable Executable (PE) format is a format for exe-
cutable programs in Windows. A program in PE format often
consists of several parts, including DOS Header and Stub, PE
Header, Optional Header, Section Table, and Sections. A high-
level description of PE format is illustrated in Fig. 2.
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Fig. 2. The Structure of PE file format.

DOS Header and Stub. The main purpose of DOS Header
and Stub is to ensure programs are backward compatible with
MS-DOS 1. As a result, when running a program on modern
Windows systems, bytes (except the ones from two subsec-
tions) within DOS Header and Stub are redundant and can
be modified without affecting the functionality of a program.
One subsection that cannot be altered is the first two bytes
0x4D5A, which are also known as a magic number “MZ”. The
other subsection that cannot be altered is the 4-byte signature
at offset 0x3C, where the signature indicates the entry point
of PE header.

PE Header. PE header contains information, including head
signature (e.g., a magic number “PE”, which is 0x50450000),
header size, and file attributes, that are utilized by OS loader.

Optional Header. It is optional for object files and starts
with a 2-byte magic number indicating the architecture (e.g.,
0x010B for PE32, 0x200B for PE64, and 0x0107 for ROM)
2. It also includes the size and virtual base of the code and
data, entry point, and the number of directories. In addition, it
specifies a value named file alignment, which suggests the size
of each section of a program must be a multiple of this value.

Section Table. It contains information, such as the number
of sections, the name of each section, the size of each section,
and the address of each section.

Sections. Common sections in a program include executable
code section (.text), data section (e.g., .data, .rdata, etc),
resources section (.rsrc), export data section (.edata), import
data section (.idata), debug information section (.debug).

C. Functionality-Preserving Modifications

We present existing functionality-preserving modifications
[8], [10], [11], [18] on malware, where these modifications can
change or add bytes in a program without affecting its func-
tionality. We will leverage those methods or the combination of
those to locate bytes that can be modified in a PE program in
our study. In other words, these existing methods can answer
the question — which bytes in a malware can be modified.

Padding (P). Padding [11], [18] appends arbitrary bytes to
the end of a program. It does not affect the functionality of a
program as the OS will not load those padded bytes.

Slack (S). Slack space [11] refers to the 0x00 bytes towards
the end of a section. These zero bytes are not code or data of
a program but introduced by the compiler as the size of each
section needs to be a multiple of file alignment value defined in
Optional Header. These bytes can be modified without affecting
the functionalities of a program.

Partial DOS (PD) and Full DOS (FD). Partial DOS [10]
modifies all the 58 bytes after the 2-byte magic number “MZ”
but before the 4-byte signature of PE header at offset 0x3C
in DOS Header. Full DOS [8] modifies all the bytes in DOS
Header and Sub except the 2-byte magic number “MZ” and
4-byte signature of PE header at offset 0x3C.

1https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
2https://wiki.osdev.org/PE



Extending (E). This method [8] extends the size of DOS
Header and Stub such that a greater number of bytes can be
modified compared to Full DOS. There are several steps that
are needed to ensure the functionality of a program is not
affect. First, the extended size should be a multiple of the file
alignment value specified in Optional Header. Second, the size
of headers and the bytes of the PE header signature at offset
0x3C will need to be updated accordingly. Next, the PE header
needs to be shifted according to the new PE header signature.
Last, the offset of entry point of each section will need to be
shifted accordingly based on the the number of extended bytes
in DOS Header and Stub.

Content Shift (CS). This method [8] can insert a new space
with arbitrary bytes before the start of a section in a program.
The size of this new space would be a multiple of the file
alignment value. As a result, the offset of the entry point of
each section defined in Section Table will need to be updated
according to the shift size. While it is feasible to insert a new
space before any section, we only focus on inserting a new
space before the first section of a program in this study.

Validation of Functionality-Preserving Modifications. We
validate the feasibility of all these methods in our exper-
iments. Specifically, given an unpacked PE program (e.g.,
putty.exe, a popular program for SSH and telnet in Win-
dows), we perform each modification method described above
by using a hex editor named 010 Editor in Windows. We save
the modified program generated by each method and run it.
In addition, we utilize an open-source behavior analysis tool,
Cuckoo Sandbox, to confirm the functionalities of the modified
program remains the same as the ones in the original program.

thd

III. PROPOSED EVASION ATTACKS

In this section, we describe the details of our method and
answer the following open research question — how bytes in
a malware can be modified to defeat multiple classifiers.

A. Problem Formulation

Evasion against Single Classifiers. For existing evasion
attacks targeting on single classifiers, the problem can be
described as follows. Given a program z and a target classifier
f , where the predication of f on program z is malicious,
i.e., y = f(z) = 1, an attacker generates a crafted program
z′ based on program z by performing functionality-preserving
modifications such that the predication of f on crafted program
z′ is benign, i.e., y′ = f(z′) = 0, but z′ has the same func-
tionalities as original program z. In addition, the modifications
to program z are expected to be minimal such that the attack
is as stealthy as possible. It can be mathematically formulated
as an optimization problem below

min
z′

L(f(z′), 0) and z′ = τ(z, t), s.t. t ∈ T (1)

where z = (z[1], z[2], ..., z[m]) is a vector of raw bytes
obtained from program z, m is the vector length, z[i] ∈ [0, 255],
for 1 ≤ i ≤ m, L is the loss function measuring the

predication of f(z′) and target label y′ = 0, τ(·) is the
transform function that changes program z to crafted program
z′ using functionality-preserving modification t, T is a set
of functionality-preserving modification methods that can be
applied.

According to recent studies, the above optimization prob-
lem can be solved by gradient-based algorithms that used
to generate adversarial examples [7], [19], [20] in the other
domains (e.g., image recognition) given the constraints of
preserving functionalities on malware. In other words, com-
pared to perturbations on an image, not all the bytes in a
malware can be perturbed and the values of perturbed bytes
should remain within [0, 255]. Gradient-based Algorithms, such
as Fast Gradient Sign Method (FGSM) [7], can be utilized.
Put differently, a functionality-preserving modification decides
which bytes can be perturbed and a gradient-based algorithm
decides how these bytes are perturbed in a malware.

Evaluation Metric. To measure the effectiveness of an
evasion attack, evasion rate over a set of malicious programs
can be computed. Specifically, given a number of n malicious
programs, if an attacker can obtain perturbed programs forcing
target classifier f to predict incorrectly over a number of s
malicious programs, where s ≤ n, evasion rate is computed
as s/n. A higher evasion rate indicates that the attack is more
effective against target classifier f .

If an attack aims to defeat multiple classifiers, evasion rate
is redefined as the ratio of the number of s crafted programs
defeating all the classifiers over a given number of n malicious
programs.

B. Our Method: Evasion on Multiple Detectors

Unfortunately, existing studies focus on defeating single
detectors. Specifically, if a crafted program z′ is obtained based
on classifier f1, there is no guarantee that this crafted program
can also defeat classifier f2. This is because the classifier f2 has
different architectures and parameters compared to classifier f1,
which leads to different gradients and perturbations over raw
bytes of a program.

Our Main Idea. To address this limitation, we propose a
new method, referred to as MultiEvasion, which adjusts pertur-
bations on a malware such that a crafted program could defeat
multiple detectors simultaneously. Our main idea is to first
obtain an intermediate perturbation based on each classifier.
Next, our method adjusts the perturbations across multiple
intermediate perturbations to offset perturbations caused by
inconsistent gradients over multiple classifiers, e.g., the pertur-
bation over one byte is positive based on classifier f1 but the
perturbation over the same byte is negative based on classifier
f2. When gradients are consistent over multiple classifiers,
e.g., the perturbations on the same byte are both positive
according to classifier f1 and f2, the maximum perturbations
among intermediate perturbations are applied to ensure the
perturbations are sufficient to defeat all the classifiers. For ease
of presentation, we describe our method against two detectors



in the following. The description can be easily extended to
cases with more than two detectors.

Specifically, given two classifiers f1 and f2, a malicious
program z = (z[1], ..., z[m]), where m is the number of
vector length, y1 = f1(z) = 1 and y2 = f2(z) =
1, our method first obtains intermediate perturbation r′1 =
(r′1[1], ..., r

′
1[m]) from classifier f1 and intermediate perturba-

tion r′2 = (r′2[1], ..., r
′
2[m]) from classifier f2 by running the

following equations{
r′1 ← SingleEvasion(z, f1)
r′2 ← SingleEvasion(z, f2)

(2)

and also runs

b← FindPerturbedIndex(t) (3)

where t is one type or a combination of multiple types of
functionality-preserving modification and b = (b[1], ..., b[m])
suggests which bytes can be modified in z. We name b as
perturbation-index vector. If b[i] = 1, where i ∈ [1,m],
it indicates the i-th byte of z can be perturbed accord-
ing to functionality-preserving modification t. If b[i] =
0, it indicates the i-th byte can not be perturbed. We
use SingleEvasion(·) as a general function representing
any existing evasion attack on single classifiers, and use
FindPerturbedIndex(·) as a general function to generate
a perturbation-index vector.

Next, our method obtains the adjusted perturbation r′ =
(r′[1], ..., r′[m]). Specifically, given intermediate perturbations
r′1 = [r′1[1], ..., r

′
1[m]] and r′2 = (r′2[1], ..., r

′
2[m]), and

perturbation-index vector b = (b[1], ..., b[m]), our method runs
the following

 r′[j] = max(r′1[j], r
′
2[j]) if (r′1[j] > 0) ∧ (r′2[j] > 0) ∧ (b[j] = 1)

r′[j] = min(r′1[j], r
′
2[j]) if (r′1[j] < 0) ∧ (r′2[j] < 0) ∧ (b[j] = 1)

r′[j] = 0 otherwise
(4)

for 1 ≤ j ≤ m.
In other words, for r′[j], if the corresponding byte can be

modified without affecting functionalities (i.e., b[j] = 1), the
perturbation r′[j] will be updated as the maximum of r′1[j] and
r′2[j] if r′1[j] and r′2[j] are both positive or the minimum of r′1[j]
and r′2[j] if if r′1[j] and r′2[j] are both negative. Otherwise, r′[j]
will be set to zero.

With adjusted perturbation r′ = (r′[1], ..., r′[m]), we can
obtain the final crafted program z′ = (z′[1], ..., z′[m]), where
z′[j] = z[j] + r′[j] for 1 ≤ j ≤ m, to defeat the two detectors.

IV. EVALUATION

A. Datasets

We examine our method over two real-world datasets. The
first dataset, referred to as ME dataset, is collected by us in
2021. It includes 1,000 benign PE programs across multiple
Windows versions, including Windows XP, Vista, 8 and 10, and
1,000 malicious PE programs downloaded from VirusShare 3.

3https://virusshare.com/

The second dataset is a public dataset referred to as phd dataset
4. It contains 977 benign PE programs and 2,597 malicious PE
programs collected from 2011 to 2016.

We further split each dataset for training (70%), validation
(10%), and testing (20%) as presented in Table. I.

TABLE I
THE TWO DATASETS

Dataset Train Validate Test

ME Benign 700 100 200
Malicious 700 100 200

phd Benign 684 98 195
Malcious 1,817 260 520

B. Evaluation Setting

We conduct all the experiments on a Linux machine running
Ubuntu 18.04.5 with Intel i9-9900K (3.60GHz) CPU, 64 GB
Memory, and a NVIDIA Titan RTX GPU. We examine three
neural-network-based target classifiers, including MalConv,
FireEyeNet, and AvastNet, over raw bytes in our experiments.
All the three classifiers are recently proposed by cybersecurity
companies.

MalConv. MalConv [1] includes one 8-dimensional em-
bedding layer, two 1-dimensional gated convolutional layers,
a temporal max pooling layer, a fully connected layer with
softmax. The embedding layer transfers bytes into a high-
dimensional space. The convolutional layers are utilized to
capture important features, where a great filter width (e.g.,
500) and stride (e.g., 500) is used to minimize memory cost.
The maximum input size examined in [1] is 2 MBs and it
can achieve 98.1% AUC (Area Under the Curve) and 94%
accuracy based on a private large-scale dataset from industry.
The reported training time of MalConv over the private dataset
in [1] is around one month.

FireEyeNet. FireEyeNet [2] was proposed by researchers
from FireEye. It consists of one 10-dimensional embedding
layer, five stacked 1-dimensional convolutional and max pool-
ing layers, followed by a fully connected layer with sigmoid
function. The maximum input size of each program examined
in [2] is 102,400 and it achieves 98% AUC and 96% accuracy
over a private large-scale dataset.

AvastNet. AvastNet was proposed in [3] by Avast. It includes
one 8-dimensional embedding layer, four convolutional layers
with a max pooling layer, a global average pooling layer, and
four fully connected layers. As reported in [3], this model
achieves 70.4% restricted AUC (96.0% accuracy) compare to
MalConv with 66.1% restricted AUC (94.6% accuracy) over a
private large-scale dataset from Avast, where restricted AUC
is referred to as the area under the Receiver Operator Curve
restricted to the interval [0,0.001] of the false positive rate.

Implementation Details of Our Method. We implement the
three models and our method with Python 3.8.8 and PyTorch
1.8.0. When new bytes are inserted to an original program with
a functionality-preserving modification, the values of those new
bytes are initialized with bytes from benign programs rather

4https://github.com/tgrzinic/phd-dataset



than zero bytes. Specifically, we randomly select and utilize
bytes from .text sections of benign PE programs in our dataset.
This is because the .text section has been proved that it has a
significant impact on the predictions of neural networks [10].
With this step, it can defeat target classifiers with a less number
of iterations during the generation of perturbations.

In addition, as all the three target classifiers apply an embed-
ding layer, which acts as a non-differentiable feature mapping
function, to map bytes to a higher dimensional space before
running convolutional layers, the perturbations generated by
gradient-based algorithms can not be obtained directly over the
raw bytes in the problem space as the embedding function is
non-differentiable. To address this issue, we adopt an approach
from existing studies [8], [10] to obtain intermediate perturba-
tions for each classifier, where the perturbations are obtained in
the embedded space first with a gradient-based algorithm. Next,
a reconstruction function [21] is used to transform a perturbed
vector in embedded space back to perturbed bytes of a crafted
program in the problem space.

We train all the three classifiers over ME and phd datasets
respectively. The key training parameters of each classifier are
presented in Table. II.

TABLE II
MODEL TRAINING PARAMETERS

Parameter MalConv FireEyeNet AvastNet
Epoch 50 50 50

Batch Size 32 32 32
Learning Rate 0.0001 0.0001 0.0001

Input Size 102,400 102,400 102,400
Training Time (min) on ME 126 14 14
Training Time (min) on phd 221 17 18

C. Experimental Results

Experiment 1: Performance of Malware Detectors. We
first examine the detection performance of target classifiers
without evasion attacks. Specifically, we examine MalConv and
FireEyeNet with input size of 102,400 for all programs over
ME dataset and phd dataset. We defer the discussions on the
input size to a later experiment. We use accuracy and Area
Under the Curve (AUC) as the metrics to evaluate the detection
performance of malware detectors. We present the results in
Table. III. Overall, both classifiers are effective in detecting
malware.

TABLE III
PERFORMANCE OF MALWARE DETECTORS

Dataset MalConv FireEyeNet
Acc AUC Acc AUC

ME 95.5% 98.4% 98.5% 99.5%
phd 91.3% 97.3% 92.2% 96.5%

Experiment 2: Existing Evasion Attacks against Two
Malware Detectors. In this experiment, we examine the per-
formance of existing evasion attacks based on single classifiers
and apply the perturbed programs to two target classifiers at
the same time. The main purpose of this experiment is to show

that these evasion attacks based on single classifiers are not
able to defeat two classifiers simultaneously.

Specifically, we examine 3 existing methods with 5 different
functionality-preserving modifications over our ME dataset. We
generate crafted programs using MalConv as a target classifier
for each method, and then examine the evasion rate of these
crafted programs against two classifiers, including MalConv
and FireEyeNet, simultaneously. The three existing methods
include Slack FGM [11], Header Attack [10], and RAMEN
attack [8]. We use 102,400 as the input size for each program.
A total number of 200 malicious programs are examined in
each attack. We present the evasion rate of these methods with
different crafted byte ratio in Table. IV. The crafted byte ratio
is defined as the number of crafted bytes over the input size,
which is 102,400 in this experiment. As we can observe, these
existing methods work well against a single classifier but are
ineffective against two classifiers. This is expected as crafted
programs from these methods are generated based on a single
classifier. We have similar observations when generating crafted
programs based on FireEyeNet and then examining evasion rate
over two classifiers simultaneously. We skip the details due to
space limitation.

TABLE IV
EVASION RATE OF EXISTING EVASION ATTACKS ON SINGLE CLASSIFIER

AND MULTIPLE CLASSIFIERS.

No. of Evasion Attack Crafted Byte Ratio
Classifiers 4% 8% 16% 32%

One

Slack FGM [11] 7.1% 7.1% 7.1% 7.1%
Header Attack [10] 9.6% 9.6% 9.6% 9.6%
RAMEN (FD) [8] 39.4% 39.4% 39.4% 39.4%
RAMEN (E) [8] 90.4% 99.0% 99.5% 99.9%

RAMEN (CS) [8] 93.9% 96.5% 99.5% 99.6%

Two

Slack FGM [11] 0% 0% 0% 0%
Header Attack [10] 0% 0% 0% 0%
RAMEN (FD) [8] 0% 0% 0% 0%
RAMEN (E) [8] 0% 0% 1.5% 5.6%

RAMEN (CS) [8] 0% 0% 1.5% 4.5%

Experiment 3: Evasion Rate of Our Method against Two
Malware Detectors. In this experiment, we answer the two
following questions: 1) Can our method evade two malware
detectors simultaneously? 2) Which functionality-preserving
modification is more effective when using our method?

To answer the first question, we generate crafted malware
using two detectors, MalConv and FireEyeNet, by using our
method. In addition, we examine 5 functionality-preserving
modifications, including Partial/Full DOS, Extending, Content
Shift, and Slack, as well as their combinations. We use ME
dataset with an input size of 102,400. We leverage FGSM with
ϵ = 0.1 to generate intermediate perturbations. Parameter ϵ is
the adversary strength that controls the amount of perturbations
in FGSM algorithm.

As shown in Table. V, our method can achieve an evasion
rate as high as 94.4 % over MalConv and FireEyeNet when
we use the combination of Extending, Content Shift, and Slack
as the functionality-preserving modification and modify 32%
of bytes in each input (i.e., 32,768 bytes). Moreover, we also
observe that if the modification includes Content Shift, the



attack is often more effective. Specifically, the modification
with the combination of Content Shift and Slack outperform
other modifications in most of the cases. We will use the
combination of Content Shift and Slack as the functionality-
preserving modification in the rest of this paper unless speci-
fied.

TABLE V
EVASION RATE OF OUR METHOD OVER MALCONV AND FIREEYENET

WITH DIFFERENT FUNCTIONALITY-PRESERVING MANIPULATIONS

Manipu Crafted Byte Ratio
-lation 1% 2% 4% 8% 16% 32%
S 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%
PD 0% 0% 0% 0% 0% 0%
FD 0% 0% 0% 0% 0% 0%
E 4.1% 5.6% 9.6% 13.6% 33.8% 93.4%
CS 5.6% 9.1% 19.2% 24.7% 42.4% 92.4%
PD+S 1.0% 1.0% 1.0% 1.0% 1.0% 1.0%
FD+S 0% 0% 0% 0% 0% 0%
E+S 5.1% 7.6% 12.1% 17.7% 37.9% 87.4%
CS+S 8.6% 14.2% 19.8% 30.5% 47.2% 92.9%
PD+CS 3.5% 3.0% 7.0% 13.6% 36.0% 89.4%
FD+CS 2.5% 5.1% 7.1% 14.7% 36.0% 87.3%
E+CS 4.1% 4.6% 7.6% 17.3% 39.1% 92.9%
PD+CS+S 4.1% 4.6% 7.6% 20.8% 39.1% 90.4%
FD+CS+S 3.6% 6.1% 9.1% 18.8% 42.1% 90.9%
E+CS+S 4.1% 5.6% 9.6% 20.8% 44.7% 94.4%

Experiment 4: The Impact of Adversary Strength ϵ of
FGSM. We examine the impact of adversary strength ϵ of
FGSM on the performance of our method. Specifically, we
utilize ME dataset with an input size 102,400. We run the
evasion attacks against two target classifiers, MalConv and
FireEyeNet, multiple times, where each time we use a different
adversary strength ϵ in FGSM – the gradient-based algorithm.
We examine ϵ = {0.1, 0.2, ..., 0.7} and report the results in
Fig. 3. We notice that if ϵ = 0.4, our method achieves a
higher evasion rate than the ones obtained from ϵ < 0.4. If
ϵ is greater than 0.4, the performance remains similar as the
one with ϵ = 0.4. This is likely because the perturbations on
each byte are bounded with [0, 255]. When ϵ is higher than 0.4,
although a higher perturbation can be generated by FGSM, the
actual perturbation that can be applied to a byte of a crafted
program is similar as the one with ϵ = 0.4.
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Fig. 3. Evasion rate of our method with different adversary strength ϵ.

Experiment 5: The Impact of Gradient-Based Algo-
rithms. In this experiment, we examine the performance of

our method when we use different gradient-based algorithms,
including FGSM [7], PGD [20], FFGSM [22], to generate
intermediate perturbations respectively. PGD is an iterative
version of FGSM. FFGSM is an varient of FGSM, where
FFGSM applies random noises to initialize perturbations, and
it has been proved that it can achieve competitive performance
as PGD. We examine ME dataset with an input size of 102,400.
We use ϵ = 0.4 (according to observation from the previous
experiment) in FGSM and FFGSM. We set ϵ = 0.4, α = 0.9,
and the number of iterations as 5 in PGD, where α controls
the total amount of perturbations in each iteration of PGD.

As shown in Fig. 4, PGD is the most effective one compared
to the other two, while FGSM obtains slightly lower evasion
rate compare to PGD, but they are very close, especially when
crafted byte ratio is greater than 2%. As for FFGSM, it achieves
lowest evasion rate overall. On the other hand, as illustrated in
Fig. 5, PGD takes a much longer time to generate a crafted
program in our method. If an attacker would like to achieve
a higher evasion rate with less generation time, FGSM is the
best option among the three.
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Fig. 4. Evasion rate of our method with different gradient-based algorithms.
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Fig. 5. Generation time of crafted programs in our method with different
gradient-based algorithms.

Experiment 6: The Impact of Input Size. We investigate
the impact of the input size on the evasion rate of our method.
We still use ME dataset, and FGSM with ϵ = 0.4 in this ex-
periment. We attack two classifiers, MalConv and FireEyeNet,
with our method over different input sizes, including 102,400,
204,800, and 408,600, of programs in ME dataset.



We first present the detection performance of two classifiers
on ME dataset with different input sizes in Table. VI, and both
classifiers are effective in detecting malware over different input
sizes. For evasion performance, as we observe in Fig. 6, the
evasion rate with input size 102,400 is higher than the ones with
greater input sizes. In other words, our attack is less effective
if a detector analyzes a greater number of bytes of a program.
This is reasonable and expected as a detector is more difficult
to defeat when it examines a greater number of bytes.

TABLE VI
DETECTION PERFORMANCE OF MALWARE DETECTORS WITH DIFFERENT

INPUT SIZE

Input Size MalConv FireEyeNet
Acc AUC Acc AUC

d=102400 95.5% 98.4% 98.5% 99.5%
d=204800 91.0% 97.8% 96.3% 98.1%
d=409600 96.3% 99.1% 97.0% 98.3%
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Fig. 6. Evasion rate of our method with different input size d.

Experiment 7: The Impact of Different Datasets. We
investigate and compare the evasion rate of our method over
two datasets, ME dataset and phd dataset, to validate whether
the results are generic across different datasets.

We use an input size of 102,400, FGSM with ϵ = 0.4 as
the gradient-based algorithm in this experiment. We examine
two detectors, MalConv and FireEyeNet, over each dataset. As
shown in Fig. 7, our evasion attack has similar evasion rate over
the two datasets given the same crafted byte ratio. Therefore,
we believe that our proposed attack is robust across different
datasets.

Experiment 8: The Impact of Different Payload Ini-
tialization. We investigate the impact of different payload
initialization approaches of our method. As we mentioned
in the beginning of this section, we initialize the values of
crafted bytes with bytes from .text sections of benign programs.
Besides this initialization approach, another approach is to
initialize the bytes with random values between [0, 255].

We still use ME dataset with an input size of 102,400, FGSM
with ϵ = 0.4 as the gradient-based algorithm in this experiment.
We examine two detectors, MalConv and FireEyeNet. We
compare the results between benign byte initialization and
random byte initialization in Fig. 8. The results suggest that
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Fig. 7. Evasion rate of our method over different datasets.
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Fig. 8. Evasion rate of our method with different initialization approaches.

benign byte initialization is more effective and can further boost
the evasion performance of our method.

Experiment 9: Evasion Rate of Our Method against
Three Malware Detectors. We further investigate the evasion
rate of our method against three malware detectors at the
same time. Compare to previous experiments, we examine
three target classifiers including MalConv, FireEyeNet, and
AvastNet. Other settings remain the same. AvastNet achieves
99.0% accuracy and 99.7% AUC over ME dataset in malware
detection in our experiments.

For evasion performance, as illustrated in Table. VII, our
method can still defeat three classifiers with 18.3% evasion
rate given the crafted byte ratio 32% by using FGSM. On the
other hand, the evasion rate against 3 classifiers is much lower
than the evasion rate (99.5%) against 2 classifiers. This is also
expected as it is more difficult to defeat 3 classifiers at the same
time. In addition, we also compare the generation time of our
method (with FGSM) against different number of detectors in
Fig. 9, where the generation time is longer while attacking a
greater number of detectors.

TABLE VII
EVASION RATE OF OUR METHOD AGAINST THREE DETECTORS

Gradient-Based Algo. Crafted Byte Ratio
2% 4% 8% 16% 32%

FGSM 0% 0.5% 1% 2% 18.3%
PGD 0% 0.5% 0.5% 1.5% 24.4%

Experiment 10: Evasion Rate of Our Method against
Two Malware Detectors with Different Input Formats. In
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Fig. 9. Generation time of our method against different numbers of malware
detectors.

this experiment, we investigate the evasion rate of our method
against two malware detectors, where one detector represents
raw bytes of PE programs as vectors for inputs and the other
detector represents raw bytes of PE programs as greyscale
images for inputs. Several recent studies [4]–[6], [18] show that
the image format can also provide promising results in malware
detection. For the detector using vectors, we use MalConv. For
the detector using images, we utilize ResNet18 [23].

ResNet18 was proposed by He et al. [23]. It includes 18
convolutional layers and uses skip connection function to add
output from one layer to the next layer, which can ease the train-
ing load of deeper networks and mitigate the gradient vanishing
problem. We explore several models, including AlexNet [24],
ResNet18, ResNet34, and Xception [25]. ResNet18 achieves
the best performance in malware detection over our ME dataset.

When we train ResNet18 over ME dataset, we use 50 epochs,
128 batch size, 0.001 learning rate , and 320×320 as the input
size for a number of 102,400 bytes of each program. ResNet18
achieves 98.0% accuracy and 97.5% AUC over ME dataset in
malware detection as shown in Table. VIII.

TABLE VIII
DETECTION PERFORMANCE OF MALWARE DETECTORS

Dataset ResNet18 (image format) AvastNet (vector format)
Acc AUC Acc AUC

ME 98.0% 97.5% 99.0% 99.7%

Next, we perform our evasion attack on MalConv and
ResNet18. We still use FGSM with ϵ = 0.4 as the gradient-
based algorithm to generate perturbations. As shown in Fig. 10,
our method can evade MalConv and ResNet18 at the same time,
especially when the crafted byte ratio is greater than 2%. On
the other hand, we also observe that attacking two detectors
(i.e. MalConv and ResNet18) using two different formats is
more difficult than attacking two detectors (i.e., MalConv and
FireEyeNet) using the same format.

V. RELATED WORK

Malware Detection: There is a significant number of studies
in the area of malware detection. Comprehensive surveys can
be found in [26], [27]. Due to space limitation, we only briefly
discuss the studies that are most related to this paper.
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Fig. 10. Evasion rate of our method with different input formats.

Many studies [4], [28]–[34] leverage static features, includ-
ing signatures, API calls, n-grams features from disassembly
or byte sequences, among others, to detect malware. For in-
stance, Kolter et al. [28] extracted important byte sequences by
adopting n-grams and leveraging machine learning classifiers
(e.g., SVM, boosted models, decision trees) to detect malware.
Anderson et al. [30] manually extracted features and utilized
gradient boosted decision tree, which can even outperform
MalConv. Daniel et al., [34] proposed a broad static analysis
method to detect Android malware, named DREBIN. It is a
lightweight and more explainable approach than deep learning
based methods. However, feature engineering process is still
needed and performed before training the models. Nataraj et al.
[4] developed a malware detection by using malware images.
Specifically, they convert a feature vector of a binary file to a
grayscale image and then pass it into a SVM classifier.

Evasion Attacks: Several white-box evasion attacks [9]–
[12], [21] have been proposed in the context of malware
detection. For example, Kolosnjaji et al. [9] proposed an
evasion attack against deep learning based malware detection
(MalConv) by padding optimized values at the end of each
input. Demetrio et al. [10] proposed a similar attack against
MalConv by modifying DOS header. Kreuk et al. [21] proposed
a gradient-based evasion attack that targets on either the slack
space or the end-of-file space. It achieved around 30% evasion
rate against MalConv. Suciu et al. [11] improved the evasion
rate of [21] to 70% against MalConv. Sharif et al. [15] proposed
an attack to defeat neural-network based malware detectors
by transforming the instructions of the binaries (i.e., binary
diversification) without breaking functionalities. Specifically,
it applies in-place randomization to replace opcodes inside
.text section with semantic equivalent opcodes or uses jump
function to move opcodes into a different section without
altering original functions. However, all these attacks focus on
defeating single classifiers.

VI. DISCUSSIONS

In this section, we point out a couple of mitigations that
could alleviate our evasion attacks on multiple detectors.

More Detectors with Different Feature Spaces. According
to our results, the evasion attacks are less effective when there



is a greater number of detectors or the formats (or essentially
the feature spaces) are different across detectors. Therefore,
we believe that applying a greater number of detectors, where
each detector utilizes a different feature space, could mitigate
the evasion rate. In addition, the combination of detectors
based on both static analysis and dynamic analysis would also
improve the robustness of malware detection against evasion
attacks. On the other hand, how to defeat multiple detectors,
where some are based static analysis and the rest are based on
dynamic analysis, would be an interesting and critical problem
to investigate in future work from the perspective of an attacker.

Analyzing More Bytes. According to our results, if a detec-
tor examines a greater number of bytes, it is more challenging
for an attacker to defeat a detector. Therefore, analyzing a
greater number of bytes can help mitigate potential evasion
attacks. On the other hand, increasing the number of bytes, or
essentially the input size, requires much longer training time.

VII. CONCLUSION

We propose a new method which can evade multiple neural-
network-based detectors in malware detection without affecting
the functionalities of malware. Our results suggest that although
detecting malware over raw bytes can significantly simply
the process of malware detection, it is vulnerable against
evasion attacks, even if two or three detectors are utilized
simultaneously.
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