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Chapter 1

Vectors

1.1 Displacements

Even though motion in mechanics is best described in terms of vectors, the formal study of
vectors began only after the development of electromagnetic theory, when it was realized
that the they were essential to the problem of describing the electric and magnetic fields.
However, vector analysis assumes an even more powerful role when it is used to implement
a powerful principle of physics called the principle of covariance. This principle was first
explicitly stated by Einstein as a fundamental postulate of the special theory of relativity.
It requires the laws of physics to be independent of the features of any particular coordinate
system, thereby lending a certain depth to the fundamental laws of physics and giving us a
way to compare observations of physical phenomena by different observers using different
coordinate frames. The great value of vector analysis lies in the fact that it clarifies the
meaning of coordinate independence.

The concepts involved are most deeply rooted in mechanics and it is best to begin there.
Motion in space involves dislodgements of a body from one point in space to another. Such
dislodgements may occur smoothly along any curve passing through the two points, but
the net effect of the motion is described by a directed line segment beginning at the initial
position of the moving body and terminating at its final position, as shown in figure
(1.1). If a body moves from the point labeled “i” in figure (1.1) to the point “f” then,
no matter what the actual path traced by the body in going from i to f , we define its
displacement as the directed straight line segment from i to f as shown. This directed
line segment has both magnitude (its length) and direction (the arrow pointing from the
initial position to the final position) and will be our prototypical vector. Thus, roughly
speaking, a vector is a physical quantity that has both magnitude and direction in space
and it may graphically be represented by a directed line segment. It is important to bear
in mind that what defines a displacement is its magnitude and direction, not the actual

1



2 CHAPTER 1. VECTORS

Figure 1.1: Displacement vector

initial and final points. Two displacements with the same magnitude and direction are
identical, regardless of the initial and final points. So also, what defines a vector is its
magnitude and direction and not its location in space.

We must now consider how displacements in particular and vectors in general are
represented. In a two dimensional plane, we introduce two mutually perpendicular axes
intersecting at some point O, the origin, order them in some way calling one the x axis
and the other the y axis, and label points by an ordered pair, the coordinates (x, y), where
x represents the projection of the point on the x axis and y its projection on the y axis.
A more fruitful way to think about this Cartesian coordinate system is to imagine that
we have two mutually perpendicular and space filling one parameter families of parallel
straight lines in the plane (see figure (1.2). Because the families are space filling, every
point will lie on the intersection of one vertical and one horizontal line. Label a point by
the parameter values of the straight lines it lies on. Why is this a better way to think
about coordinates? Because it is now easily generalized. Straight lines are not the only
curves possible. We could also consider circles of radius r about an origin together with
radial lines from the origin, each making an angle θ with some chosen direction [see figure
(1.3)]. Every point in the plane lies on the intersection of a circle with some radial line
and could therefore be labeled by the pair (r, θ). These, of course, are the familiar polar
coordinates. The system is ill defined at the origin.

The situation is similar in three dimensions, except that the curves are now replaced
by surfaces. A coordinate system in three dimensions is a set of three independent, space
filling, one parameter families of surfaces relative to which points are labeled. In the
Cartesian system this set consists of three mutually perpendicular one parameter families
of parallel planes. All points in R3 will lie on the intersection of a unique set of three
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4 CHAPTER 1. VECTORS

planes and can be represented by an ordered triplet ~r = (x1, x2, x3) consisting of the
parameter values of the planes that intersect at the point in question. This is equivalent
to the traditional way of viewing the Cartesian system as consisting of three mutually
perpendicular straight lines, called coordinate axes, which intersect at a fixed point called
the origin. The axes really represent the normals to the families of planes. They are
ordered in some way and all points are represented by a correspondingly ordered set of
three numbers, an ordered triplet ~r = (x1, x2, x3), each number measuring the distance
along the direction specified by one of the axes from the origin to the point in question.

Although we could consider finite displacements in R3, it is sufficient and beneficial in
the long run to restrict our attention to infinitesimal displacements. Introduce a Cartesian
coordinate system and consider two points, i and f that are infinitesimally separated,
with coordinates ~ri = (x1, x2, x3) and ~rf = (x1 + dx1, x2 + dx2, x3 + dx3) respectively.
The quantities dxi represent displacements from i to f along the three (independent)
coordinate directions. Let us represent the displacement, d~r, of a body moving from i to
f as the ordered collection of these displacements (an ordered triplet),1

d~r = (dx1, dx2, dx3). (1.1.1)

The numbers dxi that form the triplet are called the components of d~r. The magnitude
of d~r, denoted by |d~r|, is given by Pythagoras’ theorem as

|d~r| =
√
dx2

1 + dx2
2 + dx2

3 . (1.1.2)

Its direction can be specified by the angles that d~r makes with the coordinate axes. Calling
these angles α1, α2 and α3 respectively and applying Pythagoras’ theorem again we find

dxi = |d~r| cosαi, i ∈ {1, 2, 3}, (1.1.3)

The cosines are called the direction cosines of the displacement. They are not all
independent. Indeed, by substituting (1.1.3) into (1.1.2), one sees that they must satisfy
the constraint ∑

i

cos2 αi = 1, (1.1.4)

showing that one of the three angles is determined by the other two.
We will sometimes denote the ith component, dxi, of d~r by [d~r]i. The following defini-

tions are natural:

• Two displacements are equal if they have the same magnitude and direction:

d~r1 = d~r2 ⇔ [d~r1]i = [d~r2]i (1.1.5)

1The arrow over the ~r indicates that d~r is not a number but an ordered triplet.
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Figure 1.4: Representation of the displacement vector

• If a is a real number,

[ad~r]i = a[d~r]i (1.1.6)

In particular, with a = −1, [−d~r]i = −[d~r]i.

• If d~r1 and d~r2 are two displacements then their sum is also a displacement given by

[d~r1 + d~r2]i = [d~r]1,i + [d~r]2,i (1.1.7)

(This definition can be understood as the algebraic equivalent of the familiar geo-
metric parallelogram law of vector addition.)

Our implicit choice of coordinate system can be made explicit by assigning directions to
the coordinate axes as follows: since every straight line is determined by two distinct
points, on each axis choose two points one unit away from each other, in the direction of
increasing coordinate value. There are only three corresponding displacements, which can
be written as2

x̂1 = x̂ = (1, 0, 0), x̂2 = ŷ = (0, 1, 0) and x̂3 = ẑ = (0, 0, 1) (1.1.8)

and it is straightforward that, using the scalar multiplication rule (1.1.6) and the sum rule
(1.1.7), any displacement d~r could also be represented as

d~r = dx1x̂1 + dx2x̂2 + dx3x̂3 =
∑
i

dxix̂i. (1.1.9)

The x̂i represent the directions of the three axes of our chosen Cartesian system and the
set {x̂i} is called a basis.

2Carets, as opposed to arrows, are used to represent any displacement of unit magnitude.
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In R3, we could use the Cartesian coordinates of any point to represent its displacement
from the origin. Displacements in R3 from the origin

~r = (x1, x2, x3) =
∑
i

xix̂i. (1.1.10)

are called position vectors.
Because representations of position and displacement depend sensitively on the choice

of coordinate axes whereas they themselves do not, we must distinguish between these
objects and their representations. To see why this is important, we first examine how
different Cartesian systems transform into one another.

1.2 Linear Coordinate Transformations

Two types of transformations exist between Cartesian frames, viz., translations of the
origin of coordinates and rotations of the axes. Translations are just constant shifts of
the coordinate origin. If the origin, O, is shifted to the point O′ whose coordinates are
(xO, yO, zO), measured from O, the coordinates get likewise shifted, each by the corre-
sponding constant,

x′ = x− xO, y′ = y − yO, z′ = z − zO (1.2.1)

But since xO, yO and zO are all constants, such a transformation does not change the
representation of a displacement vector,

d~r = (dx, dy, dz) = (dx′, dy′, dz′). (1.2.2)

Representations of displacement vectors are, however, affected by a rotation of the coordi-
nate axes. Let us first consider rotations in two spatial dimensions [see figure (1.5)], where
the primed axes are obtained from the original system by a rotation through some angle,
θ. The coordinates (x1, x2) of a point P in the original system would be (x′1, x

′
2) in the

rotated system. In particular, in terms of the length l of the hypotenuse OP of triangle
AOP [figure (1.5)], we have

x1 = l cos(α+ θ) = (l cosα) cos θ − (l sinα) sin θ = x′1 cos θ − x′2 sin θ

x2 = l sin(α+ θ) = (l sinα) cos θ + (l cosα) sin θ = x′2 cos θ + x′1 sin θ. (1.2.3)

Inverting these relations gives

x′1 = x1 cos θ + x2 sin θ

x′2 = −x1 sin θ + x2 cos θ (1.2.4)
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Figure 1.5: Rotations in two space dimensions

or, in terms of the components of an infinitesimal displacement from P ,

dx′1 = dx1 cos θ + dx2 sin θ

dx′2 = −dx1 sin θ + dx2 cos θ (1.2.5)

We could also exploit the representation given in (1.1.9) to obtain the same result. Let x̂1

and x̂2 designate the directions of the original x1 and x2 axes respectively and x̂′1 and x̂′2
the directions of the rotated axes. Then, because the displacement itself is independent
of the coordinate system, we may write

d~r = dx1x̂1 + dx2x̂2 = dx′1x̂
′
1 + dx′2x̂

′
2 (1.2.6)

Clearly, from figure (1.5)

x̂′1 = cos θx̂1 + sin θx̂2

x̂′2 = − sin θx̂1 + cos θx̂2. (1.2.7)

Inserting these into the (1.2.6) we find

d~r = dx1x̂1 + dx2x̂2 = dx′1(cos θx̂1 + sin θx̂2) + dx′2(− sin θx̂1 + cos θx̂2)

= (dx′1 cos θ − dx′2 sin θ)x̂1 + (dx′1 sin θ + dx′2 cos θ)x̂2 (1.2.8)

A simple comparison now gives

dx1 = dx′1 cos θ − dx′2 sin θ
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dx2 = dx′1 sin θ + dx′2 cos θ (1.2.9)

or, upon inverting the relations,

dx′1 = dx1 cos θ + dx2 sin θ

dx′2 = −dx1 sin θ + dx2 cos θ. (1.2.10)

It is easy to see that these transformations can also be written in matrix form as(
dx′1
dx′2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
dx1

dx2

)
(1.2.11)

and (
dx1

dx2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
dx′1
dx′2

)
(1.2.12)

Other, more complicated but rigid transformations of the coordinate system can always
be represented as combinations of rotations and translations.

1.3 Vectors and Scalars

Definition: A vector is a quantity that can be represented in a Cartesian system by
an ordered triplet (A1, A2, A3) of components, which transform as the components of an
infinitesimal displacement under a rotation of the reference coordinate system.

In two dimensions, a vector may be represented by two Cartesian components ~A =
(A1, A2), which transform under a rotation of the Cartesian reference system as (A1, A2)→
(A′1, A

′
2) such that (

A′1
A′2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
A1

A2

)
(1.3.1)

Definition: A scalar is any physical quantity that does not transform (stays invariant)
under a rotation of the reference coordinate system.

A typical scalar quantity in Newtonian mechanics would be the mass of a particle. The
magnitude of a vector is also a scalar quantity, as we shall soon see. It is of great interest
to determine scalar quantities in physics because these quantities are not sensitive to
particular choices of coordinate systems and are therefore the same for all observers.
Other examples of scalars within the context of Newtonian mechanics are temperature
and density.

In the Newtonian conception of space and time, time is also a scalar. Because time is
a scalar all quantities constructed from the position vector of a particle moving in space
by taking derivatives with respect to time are also vectors, therefore
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• the velocity: ~v = d~r
dt

• the acceleration: ~a = d~v
dt

• the momentum: ~p = m~v and

• the force ~F = d~p
dt

are all examples of vectors that arise naturally in mechanics. In electromagnetism, the
electric and magnetic fields are vectors. As an example of a quantity that has the ap-
pearance of a vector but is not a vector, consider A = (x,−y). Under a rotation of the
coordinate system by an angle θ,

A′1 = A1 cos θ −A2 sin θ

A′2 = A1 sin θ +A2 cos θ (1.3.2)

which are not consistent with (1.3.1). The lesson is that the transformation properties
must always be checked.

1.4 Rotations in two dimensions

Equation (1.3.1) can also be written as follows

A′i =
∑
j

R̂ijAj (1.4.1)

where

R̂ij(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(1.4.2)

is just the two dimensional “rotation” matrix. We easily verify that it satisfies the following
very interesting properties:

1. If we perform two successive rotations on a vector ~A, so that after the first rotation

Ai → A′i =
∑
j

R̂ij(θ1)Aj (1.4.3)

and after the second rotation

A′i → Ai
′′ =

∑
k

R̂ik(θ2)A′k =
∑
k

R̂ik(θ2)R̂kj(θ1)Aj (1.4.4)
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then by explicit calculation it follows that∑
k

R̂ik(θ2)R̂kj(θ1) = R̂ij(θ1 + θ2) (1.4.5)

so
Ai
′′ =

∑
j

R̂ij(θ1 + θ2)Aj (1.4.6)

i.e., the result of two rotations is another rotation. The set of rotation matrices is
therefore “closed” under matrix multiplication.

2. The unit matrix, 1, is the rotation matrix R̂(0).

3. The transpose of the rotation matrix whose angle is θ is the rotation matrix whose
angle is −θ. This follows easily from,

R̂(−θ) =

(
cos(−θ) sin(−θ)
− sin(−θ) cos(−θ)

)
=

(
cos θ − sin θ
sin θ cos θ

)
= R̂T (θ) (1.4.7)

Now, using the closure property,

RT (θ) ·R(θ) = R(−θ) ·R(θ) = R(0) = 1 (1.4.8)

Therefore, for every rotation matrix R̂(θ) there exists an inverse, R̂(−θ) = R̂T .

4. Matrix multiplication is associative.

The rotation matrices therefore form a group under matrix multiplication.3 The group
elements are all determined by one continuous parameter, the rotation angle θ. This is
the commutative group, called SO(2), of 2 × 2 orthogonal matrices with unit determi-
nant, under matrix multiplication. We will now see that the situation gets vastly more
complicated in the physically relevant case of three dimensions.

3Recall the following definitions:

Definition: The pair (G, ∗) consisting of any set G = {g1, g2, ...} with a binary operation ∗ defined on it
that obeys the four properties

• closure under ∗, i.e., ∀ g1, g2 ∈ G g1 ∗ g2 ∈ G
• existence of an identity, i.e., ∃ e ∈ G s.t. ∀ g ∈ G, g ∗ e = e ∗ g = g

• existence of an inverse i.e., ∀ g ∈ G ∃ g−1 ∈ G s.t. g ∗ g−1 = g−1 ∗ g = e, and

• associativity of ∗, i.e., ∀ g1, g2, g3 ∈ G, g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3

is called a group.

Definition: If ∀ g1, g2 ∈ G, [g1, g2] = g1 ∗ g2 − g2 ∗ g1 = 0 then the group (G, ∗) is called a “commutative”
or “ Abelian” group. [g1, g2] is called the commutator of the elements g1 and g2.
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1.5 Rotations in three dimensions

In two dimensions there is just one way to rotate the axes which, if we introduce a “x3”
axis, amounts to a rotation of the x1−x2 axes about it. In three dimensions there are three
such rotations possible: the rotation of the x1 − x2 axes about the x3 axis, the rotation
of the x2 − x3 axes about the x1 axis and the rotation of the x1 − x3 axes about the x2

axis. In each of these rotations the axis of rotation remains fixed, and each rotation is
obviously independent of the others. Thus, we now need 3× 3 matrices and may write

R̂3(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (1.5.1)

to represent the rotation of the x1 − x2 axes as before about the x3 axis. Under such a
rotation only the first and second component of a vector are transformed according to the
rule

A′i =
∑
j

R̂3
ij(θ)Aj (1.5.2)

Rotations about the other two axes may be written likewise as follows:

R̂1(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (1.5.3)

and4

R̂2(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (1.5.4)

The general rotation matrix in three dimensions may be constructed in many ways, one
of which (originally due to Euler) is canonical:

• first rotate the (x1, x2) about the x3 axis through an angle θ. This gives the new
axes (ξ, η, τ) (τ ≡ z),

• then rotate (ξ, η, z) about the ξ axis through an angle φ. This gives the new axes
(ξ′, η′, τ ′) (ξ′ ≡ ξ),

• finally rotate (ξ, η′, τ ′) about the τ ′ axis through an angle ψ to get (x′, y′, z′).

4Note the change in sign. It is because we are using a right-handed coordinate system. Convince
yourself that it should be so.
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We get

R̂(θ, φ, ψ) = R̂3(ψ) · R̂2(φ) · R̂3(θ) (1.5.5)

The angles {θ, φ, ψ} are called the Euler angles after the the originator of this particular
sequence of rotations.5 The sequence is not unique however and there are many possible
ways to make a general rotation. To count the number of ways, we need to keep in mind
that three independent rotations are necessary:

• the first rotation can be performed in one of three ways, corresponding to the three
independent rotations about the axes,

• the second rotation can be performed in one of two independent ways: we are not per-
mitted to rotate about the axis around which the previous rotation was performed,
and

• the third rotation can be performed in one of two independent ways: again we
are not permitted to rotate about the axis around which the previous rotation was
performed.

So in all there are 3 × 2 × 2 = 12 possible combinations of rotations that will give the
desired general rotation matrix in three dimensions. Note that any scheme you choose
will involve three and only three independent angles, whereas only one angle was needed
to define the general rotation matrix in two dimensions.

Three dimensional rotation matrices satisfy some interesting properties that we will
now outline:

• The product of any two rotation matrices is also a rotation matrix.

• The identity matrix is just the rotation matrix R̂(0, 0, 0).

• All three dimensional rotation matrices, like their two dimensional counterparts,
obey the condition

R̂T · R̂ = 1 (1.5.6)

where R̂T is the transpose of R̂, i.e.,

R̂Tij = R̂ji (1.5.7)

5Problem: Show that the general rotation matrix constructed with the Euler angles is

R̂(θ, φ, ψ) =

 cosψ cos θ − cosφ sin θ sinψ cosψ sin θ + cosφ cos θ sinψ sinψ sinφ
− sinψ cos θ − cosφ sin θ cosψ − sinψ sin θ + cosφ cos θ cosψ cosψ sinφ

sinφ sin θ − sinφ cos θ cosφ


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The transpose of any rotation matrix is also a rotation matrix. It is obtained by
applying the separate rotation matrices in reverse order. In the Euler parametriza-
tion,6

R̂T (θ, φ, ψ) = R̂(−ψ,−φ,−θ) (1.5.8)

Therefore, the transpose of a rotation matrix is its inverse.

• Finally, the associative property of matrix multiplication ensures that the product
of rotations is associative.

The four properties listed above ensure that three dimensional rotations form a group un-
der matrix multiplication. This the continuous, three parameter group called SO(3) and is
the group of all 3×3 orthogonal matrices of unit determinant, under matrix multiplication.
The group is not commutative.

Rotations keep the magnitude of a vector invariant. Suppose ~A has components
(A1, A2, A3). Under a general rotation the components transform as

A′i =
∑
j

R̂ijAj (1.5.9)

Therefore,

∑
i

A′iA
′
i =

∑
ijk

AjR̂
T
jiR̂ikAk =

∑
jk

Aj

(∑
i

R̂TjiR̂ik

)
Ak =

∑
jk

AjδjkAk =
∑
j

AjAj

(1.5.10)
where δjk is the Kronecker δ,7 and in the last step we use the fact that the transpose of

R̂ is its inverse.
∑

iAiAi is simply the length square of the vector | ~A|, or its magnitude
squared, i.e.,

| ~A| =
√∑

i

AiAi (1.5.11)

is invariant under rotations.

6Problem: Verify this explicitly!
7Problem: The Kronecker δ is defined by

δij =

{
0 if i 6= j
1 if i = j

so it is the unit matrix. In fact, δij is a “tensor”, i.e., it transforms as two copies of a vector under
rotations. Show this by showing that

δ′ij =
∑
lk

R̂ilR̂jkδlk = δij .



14 CHAPTER 1. VECTORS

1.6 Algebraic Operations on Vectors

We define

• Vector equality:
~A = ~B ⇔ Ai = Bi, for all i (1.6.1)

• Scalar multiplication:

~B = a ~A⇔ Bi = cAi, for a ∈ R (1.6.2)

and

• Vector addition/subtraction:

~C = ~A± ~B ⇔ Ci = Ai ±Bi (1.6.3)

It is easy to show that the results of scalar multiplication, addition and subtraction are
vectors (i.e., having the correct transformation properties). Furthermore, there are two
ways to define a product between two vectors.

1.6.1 The scalar product

The first is called the scalar (or inner, or dot) product and yields a scalar quantity. If ~A
and ~B are two vectors,

~A · ~B =
∑
i

AiBi (1.6.4)

To show that ~A · ~B is a scalar under rotations, consider∑
i

A′iB
′
i =

∑
ijk

AjR̂
T
jiR̂ikBk =

∑
jk

AjδjkBk =
∑
j

AjBj . (1.6.5)

Notice that | ~A| =
√
~A · ~A.

The basis vectors {x̂i} satisfy x̂i · x̂j = δij and the component of a vector ~A along

any of the axes can be obtained from the scalar product of ~A with the unit vector in the
direction of the axis,

Ai = ~A · x̂i, (1.6.6)

Since Ai = | ~A| cosαi, it can be used to define the direction cosines,

cosαi =
~A · x̂i
| ~A|

=
~A · x̂i√
~A · ~A

(1.6.7)
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Figure 1.6: Useful way to remember εijk

Indeed, if û is any unit vector, the component of ~A in the direction of û is Au = ~A · û.
Because the scalar product is invariant under rotations, we prove this by letting αi be
the direction angles of ~A and βi be the direction angles of û in the particular frame in
which both ~A and û lie in the x1 − x2 plane (such a plane can always be found). Then
α3 = β3 = π

2 and

~A · û = | ~A|
∑
i

cosαi cosβi = | ~A|(cosα1 cosβ1 + cosα2 cosβ2) (1.6.8)

In two dimensions, α2 = π
2 − α1 and β2 = π

2 − β1 so

~A · û = | ~A|(cosα1 cosβ1 + sinα1 sinβ1) = | ~A| cos(α1 − β1) = | ~A| cos θu (1.6.9)

where θu is the angle between ~A and û, because α1 and β1 are the angles made with the x
axis. It follows, by Pythagoras’ theorem, that Au is the component of ~A in the direction
of û. In a general coordinate frame, for any two vectors ~A and ~B,

~A · ~B = | ~A|| ~B|
∑
i

cosαi cosβi = | ~A|| ~B| cos θAB (1.6.10)

where θAB is the angle between ~A and ~B.

1.6.2 The vector product

The second product between two vectors yields another vector and is called the vector (or
cross) product. If ~C = ~A× ~B, then

Ci =
∑
jk

εijkAjBk (1.6.11)
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where we have introduced the three index quantity called the Levi-Civita tensor (density),
defined by8

εijk =


+1 if {i, j, k} is an even permutation of {1, 2, 3}
−1 if {i, j, k} is an odd permutation of {1, 2, 3}
0 if {i, j, k} is not a permutation of {1, 2, 3}

(1.6.12)

An useful mnemonic is shown in figure (1.6). One should check the following identities by
direct computation ∑

i

εijkεirs = δjrδks − δjsδkr∑
ij

εijkεijs = 2δks∑
ijk

εijkεijk = 3! (1.6.13)

Note that the Levi-Civita symbol is antisymmetric under an interchange of its indices, eg.,
εijk = −εikj etc. Using the above definition of the cross product, we could write out the

components of ~A× ~B explicitly,

~A× ~B = (A2B3 −A3B2, A3B1 −A1B3, A1B2 −A2B1), (1.6.14)

which is also obtained from the determinant form9

~A× ~B = det

∣∣∣∣∣∣
x̂1 x̂2 x̂3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣ (1.6.16)

It is worth showing that the cross product is a vector. Since the Levi-Civita symbol
transforms as a rank three tensor,

C ′i =
∑
j,k

ε′ijkA
′
jB
′
k =

∑
l,m,n,,j,k,p,q

RilRjmRknRjpRkqεlmnApBq

8Prove that εijk transforms as a rank three tensor, i.e., according to three copies of a vector. Show that

ε′ijk =
∑
lmn

R̂ilR̂jmR̂knεlmn = εijk

provided that the rotation matrices are of unit determinant.
9The Levi-Civita symbol can be used to define the determinant of any 3× 3 matrix as follows: if M̂ is

a 3× 3 matrix then
det|M̂ | =

∑
ijk

εijkM̂1iM̂2jM̂3k (1.6.15)
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A

B

A X B

Figure 1.7: The right hand rule

=
∑
l,m,n

RilεlmnAmBn =
∑
l

RilCl (1.6.17)

where we have used
∑

k RknRkq = δnq and
∑

j RjmRjp = δmp.

Notice that ~A× ~A = 0 and that the basis vectors obey x̂i× x̂j = εijkx̂k. In a coordinate

frame that has been rotated so that both ~A and ~B lie in the x1−x2 plane, using cosα2 =
sinα1 and cosβ2 = sinβ1 together with cosα3 = cosβ3 = 0, we find that the only non-
vanishing component of ~C is C3 given by

C3 = | ~A|| ~B|(cosα1 sinβ1 − sinα1 cosβ1) = | ~A|| ~B| sin(β1 − α1) (1.6.18)

If β1 > α1, then C3 is positive and ~C points along the positive x3 axis. On the contrary
if β1 < α1, then C3 points along the negative x3 axis. Because the magnitude of a vector
independent of the frame, we conclude: in a general coordinate frame, the vector ~A × ~B
has magnitude

| ~A× ~B| = | ~A|| ~B|

∣∣∣∣∣∣
∑
j,k

εijk cosαj cosβk

∣∣∣∣∣∣ = | ~A|| ~B| sin |θAB| (1.6.19)

and direction given by the right-hand rule, which states that if the fingers of the right
hand rotate ~A into ~B then the outstretched thumb points in the direction of ~C (see figure
(1.7).

1.7 Vector Spaces

It is easy to verify that the set of all vectors in three dimensional space (R3), form an
Abelian group under vector addition. The unit element is the zero vector and the inverse
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of ~A is − ~A. Moreover, vector addition inherits its associativity from addition of ordinary
numbers and is commutative. The space is also closed under scalar multiplication, since
multiplying any vector by a real number gives another vector. Scalar multiplication is also

• associative,

a(b ~A) = (ab) ~A, (1.7.1)

• distributive over vector addition,

a( ~A+ ~B) = a ~A+ a ~B (1.7.2)

• as well as over scalar addition,

(a+ b) ~A = a ~A+ b ~B, (1.7.3)

• and admits an identity (1),

1( ~A) = ~A (1.7.4)

In general, a vector space is any set that is a group under some binary operation (addition)
over which multiplication by elements of a field, satisfying the four properties listed above,
is defined.10 Although we have considered only scalar multiplication by real numbers,
scalar multiplication by elements of any field (eg. the complex numbers or the rational
numbers) is possible in general. The scalar and vector products we have defined are
additional structures, not inherent to the definition of a vector space. The vectors we have
introduced are geometric vectors in R3.

1.8 Some Algebraic Identities

We turn to proving some simple but important identities involving the scalar and vector
products. The examples given will not be exhaustive, but will serve to illustrate the general

10Definitions:

• A set of vectors, { ~Ai}, is linearly independent if for scalars ai,∑
i

ai ~Ai = 0⇔ ai = 0 ∀ i.

• A set of linearly independent vectors is complete if any vector in the vector space may be expressed
as a linear combination of its members.

• A complete set of linearly independent vectors is said to form a basis for the vector space.

• The set of vectors x̂1 = (1, 0, 0), x̂2 = (0, 1, 0) and x̂3 = (0, 0, 1), form a basis for R3.
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methods used. To simplify notation we will henceforth employ the following convention:
if an index is repeated in any expression, it is automatically assumed that the index is to
be summed over. Thus we will no longer write the sums explicitly (this is known as the
Einstein summation convention).

1. ~A× ~B = − ~B × ~A.
We prove this for the components.

[ ~A× ~B]i = εijkAjBk = εikjAkBj = εikjBjAk = −εijkBjAk = −[ ~B × ~A]i

where, in the second step, we have simply renamed the indices by calling j ↔ k
which changes nothing as the indices j and k are summed over. In the next to last
step we have used the fact that εijk is antisymmetric in its indices, so that every
interchange of indices in εijk introduces a negative sign.

2. ~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B)~C
Again take a look at the components,

[ ~A× ( ~B × ~C)]i = εijkAj [ ~B × ~C]k = εijkεklmAjBlCm

= εijkεlmkAjBlCm = (δilδjm − δimδjl)AjBlCm

= ( ~A · ~C)Bi − ( ~A · ~B)Ci

3. ( ~A× ~B) · (~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C)
Write everything down in components. The left hand side is

( ~A× ~B) · (~C × ~D) = εijkAjBkεilmClDm = (δjlδkm − δjmδkl)AjBkClDm

= ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C)

In particular, ( ~A× ~B)2 = ~A2 ~B2 sin2 θ, where θ is the angle between ~A and ~B.

4. The triple product of three vectors ~A, ~B and ~C is defined by

[ ~A, ~B, ~C] = ~A · ( ~B × ~C) = εijkAiBjCk

This is a scalar.11 It satisfies the following properties:

[ ~A, ~B, ~C] = [~C, ~A, ~B] = [ ~B, ~C, ~A] = −[ ~B, ~A, ~C] = −[~C, ~B, ~A] = −[ ~A, ~C, ~B] (1.8.1)

i.e., the triple product is even under cyclic permutations and otherwise odd. Also
[ ~A, ~A, ~B] = 0. All these properties follow directly from the properties of the Levi-
Civita tensor density, εijk.

12

11Problem: Verify this!
12Problem: Convince yourself that this is so.
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5. ( ~A× ~B)× (~C × ~D) = [ ~A, ~B, ~D]~C − [ ~A, ~B, ~C] ~D
The left hand side is just

( ~A× ~B)× (~C × ~D) = εijkεjrsεkmnArBsCmDn = εjrs(δimδjn − δinδjm)ArBsCmDn

= (εnrsArBsDn)Ci − (εmrsArBsCm)Di

= [ ~A, ~B, ~D]~C − [ ~A, ~B, ~C] ~D

1.9 Differentiation of Vectors

1.9.1 Time derivatives

A vector function of time is a vector whose components are functions of time. The deriva-
tive of a vector function of time is then defined in a natural way in terms of the derivatives
of its components in the Cartesian basis. Let ~A(t) be a vector function of some parameter
t, i.e.,

~A(t) = (A1(t), A2(t), A3(t)) (1.9.1)

The derivative of ~A(t) is another vector function, ~C(t), whose Cartesian components are
given by

Ci =
dAi
dt

(1.9.2)

Note that the above definition is “good” only in for the Cartesian components of the
vector. This is because the Cartesian basis {x̂i} is rigid. In more general coordinate
systems where the basis is not rigid, the derivative of a vector must be handled delicately.
We will return to this later. Here, we will convince ourselves that ~C is really a vector.
Under a rotation

Ai → A′i ⇒ C ′i =
dA′i
dt

=
d

dt
(R̂ijAj) = R̂ij

dAi
dt

= R̂ijCj (1.9.3)

which shows that ~C(t) has the correct transformation properties, inherited from ~A(t).
This justifies the statement that the velocity, momentum, acceleration and force must all
be vectors, because they are all obtained by differentiating ~r(t).

1.9.2 The Gradient Operator

The gradient operator is a vector differential operator, whose definition is motivated
by a simple geometric fact. Consider some scalar function φ(~r)13 and the surface in R3,

13Any scalar function φ(~r, t) is called a scalar field.
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defined by

φ(~r) = φ(x1, x2, x3) = const., (1.9.4)

so that

φ′(x′1, x
′
2, x
′
3) = φ(x1, x2, x3) (1.9.5)

By the fundamental theorem of calculus

dφ =
∂φ

∂x1
dx1 +

∂φ

∂x2
dx2 +

∂φ

∂x3
dx3 =

(
∂φ

∂x1
,
∂φ

∂x2
,
∂φ

∂x3

)
· (dx1, dx2, dx3) = 0 (1.9.6)

The vector (dx1, dx2, dx3) represents an infinitesimal displacement on the surface deter-
mined by the equation φ(x1, x2, x3) = const. The other vector in the last scalar product
is called the gradient of the function φ,

~∇φ =

(
∂φ

∂x1
,
∂φ

∂x2
,
∂φ

∂x3

)
(1.9.7)

It has the form of a vector, but we need to check of course that its transformation properties
under rotations are those of a vector. We will therefore look at the components of ~∇φ:

∂φ

∂xi
= ∂iφ→ ∂′iφ

′ =
∂φ′

∂x′i
=

∂φ

∂xj

∂xj
∂x′i

(1.9.8)

Now

x′i = R̂ikxk ⇒ xj = R̂Tjixi (1.9.9)

so
∂xj
∂x′i

= R̂Tji = R̂ij (1.9.10)

and therefore

∂′iφ
′ =

∂φ′

∂x′i
= R̂ij∂jφ (1.9.11)

which is indeed the vector transformation law. Hence ~∇φ is a vector if φ(~r) is a scalar.
Now it turns out that ~∇φ has a nice geometric meaning. Because

~∇φ · d~r = 0 (1.9.12)

for all infinitesimal displacements along the surface, it follows that ~∇φ, if it is not vanishing,
must be normal to the surface given by φ(~r) = const. Thus, given any surface φ(~r) =
const.,

n̂ =
~∇φ
|~∇φ|

(1.9.13)
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is the unit normal to the surface.

Example: Take φ(x, y, z) = x2 + y2 + z2, then φ(~r) = const. represents a sphere centered
at the origin of coordinates. The unit normal to the sphere at any point is

~∇φ =
~r

r
(1.9.14)

where r is the radius of the sphere and ~r is the position vector of the point. The normal
to the sphere is therefore in the direction of the radius.

Example: Take φ(x, y, z) = x2

a2 + y2

b2
+ z2

c2
, so that φ(x, y, z) = 1 represents an ellipsoid with

semi-axes of lengths a, b and c respectively. We find

n̂ = (
x

a
,
y

b
,
z

c
) (1.9.15)

which is the normal to the ellipsoid at the point (x, y, z).

We see that ~∇ is just the derivative operator in the Cartesian system, so we can think of
it in component form as the collection of derivatives,

[~∇]i = ∂i. (1.9.16)

Now if we introduce the concept of a vector field as a vector function of space and time,

~A(~r, t) = (A1(~r, t), A2(~r, t), A3(~r, t)) (1.9.17)

then we can define two distinct operations on ~A(~r) using the scalar and vector products
given earlier,

• the divergence of a vector field ~A(~r, t) as

div ~A = ~∇ · ~A = ∂iAi (1.9.18)

and

• the curl (or rotation) of a vector field ~A(~r, t) as

[~∇× ~A]i = εijk∂jAk (1.9.19)

These turn out to be of fundamental importance in any field theory, electromagnetism
being one of them. We will understand their physical significance in the following chapters.
For now, we only prove a few identities involving the ~∇ operator. Once again, the examples
given are far from exhaustive, their purpose being only to illustrate the method.
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1.10 Some Differential Identities

1. ~∇ · ~r = 3
This follows directly from the definition of the divergence,

~∇ · ~r = ∂ixi = δii = 3

2. ~∇ · (φ ~A) = (~∇φ) · ~A+ φ(∇ · ~A)
Expand the l.h.s to get

∂i(φAi) = (∂iφ)Ai + φ(∂iAi) = (~∇φ) · ~A+ φ(∇ · ~A) (1.10.1)

As a special case, take ~A = ~r, then ~∇ · (~rφ) = ~r · (~∇φ) + 3φ

3. ~∇ · (~∇× ~A) ≡ 0
The proof is straightforward and relies on the antisymmetry of εijk:

~∇ · (~∇× ~A) = εijk∂i∂jAk = 0

which follows because ∂i∂j is symmetric w.r.t. {ij} while εijk is antisymmetric w.r.t.
the same pair of indices.

4. ~∇ · ( ~A× ~B) = (~∇× ~A) · ~B − ~A · (~∇× ~B)
Expanding the l.h.s.,

∂i(εijkAjBk) = εijk[(∂iAj)Bk +Aj(∂iBk)]

= (εkij∂iAj)Bk −Aj(εjik∂iBk)

= (~∇× ~A) · ~B − ~A · (~∇× ~B)

5. ~∇× ~r = 0
This also follows from the antisymmetry of the Levi-Civita tensor,

~∇× ~r = εijk∂jxk = εijkδjk = 0

6. ~∇× ~∇φ ≡ 0
This is another consequence of the same reasoning as above,

~∇× ~∇φ = εijk∂j∂kφ = 0
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7. ~∇× (φ ~A) = (~∇φ)× ~A+ φ(∇× ~A)
Consider the ith component of the l.h.s.,

[~∇× (φ ~A)]i = εijk∂j(φAk) = εijk(∂jφ)Ak + εijkφ(∂jAk)

= [~∇φ× ~A]i + φ[~∇× ~A]i

As a special case, take ~A = ~r, then ~∇× (~rφ) = (~∇φ)× ~r.

8. ~∇× (~∇× ~A) = ~∇(~∇ · ~A)− ~∇2 ~A
Beginning with,

[~∇× (~∇× ~A)]i = εijk∂j(εklm∂lAm) = (δilδjm − δimδjl)∂j∂lAm

= ∂i(∂mAm)− ∂j∂jAi = [~∇(~∇ · ~A)]i − [~∇2 ~A]i

9. ~∇× ( ~A× ~B) = (~∇ · ~B) ~A− (~∇ · ~A) ~B + ( ~B · ~∇) ~A− ( ~A · ~∇) ~B
Again, beginning with,

[~∇× ( ~A× ~B)]i = εijkεklm∂j(AlBm) = (δilδjm − δimδjl)∂j(AlBm)

= ∂j(AiBj)− ∂j(AjBi)

= (∂jBj)Ai + (Bj∂j)Ai − (∂jAj)Bi − (Aj∂j)Bi

= (~∇ · ~B)[ ~A]i − (~∇ · ~A)[ ~B]i + ( ~B · ~∇)[ ~A]i − ( ~A · ~∇)[ ~B]i

10. ~∇( ~A · ~B) = ( ~A · ~∇) ~B + ( ~B · ~∇) ~A+ ~A× (~∇× ~B) + ~B × (~∇× ~A)
Consider the ith component of the last two terms on the right,

[ ~A× (~∇× ~B) + ~B × (~∇× ~A)]i = εijkεklmAj∂lBm + εijkεklmBj∂lAm

= (δilδjm − δimδjl)Aj∂lBm

= Aj∂iBj −Aj∂jBi +Bj∂iAj −Bj∂jAi

= ∂i(AjBj)−Aj∂jBi −Bj∂jAi

= [~∇( ~A · ~B)]i − ( ~A · ~∇)Bi − ( ~B · ~∇)Ai

The stated result follows.
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Figure 1.8: The Line Integral

11. A vector ~A is said to be irrotational if ~∇× ~A = 0 and it is solenoidal if ~∇· ~A = 0.
It turns out that ~A× ~B is solenoidal if both ~A and ~B are irrotational. Begin with

~∇ · ( ~A× ~B) = εijk∂i(AjBk) = εijk(∂iAj)Bk + εijkAj(∂iBk)

= (~∇× ~A) · ~B − ~A · (~∇× ~B) = 0

(since both ~A and ~B are irrotational).

There are many more identities which we will encounter along the way and all of them
can be proved using the methods above

1.11 Vector Integration

There are three types of integrations involving vector and scalar functions that lead to
scalar quantities, viz.,

1.11.1 Line Integrals

Line integrals involve integrations along a curve, C, and generally depend upon the curve
over which the integration is carried out. Three basic possibilities exist, viz.,∫ f

i,C
φ(~r)d~r,

∫ f

i,C

~A× d~r,
∫ f

i,C

~A · d~r, (1.11.1)

of which the first and second yield vectors and the last a scalar. C may be an open or
closed curve, i and f are the beginning and endpoints of the integration on C and d~r is
an infinitesimal displacement along (tangent to) C. A famous example of a line integral is
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the work performed by a force ~F in moving a particle along some trajectory, C (see figure
(1.8). A particularly interesting case occurs when the vector ~A is the gradient of a scalar
function, i.e., ~A = ~∇φ. In this case,∫ f

i,C

~A · d~r =

∫ f

i,C

~∇φ · d~r =

∫ f

i,C
dφ = φ(~rf )− φ(~ri) (1.11.2)

showing that the integral depends only on the endpoints and not on the curve C itself. A
vector whose line integral is independent of the path along which the integration is carried
out is called conservative. Every conservative vector then obeys∮

C

~A · d~r = 0, (1.11.3)

for every closed path. Conversely, any vector that obeys (1.11.3) is expressible as the
gradient of a scalar function, for .∮

C

~A · d~r = 0⇒ ~A · d~r = dφ = ~∇φ · d~r (1.11.4)

and since d~r is arbitrary, it follows that ~A = ~∇φ.
One does not need to evaluate its line integral to determine whether or not a vector

is conservative. From the fact that the curl of a gradient vanishes it follows that if ~A is
conservative then ~∇ × ~A = 0. The converse is also true, since if ~A is irrotational then
εijk∂jAk = 0 for all i. These are simply integrability conditions for a function φ defined by
Ak = ∂kφ. Therefore every irrotational vector is conservative and vice versa. The function
−φ is generally called a potential of ~A.

1.11.2 Surface integrals

Surface integrals also appear in the same three forms, the integration occuring over in-
finitesimal area elements, d~S, which are assigned the direction of the surface normal, (see
figure (1.9) Writing d~S as dSn̂, where n̂ is the unit normal to the surface at dS,∫

S
dS(n̂φ),

∫
S
dS(n̂× ~A),

∫
S
dS(n̂ · ~A) (1.11.5)

where S is some arbitrary (open or closed) surface.

1.11.3 Volume Integrals

We may define volume integrals similarly but because the volume element is a scalar there
are only two distinct possibilities, ∫

V
d3~rφ,

∫
V
d3~r ~A. (1.11.6)
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n

Figure 1.9: The Surface Integral

1.12 Integral Theorems

The three types of integrals that were defined in the previous section are connected by the
following two theorems:14

1. Stokes Theorem: ∮
C

~A · d~r =

∫
S
dS n̂ · (~∇× ~A) (1.12.1)

where C is a closed curve, S is the surface bounded by C, dS is an infinitesimal
area element and n̂ is normal to the surface element dS.

2. Gauss’ theorem: ∮
S
d~S · ~A =

∫
V
d3~r ~∇ · ~A (1.12.2)

where S is a closed surface and V is the volume bounded S.

While we accept these theorems without proof here, we shall now use then to prove some
corollaries that will turn out to be useful in the future.

1.12.1 Corollaries of Stokes’ Theorem

We will prove the following three relations:

1.
∮
C φd~r =

∫
S dS(n̂× ~∇φ)

2.
∮
C d~r × ~A =

∫
S dS(n̂× ~∇)× ~A

14The proofs of these theorems can be found in any text on mathematical physics. We will leave it to
the student to examine the proofs independently.
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where C is a closed curve and S is the surface bounded by C in each case.
The proofs are quite simple. Define the vector ~A = ~aφ, where ~a is an arbitrary,

constant vector then by Stokes’ theorem,∮
C

~A · d~r = ~a ·
∮
φd~r =

∫
S
dSn̂ · (~∇× ~aφ) =

∫
S
dSn̂ · (~∇φ× ~a)

= ~a ·
∫
S
dS(n̂× ~∇φ) (1.12.3)

Thus

~a ·
(∮

φd~r −
∫
S
dS(n̂× ~∇φ)

)
= 0 (1.12.4)

holds for arbitrary vectors implying the first identity.
The second identity may be derived similarly, by using ~B = ~a× ~A in Stokes’ theorem.

Then ∮
C

~B · d~r =

∮
C
~a× ~A · d~r = −

∮
C

(d~r ×A) · ~a

=

∫
S
dS n̂ · (~∇× ~B) =

∫
S
dS [(n̂× ~∇) · ~B]

=

∫
S
dS [(n̂× ~∇) · (~a× ~A)] (1.12.5)

But it is easy to show that15 (n̂× ~∇) · (~a× ~A) = −[(n× ~∇)× ~A] · ~a, therefore

~a ·
[∮

C
(d~r ×A)−

∫
S
dS[n̂× (~∇× ~A)]

]
= 0 (1.12.6)

Again ~a was arbitrary, therefore the second identity follows.

1.12.2 Corollaries of Gauss’ theorem

We will prove three relations that will be quite helpful to us in the future, viz.,

1.
∮
S dS( ~A× n̂) =

∫
V d

3~r ~∇× ~A

2. If φ and ψ are two arbitrary functions, then

(a) Green’s first identity:∫
V
d3~r [~∇φ · ~∇ψ + φ~∇2ψ] =

∫
S
dS n̂ · φ~∇ψ (1.12.7)

and
15Problem: Use the properties of the Levi-Civita tensor to show this
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(b) Green’s second identity:∫
V
d3~r [φ~∇2ψ − ψ~∇2φ] =

∫
S
dS n̂ · [φ~∇ψ − ψ~∇φ] (1.12.8)

To prove the first corollary we will employ the trick we used to prove the corollaries of
Stoke’s theorem. For a constant vector ~a, let ~B = ~a× ~A and apply Gauss’ law∮

S
dS(n̂ · ~B) =

∫
V
d3~r ~∇ · ~B ⇒

∮
S
dS[n̂ · (~a× ~A)] =

∫
d3~r ~∇ · (~a× ~A) (1.12.9)

Developing the last relation, using some of the vector identities we proved earlier, we find

~a ·
[∮

S
dS(n̂× ~A)−

∫
V
d3~r ~∇× ~A

]
= 0 (1.12.10)

But since ~a is arbitrary, the identity follows.
To prove Green’s two theorems is equally straightforward. Take ~A = φ~∇ψ and apply

Gauss’ theorem. Since

~∇ · ~A = ~∇ · (φ~∇ψ) = (~∇φ) · (~∇ψ) + φ~∇2ψ, (1.12.11)

it follows that the first of Green’s theorems is just Gauss’ theorem,∫
V
d3~r [~∇φ · ~∇ψ + φ~∇2ψ] =

∫
S
dS n̂ · φ~∇ψ (1.12.12)

To prove the second identity, consider ~B = ψ~∇φ and again apply Gauss’ theorem to get∫
V
d3~r [~∇ψ · ~∇φ+ ψ~∇2φ] =

∫
S
dS n̂ · ψ~∇φ (1.12.13)

Subtracting the second from the first gives∫
V
d3~r [φ~∇2ψ − ψ~∇2φ] =

∫
S
dS n̂ · [φ~∇ψ − ψ~∇φ] (1.12.14)

which is Green’s second identity.
This chapter does not do justice to the vast area of vector analysis. On the contrary,

most proofs have not been given and many useful identities have been neglected. What
has been presented here is only an introduction to the material we will immediately need.
Consequently, as we progress, expect to periodically encounter detours in which further
vector analysis will be presented, often as exercises in the footnotes.



Chapter 2

Electrostatics: Introduction

2.1 Coulomb’s Force Law

Electromagnetism begins with the electrostatic force law. Credit for the law is generally
given to Charles Augustin de Coulomb, a french engineer who invented the torsion bal-
ance and used it to determine the distance dependence of the electric force between two
charges. As its philosophical basis it had the mechanical approach of Newton. It sought
to determine the force between two charge distributions so that one would then be able
to predict the temporal evolution of the system of charges by a simple application of the
second law

d~p

dt
= ~F ext (2.1.1)

After performing a series of remarkable experiments in which Coulomb measured the force
between charged balls, he was able to arrive at the following conclusions

• There exist two kinds of charges in nature, which can conveniently be described
as positive and negative (this conclusion should rightly be attributed to Benjamin
Franklin).

• Like charges repel and unlike charges attract one another,

• The magnitude of the force exerted by one point-like charge on another point-like
charge depends upon the product of the charges and the inverse square of the distance
between them.

• The force between two point like charges acts along the line joining them.

These conclusions can be put together in a formula for the force exerted by one point like
charge on another,

~F1→2 = C
q1q2

r2
12

r̂12 (2.1.2)

30



2.1. COULOMB’S FORCE LAW 31

where r12 is the distance between the two point-like charges q1 and q2, r̂12 is the unit
vector that points from charge 1 to charge 2 and C is a universal constant called Coulomb’s
constant. In terms of the position vectors, ~r1 of charge 1 and ~r2 of charge 2, Coulomb’s
law can be stated as

~F1→2 = C
q1q2(~r2 − ~r1)

|~r2 − ~r1|3
(2.1.3)

In the standard MKS system of units, the charge is measured in “Coulombs”, roughly
speaking one Coulomb is the charge contained by a collection of 0.5917 × 1019 protons.
Distance is measured in meters and the constant C is often written for convenience as

C =
1

4πε0
, ε0 = 8.854× 10−12 coulombs2

N ·m2
(2.1.4)

where ε0 is called the permitivity of space for reasons that will become clear only much
later. In keeping with common usage, we will therefore henceforth use Coulomb’s law in
the form

~F1→2 =
1

4πε0

q1q2(~r2 − ~r1)

|~r2 − ~r1|3
(2.1.5)

As usual, from the interaction between point particles or charges, we construct the inter-
action between arbitrary distributions.

Suppose Q is a point like charge and D is some distribution of point like charges. If D
is a discrete distribution of N charges, qj , then the force exerted by D on the point like
charge Q is simply the vector sum of the forces exerted upon Q by the individual charges
in the distribution,

~FD→Q =
Q

4πε0

N∑
j=1

qj(~r − ~rj)
|~r − ~rj |3

(2.1.6)

where ~r is the position of charge Q and ~rj are the positions of the charges in the distribu-
tion. If the distribution can be considered continuous then we break it up into infinitesimal
pieces, each of charge dq and add up the forces on Q due to these infinitesimal pieces as
we did before. This time, however, the sum becomes an integral and we have

~FD→Q =
Q

4πε0

∫
D
dq(~r′)

(~r − ~r′)
|~r − ~r′|3

(2.1.7)

We can express the charge dq in terms of a volume charge density, ρ(~r), of the distribution
as dq = ρdV where dV is the infinitesimal volume element that contains the charge dq.
Then

~FD→Q =
Q

4πε0

∫
D
d3~r′

ρ(~r′)(~r − ~r′)
|~r − ~r′|3

(2.1.8)
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Again, if D were a two dimensional distribution, that is distributed for example on the
surface of some material then we are not interested in the volume charge density, ρ(~r′)
but in the surface charge density σ(~r′) (defined so that dq = σdS) and

~FD→Q =
Q

4πε0

∫
D
d2~r′

σ(~r′)(~r − ~r′)
|~r − ~r′|3

(2.1.9)

For a lineal charge distribution, we replace the surface charge density by the lineal charge
density in the integral (2.1.8) or (2.1.9) above. We have assumed a very important prop-
erty of the electric force, upon which we will rely heavily throughout. We assumed that
the electric force is simply additive. This implies that the interaction between a pair of
charges does not affect the interaction between any of the charges of the pair and a third
charge. Put in a more technical way, in electromagnetism we are able to “superpose” (just
simply add) the forces exerted on any charge by a collection of charges. This is because
electromagnetism is a “linear” theory. In fact, it is the only linear interaction of the four
known fundamental interactions.

2.2 The Electric Field

The electric force between the charges does not require the charges to be in contact with
one another. The presence of a single charge anywhere in space means that to every other
point in space there must be associated a “force” that acts upon any other charge that may
be located at that point. This leads us naturally to the concept of a field of a distribution
D, which we define as

~E = lim
Q→0

~FD→Q
Q

(2.2.1)

The electric field at any point, due to a charge distribution D, is the electric force exerted
by D per unit charge at that point. The limit Q→ 0 is taken to elliminate any effect that
the “test” charge Q would have on the distribution. It follow that the electric field at ~r of
a point charge, q located at ~r′, is

~E(~r) =
1

4πε0

q(~r − ~r′)
|~r − ~r′|3

(2.2.2)

which can be directly generalized to a discrete distribution

~E(~r) =
1

4πε0

N∑
j=1

qj(~r − ~rj)
|~r − ~rj |3

(2.2.3)

and a continuous distribution,

~E(~r) =
1

4πε0

∫
D
d3~r′

ρ(~r′)(~r − ~r′)
|~r − ~r′|3

(2.2.4)
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Figure 2.1: The electric dipole

or

~E(~r) =
1

4πε0

∫
D
d2~r′

σ(~r′)(~r − ~r′)
|~r − ~r′|3

(2.2.5)

by superposition. Notice that none of these expressions depend on time if the distribution
D is static and that any time dependence of ~E must come about only via a time dependence
of the source charge distribution. If the charge distributions under consideration are time
independent then we have the “electrostatic” field.

The electric dipole serves a very simple, but important, example of the application of
the above superpositions. In its purest form, the electric dipole consists of two opposite
charges separated by a fixed distance. In this section we will find the electric field due to
an electric dipole.

Consider the charges as located in the figure, so that the position vector of the positive
charge is ~r′ and let ~l be the position vector of the negative charge relative to the positive
(see figure (2.1)). The electric field at any point P (~r) is then just the sum of the electric
fields due to the individual charges

~E(r) =
q

4πε0

[
~r − ~r′

|~r − ~r′|3
− ~r − ~r′ −~l
|~r − ~r′ −~l|3

]
(2.2.6)

Expand the right hand side for small |~l|/|~r − ~r′|, i.e., for distances that are very much
larger than the separation between the charges,

~E(~r) =
q

4πε0

 ~r − ~r′

|~r − ~r′|3
− ~r − ~r′ −~l
|~r − ~r′|3

[
1 +

~l2

|~r − ~r′|2
− 2~l · (~r − ~r′)
|~r − ~r′|2

]−3/2

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≈ q

4πε0

[
~l

|~r − ~r′|3
− 3~l · (~r − ~r′)(~r − ~r′)

|~r − ~r′|5

]
(2.2.7)

up to terms of O(l) (assuming that |~r − ~r′| >> |~l|, we can neglect the higher order terms
in the expansion). The electric dipole moment is defined as

~p = q~l (2.2.8)

and the approximation for the electric field in (2.2.7) should be re-written as

~E(~r) =
1

4πε0

[
~p

|~r − ~r′|3
− 3~p · (~r − ~r′)(~r − ~r′)

|~r − ~r′|5

]
(2.2.9)

where its dependence on the dipole moment becomes explicit. One can define the electric
dipole moment of any distribution analogously: if the distribution is discrete,

~p =

n∑
j=1

qj~rj (2.2.10)

suffices, and if the distribution is continuous,

~p =

∫
V
dq(~r′)~r′ =

∫
V
d3~r′ρ(~r′)~r′ (2.2.11)

where the integral is over the volume occupied by the charge distribution and ρ(~r′) is its
density function.

2.3 Two Properties of the Electrostatic Field

Two properties of the electrostatic field are of great importance. The first is that the field
is irrotational,

~∇× ~E = 0 (2.3.1)

This is easy to prove, and it is sufficient to prove it for the electric field due to a single
charge, say q, situated at the origin. Since the electric field due to any charge distribution
is constructed by superposing the electric fields due to the individual parts, the result will
follow for arbitrary charge distributions. This is just one example of the simplification
allowed by linearity (superposition).

So let us consider

~∇× ~E =
q

4πε0
~∇× ~r − ~r′

|~r − ~r′|3
=

q

4πε0

[
~∇× (~r − ~r′)
|~r − ~r′|3

+ (~r − ~r′)× ~∇ 1

|~r − ~r′|3

]
(2.3.2)
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Now

[~∇× (~r − ~r′)]i = εijk∂j(xk − x′k) = εijkδjk ≡ 0 (2.3.3)

by the antisymmetry of the Levi-Civita symbol, and

[
~∇ 1

|~r − ~r′|3

]
i

= ∂i

∑
j

(xj − x′j)2

−3/2

= −3

∑
j

(xj − x′j)2

−5/2

(xj − x′j)δij

= −
[

3(~r − ~r′)
|~r − ~r′|5

]
i

(2.3.4)

so

~∇× ~E = − 3q

4πε0
(~r − ~r′)× (~r − ~r′)

|~r − ~r′|5
= 0 (2.3.5)

Because ~E is irrotational it can be expressed as the gradient of a scalar function and we
can write

~E = −~∇φ (2.3.6)

(the minus sign is inserted for later convenience). The scalar function φ is called the
electrostatic potential. Therefore the electrostatic field has really not three but one
continuous degree of freedom and all of its three components are obtained from the gradient
of a scalar function. Knowing ~E we can easily determine φ. For a single charge, q, situated
at ~r′,1

φ(~r) =
q

4πε0|~r − ~r′|
. (2.3.7)

Because we can superpose the electrostatic force and the electrostatic field, we can also
superpose the electrostatic potential, φ. Therefore, for a discrete charge distribution, made
up of charges qj each located at ~rj ,

φD(~r) =
∑
j∈D

qj
4πε0|~r − ~rj |

(2.3.8)

and for a continuous charge distribution,

φD(~r) =

∫
D
d3~r′

ρ(~r′)

4πε0|~r − ~r′|
. (2.3.9)

Again,
~FD→Q = Q~ED = −Q~∇φD (2.3.10)

1Problem: Check this by taking its gradient and recovering the electrostatic field of a point charge
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where we have explicitly used the suffix D to indicate that the field and potential are of
the distribution D. The electrostatic force is conservative. The potential energy of the
charge Q in the neighborhood of the distribution is

UQ(~r) = −
∫ ~r

∗
~FD→Q · d~r = Q

∫ ~r

∗
~∇φD · d~r = Q[φD(~r)− φD(∗)] (2.3.11)

where ∗ is used to represent the standard fixed point to which the potential energy is
referred. As an example, the electrostatic potential due to a dipole is just 2

φ(~r) =
q

4πε0

[
1

|~r − ~r′|
− 1

|~r − ~r′ −~l|

]

≈ q

4πε0

[
~l · (~r − ~r′)
|~r − ~r′|3

]
=

~p · (~r − ~r′)
4πε0|~r − ~r′|3

(2.3.12)

The potential energy of the charge in the electric field of a dipole is,

UQ(~r) = Q [φ(~r)− φ(∗)] =
Q

4πε0

~p · (~r − ~r′)
|~r − ~r′|3

, (2.3.13)

taking the reference point at infinity, so that φ(∗) = 0.
Alternatively, if we place the dipole in an external electric field, ~Eext = −~∇Φext, then

what would the potential energy of the dipole be? Evidently,

Up(~r) = qΦext(~r)− qΦext(~r +~l) (2.3.14)

Now

Φext(~r +~l) = Φext(~r) +~l · ~∇Φext(~r) (2.3.15)

so

Up(~r) = −~p · ~Eext (2.3.16)

gives the potential energy in the external electric field up to O(~l).
A consequence, following directly from Stokes theorem, of the fact that the electrostatic

field is irrotational, is that

E =

∮
C

~E · d~r = 0 (2.3.17)

about any closed curve, C. For future reference, the quantity E is called the emf. The
vanishing of E is equivalent to the statement that the electrostatic force is conservative,
but this is true only for electrostatic fields.

2Problem: Show that ~E = −~∇φ gives the electric field as calculated from first principles.
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q

I
II

Figure 2.2: Gauss’ Law: Charge not enclosed by S

The second property of the electrostatic field, known as Gauss’ Law, follows from
Gauss’ theorem:

~∇ · ~E =
ρ

ε0
. (2.3.18)

Again, if we can prove this for a point charge, then it will hold true for arbitrary charge
distributions, simply because of superposition. Let us begin by evaluating∮

S
dS n̂ · ~E =

q

4πε0

∮
S
dS

n̂ · (~r − ~r′)
|~r − ~r′|3

=
q

4πε0

∮
S
dS

cos θ

|~r − ~r′|2
(2.3.19)

where θ is the angle between the normal to the surface and the outward radial vector from
the charge. Now dS n̂ · (~r − ~r′)/|~r − ~r′| is just the projection of the surface area dS on
the sphere of radius |~r − ~r′|, therefore the integrand is simply the solid angle subtended
by the projection of dS on the sphere of that radius at the charge q. If we sum up these
infinitesimal solid angles, then two cases may arise: (a) the original surface S does not
enclose the charge q (see figure(2.2)), or (b) the charge is enclosed by the surface S (see
figure (2.3)). In case (a), the net result of summing up the solid angles subtended at q will
be identically zero due to the two equal and opposite contributions from region I, where
cos θ is negative, and from region II, where cos θ is positive. The contribution from region
I is negative, whereas the contribution from region II is positive and equal in magnitude
to the contribution from region I. In case (b), the infinitesimal solid angles add up to give
precisely the total solid angle of 4π. Thus we find that∮

S
dS n̂ · ~E =

qin

ε0
(2.3.20)

where the suffix in qin is to indicate that only the charge contained within the surface S
contributes. Equation (2.3.20) is the integral form of Gauss’ law. Exploiting the fact that
the electric field due to a distribution of charges is a simple superposition of the electric
fields due to the individual charges, we may directly write down the integral form of Gauss’
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q

Figure 2.3: Gauss’ Law: Charge enclosed by S

law for a discrete distribution ∮
S
dS n̂ · ~E =

N∑
j=1

qj,in
ε0

(2.3.21)

and a continuous volume distribution∮
S
dS n̂ · ~E =

1

ε0

∫
V
d3~r′ ρ(~r′) (2.3.22)

The differential form (2.3.18) of Gauss’ law can now be obtained by exploiting Gauss’
theorem, ∮

S
dS n̂ · ~E =

∫
V
d3~r ~∇ · ~E =

qin

ε0
=

1

ε0

∫
V
d3~rρ(~r) (2.3.23)

where we have replaced the charge contained by an integral over the volume of the density
of charge. Eq. (2.3.18) then follows directly.3

2.4 Simple Applications of Gauss’ Law

In its integral form, Gauss’ law is useful to determine the electric fields of highly symmetric
distributions. Otherwise, the using the integral form of Gauss’ law to determine the electric

3Note: Outside of charges, Gauss’ reads simply reads ~∇ · ~E = 0. Thus, this is also the equation for a
single charge. Assuming spherical symmetry, prove that

~E =
qr̂

4πε0r2

is a solution of ~∇ · ~E = 0. Where does the constant q come from?
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Figure 2.4: Gaussian surface for a point charge.

field is not recommended. The idea is that if the distribution is sufficiently symmetric and
a closed surface that mimics the symmetry of the distribution is chosen, the integral
becomes trivial to evaluate.

2.4.1 Point charge

The symmetry of a point charge is spherical, so, for a Gaussian surface, choose a sphere
with the charge as its center (see figure (2.4). By the symmetry, we expect that the electric
field will point along the unit radial vector, so ~E = Er̂ and, moreover, that its magnitude
will be constant on the surface of the sphere. The unit radial vector, r̂, is also the normal
to the sphere, so ∮

S
dS n̂ · ~E = E

∮
S
dS = 4πr2E =

q

ε0
⇒ ~E =

qr̂

4πε0r2
(2.4.1)

This argument may, of course, be extended to any spherically symmetric charge distri-
bution. At points outside it, a spherical charge distribution will therefore behave as if it
were a point charge situated at the center of the distribution.

2.4.2 Infinite line of charge of constant linear charge density:

The symmetry of an infinite line of charge is that of a right circular cylinder. For a
Gaussian surface, choose an infinite cylinder with the line of charge along its axis (see
figure (2.5). Let ρ represent the radius of the cylinder and ρ̂ the unit radial vector. By
the symmetry, we expect that the electric field will point along the unit radial vector, so
~E = Eρ̂ and, moreover, that its magnitude will be constant on the surface of the cylinder,
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Figure 2.5: Gaussian surface for an infinite line of charge.

i.e., E = E(ρ). We take the length of the line of charge to be L (with the understanding
that the limit as L→∞ is to be taken in the end), so that if λ represents the linear charge
density on the line then q = λL. The unit radial vector ρ̂ is also normal to the cylinder,
so ∮

S
dS n̂ · ~E = E

∮
S
dS = 2πρLE =

q

ε0
=
λL

ε0
⇒ ~E =

λρ̂

2πε0ρ
(2.4.2)

where q is the total charge on the line. What do we mean by an “infinite” line of charge?
If the line of charge is finite, of length L, then its symmetry is not really cylindrical and
in fact the problem becomes more complicated by the presence of edges. An infinite line
of charge is the approximation in which these edge effects can be neglected, i.e., when the
point at which the field is measured is close to the line so that ρ/L << 1.

2.4.3 Infinite sheet of charge of constant areal charge density:

Choose a “pill-box”, i.e., a cylinder closed at its two ends as shown in figure (2.6) for
a Gaussian surface. By the planar symmetry of the charge distribution, we expect the
electric field to be normal to the sheet at all points, therefore only the integrations over the
upper and lower ends of the pill-box will yield non-vanishing contributions. Furthermore,
as the magnitude of the electric field may depend at most on the perpendicular distance
from the sheet and we can arrange the pill-box so that its two faces are equidistant from
the sheet, the contributions from these two faces will be identical. If ∆S is the area of
each face, integrating over the pill-box shaped Gaussian surface then gives∮

S
dS n̂ · ~E = 2E∆S =

qin

ε0
=
σ∆S

ε0
⇒ ~E =

σn̂

2ε0
(2.4.3)

where n̂ is normal to the sheet.

2.4.4 Electric field of a conductor of arbitrary shape:

Let us now consider a conductor of arbitrary shape. A conductor is a material which has
the property that charges may flow freely from any point within it to any other point.
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Figure 2.6: A “pill-box” Gaussian surface appropriate for an infinite sheet of charge.

Suppose we charge a conductor. Because the charges are free to move and because they
will exert a repulsive force on one another, every charge will attempt to maximize the
distance between itself and its nearest neighbor. After a characteristic time (typical of
the conductor: for a good conductor this is approximately 10−16 s), they will therefore
achieve an equilibrium state by arranging themselves on the surface of the conductor. A
conductor in equilibrium has the following properties:

• If the conductor is isolated, its charge resides on its surface.

• The electric field inside the conductor vanishes everywhere.

• The electric field outside the conductor and “close” to its surface is perpendicular
to it and depends only on the surface charge density at that point

• The surface charge density is not necessarily uniform. On an irregularly shaped
conductor, it is largest at points on the surface of highest curvature.

Because the interior of the conductor will be free of charge it follows, from Gauss’ law,
that the electric flux across any closed surface inside the conductor will vanish. Since this
is true for any Gaussian surface, it means that the electric field inside the conductor will
also vanish.

To find the electric field in the exterior and close to the surface as before, choose a
pill-box shaped Gaussian surface. As before, close enough to the surface we essentially
have an “infinite” sheet of charge so the electric field is perpendicular to the surface at all
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Figure 2.7: Solid Conductor and pill box.

points (see figure (2.7). However, because the electric field vanishes inside the conductor,
only the outer end of the pill-box contributes to the surface integral∮

S
dS n̂ · ~E = E∆S =

qin

ε0
=
σ∆S

ε0
⇒ ~E =

σn̂

ε0
(2.4.4)

where n̂ is normal to the surface of the conductor.

2.5 Poisson’s Equation and Laplace’s Equation

If Gauss’ Law is combined with the fact that ~E is irrotational, we find that

~∇ · ~E = −~∇ · ~∇φ = −~∇2φ =
ρ

ε0
(2.5.1)

or
~∇2φ = − ρ

ε0
(2.5.2)

This equation is called Poisson’s equation. It is the starting point for finding configurations
of the electric field, i.e., given any charge distribution in space, the problem of finding ~E
is reduced to the boundary value problem of finding the appropriate solution to (2.5.2).
Most often we are interested in finding the electric field outside of the sources; in this case,
the scalar potential satisfies Laplace’s equation

~∇2φ = 0 (2.5.3)

If there are no non-trivial boundaries and the electric potential is required to fall off to zero
at infinity, the solution can be no different from the solution we have already obtained,

φ(~r) =

∫
D
d3~r′

ρ(~r′)

4πε0|~r − ~r′|
, (2.5.4)
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where the integration is performed over the charge distribution D. We will now prove
that this is indeed the solution and, in doing so, encounter a new type of object called a
distribution, in the form of the δ−function. Taking the Laplacian of the solution gives

~∇2φ =
1

4πε0

∫
D
d3~r′ρ(~r′)~∇2 1

|~r − ~r′|
(2.5.5)

Now

~∇2 1

|~r − ~r′|
= ∂i

xi − x′i
|~r − ~r′|3

≡ 0, (2.5.6)

provided that ~r 6= ~r′. It is certainly not zero and, in fact, is badly defined at ~r = ~r′, which
is precisely the limit that supports the integral above to give a non-zero right hand side.
It is called a “δ−function”, although it is not a function at all but a “distribution”. If we
define, for future use,

~∇2 1

|~r − ~r′|
= −4πδ3(~r − ~r′), (2.5.7)

then, because

~∇2φ(~r) = −ρ(~r)

ε0
, (2.5.8)

the distribution δ3(~r − ~r′) must have the following property∫
d3~r′f(~r′)δ3(~r − ~r′) = f(~r) (2.5.9)

for any function, f(~r). In particular, taking f(~r′) = 1, we should have∫
d3~r′δ(~r − ~r′) = 1 (2.5.10)

As an exercise, let us convince ourselves that

− 1

4π
~∇2

(
1

r

)
= δ3(~r) (2.5.11)

has this property. Applying Gauss’ theorem,

− 1

4π

∫
d3~r ~∇2

(
1

r

)
= − 1

4π

∮
S
d~S · ~∇

(
1

r

)
(2.5.12)

where S is a closed surface bounding the region of integration. Clearly, only the radial
component of the surface normal will contribute to the integral. In other words, given any
arbitrary bounding surface, only the projection of this surface on a sphere of radius r is
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relevant. This means that, without loss of generality, we can take S to be a sphere and
write the integral as

− 1

4π

∮
S
d~S · ~∇

(
1

r

)
=

1

4π

∮
S
dθdφr2

(
1

r2

)
≡ 1 (2.5.13)

The δ−function provides a convenient way to represent the charge density of a discrete
distribution. Notice how the distribution is essentially zero except at one point, its point
of support, where it is infinite. In fact, by (2.5.9), it is “sufficiently infinite’ for its integral
to be finite and non-zero. Therefore, we may define the charge density of a discrete
distribution as

ρ(~r) =

N∑
j=1

qjδ
3(~r − ~rj) (2.5.14)

Inserting this into the solution for φ(~r) in (2.3.9) gives

φ(~r) =

∫
D
d3~r′

ρ(~r′)

4πε0|~r − ~r′|
=

N∑
j=1

∫
D
d3~r′

qjδ
3(~r′ − ~rj)

4πε0|~r − ~r′|
=

N∑
j=1

qj
4πε0|~r − ~rj |

(2.5.15)

exactly as given in (2.3.8). The use of δ−functions to represent the charge density of a
discrete distribution serves to unify our description of charge distributions, which will be
convenient in what follows.

A word of caution: only solutions obeying the same boundary conditions can be su-
perposed. For example, the solution (2.3.9) is a result of superposing the contributions to
φ from various an infinite number of charges, dq(~r′). All these contributions were subject
to the same trivial boundary conditions. When the boundary conditions are not trivial,
the solutions will not be given simply by (2.3.9). We will show that then there is an addi-
tional contribution coming from the bounding surfaces on which the boundary conditions
are given.



Chapter 3

Boundary Value Problems:
Laplace’s Equation

3.1 Preliminaries

We have seen that, the electrostatic field is completely specified by solutions to Poisson’s
equation for the electrostatic potential,

~∇2φ = − ρ
ε0

(3.1.1)

from which the electric field is obtained as

~E = −~∇φ (3.1.2)

Not every solution of Poisson’s equation is meaningful, but only those that satisfy certain
boundary conditions, which are specific to any given problem, are of physical interest. We
will undertake a study of methods to solve Poisson’s equation in the following chapter.
Here, we examine a simpler case of this equation that arises in the absence of charges, i.e.,
in regions of space in which there are no charges present. In this case, ρ(~r) = 0 and the
electrostatic potential is completely given by a solutions to Laplace’s equation,

~∇2φ = 0 (3.1.3)

subject to given boundary conditions. The first question that arises therefore is what
boundary conditions must be specified so that a unique solution is obtained.

3.2 Boundary Conditions

In physics a potential field of any sort is generally required to be well behaved. It should
be finite everywhere except possibly at sources, and C1 i.e., continuous and differentiable

45
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Figure 3.1: Electric field in a volume V bounded by the surface S = S1 + S2 + S3 + ....

everywhere. In the case of electrostatics this is equivalent to requiring that the electric
field exists and is at least piecewise continuous everywhere. Imagine that we want to find
the electrostatic field in a region V and let S be its bounding surface (which may be at
infinity, or may be made up of many surfaces, S = S1 + S2 + S3 + ..., as shown in the
figure (3.1). Before we begin to address this problem, we must keep in mind that one does
not actually measure a potential. One measures the first derivatives of a potential (the
electric field in the case of electrostatics), so it is impossible to distinguish between two
potentials that differ only by a constant. It follows, as we now will see, that whether we
are dealing with Laplace’s equation or Poisson’s equation, a sufficiently unique solution is
obtained if either the value of the field or the value of the normal derivative of the field at
S is supplied. To show this, we have to show that any two solutions of Poisson’s equations
in V , obtained by specifying either the value of the field on S or the value of the normal
derivative at that surface, may differ by at most a constant.

We exploit Green’s first identity. Let φ1,2(~r) be two solutions of Poisson’s equation,
valid inside a volume V and obtained either by specifying the value of the potential on its
bounding surface S, or by specifying the value of the normal derivative of the potential
on S. Let ψ(~r) = φ1(~r)− φ2(~r), then by superposition, ψ(~r) satisfies Laplace’s equation

~∇2ψ = 0 (3.2.1)

inside V . Moreover, since the two solutions φ1,2 were obtained by specifying the value
of the potential on its bounding surface S, or by specifying the value of their normal
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derivatives on S, it follows that either ψ or n̂ · ~∇ψ = 0 on S. By Green’s first identity
(1.12.7) ∫

V
d3~r[(~∇ψ)2 + ψ~∇2ψ] =

∫
S
dS n̂ · ψ~∇ψ (3.2.2)

But clearly the second term in brackets on the left vanishes together with the right hand
side (no matter which boundary conditions were chosen!), so∫

V
d3~r(~∇ψ)2 = 0 (3.2.3)

which is possible if and only if ~∇ψ = 0 or ψ = const. Therefore, in either case, the two
functions φ1 and φ2 differ by an (irrelevant) constant.

• When the value of φ(~r) on S is supplied, this is called a Dirichlet problem and the
boundary condition is said to be of the “Dirichlet” type.

• When the normal derivative of φ(~r) on S is supplied, this is a Neumann problem
and the boundary condition is of the “Neumann” type.

A specification of both the field and its normal derivative on S (Cauchy problem, Cauchy
boundary conditions) is an over specification of the problem and a solution agreeing with
both conditions may not in fact exist. On the other hand, situations may arise in which
Dirichlet conditions are appropriate to parts of the bounding surface and Neumann bound-
ary conditions to other parts. Solutions will in general exist for this “mixed boundary
condition” problem.

If the only problems encountered were of localized distributions of charge with no
boundary surfaces except at infinity where the potential and its normal derivative vanish,
then (2.3.9) would be a complete formal solution to the electrostatic problem and we would
only need to perform one integration to obtain the electric field everywhere. Unfortunately,
this is not the case and most interesting problems involve finite regions of space bounded
by surfaces at which either Dirichlet or Neumann conditions hold. We can exploit the fact
that if φ̃ρ(~r) is a solution to Poisson’s equation, then

φ(~r) = φ̃ρ(~r) + Φ(~r) (3.2.4)

will also solve Poisson’s equation provided that Φ(~r) satisfies Laplace’s equation. In par-
ticular we could take

φ̃ρ(~r) =

∫
d3~r′

ρ(~r′)

4πε0|~r − ~r′|
(3.2.5)

and add to it an appropriate solution of Laplace’s equation so that φ(~r) satisfies the
boundary conditions. Are we assured that all boundary conditions can be accounted for
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in this way? We can now use Green’s second identity to show that the answer is “yes”.
In the second of Green’s identities (1.12.8), take φ to be the electrostatic potential and
ψ = 1/|~r − ~r′|, then∫

V
d3~r′[φ(~r′) · ~∇′2(1/|~r − ~r′|)− (~∇′2φ)(1/|~r − ~r′|)]

=

∫
S
dS n̂ · [φ(~r′)~∇′(1/|~r − ~r′|)− (1/|~r − ~r′|)~∇′φ(~r′)] (3.2.6)

Using the facts that ~∇′2(1/|~r − ~r′|) = −4πδ(~r − ~r′)1 and that ~∇′2φ = −ρ(~r′)/ε0 we see
that

φ(~r) =

∫
d3~r′

ρ(~r′)

4πε0|~r − ~r′|
− 1

4π

∫
S
dS [φ(~r′)(n̂ · ~∇′(1/|~r − ~r′|))− (1/|~r − ~r′|)(n̂ · ~∇′φ(~r′))]

(3.2.7)
If the only surface is the one at infinity, where the field and its normal derivatives vanish,
only the first term survives and we have the result in (2.3.9). When non-trivial boundaries
are present, (2.3.9) is modified by the second term on the right, which satisfies Laplace’s
equation and is therefore to be identified with Φ(~r). The modification may be thought
of as arising from charges induced or residing on the surfaces themselves and, in fact,
the boundary conditions themselves may be thought of as specifying an effective charge
distribution on the boundary surfaces.

Thus situations may arise in which the electric potential (and the electric field) is
non-vanishing in a charge free volume. In this case, the electric potential in that region
depends only on the field and its normal derivative on the boundary. This is surprising
because, as we have just seen, the specification of both the field and its normal derivative
is an over specification of the problem. Thus one cannot, for example, obtain any desired
field in a cavity, by simply adjusting φ and n̂ · ~∇φ on the boundary.

The solution (3.2.7) is only formal in the sense that both terms in the surface integral
on the right cannot generally be given. It should be thought of only as an integral relation
for φ(~r). One can write this relation in an more general fashion as

φ(~r) =
1

4πε0

∫
d3~r′G(~r, ~r′)ρ(~r′)− 1

4π

∫
S
dS [φ(~r′)(n̂ · ~∇′G(~r, ~r′))− G(~r, ~r′)(n̂ · ~∇′φ(~r′))]

(3.2.8)
provided that

~∇′2G(~r, ~r′) = −4πδ3(~r − ~r′) (3.2.9)

Any function G(~r, ~r′) satisfying (3.2.9) is called a Green function. The function 1/|~r − ~r′|
is only one of a family of Green functions. Quite generally, we could take

G(~r, ~r′) =
1

|~r − ~r′|
+Q(~r, ~r′) (3.2.10)

1Clearly, ~∇′2(1/|~r − ~r′|) = ~∇2(1/|~r − ~r′|). Convince yourself that this is true.
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Figure 3.2: Spherical Coordinates

where Q(~r, ~r′) satisfies Laplace’s equation, i.e.,

~∇′2Q(~r, ~r′) = 0 (3.2.11)

With this generalized Green function and its additional freedom, we could choose Q(~r, ~r′)
in such a way as to eliminate one or other of the surface integrals, obtaining a result that
involves either Dirichlet or Neumann boundary conditions. We turn to this problem in
the next chapter. Here we will concentrate on general solutions of Laplace’s equation with
symmetries.

3.3 Symmetries

When symmetries are present it is always convenient to select a coordinate system that is
adapted to them. We will be interested principally in problems with rectangular, spher-
ical or axial symmetry. In these cases it is convenient to turn respectively to Cartesian
coordinates, Spherical coordinates or Cylindrical coordinates respectively. Later we will
learn to work with general general coordinate systems, but then we will introduce more
powerful techniques.

3.3.1 Spherical Coordinates

Thus, for example, if we know that the source charge distribution and boundary conditions
are spherically symmetric it is convenient to apply the spherical coordinates, defined in
terms of the cartesian coordinate system by the transformations

r =
√
x2 + y2 + z2
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ϕ = tan−1
(y
x

)
θ = cos−1

(
z√

x2 + y2 + z2

)
(3.3.1)

and the inverse transformations

x = r sin θ cosϕ
y = r sin θ sinϕ
z = r cos θ (3.3.2)

These transformations are of course valid only away from the origin. Recall that unit
vectors representing the directions of increasing r, θ and ϕ are given by

r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)
θ̂ = (cos θ cosϕ, cos θ sinϕ,− sin θ)
ϕ̂ = (− sinϕ, cosϕ, 0) (3.3.3)

and that

∂r̂

∂θ
= θ̂,

∂r̂

∂ϕ
= ϕ̂ sin θ

∂θ̂

∂θ
= −r̂, ∂θ̂

∂ϕ
= ϕ̂ cos θ

∂ϕ̂

∂θ
= 0,

∂ϕ̂

∂ϕ
= −r̂ sin θ − θ̂ cos θ (3.3.4)

The unit vectors in the original Cartesian system may be given in terms of these unit
vectors as follows

x̂ = (x̂ · r̂)r̂ + (x̂ · θ̂)θ̂ + (x̂ · ϕ̂)ϕ̂ = r̂ sin θ cosϕ+ θ̂ cos θ cosϕ− ϕ̂ sinϕ
ŷ = (ŷ · r̂)r̂ + (ŷ · θ̂)θ̂ + (ŷ · ϕ̂)ϕ̂ = r̂ sin θ sinϕ+ θ̂ cos θ sinϕ+ ϕ̂ cosϕ
ẑ = (ẑ · r̂)r̂ + (ẑ · θ̂)θ̂ + (ẑ · ϕ̂)ϕ̂ = r̂ cos θ − θ̂ sin θ (3.3.5)

Of interest to us is the Laplacian in these coordinates, so let us begin by evaluating the
gradient operator. Transforming its definition in Cartesian coordinates,

~∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(3.3.6)

to spherical coordinates by using the transformations just given, we find2

~∇ = r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

ϕ̂

r sin θ

∂

∂ϕ
(3.3.7)

2Problem: Show this.
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Figure 3.3: Cylindrical Coordinates

and taking the inner product3 we obtain the Laplacian in spherical coordinates

~∇2 =
1

r2
∂r(r

2∂r) +
1

r2 sin θ
∂θ(sin θ∂θ) +

1

r2 sin2 θ
∂2
ϕ (3.3.8)

The Euclidean distance between two points may be given in terms of r, θ and ϕ by
transforming its expression in Cartesian coordinates,

d~r2 = dx2 + dy2 + dz2 = dr2 + r2(dθ2 + sin2 θdϕ2) (3.3.9)

The volume element must account for the Jacobian of the transformation from the Carte-
sian system to the spherical system.∫

d3~r =

∫
dxdydz =

∫
drdθdϕdet(J) =

∫
(r2 sin θ)drdθdφ (3.3.10)

gives the volume of spheres.

3.3.2 Cylindrical coordinates

Cylindrical coordinates are defined by the following transformations from a Cartesian
system:

ρ =
√
x2 + y2

3Problem: Show this. Note that the gradient is a vector operator, so be careful to take appropriate
derivatives when necessary while taking the inner product.
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ϕ = tan−1
(y
x

)
z = z (3.3.11)

where, we have assumed that the axial symmetry is about the “z” axis. The inverse
transformations are simple to obtain

x = ρ cosϕ
y = ρ sinϕ
z = z (3.3.12)

and this time the system is badly defined along the entire z− axis. Nevertheless, for points
away from the z−axis, we may define the unit vectors

ρ̂ = (cosϕ, sinϕ, 0)
ϕ̂ = (− sinϕ, cosϕ, 0)
ẑ = (0, 0, 1) (3.3.13)

(ρ and ϕ are now just polar coordinates in the x− y plane) which satisfy

∂ρ̂

∂ϕ
= ϕ̂,

∂ϕ̂

∂ϕ
= −ρ̂ (3.3.14)

(all other derivatives vanish). The Cartesian unit vectors can be expressed in terms of the
cylindrical ones as we did in the case of spherical symmetry,

x̂ = ρ̂ cosϕ− ϕ̂ sinϕ
ŷ = ρ̂ sinϕ+ ϕ̂ cosϕ
ẑ = ẑ (3.3.15)

and the gradient operator can be transformed to the cylindrical system as before to get

~∇ = ρ̂∂ρ +
ϕ̂

ρ
∂ϕ + ẑ∂z (3.3.16)

giving

~∇2 =
1

ρ
∂ρ(ρ∂ρ) +

1

ρ2
∂2
ϕ + ∂2

z (3.3.17)

The Euclidean distance between two points in these coordinates is

d~r2 = dρ2 + ρ2dϕ2 + dz2 (3.3.18)

Again, the volume element must account for the Jacobian of the transformation from the
Cartesian system to the spherical system,∫

d3~r =

∫
dxdydz =

∫
dρdϕdzdet(J) =

∫
ρdρdϕdz (3.3.19)

gives the volume of cylinders.



3.4. GENERAL SOLUTIONS OF LAPLACE’S EQUATION WITH SYMMETRIES 53

3.4 General Solutions of Laplace’s Equation with symme-
tries

Before going on to examine the general solutions (no boundary conditions as yet imposed)
when high amounts of symmetry (spherical and cylindrical, for example) are involved, let
us remember that, because Laplace’s equation is linear, superposition of solutions holds.
Therefore if we have N solutions of Laplace’s equation, the linear combination,

φ(~r) =

N∑
j=1

cjφj(~r), (3.4.1)

also solves Laplace’s equation.

3.4.1 One dimensional solutions

If the symmetry is rectangular and if φ is independent of two of the three dimensions,
the problem is effectively one dimensional and Cartesian coordinates are appropriate.
Laplace’s equation in Cartesian coordinates is just

d2φ

dx2
= 0⇒ φ(x) = ax+ b (3.4.2)

where a and b are arbitrary constants (b is physically irrelevant) that must be determined
from the boundary conditions. The electric field in this case is constant and points in
the x− direction. It may be thought of as arising from an infinite sheet of charge, whose
surface charge density is related to a. If the symmetry is spherical and there is no angular
dependence, Laplace’s equation in spherical coordinates is to be used and one has

1

r2
∂r(r

2∂rφ) = 0⇒ φ(r) =
a

r
+ b (3.4.3)

Again, the constant b is physically irrelevant and the electric field is that of a point charge
(a related to this charge) located at the origin. With cylindrical symmetry we solve
Laplace’s equation in cylindrical coordinates

1

ρ
∂ρ(ρ∂ρφ) = 0⇒ φ(ρ) = a ln |ρ|+ b (3.4.4)

The electric field due to this potential is evidently due to an infinite line of charge, located
on the z−axis and a is related to the line density of charge. All of these solutions have been
obtained before using Gauss’ law. So, indeed the high degree of symmetry we required to
effectively use the integral form of Gauss’ law turned out to yield only the most trivial of
solutions.
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3.4.2 Two dimensional solutions

If the electrostatic potential does not depend on one dimension, but only on two, we write
Laplace’s in Cartesian coordinates as

(∂2
x + ∂2

y)φ = 0 (3.4.5)

and transform tho complex coordinates, z = x+ iy, z∗ = x− iy. Then we have

∂x =
∂z

∂x
∂z +

∂z∗

∂x
∂z∗ = ∂z + ∂z∗

∂y = i(∂z − ∂z∗) (3.4.6)

so that ~∇2φ = 0 is equivalent to
∂z∂z∗φ = 0 (3.4.7)

whose general solution,
φ(z, z∗) = F (z) +G(z∗), (3.4.8)

must then be subjected to suitable boundary conditions. Clearly, even though this form
of the solution was obtained using Cartesian coordinates, it can equally well be written in
polar coordinates, using z = reiϕ. This is a “conformal field theory”. Usually there are
so many solutions that it is not an easy matter to disentangle the meaningful ones among
them, even given the boundary conditions. Techniques based on conformal mapping are
often used.

3.4.3 Three dimensional solutions

If it is possible to choose coordinates adapted to the symmetries of the problem, one may
look for solutions that are separable in these coordinates. Separability means that, if w1,
w2 and w3 are the adapted coordinates, the solution chosen is such that

φ(~r) = φ(w1, w2, w3) =
∏
i

φi(wi) = φ1(w1)φ2(w2)φ3(w3) (3.4.9)

Laplace’s equation will in general break up into three ordinary differential equations, one
for each φi(wi).

The solutions of these ordinary differential equations will be complete sets of “orthog-
onal” functions within the bounding surface. Consider therefore what a complete set of
orthogonal functions means in one dimension. Let n label the solutions of the ordinary
differential equation obtained and let the solutions be denoted by φn(w), valid in some
interval, say (a, b). Orthogonality means that∫ b

a
dw φ∗n(w)φm(w) = Cnδn,m ∀ n,m (3.4.10)
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where Cn is some constant that depends on the length of the interval and possibly on
n. The relation is analogous to the usual scalar product between the basis vectors in a
finite dimensional space and should be thought of as such. The functions φn(w) can be
thought of as a set of basis “vectors” in the space of square integrable functions on the
interval (a, b). The integral is, in fact, often referred to as a scalar product in this space.
Completeness of the functions means that any square integrable solution of Laplace’s
equation, f(w), can be represented as some linear combination of the set φn(w) in that
interval, i.e.,

f(w) =
∑
n

anφn(w) (3.4.11)

One can always “normalize” the functions φn(w), that is to say multiply them by a suitable
constant (possibly dependent on n) so that (3.4.10) becomes∫ b

a
dw φ∗n(w)φm(w) = δn,m ∀ n,m (3.4.12)

The functions φn(w) so normalized are then said to be “orthonormal”. Let us work with
orthonormal functions from now on. Multiplying (3.4.11) by φ∗m(w) and integrating over
the interval (a, b), we find∫ b

a
dw φ∗m(w)f(w) =

∑
n

an

∫ b

a
dw φ∗m(w)φn(w) =

∑
n

anδm,n = am (3.4.13)

where we have used the orthonormality of the φn in the second to last step. This can be
thought of as using the scalar product to obtain the projection of the function f(w) along
(or “in the direction of”) the basis “vector” φn. The coefficient an is then seen to be just
this projection. We can go further and insert this expression for an into the expansion
(3.4.11) to find

f(w) =

∫ b

a
dw′

[∑
n

φ∗n(w′)φn(w)

]
f(w′)⇒

∑
n

φ∗n(w′)φn(w) = δ(w − w′) (3.4.14)

The last is called the “completeness” relation. The completeness relation must be satisfied
if f(w) is to be faithfully represented by the expansion in (3.4.11). It is similar to the
orthonormality relation, except that the roles of the set label, n, and the coordinate w are
interchanged. If the completeness relation is not satisfied, the set {φn(w)} is unable to
faithfully reproduce any square solution of Laplace’s equation in the interval of definition.
The set is then said to be incomplete. Let us work out some simple examples to illustrate
the method.
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3.5 Examples in three dimensions

3.5.1 Problems with Rectangular Symmetry

If the symmetry is rectangular, Cartesian coordinates are most convenient. In Cartesian
coordinates, assume a solution of the form φ(x, y, z) = X(x)Y (y)Z(z), where X, Y and
Z are functions only of x, y and z respectively. Then

~∇φ = Y Z∂2
xX + ZX∂2

yY +XY ∂2
zZ = 0 (3.5.1)

Dividing by XY Z gives
1

Y
∂2
yY +

1

Z
∂2
zZ = − 1

X
∂2
xX (3.5.2)

Now the left hand side depends only on y, z and the right hand side depends only on x so
they can be equal only if each is constant. Call this constant λ, then

∂2
xX + λX = 0⇒ X(x) = A±e

±i
√
λx (3.5.3)

where A± are constants of the integration. Using the same argument for the equation

1

Y
∂2
yY +

1

Z
∂2
zZ = λ⇒ 1

Y
∂2
yY = λ− 1

Z
∂2
zZ = −σ (3.5.4)

Then
Y (y) = B±e

±i
√
σy (3.5.5)

and
Z(z) = C±e

±
√
λ+σz (3.5.6)

are also linear combinations of exponentials. The constants A±, B±, C± and λ, σ are all
to be determined from the boundary conditions. We may write the solutions as linear
combinations of

e±iαxe±iβye±
√
α2+β2z (3.5.7)

where α =
√
λ and β =

√
σ.

In a given problem, it is better to think of the separate directions independently. Thus
consider the problem of finding the electrostatic potential inside an empty, rectangular
box made of conducting sides of lengths (a, b, c), situated so that one vertex is at the
origin and the opposite vertex is at the point (a, b, c). Suppose that we require all faces
of the box to be at constant potential, say φ0, except the face z = c, which is at some
given potential φ̃(x, y). We first find the solution that gives φ(~r) = 0 at all faces except
the face z = c. For the solution of the form described above to vanish at x = 0 and y = 0
we should have

X(x) = X0 sin(αx), Y (y) = Y0 sin(βy) (3.5.8)
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and for these to vanish at x = a and y = b, the coefficients should take values α = nπ/a,
β = mπ/b, where m,n are integers. The two sets of functions{

sin
(nπx

a

)}
,
{

sin
(mπy

b

)}
, n,m ∈ N (3.5.9)

are each complete (as we mentioned they would be) in the intervals (0, a) and (0, b) re-
spectively and the functions themselves are all orthogonal.4 The solution for Z(z) is of
the form

Z(z) = Z±e
±
√
n2

a2 +m2

b2
z

(3.5.10)

which can vanish at z = 0 only if we take the special combination

Z(z) = Z0 sinh

(√
n2

a2
+
m2

b2
z

)
(3.5.11)

The general solution satisfying φ = φ0 at all faces except z = c can be written as

φ(~r) = φ0 +
∑
n,m

anm sin
(nπx

a

)
sin
(mπy

b

)
sinh

(√
n2

a2
+
m2

b2
z

)
(3.5.12)

where the amn are coefficients determined by the value φ̃(x, y), of φ(~r) in the plane z = c.
φ̃ is given by

φ̃(x, y) = φ0 +
∑
n,m

Anm sin
(nπx

a

)
sin
(mπy

b

)
(3.5.13)

and

Anm = anm sinh

(√
n2

a2
+
m2

b2
c

)
(3.5.14)

We recognize the coefficients Amn as the Fourier coefficients of the function φ̃(x, y)− φ0.
Thus5

Amn =
4

ab

∫ a

0
dx

∫ b

0
dy(φ̃(x, y)− φ0) sin

(nπx
a

)
sin
(mπy

b

)
(3.5.15)

Given any φ̃(x, y) we can find the coefficients amn in the solution. As a consequence, if the
face z = c is maintained at the same potential as the others, φ0, then all the coefficients
vanish and the only solution inside the box is the trivial one, φ(~r) = φ0.

4Problem: Prove this, i.e., show that∫ a

0

dx sin
(nπx

a

)
sin
(mπx

a

)
=
a

2
δmn

5Question: Why has the factor 4/ab been introduced?
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3.5.2 Problems with Cylindrical Symmetry

In cylindrical coordinates Laplace’s equation has the form

~∇2φ =
1

ρ
∂ρ(ρ∂ρφ) +

1

ρ2
∂2
ϕφ+ ∂2

zφ = 0. (3.5.16)

If the boundary conditions allow for the separability of the electrostatic potential, say
φ(ρ, ϕ, z) = R(ρ)Φ(ϕ)Z(z), then we can go through the same steps as we did for the
Cartesian system to get

1

ρR
∂ρ(ρ∂ρR) +

1

ρ2Φ
∂2
ϕΦ = − 1

Z
∂2
zZ = λ const. (3.5.17)

The solution for Z(z) is evidently

Z(z) = e±i
√
λz (3.5.18)

The other equation
1

ρR
∂ρ(ρ∂ρR)− λ = − 1

ρ2Φ
∂2
ϕΦ (3.5.19)

can be re-written in the form

ρ

R
∂ρ(ρ∂ρR)− λρ2 = − 1

Φ
∂2
ϕΦ = σ (3.5.20)

This immediately gives the solution for Φ(ϕ) in the form

Φ(ϕ) = e±i
√
σϕ (3.5.21)

Now ϕ is a compact coordinate of period 2π. For the function φ(~r) to be single-valued, it
must be periodic in ϕ. This is only possible if

√
σ = n, where n is an integer,

Φ(ϕ) = e±inϕ. (3.5.22)

The radial equation is then

1

ρ
∂ρ(ρ∂ρR)−

(
λ+

n2

ρ2

)
R = 0 (3.5.23)

The solutions to this equation are given in terms of the modified Bessel functions, which
are just Bessel functions of purely imaginary argument. We have

R(ρ) = J±n(i
√
λρ) (3.5.24)
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provided that λ 6= 0. Unfortunately, the Bessel functions Jn(z) and J−n(z) are not linearly
independent. This is evident from the series representation

J±n(z) =
(z

2

)±n ∞∑
j=0

(−)j

j!Γ(j ± n+ 1)

(z
2

)2j
(3.5.25)

from which it follows that

J−n(z) = (−)nJn(z). (3.5.26)

We must therefore find another linearly independent set of solutions, which are customarily
taken to be the Hankel function of the first kind. The usual choices of independent solutions
are denoted by

In(z) = i−nJn(iz)

Kn(z) =
π

2
in+1H(1)

n (iz) (3.5.27)

where H(1)(z) is the Hankel function of the first kind. These are real functions of their
arguments, whose limiting behaviors are

x� 1 In(x) → 1

Γ(n+ 1)

(x
2

)n
∀n

Kn(x) → − 0.5772− ln
x

2
... n = 0

→ Γ(n)

2

(
2

x

)n
n 6= 0

x� 1 In(x) → 1√
2πx

ex
[
1 +O(

1

x
)

]

Kn(x) → − 0.5772− ln
x

2
...

The solutions may be written as linear combinations of

In(
√
λρ)e±i

√
λze±inϕ, Kn(

√
λρ)e±i

√
λze±inϕ, (3.5.28)

analogous to the case of rectangular symmetry.
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Many problems of interest in electrostatics are at least effectively cylindrically sym-
metric, which means that there is no significant dependence on z, or Z(z) = 1. Let us
examine this case first because it is easier. No z dependence is only possible if λ = 0.
Then,

ρ2d
2R

dρ2
+ ρ

dR

dρ
− n2R = 0 (3.5.29)

But, we can use the fact that if u = ln ρ then

d2R

du2
= ρ2d

2R

dρ2
+ ρ

dR

dρ
(3.5.30)

so that the equation, written in terms of u is

d2R

du2
− n2R = 0⇒ R(ρ) =


ρ±n n 6= 0

ln ρ n = 0
(3.5.31)

The full solution explicitly as a supersposition of all the solutions we have obtained can
be written as

φ(ρ, ϕ) = A+B ln ρ+
∞∑

n=−∞,n6=0

ρn (Cn cosnϕ+Dn sinnϕ) (3.5.32)

and all the constants must be evaluated through the boundary conditions.
Consider the following example: suppose that we want to obtain the electric field both

inside and outside a hollow cylindrical shell of radius R and of infinite extent along the
z axis, whose surface potential is fixed to vary as some known function φ(R,φ) = φ̃(ϕ).
This can always be arranged by building the shell of mutually insulated conductors, each
of which is held at the appropriate fixed potential. We can set B = 0 simply because
there is no line charge along the z axis and the contribution of ln ρ would correspond to
precisely such a line charge. We will consider the interior separately from the exterior. If
the potential is to be finite along the z axis (ρ = 0), we should eliminate all terms with
negative powers of ρ. Then

φ̃(ϕ) = A+

∞∑
n=1

Rn(Cn cosnϕ+Dn sinnϕ) (3.5.33)

giving

A =
1

2π

∫ 2π

0
dϕφ̃(ϕ)
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Cn =
1

πRn

∫ 2π

0
dϕφ̃(ϕ) cosnϕ

Dn =
1

πRn

∫ 2π

0
dϕφ̃(ϕ) sinnϕ (3.5.34)

On the other hand, in the exterior we eliminate all terms that have positive powers of ρ
to ensure the finiteness of φ at infinity. Then

φ̃(ϕ) = A+
∞∑
n=1

R−n(C−n cosnϕ−D−n sinnϕ) (3.5.35)

and, as before,

A =
1

2π

∫ 2π

0
dϕφ̃(ϕ)

C−n =
Rn

π

∫ 2π

0
dϕφ̃(ϕ) cosnϕ

D−n = −R
n

π

∫ 2π

0
dϕφ̃(ϕ) sinnϕ (3.5.36)

As a special example, suppose φ̃(ϕ) = φ0 sinϕ. Then in the interior, clearly A = 0 and,
by the orthogonality of the functions sinnϕ and cosnϕ, we find also that Cn = 0 ∀n,
Dn = 0 ∀n > 1 and n < 0, D1 = φ0/R. The solution in the interior is then

φin(ρ, ϕ) = φ0
ρ

R
sinϕ (3.5.37)

and the electric field is

~Ein = −φ0

R
(sinϕρ̂+ cosϕϕ̂) = −φ0

R
ŷ (3.5.38)

and points in the (negative) y direction. This is not surprising, given the symmetry of the
potential on the cylindrical shell.

In the exterior of the shell, the same arguments give A = 0, C−n = 0 ∀n, D−n =
0 ∀n 6= 1, D−1 = −φ0R. We obtain the exterior solution

φout(ρ, ϕ) = φ0
R

ρ
sinϕ (3.5.39)

The electric field is
~Eout = φ0

R

ρ2
(sinϕρ̂− cosϕϕ̂) (3.5.40)
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so the azimuthal component of ~E is continuous across the shell, but the radial component
is discontinuous. The electrostatic potential is continuous across the shell.

We return to the case λ 6= 0. Let us consider the following concrete problem, which
is similar in spirit to the problem we considered while examining solutions in Cartesian
coordinates. Imagine that we want the electrostatic potential inside a closed right circular
cylinder (instead of inside a rectangular box) along the z axis, of radius R and length L
situated so that one flat face of the cylinder lies in the x − y plane. Suppose we arrange
for all faces of the cylinder to be at some constant potential φ0, except for the face at
z = L, which we assume is maintained at some potential φ̃(ρ, ϕ). As before, let us first
look for the potential that is identically zero on all the faces except the one at z = L.
(We can always add a constant to the potential later.) Now the functions Kn(z) are badly
behaved in the limit as z approaches zero, so we must consider a linear combination only
of the In(z), or equivalently of the modified Bessel functions, J±n(i

√
λρ). We require the

electrostatic potential to vanish at ρ = R, the cylindrical surface, which means that the
Bessel function should admit at least one root. This is possible only if the argument of the
Bessel function is real, so λ < 0. The Bessel function, Jn, then has a countably infinite
number of roots, which we label by qnm, and the vanishing of φ(~r) at ρ = R implies that√

|λnm| =
qnm
R

(3.5.41)

Now, because λ < 0 the function Z(z) is a linear combination of

Z(z) = e±
√
|λnm|z (3.5.42)

If it is to vanish on the x− y plane, only the combination

Z(z) = Z0 sinh(
√
|λnm|z) (3.5.43)

is possible. Therefore we have the solution

φ(ρ, ϕ, z) = φ0 +
∞∑

n=−∞,m=1

cnmJn(
√
|λnm|ρ) sinh(

√
|λnm|z)einϕ (3.5.44)

As we have seen earlier, the J−n(w) are not independent of the Jn(w). In fact, because

J−n(w) = (−)nJn(w), w ∈ C, (3.5.45)

the solution can also be written as

φ(ρ, ϕ, z) = φ0 +

∞∑
n=0,m=1

Jn(
√
|λnm|ρ) sinh(

√
|λnm|z)(anm cosnϕ+ bnm sinnϕ) (3.5.46)
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On the face at z = L, the solution must be of the form

φ̃(ρ, ϕ) = φ0 +
∞∑

n=0,m=1

Jn(
√
|λnm|ρ)(Anm cosnϕ+Bnm sinnϕ) (3.5.47)

where

Anm = anm sinh(
√
|λnm|L)

Bnm = bnm sinh(
√
|λnm|L) (3.5.48)

The coefficients are determined using the orthogonality properties of the Bessel functions∫ a

0
dwwJn

(
qnm

w

a

)
Jn

(
qnl

w

a

)
= δml

a2

2
J2
n+1(qnm). (3.5.49)

Applying this directly to our case,

Anm =
2

πR2J2
n+1(

√
|λnm|R)

∫ 2π

0
dϕ

∫ R

0
dρρ (φ̃(ρ, ϕ)− φ0)Jn

(√
|λnm|ρ

)
cosnϕ

Bnm =
2

πR2J2
n+1(

√
|λnm|R)

∫ 2π

0
dϕ

∫ R

0
dρρ (φ̃(ρ, ϕ)− φ0)Jn

(√
|λnm|ρ

)
sinnϕ

(3.5.50)

provided that for n = 0 we use half the value of A0m calculated from the above. We see
again that if the potential at the face z = L is held at the same potential as the others,
the only possible solution is the trivial one, φ(~r) = φ0.

3.5.3 Problems with Spherical Symmetry

Laplace’s equation in spherical coordinates may be separated by requiring

φ(~r) = R(r)Θ(θ)Φ(ϕ) (3.5.51)

where R(r) is the “radial” function, Θ(θ) is the polar function and Φ(ϕ) is the azimuthal
function. We begin by writing the equation for φ(~r) as

sin2 θ

R(r)
∂r(r

2∂r)R+
sin θ

Θ(θ)
∂θ(sin θ∂θ)Θ = − 1

Φ(ϕ)
∂2
ϕΦ = m2 (3.5.52)

where we have already used the condition that the arbitrary constant that would appear
on the extreme right hand side must the square of an integer in order that Φ(ϕ) be one
to one. This gives

Φ(ϕ) = e±imϕ (3.5.53)
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and we may write the remaining equation in the form

1

R(r)
∂r(r

2∂r)R = − 1

Θ sin θ
∂θ(sin θ∂θ)Θ +

m2

sin2 θ
= σ (3.5.54)

where σ is (so far) an arbitrary constant. This gives us two equations, viz., the polar and
the radial respectively,

− 1

sin θ
∂θ(sin θ∂θ)Θ +

m2Θ

sin2 θ
− σΘ = 0

∂r(r
2∂r)R− σR = 0 (3.5.55)

The first of these equations is solved by a method called the Frobenius expansion. It turns
out that solutions exist if and only if σ = l(l+ 1), where l is a whole number and |m| ≤ l.
In this case,

m2Θ

sin2 θ
− 1

sin θ
∂θ(sin θ∂θ)Θ− l(l + 1)Θ = 0 (3.5.56)

and the solutions are the associated Legendre polynomials in cos θ, Pl,m(cos θ). Some
associated Legendre polynomials are given below:

P0,0(cos θ) = 1

P1,0(cos θ) = cos θ

P1,1(cos θ) = sin θ

P2,0(cos θ) =
1

2
(3 cos2 θ − 1)

P2,1(cos θ) = 3 cos θ sin θ

P2,2(cos θ) = 3 sin2 θ

P3,0(cos θ) =
1

2
(5 cos3 θ − 3 cos θ)

P3,1(cos θ) =
3

2
(5 cos2 θ − 1) sin θ

P3,2(cos θ) = 15 cos θ sin2 θ

P3,3(cos θ) = 15 sin3 θ
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... (3.5.57)

and

Pl,−m(x) = (−)m
(l −m)!

(l +m)!
Pl,m(x) (3.5.58)

is used to find the associated Legendre polynomials when m < 0.
The radial equation becomes

d2R

dr2
+

2

r

dR

dr
− l(l + 1)

r2
R = 0 (3.5.59)

This can be reduced to a simple linear, second order differential equation with constant
coefficients in the variable z = ln r. The two independent solutions are found to be

Rl(r) = rl, r−(l+1) (3.5.60)

Therefore the general solution to Laplace’s equation in spherical coordinates is

φ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

[almr
l + blmr

−(l+1)]Pl,m(cos θ)eimϕ. (3.5.61)

Many problems of interest involve azimuthal symmetry, where there is no ϕ depen-
dence. The absence of any dependence on the azimuthal angle implies that m = 0.
In this case, the associated Legendre polynomials reduce to the Legendre polynomials,
Pl(cos θ) = Pl,0(cos θ), and the general solution takes the form

φ(r, θ) =

∞∑
l=0

[alr
l + blr

−(l+1)]Pl(cos θ) (3.5.62)

If we are interested in the electrostatic potential inside a spherical surface of radius R,
then bl = 0 ∀l, assuming that there are no charges at the origin so that the potential is
finite there. We have,

φ̃(θ) =

∞∑
l=0

AlPl(cos θ), (3.5.63)

where Al = alR
l. Using the orthognality properties of the Legendre polynomials, we find

the coefficients al from6

Al = (l +
1

2
)

∫ π

0
dθ sin θV (θ)Pl(cos θ). (3.5.65)

6Problem: Work out the following example: imagine a spherical surface made up of two hemispheres
of radius R that are maintained at opposite potentials, i.e.,

φ(R, θ) =

{
+φ0 0 ≤ θ < π

2

−φ0
π
2
< θ ≤ π (3.5.64)
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Figure 3.4: Spherical conductor in a uniform electric field.

As another application, let us examine the problem of a conducting sphere of radius
R placed in a uniform electric field, which we take for convenience to be in the direction
of the positive z axis. The presence of the conducting sphere will distort the electric field
in its neighborhood as the field lines must be normal to the sphere at its surface. There is
azimuthal symmetry in this problem, so we can use the result above. First we note that,
far from the sphere, the effect of the conducting sphere should vanish, i.e.,

lim
r→∞

E(~r) = E0ẑ (3.5.66)

This means that
lim
r→∞

φ(~r) = −E0z = −E0r cos θ + const. (3.5.67)

Observe therefore, that al = 0 ∀l > 1 and

φ(~r) = a0 + a1r cos θ +
b0
r

+
b1
r2

cos θ +
b2
r3

(3 cos2 θ − 1) + ... (3.5.68)

with a1 = −E0. Again, the potential can only be constant on the surface of the conducting
sphere, so φ(r = R, θ) = const. As there is no θ dependence on the surface, this gives

−E0R+
b1
R2

= 0⇒ b1 = E0R
3

bj = 0 ∀j ≥ 2 (3.5.69)

The appearance of term b0/r would indicate that the conductor bears a net charge, which
is not the case, so b0 = 0. Then, we have

φ(~r) = φ0 − E0r cos θ

(
1− R3

r3

)
(3.5.70)
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where a0 = φ0 is the potential on the conductor. We can now calculate the electric field
everywhere,

~E(~r) = −~∇φ(~r) = E0

(
1 + 2

R3

r3

)
cos θr̂ − E0

(
1− R3

r3

)
sin θθ̂ (3.5.71)

When r →∞ we find that indeed ~E = E0ẑ. Having the electric field everwhere, we obtain
also the charge density on the conductor by noting that

lim
r→R

~E(~r) =
σ

ε0
r̂ ⇒ σ = 3ε0E0 cos θ (3.5.72)

Since we have assumed that the sphere was uncharged, the total charge on the sphere
should vanish. We can integrate over the surface of the conductor to find that the total
charge,

Q = 3ε0E0R
2

∫ 2π

0
dϕ

∫ π

0
dθ sin θ cos θ ≡ 0 (3.5.73)

vanishes as it should. Although the total charge on the sphere is non-vanishing the sphere
acquires an electric dipole moment on account of the way in which the charge is distributed
on its surface. Being confined to the surface of the conductor, we may describe the charge
distribution as

ρ(~r′) = 3ε0E0 cos θδ(r′ −R) (3.5.74)

where the δ−function takes into account the fact that the charge resides on the surface of
the conductor. Integrating this we find

~p = 3ε0E0

∫
dΩ′

∫ ∞
0

dr′r′r̂′ cos θ′δ(r′ −R)

= 3ε0E0R

∫ 2π

0
dϕ′

∫ π

0
dθ′ sin θ′ cos θ′(sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′) (3.5.75)

Naturally, only the z component is non-vanishing. We easily find it to be pz = 4πε0E0R.



Chapter 4

Boundary Value Problems:
Poisson’s Equation

So far we have concentrated on obtaining general solutions to Laplace’s equation, i.e., on
electrostatics in a vacuum. When sources are present we must solve Poisson’s equation,
which is generally a more difficult problem. In this case it is often useful to exploit the
boundary conditions from the beginning. This is the subject of this chapter. Methods
developed in this chapter will naturally be applicable to vacuum electrostatics too, since
this condition is obtained from the general situation when the charge density, ρ(~r′), van-
ishes everywhere. We begin with the “method of images” and then develop more formal
and systematic methods.

4.1 The Method of Images

Solutions to Poisson’s equation that obey the boundary conditions, either Dirichlet or
Neumann, are unique regardless of the methods used to arrive at them. So far we have
considered a systematic procedure to find solutions of the electrostatic vacuum and we
have seen that it is limited by the high degree of symmetry necessary to make Laplace’s
equation tractable. Poisson’s equation is even more difficult in general and different ap-
proaches to the problem of finding solutions to it are always welcome. In this section we
introduce one such method, which is more of an art form than an algorithmic procedure
but nonetheless very important. It is called the “method of images” and usually applies to
problems involving one or more point charges in the presence of conducting (or equipoten-
tial) surfaces. Often these problems do not exhibit any definite symmetry, but sometimes
from the geometry of the constant potential surfaces it is possible that a small number of
additional charges of appropriate magnitudes placed at judicious points in space can yield
a solution. These charges are called “image” charges and the electrostatic potential is

68
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Figure 4.1: Problem of a point charge and a conducting plane.

obtained only in regions excluding those occupied by the image charges. Without actually
solving Poisson’s equation, this method can yield solutions to problems that would be
difficult if not impossible to otherwise obtain.

4.1.1 Point charge near infinite conducting planes.

To motivate the “method of images”, imagine that we are interested in the electric field due
to a charge that is placed near an infinite conducting plane (see figure (4.1). The boundary
conditions are that the electric potential must vanish on the plane and at infinity. We
desire the field on the side of the plane containing the charge, q. The symmetry is neither
rectangular nor spherical, as it would be either for the plane or the point charge alone.

For definiteness, let the y − z plane be the desired surface of constant potential and
let the charge be situated a distance d from it on the positive x axis. Consider now an
alternate problem, which we shortly show to equivalent. Ignore the fact that our problem
is defined only to the right of the plane and place an equal and opposite charge to the left
of it at the same distance, d. The electric potential at any point ~r, due to the two charges,
is easy to write down

φ(~r) = φq(~r) + φ−q(~r) =
q

4πε0

[
1

r+
− 1

r−

]
(4.1.1)

and

r+ =
√

(x− d)2 + y2 + z2, r− =
√

(x+ d)2 + y2 + z2 (4.1.2)

At x = 0, which is supposed to be the plane at zero potential, we have r+ = r− and
therefore φ(~r) = 0 as required. Furthermore, the potential approaches zero at infinity
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and, because we have used only the electric potentials due to the point charges, φ(~r) is
a solution of Laplace’s equation. It is therefore the unique solution to the problem, but
only on the right hand side of the plane because the charge −q that was introduced on
the left does not really exist – it is an “image charge”. The electric field is

~E(~r) = −~∇φ(~r) =
q

4πε0

[
~r+

r3
+

− ~r−
r3
−

]
(4.1.3)

Very near the plane, in the limit as x→ 0, r3
+ ≈ r3

− and (~r+ − ~r−) = −2dx̂, therefore

lim
x→0

~E(~r) =
σ

ε0
x̂ = − qd

2πε0(d2 + y2 + z2)3/2
x̂⇒ σ = − qd

2π(d2 + y2 + z2)3/2
(4.1.4)

gives the surface charge density induced by the presence of the charge q on the conducting
plane. The total charge induced on the conducting plane is obtained by integrating the
surface charge density

Q = − qd
2π

∫ ∞
−∞

∫ ∞
−∞

dxdy

(d2 + x2 + y2)3/2
(4.1.5)

This integral may be resolved using polar coordinates in the x− y plane,

Qplane = − qd
2π

∫ 2π

0
dϕ

∫ ∞
0

rdr

(d2 + r2)3/2
=

qd√
d2 + r2

∣∣∣∣∞
0

= −q (4.1.6)

as we expect. The charge q exerts a force on the conducting plane, and vice versa by
Newton’s third law. It is conceptually easier to see what the force exerted by the plane
on q would be, because this must be precisely the force exerted by the image charge, −q
on q,

~Fq = − q2

16πε0d2
x̂ (4.1.7)

This implies that

~Fplane = +
q2

16πε0d2
x̂. (4.1.8)

is the force exerted by the point charge on the plane.
To generalize this problem, consider two conducting planes, making an angle θ relative

to each other as shown in figure (4.2), where θ (measured in radians) divides 2π. Suppose
we are interested in the electrostatic field within the opening between the planes and
suppose that opening contains a physical charge q. Suppose also that the electrostatic
potential vanishes on the planes. We may solve this problem by introducing image charges
as follows: think of the planes as mirrors and introduce image charges, (−)nq, at each point
at which the “mirrors” would form images of the physical charge where n is the order of
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Figure 4.2: Problem of a point charge and two conducting planes.

the reflection. If θ divides 2π (the only case we consider), there will be N = 2π/θ − 1
such images, and we may write down the electrostatic potential due to all 2π/θ charges
(including the physical charge). It should be clear that the electrostatic potential so
obtained will vanish on the planes and, moreover, will approach zero at infinity. The
solution is unique because the boundary conditions are satisfied, but it is valid only in
the opening between the planes that contains the physical charge. The special case of
perpendicular conducting planes as shown on the right of figure (4.2) will illustrate the
method.

For mutually perpendicular planes, we need three image charges. The electrostatic
potential due to the four charges is

φ(~r) =
q

4πε0

[
1

|~r − ~r0|
− 1

|~r − ~r2|
+

1

|~r + ~r0|
− 1

|~r − ~r4|

]
(4.1.9)

where ~r0 is the position of the physical charge +q, and ~r2,4 locate the image charge in
the second and fourth quadrant respectively. The image charge in the third quadrant has
position vector −~r0 and, because it corresponds to a second order reflection, must have
charge +q.1

4.1.2 Point charge outside a grounded, conducting sphere.

A simple example involving curved conducting surfaces would be that of a point charge
located outside a grounded conducting sphere of radius R and at a distance d from its
center (see figure (4.3). With no loss of generality we select the z axis to run from the center
of the sphere through the point charge. There is azimuthal symmetry in this problem, but
the methods above are not very easy to implement. Instead, let us place a point like image
charge, q′, on the inside of the sphere and at a distance a from the center on the z axis.

1Problem: Determine the charge on the conducting planes and the forces exerted by the charge q on
each of them. Calculate the total force on the charge q.
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Figure 4.3: Problem of a point charge and a conducting sphere.

We shall calculate q′ and a so that the electrostatic potential vanishes on the conducting
surface and, because our sources are point like, it will automatically vanish at infinity.
The electrostatic potential due to our point charges is given by

φ(~r) =
1

4πε0

[
q

|~r − ~r0|
+

q′

|~r − ~r′0|

]
(4.1.10)

where ~r0 = (0, 0, d) and ~r′0 = (0, 0, a) represent the positions of the charges q and q′

respectively. Using

|~r − ~r0| =
√
r2 + r2

0 − 2~r · ~r0 =
√
r2 + d2 − 2dr cos θ (4.1.11)

where θ is the polar angle. For points on the sphere, we therefore have

φ(R, θ) =
1

4πε0

[
q√

R2 + d2 − 2Rd cos θ
+

q′√
R2 + a2 − 2Ra cos θ

]
, (4.1.12)

which should vanish. This is possible to accomplish because we have two adjustable
parameters, viz., q′ and a. Setting q′ = −αq, a vanishing potential on the sphere implies
that

α2(R2 + d2 − 2Rd cos θ) = R2 + a2 − 2Ra cos θ (4.1.13)

Comparing the cos θ terms gives

α2 =
a

d
(4.1.14)
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and therefore that
a

d
(R2 + d2) = R2 + a2 (4.1.15)

which is a quadratic equation for a with solutions a = d and a = R2/d. We must reject the
first of these solutions as it places the image charge outside the sphere, indeed it places
an image charge of equal magnitude and opposite sign precisely at the location of the
physical charge, q, thereby annihilating it. The second solution is reasonable and gives
q′ = −αq = −Rq/d.

Together with the previous example, this example illustrates why this way of finding
solutions is called the method of images. Imagine that the sphere is a convex mirror, and
the charge is a point like object situated at a distance o from it on the z axis. From
elementary geometric optics we expect an image of the “object” to form a distance i from
the surface, where

1

i
+

1

o
= − 1

R
(4.1.16)

where R is the radius of curvature. By placing the charge q a distance d from the center
of the sphere we have, in this analogy, an object situated at a distance o = d−R from the
“mirror”. We expect its image to be formed at

1

i
= − 1

R
− 1

o
⇒ i = −R(d−R)

d
(4.1.17)

This is measured from the “mirror” and the negative sign implies that it is to the left.
Thus the image would form a distance R− |i| = R2/d from the center, which is precisely
where the image charge should be located. The magnification would be

M =
i

o
= −R

d
, (4.1.18)

which we recognize as the proportionality factor between the image charge and the physical
one.

The electrostatic potential is given everywhere by

φ(~r) =
q

4πε0

[
1√

r2 + d2 − 2rd cos θ
− R√

r2d2 +R4 − 2rdR2 cos θ

]
. (4.1.19)

It is interesting to consider the electric charge induced on the conductor. We evaluate the
electric field on the surface of the conductor as usual, the only surviving component being
the radial one,2

Er(R, θ) = − ∂rφ(~r)|r=R = − q

4πε0R

d2 −R2

(R2 + d2 − 2Rd cos θ)3/2
(4.1.20)

2Exercise: Verify this statement.
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This is related to the surface charge density induced on the spherical surface,

σ = ε0Er(R, θ) = − q

4πR

d2 −R2

(R2 + d2 − 2Rd cos θ)3/2
(4.1.21)

which should yield a charge on the sphere precisely equal to the image charge introduced,
as we find by integrating,

Q = −qR(d2 −R2)

4π

∫ 2π

0
dϕ

∫ π

0

dθ sin θ

(R2 + d2 − 2Rd cos θ)3/2
= −qR

d
= q′ (4.1.22)

As before, we may also calculate the force exerted on the sphere by the charge q. The
simplest way to do this is to first calculate the force exerted by the image charge q′ on q,
which would give the force exerted on the charge q by the sphere. The force exerted by
the charge q on the sphere follows by Newton’s third law.3

4.1.3 Point charge outside an insulated, conducting sphere.

In the previous problem, we have seen that the external charge induces a charge on the
sphere, equal to −qR/d, which distributes itself on the surface of the sphere in such a
way as to achieve equilibrium. If the sphere itself is charged with total charge Q 6= q′,
we can build the solution on the outside of the sphere by superposition. Imagine that the
sphere is initially grounded so that the solution we have obtained in the previous section
holds. Then disconnect the sphere from ground and charge the sphere by introducing an
amount of charge equal to Q−q′. The charge we have just introduced will distribute itself
uniformly over the sphere because the forces due to the external charge q are precisely
balanced by the induced charge q′. Appealing to Gauss’ law, the potential due to the
remaining charge is just that of a point charge located at the center of the sphere, and we
can write the solution as

φ(~r) =
1

4πε0

[
q

|~r − ~r0|
− qR/d

|~r − ~r′0|
+
Q+ qR/d

|~r|

]
(4.1.23)

where, as before, ~r′0 locates the image charge. The force on q is just the force due to the
image charge and the additional charge Q (located at the center).

4.1.4 Conducting sphere in a uniform external electric field.

For our last example of the method of images, we will reconsider the problem of a grounded,
conducting sphere in an uniform, external electric field from the point of view of image

3Problem: Alternatively, calculate the force exerted by the sphere on the charge q by integrating the
force exerted on q by elements of the sphere, using the charge density in (4.1.21).
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z-axis
Z

0
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+Q +Q’ -Q-Q’

Figure 4.4: Problem of a conducting sphere in an uniform, external field.

charges. The idea here is that the uniform electric field can be simulated by two point
charges of opposite sign and magnitude Q located at ±∞ on the z−axis. Actually, we will
begin by considering the point charges to be located at ±Z0 on the z−axis and take the
limit as Z0 →∞ in the end in order to recover the conditions of the problem.

We must introduce two image charges, Q′ = ±QR/Z0, inside the conducting sphere as
shown in figure, located at R2/Z0 from the center. The electric potential outside the the
sphere, at point P (~r), is

φ(~r) =
Q√

r2 + Z2
0 + 2rZ0 cos θ

− Q√
r2 + Z2

0 − 2rZ0 cos θ

− aQ/Z0√
r2 + R4

Z2
0

+ 2R2r
Z0

cos θ
+

aQ/Z0√
r2 + R4

Z2
0
− 2R2r

Z0
cos θ

(4.1.24)

Retaining only the leading terms as Z0 →∞, we find

φ(~r)→ −2Qr

Z2
0

cos θ

(
1− R3

r3

)
= −E0r cos θ

(
1− R3

r3

)
(4.1.25)

which is precisely the result we obtained in (3.5.70). The first term, −E0r cos θ = −E0z is
just the potential of a uniform field. The second term is the potential due to the induced
surface charge density on the sphere or, as we have now come to think of it, the potential
due to the image charges.

4.2 The Green Function

The Green function provides a systematic approach to finding solutions of Poisson’s equa-
tion, while taking into account the nature of the boundary conditions from the start. Let
us return to the general solution of this problem as presented in (3.2.7),

φ(~r) =
1

4πε0

∫
d3~r′G(~r, ~r′)ρ(~r′)− 1

4π

∫
S
dS [φ(~r′)(n̂ · ~∇′G(~r, ~r′))−G(~r, ~r′)(n̂ · ~∇′φ(~r′))]

(4.2.1)
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where we have set

G(~r, ~r′) =
1

|~r − ~r′|
. (4.2.2)

The function G(~r, ~r′) satisfies

~∇2G(~r, ~r′) = ~∇′2G(~r, ~r′) = −4πδ(~r − ~r′) (4.2.3)

and is called the “Green function”. The Green function is not uniquely defined; if Q(~r, ~r′)
is any solution of Laplace’s equation, then evidently G(~r, ~r′) = G(~r, ~r′) + Q(~r, ~r′) also
satisfies (4.2.3) and is therefore also a Green function. We will take the Green function to
be quite generally of the form,

G(~r, ~r′) =
1

|~r − ~r′|
+Q(~r, ~r′), ~∇′2Q(~r, ~r′) = 0. (4.2.4)

In this way, the problem is reduced to solving Laplace’s equation, subject to appropriate
conditions. To determine what boundary conditions are applicable when determining a
solution to Laplace’s equation for Q(~r, ~r′), consider the following argument. From Green’s
second identity we have as before [see (3.2.7)]

φ(~r) =
1

4πε0

∫
V
d3~r′G(~r, ~r′)ρ(~r′)− 1

4π

∫
S
dS

[
φ
∂G
∂n
− G ∂φ

∂n

]
, (4.2.5)

where we have used the short-form

∂G
∂n

= n̂ · ~∇G, ∂φ

∂n
= n̂ · ~∇φ (4.2.6)

for the directional derivatives normal to the surface, S. Now although (4.2.5) may appear
to be a general solution to the electrostatic problem, it is in fact not usable in the given
form because either the Dirichlet or the Neumann boundary conditions on S determines a
unique solution to the problem and both cannot be generally specified. We can, however,
exploit the ambiguity in the definition of G to simplify (4.2.5). Suppose that we are given
Dirichlet boundary conditions on S. We can use the freedom we have in choosing the
function Q so that G itself vanishes on S,

GD(~r, ~r′)
∣∣
S

=

[
1

|~r − ~r′|
+QD(~r, ~r′)

]
S

= 0. (4.2.7)

Then from (4.2.5) it follows that,

φ(~r) =

∫
V
d3~r′ρ(~r′)GD(~r, ~r′)− 1

4π

∫
S
dSφ(~r′)n̂ · ~∇′GD(~r, ~r′) (4.2.8)
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and we are left with just the value of φ(~r) on S, which is given by the boundary condition.
This presumes that it is possible to find Q(~r, ~r′) such that (4.2.7) holds, which is always
the case. The situation changes when Neumann boundary conditions are given. One
would think that the best way to pick Q(~r, ~r′) would be so that ∂G/∂n vanishes, but this
is incompatible with the properties of G, for∫

S
dS n̂ · ~∇G(~r, ~r′) =

∫
V
d3~r ~∇2G(~r, ~r′) = −4π (4.2.9)

by Gauss’ theorem, so the best we can really do is ask for

n̂ · ~∇′GN (~r, ~r′)
∣∣∣
S

= −4π

S
, (4.2.10)

where S is the area of the entire surface. Substitution into (4.2.5) then gives

φ(~r) = 〈φ〉S +

∫
V
d3~r′ρ(~r′)GN (~r, ~r′) +

1

4π

∫
S
dS GN (~r, ~r′)n̂ · ~∇′φ(~r′) (4.2.11)

where 〈φ〉S is the average value of the potential on the bounding surface.
Let us take a concrete example. Suppose we wanted to solve the problem that we

solved earlier using the method of images, i.e., the problem of a conducting sphere with
(or without) a charge located somewhere outside it, using the Green function. Let us relax
the condition that the sphere of radius R is a grounded conductor and simply specify the
potential on it as an arbitrary function of the angular variables. The boundary condition
is then Dirichlet, so we need to compute the Dirichlet Green function, GD(~r, ~r′). But, from
our work with the method of images we could guess that

QD(~r, ~r)′ = − R/|~r′|
|~r − R2

|~r′| r̂
′|
, GD(~r, ~r′) =

1

|~r − ~r′|
− R/|~r′|
|~r − R2

|~r′| r̂
′|

(4.2.12)

for QD(~r, ~r′) obviously satisfies Laplace’s equation and GD(~r, ~r′) vanishes on S. Further-
more, when we use this in (4.2.8), with ρ(~r′) = qδ(~r′ − ~r0) corresponding to the presence
of a physical charge and φ̃(R, θ, φ) = 0, we find that the first integral gives exactly the
electrostatic potential we obtained using the image charge. The surface integral in (4.2.8)
vanishes because the potential vanishes on the sphere. However, the Green function is
useful even when φ̃(R, θ, ϕ) 6= 0.

Suppose γ is the angle between ~r and ~r′ then GD can be written as

GD(~r, ~r′) =
1√

r2 + r′2 − 2rr′ cos γ
− R√

r2r′2 +R4 − 2rr′R2 cos γ
(4.2.13)

and, outside the sphere, gives

∂GD
∂n

= n̂ · ~∇′G(~r, ~r′)|S = − r2 −R2

(r2 +R2 − 2rR cos γ)3/2
(4.2.14)
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Figure 4.5: Two mutually insulated conducting hemispheres.

(the negative sign arises because the normal to the surface is inwards). Therefore, the
potential outside a sphere with the potential specified on its surface but no other charge
would be

φ(~r) =
1

4π

∫
dΩ′ φ(R, θ′, ϕ′)

R2(r2 −R2)

(r2 +R2 − 2rR cos γ)3/2
(4.2.15)

where dΩ′ is the solid angle at the point (R, θ′, ϕ′) and cos γ = r̂ · r̂′. For the interior
problem, the normal derivative is radially outwards, so the sign of ∂GD/∂n is opposite to
that given in (4.2.14). When a charge distribution is present, we must include the charge
density term in (4.2.8) and we should get

φ(~r) =

∫
d3~r′

ρ(~r′)

|~r − ~r′|
+

1

4π

∫
dΩ′ φ(R, θ′, ϕ′)

R2(r2 −R2)

(r2 +R2 − 2rR cos γ)3/2
(4.2.16)

The integrals above are not generally easy to do! Consider the simple problem of two
conducting hemispheres making up a sphere but isolated from each other by an insulating
ring as shown in figure (4.5). The solution to Laplace’s equation everywhere outside the
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sphere is given by

φ(x) = − V
4π

∫ 2π

0
dϕ′

[∫ π/2

0
dθ′ sin θ′ −

∫ 0

−π/2
dθ′ sin θ′

]
R2(r2 −R2)

(r2 +R2 − 2rR cos γ)3/2

(4.2.17)
where cos γ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′). As a special case, consider the integral
on the z−axis. Then θ = 0 and cos γ = cos θ′. We easily find

φ(z) = V

[
1− z2 − a2

z
√
z2 + a2

]
(4.2.18)

In general the integral cannot be performed in closed form. In this case one expands
the denominator in power series and integrates term by term, which we will not trouble
ourselves with doing here.4

4.3 Expansions of the Green function

In the previous chapter, we found it very useful to expand the electrostatic potential in
complete, orthonormal sets of functions when the symmetry of a given problem is high.
Expanding the Green function in a complete orthonormal set (see section 3.4) of functions
can likewise be useful when the symmetry is such that one or more compact coordinate is
present as in the case of spherical or cylindrical symmetry. We begin with the former.

4.3.1 Spherical Symmetry

If the symmetry of a given problem is spherical it is convenient to express the (spherical)
Green function as an expansion in the complete, orthogonal set of spherical harmonics

Ylm(θ, ϕ) = Pl,m(cos θ)eimϕ (4.3.1)

where the Pl,m are the Legendre polynomials (m ≤ |l|). Thus,

G(~r, ~r′) =
∑
l,m

Alm(r|r′, θ′, ϕ′)Ylm(θ, ϕ) (4.3.2)

(the coefficients Alm depend only on the primed coordinates and r, as the dependence
of G(~r, ~r′) on the unprimed angular coordinates occurs via the spherical harmonics) and
satisfies

~∇2G(~r, ~r′) = −4πδ(~r − ~r′) (4.3.3)

4Problem: Obtain the solution to (4.2.17) as a power series in cos θ up to the third order and show that
this is really nothing but the expansion in Legendre polynomials as we had before.
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The δ−function may also be expanded in terms of the Legendre polynomials as

δ(~r − ~r′) =
1

r2
δ(r − r′)

∞∑
l=0

l∑
m=−l

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) (4.3.4)

where we have used the completeness property,

∞∑
l=0

l∑
m=−l

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) =
1

sin θ
δ(θ − θ′)δ(ϕ− ϕ′) (4.3.5)

of the spherical harmonics. Substituting (4.3.2) into the Green function equation gives

Alm(r|r′, θ′, ϕ′) = gl(r|r′)Y ∗lm(θ′, ϕ′) (4.3.6)

where gl(r|r′) satisfies

1

r
∂2
r (rgl)−

l(l + 1)

r2
gl = −4π

r2
δ(r − r′) (4.3.7)

The left hand side is the same as that of the radial equation in (3.5.59), but here we have
a δ−function source term. Nevertheless, the δ−function is supported only on the spherical
shells, when r = r′, so we may borrow the solutions we had before for r > r′ and r < r′.
We will have

gl(r|r′) =

{
Alr

l +Blr
−(l+1), r < r′

A′lr
l +B′lr

−(l+1), r > r′
(4.3.8)

where A,B and A′, B′ depend on r′. We are interested in the spherical Green function
only when the symmetry of the problem is spherical, so imagine that we have boundary
conditions on spheres, say of radii a and b, and let a < b. Then, with Dirichlet boundary
conditions such that G(~r, ~r′) vanishes at r = a and r = b, we see that

Ala
l +Bla

−(l+1) = 0 ⇒ Bl = −Ala2l+1

A′lb
l +B′lb

−(l+1) = 0 ⇒ A′l = −B′lb−(2l+1) (4.3.9)

giving

gl(r|r′) =

 Al

(
rl + a2l+1

rl+1

)
, r < r′

B′l

(
1

rl+1 − rl

b2l+1

)
, r > r′

(4.3.10)

The symmetry of g(r|r′) implies that we should be able to interchange r and r′ with no
effect, i.e. for example,

Al(r
′)

(
rl +

a2l+1

rl+1

)
= Bl(r)

(
1

r′l+1
− r′l

b2l+1

)
(4.3.11)
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which is possible only if

Al(r
′) = C

(
1

r′l+1
− r′l

b2l+1

)
Bl(r

′) = C

(
r′l − a2l+1

r′l+1

)
, (4.3.12)

where C is constant. Therefore

gl(r|r′) =

C
(

1
r′l+1 − r′l

b2l+1

)(
rl − a2l+1

rl+1

)
, r < r′

C
(
r′l − a2l+1

r′l+1

)(
1

rl+1 − rl

b2l+1

)
, r > r′

(4.3.13)

and we can make this look nicer if we define

r> ≡ max{r, r′}
r< ≡ min{r, r′} (4.3.14)

in terms of which

g(r|r′) = C

(
1

rl+1
>

−
rl>
b2l+1

)(
rl< −

a2l+1

rl+1
<

)
. (4.3.15)

It’s easy to see that the function g(r|r′) is continuous as r → r′, but it is not differentiable.
This is as it should be, of course, because there is a δ−function source on the right. We
will now use this fact to obtain the value of C. Returning to the radial equation for g(r|r′)
in (4.3.7), multiplying it by r and integrating over r from r = r′ − ε to r = r′ + ε taking
the limit as ε vanishes, we find

[∂r(rgl)]r+ε − [∂r(rgl)]r−ε = −4π

r′
(4.3.16)

But, using the expression (4.3.15) for gl(r|r′), the left hand side is easily calculated and
compared to the right. We find that they are equal only if5

C =
4π

(2l + 1)
[
1−

(
a
b

)2l+1
] (4.3.17)

We finally have the general spherical Green function with two spherical boundaries of radii
a < b, on which it vanishes,

GD(~r, ~r′) = 4π
∞∑
l=0

l∑
m=−l

[
rl< −

a2l+1

rl+1
<

][
1

rl+1
>

−
rl>
b2l+1

]
Y ∗lm(θ′ϕ′)Ylm(θ, ϕ)

(2l + 1)
[
1−

(
a
b

)2l+1
] (4.3.18)

5Problem: Show this result by explicit calculation.
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We now consider the special case in which the outer surface approaches infinity (b→∞).
In this case there are just two regions, the exterior of a and the interior. Consider first
the exterior. In this case, we easily find

GD(~r, ~r′) = 4π
∞∑
l=0

l∑
m=−l

[
rl<

rl+1
>

− 1

a

(
a2

rr′

)l+1
]
Y ∗lm(θ′ϕ′)Ylm(θ, ϕ)

(2l + 1)
(4.3.19)

which clearly vanishes when either r or r′ coincides with a as well as when either of these
approaches infinity. If a = 0 then

GD(~r, ~r′) = 4π

∞∑
l=0

l∑
m=−l

rl<

rl+1
>

Y ∗lm(θ′ϕ′)Ylm(θ, ϕ)

(2l + 1)
=

1

|~r − ~r′|
(4.3.20)

which is proportional to the potential at ~r due to a point charge at ~r′. The left hand side
is just the expansion of the right hand side in spherical harmonics.

4.3.2 Cylindrical Symmetry

From our experience with Laplace’s equation, let’s begin with the following ansatz for the
Green function, if the symmetry of a given problem is cylindrical:

G(~r, ~r′) =
1

4π2

∞∑
m=−∞

∫ ∞
−∞

dk gm(k; ρ|ρ′, z′, ϕ′)eikzeimϕ. (4.3.21)

The delta function in cylindrical coordinates is

δ(~r − ~r′) =
1

ρ
δ(ρ− ρ′)δ(z − z′)δ(ϕ− ϕ′)

=
1

ρ
δ(ρ− ρ′) 1

4π2

∞∑
m=−∞

∫ ∞
−∞

dk eik(z−z′)eim(ϕ−ϕ′), (4.3.22)

the last expression being just a statement of the completeness relations

δ(z − z′) =
1

2π

∫ ∞
−∞

dk eik(z−z′)

δ(ϕ− ϕ′) =
1

2π

∞∑
m=−∞

eim(ϕ−ϕ′) (4.3.23)

Inserting (4.3.21) into the Green function equation then gives

gm(k; ρ|ρ′, z′, ϕ′) = gm(k; ρ|ρ′)e−ikze−imϕ (4.3.24)
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and
1

ρ
∂ρ(ρ∂ρgm)−

(
k2 +

m2

ρ2

)
gm = −4π

ρ
δ(ρ− ρ′) (4.3.25)

As before, when ρ > ρ′ or ρ < ρ′ we may borrow the solutions we had earlier in (3.5.27).
So write the solutions for gm(k; ρ|ρ′) as

gm(k; ρ|ρ′) =

{
AmIm(kρ) +BmKm(kρ) ρ < ρ′

A′mIm(kρ) +B′mKm(kρ) ρ > ρ′
(4.3.26)

where A,B and A′, B′ are functions of ρ′. Suppose that the Green function vanishes on
cylindrical surfaces of radii a and b (for definiteness, assume that a < b) then

Bm = −Am
Im(ka)

Km(ka)

A′m = −B′m
Km(kb)

Im(kb)
(4.3.27)

giving

gm(k; ρ|ρ′) =

Am

(
Im(kρ)− Im(ka)Km(kρ)

Km(ka)

)
ρ < ρ′

B′m

(
Km(kρ)− Km(kb)Im(kρ)

Im(kb)

)
ρ > ρ′

(4.3.28)

But, by the symmetry of the Green function under an interchange of ρ and ρ′,

Am(ρ′) = C

(
Km(kρ′)− Km(kb)Im(kρ′)

Im(kb)

)
(4.3.29)

and

B′m(ρ′) = C

(
Im(kρ′)− Im(ka)Km(kρ′)

Km(ka)

)
(4.3.30)

This gives

gm(k; ρ|ρ′) =

C
(
Km(kρ′)− Km(kb)Im(kρ′)

Im(kb)

)(
Im(kρ)− Im(ka)Km(kρ)

Km(ka)

)
ρ < ρ′

C
(
Im(kρ′)− Im(ka)Km(kρ′)

Km(ka)

)(
Km(kρ)− Km(kb)Im(kρ)

Im(kb)

)
ρ > ρ′

(4.3.31)

where C is some constant that must be fixed using by the discontinuity in the slope implied
by the δ−function in the Green function equation.

Consider the greatly simplified, special case when the inner cylinder is shrunk to zero
radius (a = 0) and the outer cylinder is taken out to infinity (b =∞). Using the asymptotic
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behaviors of the modified Bessel functions, it is easy to see that the solution above reduces
in this case to

gm(k; ρ|ρ′) =

{
CKm(kρ′)Im(kρ) ρ < ρ′

CIm(kρ′)Km(kρ) ρ > ρ′
(4.3.32)

or, simply,

gm(k; ρ|ρ′) = CIm(kρ<)Km(kρ>) (4.3.33)

where we have defined

ρ> ≡ max{ρ, ρ′}
ρ< ≡ min{ρ, ρ′} (4.3.34)

A simple exercise, similar to the one we performed when determining the constant in the
case of spherical symmetry, then shows that C = 4π, thus

G(~r, ~r′) =
2

π

∞∑
m=−∞

∫ ∞
0

dk Im(kρ<)Km(kρ>) cos k(z − z′)eim(ϕ−ϕ′) (4.3.35)

which may also be written in terms of real functions.6

4.4 Eigenfunction expansion of the Green function

An approach to obtaining expansions of the Green function that is intimately connected
with the methods used in the previous section is the so called eigenfunction expansion.

If a function, ψ(~r) satisfies some elliptic differential equation of the form

Ôψ(~r) = ~∇2ψ(~r) + V (~r)ψ(~r) = λψ(~r) (4.4.1)

where λ is a constant and if ψ(~r) satisfies homogeneous boundary conditions on some
bounding surface of a volume, V , of interest then ψ(~r) is said to be an “eigenfunction” of

6Problem: Use the properties of the modified Bessel functions to write the Green function for the special
case a = 0, b =∞ as

G(~r, ~r′) =
4

π

∫ ∞
0

dk

[
1

2
I0(kρ<)K0(kρ>) +

∞∑
m=1

Im(kρ<)Km(kρ>) cosm(ϕ− ϕ′)

]
cos k(z − z′)

This is therefore the expansion of 1/|~r − ~r′| in cylindrical coordinates. Using this identity and taking
ρ′ = 0, show that

1√
ρ2 + z2

=
2

π

∫ ∞
0

dk K0(kρ) cos kz
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the (elliptic) differential operator Ô = ~∇2 +V (~r) and λ is an “eigenvalue” of the operator.
Generally, the equation (4.4.1) will admit well behaved solutions for a set of values of λ,
giving a set of eigenvalues and eigenfunctions of the differential operator in question. If
we label the members of this set by α (α may be a continuous variable, corresponding to
a continuous eigenvalue spectrum but, depending on the boundary conditions, it may also
be discrete, corresponding to a discrete spectrum) then we may write

Ôψα(~r) = ~∇2ψα(~r) + V (~r)ψα(~r) = λαψα(~r) (4.4.2)

The eigenfunctions are orthogonal with respect to the inner product

〈φ, ψ〉 =

∫
V
d3~rφ∗(~r)ψ(~r). (4.4.3)

To show this, note that Ô = ~∇2 + V (~r) is a hermitean operator (as long as V (r) is real)
and consider two eigenfunctions, φ and ψ of Ô with eigenvalues λ1 and λ2 respectively.
By definition, Hermiticity of Ô means that

〈Ôφ, ψ〉 = 〈φ, Ôψ〉 (4.4.4)

from which it follows that λ1 and λ2 are real. Combined, these imply that

0 = 〈Ôφ, ψ〉 − 〈φ, Ôψ〉 = (λ1 − λ2)〈φ, ψ〉, (4.4.5)

i.e., if λ1 6= λ2 then 〈φ, ψ〉 = 0. If λ1 = λ2 then the functions φ and ψ may differ by
at most a constant. We can rid ourselves of this superfluous constant by normalizing the
eigenfunctions to unity, i.e., by setting

〈ψα, ψβ〉 = δαβ (4.4.6)

If, now, we want to find the Green function for the operator Ô − λ, i.e., satisfying the
equation

[Ô − λ]G(~r, ~r′) = −4πδ(~r − ~r′) (4.4.7)

where λ is not an eigenvalue of Ô, and obeying the same boundary conditions as do
the eigenfunctions of Ô, then consider the following expansion of G(~r, ~r′) in terms of the
eigenfunctions of Ô

G(~r, ~r′) =
∑
α

aα(~r′)ψα(~r) (4.4.8)

where the sum turns into an integral if the eigenvalue spectrum is continuous. Substituting
this expansion into the Green function equation we find∑

α

aα(~r′)(λα − λ)ψα(~r) = −4πδ(~r − ~r′) (4.4.9)
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Multiplying both sides by ψ∗β(~r) and integrating over the volume we find∑
α

aα(~r′)(λα − λ)δαβ = −4πψ∗β(~r′) (4.4.10)

or

aα(~r′) = −4π
ψ∗α(~r′)

λα − λ
(4.4.11)

Thus,

G(~r, ~r′) = −4π
∑
α

ψ∗α(~r′)ψ(~r)

λα − λ
(4.4.12)

As a simple example, we take the Poisson equation

[~∇2 + k2]ψ = 0 (4.4.13)

(k 6= 0) whose solutions are plane waves

ψ~k(~r) =
1

(2π)3/2
ei
~k·~r (4.4.14)

where ~k is the wave vector satisfying ~k · ~k = k2. These eigenfunctions form a complete,
orthonormal set, i.e., ∫

d3~kψ∗~k(~r)ψ~k(~r
′) = δ(~r − ~r′) (completeness)∫

d3~rψ∗~k(~r)ψ~k′(~r) = δ(~k − ~k′) (orthonormality) (4.4.15)

If we want to represent the Green function satisfying

~∇2G(~r, ~r′) = −4πδ(~r − ~r′) (4.4.16)

with λ = 0 in (4.4.9) we see that it has the form

G(~r, ~r′) = − 1

2π2

∫
d3~k

ei
~k·(~r−~r′)

k2
(4.4.17)

which will be shown later to be nothing but the three dimensional Fourier representation of
1/|~r− ~r′|. We have assumed no bounding surfaces, in selecting the complete orthonormal
set in (4.4.14). In a Dirichlet problem care must be taken to choose eigenfunctions that
obey the given conditions on the bounding surfaces.



Chapter 5

Dielectric Media

So far we have learned two laws that govern the electric field, viz., Gauss’ law

~∇ · ~E =
ρ

ε0
(5.0.1)

which states that charge is the source of electric flux, and

~∇× ~E = 0 (5.0.2)

which expresses the fact that the electrostatic field is conservative. The last law is valid
only when the physical system is static and must be modified in the presence of moving
charges or boundaries, or when any other form of time dependence is present. This involves
the magnetic field, which we will presently introduce and instead of a conservation law we
will have “Faraday’s law” of induction. In this chapter, however, we will continue to be
interested in static solutions, so the electric field will continue to be conservative.

The first law is valid whether or not there is time dependence in the system. Although
the law itself does not discriminate between them, it is convenient to distinguish between
two kinds of charges or charge densities that may be present in any given system. The
first kind we will call the “fixed” or “bound” charge. This will include all the charges that
are held together by some external means (the external means include binding to atoms
or to lattice sites). The second kind we will call the “free” charge. As its name predicts,
this charge is free to move about within system, its motion being determined by all the
fields present. Such a distinction is particularly useful when we study electric fields in
materials.

5.1 Polarization

We have learned that the electric field inside a conductor is identically zero in equilibrium
because all the charges are free to rearrange themselves and will do so in such a way that

87
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Figure 5.1: Distortion of molecules in an externally applied electric field.

the net force on any charge is zero. When this occurs the conductor is in equilibrium, and
it is only possible when the net electric field vanishes. Dielectric media do not have free
charges. All charges are bound rather strongly to the atoms (molecules) of the medium.
When an electric field is applied to such a medium the net effect is that the molecules
get distorted, the positive charges in the nucleus being pulled in one way by the external
electric field and the negative charges being pulled the other way as shown in figure (5.6).
Each molecule then acts as a little electric dipole, and all the distorted molecules together
will generate an electric field that will be macroscopically appreciable. The strength of
each dipole, i.e., its dipole moment, will depend on the separation between the charges,
which will in turn depend on the strength of the externally applied field. Therefore the
electric field generated by the dipoles will depend on the applied field. However, the dipole
electric field and the externally applied field combine and it is really the resultant field
that creates the dipoles themselves. This feedback means that the system is quite non-
linear. The process by which the dielectric medium acquires an electric dipole moment is
called polarization. The application of an external electric field to a dielectric medium
electrically polarizes it.

Consider a volume element ∆v of the medium. We will take this volume element
to be macroscopically small (even taking the limit as ∆v → 0 in the end) but always
assume that it is microscopically large in the sense that it contains a very large number
of molecules. This is the so-called “continuum” approximation, in which the molecules
are themselves taken to be point-like so that any volume contains a very large (essentially
infinite) number of them. Let ~pm represent the electric dipole moment of the mth dipole
(molecule) in the volume ∆v, then the total dipole moment of the volume is

∆~p =
∑
m∈∆v

~pm (5.1.1)

We define the electric polarization, ~P , of the medium by

~P = lim
∆v→0

∆~p

∆v
(5.1.2)
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Figure 5.2: Dielectric field at a point P , external to the dielectric

The vector ~P is in general a function of location within the medium, ~P = ~P (~r), and is a
density. We will refer to it simply as the “polarization” of the medium.

5.2 Electric field outside a Dielectric

First let’s consider a polarized medium, characterized by a polarization vector ~P (~r′), and
the electric field due to its polarization at a point P external to the medium as shown
in figure (5.2). We already know from (2.3.12) that the electric potential at P due to an
infinitesimal volume of the dielectric located at ~r′ within it would be

dφ(~r) =
∆~p(~r′) · (~r − ~r′)

4πε0|~r − ~r′|3
= d3~r′

~P (~r′) · (~r − ~r′)
4πε0|~r − ~r′|3

(5.2.1)

This can be integrated over the entire dielectric to give the electric field at P ,

φ(~r) =

∫
VD

d3~r′
~P (~r′) · (~r − ~r′)
4πε0|~r − ~r′|3

(5.2.2)

where VD is the dielectric volume. Thus, if we knew ~P (~r) we could calculate φ(~r) in this
simple example with no non-trivial boundaries, but what does the solution really mean?
We get a better physical understanding of the solution as follows: use the fact that

~∇′ 1

|~r − ~r′|
=

~r − ~r′

|~r − ~r′|

(~∇′ acts only on ~r′) to express

~P (~r′) · (~r − ~r′)
|~r − ~r′|3

= ~P (~r′) · ~∇′ 1

|~r − ~r′|
= ~∇′ ·

(
~P (~r′)

|~r − ~r′|

)
−
~∇′ · ~P (~r′)

|~r − ~r′|
(5.2.3)
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Inserting the right hand side above into the expression for the electrostatic potential gives

φ(~r) =
1

4πε0

∫
VD

d3~r′

(
~∇′ ·

(
~P (~r′)

|~r − ~r′|

)
−
~∇′ · ~P (~r′)

|~r − ~r′|

)
(5.2.4)

Now using Gauss’ theorem, express the first integral above as an integral over the surface
of the medium,

φ(~r) =
1

4πε0

∫
SD

dS
n̂ · ~P (~r′)

|~r − ~r′|
− 1

4πε0

∫
VD

d3~r′
~∇′ · ~P (~r′)

|~r − ~r′|
(5.2.5)

Now it is easy to see that the first integral corresponds to a contribution from a surface
charge density

σP (~r′) = n̂ · ~P (~r′) (5.2.6)

and the second from a volume charge density

ρP (~r′) = −~∇′ · ~P (~r′) (5.2.7)

These are, respectively, the polarization surface charge density and polarization volume
charge density. As far as the electric field in the exterior of the dielectric is concerned, we
may think of the dielectric medium as made up of two kinds of distributions: (a) a volume
charge distribution with density ρP (~r′) and (b) a surface distribution with density σP (~r′).

5.3 Electric field inside a Dielectric

Let us use the result above to determine the electric field inside the dielectric. The electric
field at a point, say ~r inside the dielectric will be due to all the dipoles surrounding it.
Consider then an infinitesimally thin needle shaped cavity inside the dielectric as shown
in figure (5.3) and apply the conservation equation for the electric field (which is valid as
long as the situation is static) in its integral form,∮

C

~E · d~r = 0, (5.3.1)

to the rectangular curve shown in the figure. Evaluating the integral and assuming that
∆~l is small, so that ~E is more or less constant along it, we find

~Ed ·∆~ld + ~Evac ·∆~lvac = 0 (5.3.2)

where we have neglected the contribution from the edges because the needle shaped cavity
can be made as thin as we wish, and the contribution from the edges will be negligible
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Figure 5.3: Needle shaped cavity inside a Dielectric

in the limit as the width goes to zero. Now ∆~ld and ∆~lvac are equal in magnitude and
oppositely directed, therefore we have

Ed,t = Evac,t (5.3.3)

where the suffix t represents the component of ~E that is tangent to the needle shaped
cavity. This result is valid no matter how the cavity is oriented w.r.t. the electric field
inside the dielectric. In particular, if it is oriented parallel to the electric field in the
dielectric we would have, simply,

Ed = Evac (5.3.4)

We conclude that the electric field in a dielectric is identical to the electric field in a
cylindrical (needle shaped) cavity whose axis is in the direction of the field. If V1 is the
volume of the cavity and Sc is the cylindrical surface area (we can neglect the contributions
from S1 and S2 as the cavity is made thinner and thinner), then

φd(~r) =
1

4πε0

∫
Sc+Sext

dS
σP (~r′)

|~r − ~r′|
+

1

4πε0

∫
VD−V1

d3~r′
ρP (~r′)

|~r − ~r′|
(5.3.5)

where Sext is the exterior surface of the dielectric (which should also be included). Now if
the orientation of our cavity were chosen to lie parallel to the electric field in the dielectric,
the surface charge density on Sc would be vanishing. Taking V1 → 0 we get

φd(~r) =
1

4πε0

∫
Sext

dS
σP (~r′)

|~r − ~r′|
+

1

4πε0

∫
VD

d3~r′
ρP (~r′)

|~r − ~r′|
(5.3.6)

which, not surprisingly, is the same as we had before for points outside of the dielectric.
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Figure 5.4: Gauss’ Law inside a Dielectric

5.4 Gauss’ Law inside Dielectrics

A more general situation is obtained by imagining that we introduce some free charge
into the dielectric and that this charge moves freely within certain regions that we can
approximate as conductors. Consider a Gaussian surface inside the dielectric and let
the surface enclose a certain number of these regions (or conductors), say S1, S2... Sn.
Applying Gauss’ law to the surface∮

S

~E · d~S =
qin

ε0
=
qf

ε0
+
qp
ε0

(5.4.1)

where qp refers to the polarization charge,

qp =

∫
V−V1−V2...−Vn

d3~r′ [−~∇′ · ~P (~r′)] +

∫
S1+S2...+Sn

d2~r′ [n̂ · ~P (~r′)] (5.4.2)

where we have used the polarization charge densities obtained earlier and V −V1...−Vn is
the volume of the dielectric enclosed by the Gaussian surface and S1...+Sn is the sum of all
the conducting surfaces within this volume. Notice that we cannot include the Gaussian
surface itself because there is no surface charge density there. The volume integral can be
transformed into a surface integral using Gauss’ theorem∫

V−V1...−Vn
d3~r′ [−~∇′ · ~P (~r′)] = −

∫
S+S1...+Sn

d2~r′ n̂ · ~P (~r′) (5.4.3)

where, now, all surfaces bounding the volume V are included. The net contribution is
therefore

qp =

∫
S
d2~r′ n̂ · ~P (~r′), (5.4.4)
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due only to the contribution from the distribution of charge on the Gaussian surface. We
find ∮

S

[
~E +

~P

ε0

]
· d~S =

qf

ε0
(5.4.5)

which has the form of (a modified) Gauss’ law with only the free charge as a source. Define
the electric displacement by ~D = ε0 ~E+ ~P then Gauss’ law in a dielectric medium will take
the form ∮

S

~D · d~S = qf (5.4.6)

Obviously we can put this in differential form by reexpressing the total free charge in
terms of the free charge density and using Gauss’ theorem∮

S

~D · d~S =

∫
V

~∇ · ~D d3~r = qf =

∫
V
ρf(~r) d

3~r

⇒ ~∇ · ~D = ρf (5.4.7)

which is the form of Gauss’ law in a dielectric medium. In the absence of polarization,
~D = ε0 ~E. In a dielectric medium, the electric field is made up of two parts, the first due
to the free charges and the second due to the electric polarization, ~P , of the medium. The
electric field continues conserved

~∇× ~E = 0, (5.4.8)

but ~D is not necessarily conservative (~∇× ~D = ~∇× ~P 6= 0) and therefore ~D is not derivable
from a potential. Equations (5.4.7) and (5.4.8) constitute the analogues of the vacuum
electrostatic equations in (2.3.18) and (2.3.1) respectively.

We cannot really proceed with problem solving without having some relation between
~D and ~E. This is equivalent to knowing the the electric polarization of the medium.
The polarization occurs via the the application of the external electric field, so generally
speaking ~P = ~P ( ~E). However, while theoretical models may be able to determine ~P ( ~E)
for certain materials and under certain conditions, in general ~P ( ~E) must be obtained
experimentally. Phenomenologically, one could write an expression of the form

Pi( ~E) =
∑
j

χij( ~E)Ej (5.4.9)

where χij( ~E) are the components of the so-called electric susceptibility tensor. If the
material is isotropic then the susceptibility tensor is determined by just one function
χ( ~E), and

χij( ~E) = χ( ~E)δij ⇒ ~P ( ~E) = χ( ~E) ~E (5.4.10)
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implying that ~P is in the same direction as ~E. χ( ~E) is simply called the electric suscepti-
bility of the medium. With this function, we can write

~D = [ε0 + χ( ~E)] ~E = ε( ~E) ~E (5.4.11)

where ε( ~E) = ε0 + χ( ~E) is the electric permitivity of the dielectric medium (ε0 may be
thought of as the electric permitivity of the vacuum). A dielectric medium is said to be
linear if the electric susceptibility (equivalently the electric permitivity) is constant. In
that case

~P = χ~E, ~D = ε ~E (5.4.12)

where ε is constant. Calling ε = Kε0 we find, in terms of the electric susceptbility that

K =

[
1 +

χ

ε0

]
. (5.4.13)

K is called the dielectric constant. The dielectric constant of the vacuum is unity and
it is infinite for a conductor. For a linear dielectric medium, therefore, one can combine
(5.4.7) and (5.4.8) to obtain Poisson’s equation exactly as we did before. The fact that ~E
is conservative implies the existence of a corresponding electric potential

ε ~E(~r) = −~∇φD(~r) = ~D (5.4.14)

Gauss’ law then provides the equation for φ(~r),

~∇ · ~D = −~∇2φD = ρf (5.4.15)

(note that, as ~D = ε ~E the electric potential φ is related to the displacement potential φD
by φD = εφ). In the absence of charges both potentials obey Laplace’s equations.

It should be evident that methods for solving all problems involving linear, isotropic
media will be identical to those of the previous chapters except that the electric fields
produced by the given free charges are reduced by a factor of ε/ε0. This reduction in the
effective field can be understood as a consequence of the fact that the dipole electric fields
of the atoms or molecules of the medium oppose the external field. If the same dielectric
medium does not fill space, which is usually the case, or if there are dielectric media
with different responses in the region occupied by the electric fields we must consider the
boundary conditions on the displacement and electric fields at the boundaries.

5.5 Boundary Conditions

What boundary conditions are appropriate at the interface of two dielectrics? Consider
two dielectric media of different responses whose interface is denoted by the surface S in
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dielectric 1

dielectric 2
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Figure 5.5: Boundary Conditions at a Dielectric Interface

figure (5.5) We begin with the pillbox, whose flat cylindrical surface can be made as small
as desired. Therefore, we need to consider only the flat surfaces of the pill box, which are
respectively in medium 1 and medium 2. By Gauss’ law,∫

S1+S2

~D · d~S =

∫
S1

~D · d~S +

∫
S2

~D · d~S = qf (5.5.1)

where σ is the surface density of the charge on the interface. For small surface areas, we
can express this condition in the form

( ~D1 · n̂1 + ~D2 · n̂2)∆S = σf∆S (5.5.2)

where ~D1,2 and n̂1,2 refer to the electric displacement and unit normals to the surfaces S1,2

respectively. Because n̂ is a unit outgoing normal, n̂1 = −n̂2. If we define Di,n = ~Di · n̂2

then

D2,n −D1,n = σf (5.5.3)

says that the normal component of the electric displacement is generally discontinuous
across an interface between two dielectric media, the discontinuity being proportional to
the surface density of free charge on the surface.1 In the absence of free charge, the normal
component of the displacement vector is continuous.

Next consider the rectangular closed curve on the right of figure (5.5) and integrate ~E
around it. Since ~E is conservative, and since we can make the curve as thin as we want,∮

C

~E · d~r = ~E1 · t̂1 + ~E2 · t̂2 (5.5.4)

1It is important to keep account of the sign convention: the unit normal chosen to define the normal
component of both displacement vectors is n̂2, which is directed into medium 2
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z-axis

Figure 5.6: Dielectric sphere in a uniform electric field.

where t̂1 and t̂2 are the unit tangent vectors to the two sides of the curve shown in the
figure. We have ignored the other two sides which can be made arbitrarily small by making
the rectangle as needle-like as we wish. Then because t̂1 = −t̂2 we have

E2,t − E1,t = 0 (5.5.5)

where, in the same notation we used earlier, Ei,t = ~Ei · t̂2. This says that the tangential
component of the electric field must be continuous across the interface. Two points are
worth noting

• In the case of linear, isotropic media we have seen that the electric displacement is
directly proportional to the electric field, ~D = ε ~E. Therefore, if the interface lies
between two linear and isotropic dielectrics that both the tangential component and
the normal component of ~D (equivalently ~E) are continuous across the interface.
Thus no free surface charge develops on the interface between two linear, isotropic
dielectrics.

• If one of the media present at the interface is a conductor, the electric field in the
other can only be perpendicular to the interface. This follows from the fact that
~E = 0 in the conductor and that Et is continuous. For the same reason, Dn = σ is
the normal component of ~D in the dielectric.
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5.6 Examples

5.6.1 Dielectric sphere in a uniform electric field

We have considered eariler how a uniform electric field in a vacuum is modified by the
presence of a spherical conductor. We will now replace the conductor by a spherical
dielectric medium that is both linear and isotropic for simplicity and see how it modifies
the electric field.

We are interested in solving Laplace’s equation in spherical coordinates, whose origin
we situate at the center of the dielectric sphere. The boundary conditions we wish to
apply are

~E∞ = lim
r→∞

~E(~r) = E0ẑ ⇒ φ(~r) = −E0z = −E0r cos θ + const. (5.6.1)

Without loss of generality, we can take the constant in the expression for the asymptotic
form of φ(~r) to be zero. We also require that φ(~r) is well behaved at r = 0 because there
is no charge there.

As before, the proper dependence on cos θ near infinity requires that

φout(~r) = a1r cos θ +
b0
r

+
b1
r2

cos θ +
b2
r3

(3 cos2 θ − 1) + ... (5.6.2)

with a1 = −E0. Inside the sphere, regularity of the potential at the origin implies that

φin(~r) =
∑
l

a′lPl(cos θ) = a′0 + a′1r cos θ + a′2r
2(3 cos2 θ − 1) + ... (5.6.3)

where no ϕ dependence has been considered because the system is azimuthally symmetric.
Continuity of the potential across the boundary gives

−E0R cos θ+
b0
R

+
b1
R2

cos θ+
b2
R3

(3 cos2 θ−1)+ ... = a′0 +a′1R cos θ+a′2R
2(3 cos2 θ−1)+ ...

(5.6.4)
which, term by term in cos θ gives

b0
R

= a′0 − a′2R2 − ...

−E0R+
b1
R2

= a′1R

b2
R3

= a′2R
2, etc. (5.6.5)

Next, by considering the continuity of ~D on the surface of the dielectric (no free surface
charge is present) we find,

D2,n|R = D1,n|R ⇒ ε0Eout,n|R = εEin,n|R ⇒ Eout,n|R = KEout,n|R (5.6.6)
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where K is the dielectric constant. Taking the normal derivative of φ(~r) gives

−E0 cos θ− b0
R2
−2b1
R3

cos θ−3b2
R4

(cos2 θ−1)+... = K[a′1 cos θ+2a′2R(3 cos2 θ−1)+...] (5.6.7)

We see that b0 = 0 and

−E0 −
2b1
R3

= Ka′1

3b2
R4

= 2Ka′2R, etc., (5.6.8)

the last of which is compatible with the last of (5.6.5) if and only if b2 = b3... = 0 = a′2 =
a′3 = .... We are left with just two constants to evaluate: viz., b1 and a′1. Again, dividing
the second equation in (5.6.5) by R, multiplying it by two and adding the result to (5.6.8)
gives

− 3E0 = (K + 2)a′1 ⇒ a′1 = − 3E0

K + 2
(5.6.9)

Inserting this result into (5.6.8) gives

b1 =

(
K − 1

K + 2

)
E0R

3 (5.6.10)

Thus we have found

φout = −E0r cos θ

[
1−

(
K − 1

K + 2

)
R3

r3

]
(5.6.11)

and

φin = − 3E0

K + 2
r cos θ = − 3E0z

K + 2
(5.6.12)

The electric field inside the dielectric is constant and points in the z direction,

~Ein = −∂zφin =
3

K + 2
E0ẑ, (5.6.13)

approaching zero inside a conductor (K → ∞). It is smaller in magnitude than the
external field if K > 1 and points in the same direction. The polarization of the medium

~P = χ~E = 3ε0
K − 1

K + 2
E0ẑ (5.6.14)

also points in the same direction as the external electric field in this case (K > 1). The
volume density of the polarization charge vanishes identically. Its surface charge density
is

σP = n̂ · ~P ≡ r̂ · ~P = 3ε0

(
K − 1

K + 2

)
E0 cos θ (5.6.15)
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Figure 5.7: Polarization charge density on a dielectric sphere in a uniform electric field.

which is shown in figure (5.7). This has the effect of producing an internal electric field
directed opposite to the external, applied field and so reducing the electric field inside the
medium.

The problem of a spherical cavity inside a dielectric medium can be handled in precisely
the same way as the problem we have considered. Examination of the boundary conditions
suggests that the result can be obtained from the results above by simply replacing K →
1/K. Thus the electric field inside the cavity would be given by

~Ein =
3K

1 + 2K
E0ẑ (5.6.16)

which is clearly larger than the external electric field when K > 1. Similar the polarization
of the dielectric is given by

~P = 3ε0
1−K
1 + 2K

E0ẑ (5.6.17)

which is directed opposite to the applied field and yields a surface charge

σP = r̂ · ~P = 3ε0
1−K
1 + 2K

E0 cos θ (5.6.18)

which, for K > 1 is arranged oppositely from that shown in figure (5.7) and is such as to
enhance the electric field inside the cavity.

5.6.2 Images: Two dielectric media

Consider the following problem: two dielectric media are separated by a plane boundary
and a charge q is embedded in one of them, say dielectric 1 (see figure (5.8), in which the
boundary is taken to be the y − z plane). We wish to determine the electric field at all
points in the two dielectrics. Introduce an image charge situated at a distance −d from
the boundary on the x−axis in dielectric 2 and imagine that the potentials in dielectric
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Figure 5.8: Plane boundary between two dielectric media

medium 1 is obtained as a superposition of the electric potentials due to these two charges,
q and q′. The potential in medium 1 is then

φ1(~r) =
1

4πε1

[
q

r
+
q′

r′

]
. (5.6.19)

In region 2 we imagine that the potential is due to yet another image charge, q′′, located
on the x−axis at x = d. The potential in region 2 is then

φ2(~r) =
q′′

4πε2r
(5.6.20)

where we have used the notation

r =
√

(x− d)2 + y2 + z2

r′ =
√

(x+ d)2 + y2 + z2. (5.6.21)

The two unknowns, viz. q′, q′′ must be obtained from our boundary conditions, which
must be that

• φ must be continuous at x = 0,

• The normal component of ~D must be continuous across x = 0 and

• the tangential component of ~E must be continuous.

The first condition is satisfied if we require

(q + q′)

4πε1
√
d2 + x2 + z2

=
q′′

4πε2
√
d2 + x2 + z2

(5.6.22)
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which gives the first constraint,
q′′

ε2
=
q + q′

ε1
(5.6.23)

Let rd =
√
d2 + x2 + z2. The normal component of ~D can be taken to be its x−component,

since the x−axis is normal to the interface,

~D1,x = −ε1∂xφ1(~r)|x=0 =
q′d− qd

4πr3
d

(5.6.24)

and

D2,x = −ε2∂xφ2(~r)|x=0 = − q′′d

4πr3
d

(5.6.25)

Equating them gives q − q′ = q′′, which is a second (independent) relation between the
unknowns. This is sufficient to solve for q′ and q′′. Inserting the last relation into the first
we find

ε1(q − q′) = ε2(q + q′)⇒ q′ =
ε1 − ε2
ε1 + ε2

q (5.6.26)

and therefore

q′′ =
2ε2

ε1 + ε2
q (5.6.27)

Finally requiring the continuity of the tangential component of ~E, which we can take to
be either its y− or z− component, gives nothing new, for (taking the y−components)

(q + q′)y

4πε1r3
d

=
q′′y

4πε2r3
d

(5.6.28)

gives the same constraint as did the continuity of φ(~r).

5.7 Electrostatic Energy of a Charge distribution

We now turn to a key property of charge distributions that we have completely ignored so
far, the energy. We have pretended that a static charge distribution was given to us, but
not asked the question of how the distribution may come into being. Collecting charges
in a distribution involves performing a certain amount of work. Charges exert forces on
one another and this alone tells us that every charge in a distribution will have a certain
potential energy, equal to the work required to bring the charge from some standard fixed
point to its final location within the distribution. To make the situation as general as
possible, let us consider arbitrary distributions of charge placed in an external electric
field, which we will denote by the superscript “ext”. Such a distribution has two sources
of energy, attributable to
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• the external field and

• the internal field of the other charges in the distribution.

The first is easily calculated. If φext(~r) represents the electrostatic potential of the external
field then an infinitesimal charge placed in this field would have a potential energy

dU ext(~r′) = dq(~r′)φext(~r′) (5.7.1)

Expressing dq(~r′) in terms of the density of charge, ρ(~r′), and summing over all charges
in the distribution we have

U ext =

∫
V
d3~r′ ρ(~r′)φext(~r′) (5.7.2)

where the integration is carried out over the entire volume of the distribution. If the
distribution is discrete, the analogous expression for the potential energy is

U ext =
∑
j

qjφ
ext(~rj) (5.7.3)

The calculation of the internal potential energy (or self energy) of a distribution is more
complicated because every time a charge is placed at a given location it changes the electric
field of the distribution itself.

The self-energy of a distribution will be constructed relative to the potential energy of
the charges when all are separated by an infinite distance from each other.

5.7.1 Electrostatic self-energy of a discrete distribution

Imagine that we bring the charges from infinity to their final locations within the distri-
bution one by one. No work is expended in bringing in the first charge. However, to bring
in the second charge we must work against the electric field due to the first, thus

U2 =
q1q2

4πε0|~r2 − ~r1|
(5.7.4)

While bringing in the third charge we work against the combined field of the first and the
second,

U3 =
1

4πε0

[
q1q3

|~r3 − ~r1|
+

q2q3

|~r3 − ~r1|

]
(5.7.5)

If we go on in this way, the energy expended in bringing in the kth charge is

Uk =
k−1∑
j=1

qjqk
4πε0|~rk − ~rj |

(5.7.6)
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Summing up the contributions to the energy expended in bringing in each and every charge
to its specified location within the distribution gives the self energy of the distribution

U =
N∑
k=1

k−1∑
j=1

qjqk
4πε0|~rk − ~rj |

=
N∑
k=1

k−1∑
j=1

Ujk (5.7.7)

The matrix Ujk is symmetric, so we can write

U =
1

2

N∑
j,k=1, j 6=k

Ujk =
1

2

N∑
j,k=1, j 6=k

qjqk
4πε0|~rk − ~rj |

(5.7.8)

where we omit the term j = k. Again, since

φk(~rk) =
∑
j 6=k

qj
4πε0|~rk − ~rj |

(5.7.9)

is the electric potential due to all the other charges (excluding qk) at the location of charge
qk, we can write this expression as

U =
1

2

N∑
k=1

qkφk (5.7.10)

Although we have imagined constructing a distribution of charges in a vacuum, this final
expression holds even if the distribution is created in a region of space that is filled with
one or more dielectric media. In that case, φk is the electric potential subject to whatever
boundary conditions may be present.

5.7.2 Electrostatic energy of a system of conductors

If we replace the point charges with conductors the electrostatic energy of the system of
isolated conductors is just

U =
1

2

∑
j

Qjφj (5.7.11)

where Qj is the total charge on the jth conductor and φj is its constant electrostatic
potential. The electric potential of any conductor is a linear function of all the charges
present in the system. We can express this statement as

φi =
∑
j

pijQj (5.7.12)
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where pij are called the coefficients of potential and depend in a complicated way on the
distribution and geometry of the conductors, but they are independent of the charges. This
statement follows quite trivially from the linearity of Laplace’s equation, which implies
that its solutions are superposable. The coefficients of potential satisfy the following three
conditions: (a) pij > 0 ∀ i, j, (b) pii ≥ pij ∀ j and (c) pij = pji (the matrix p̂ is symmetric).
We will now prove these statements.

• pii ≥ pij > 0 ∀ i, j. Consider a situation in which only one of the conductors, say
i, is charged and all the other conductors are uncharged. Let the charge on i be Qi
(which we take to be positive, for convenience). The charged conductor acts as a
source for the potential in all of space. In particular the potentials on any conductor
will be

φj = pjiQi (5.7.13)

We want to argue that φj is positive. Now since all potentials are measured with
respect to a zero potential reservoir and since only conductor i is charged, every field
line of displacement will originate on it and flow into the zero potential reservoir,
possibly by way of other conductors. Thus φi > 0 which implies that pii > 0. On the
other hand, every line of electric displacement that enters a conductor other than
i will have originated on i and every line leaving that conductor will be flow into
the zero potential reservoir, again possibly by way of some other conductor. Thus
φj > 0 ∀ j, or pii > pij > 0 ∀j.

Suppose j in the above argument is completely shielded by another conductor, say k.
This can occur if j lies wholly within the conducting shell that is k. Then the electric
field in the region between the conductors is identically zero by Gauss’ law, implying
that the two conductors are at the same potential, i.e., pij = pik. In particular, if
the shielding conductor is i itself then pii = pij . The argument is independent of
the number of charged conductors and, combined with the result of the previous
paragraph, proves the statement pii ≥ pik > 0.

• pij = pji. This follows directly from the energy of the system of conductors

U =
1

2

N∑
i,j=1

pijQiQj (5.7.14)

Let us imagine changing the charge on conductor m by dQm. The change in energy
would be

dU =
1

2

N∑
j=1

(pmj + pjm)QjdQm (5.7.15)
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But we can compute this change in energy by calculating the work that must be
done to bring the charge dQm from a zero potential reservoir to the conductor m.
This is just

dU = dQmφm =
N∑
j=1

pmjQjdQm (5.7.16)

We find that
1

2
(pmj + pjm) = pmj ⇒ pjm = pmj (5.7.17)

The conditions satisfied by pij are sufficient to ensure that the determinant of p̂ does not
vanish, therefore the matrix p̂ may be inverted to obtain the charges as linear functions
of the potentials,

Qi =
∑
j

Cijφj (5.7.18)

The Cij are called the coefficients of capacitance. The diagonal elements are called the
capacitances and the off diagonal elements are called the coefficients of electrostatic in-
duction. The matrix Ĉ will inherit its properties from the matrix p̂.2 The energy of the
system of conductors can be written in terms of the coefficients of capacitance as

U =
1

2

∑
jk

Cjkφjφk (5.7.19)

As an example, consider the description of an electronic device called the “capacitor”. It
consists of a pair of conductors with equal and opposite charges, Q and −Q at potentials
V1 and V2 respectively. We should have Q

−Q

 =

C11 C12

C21 C22

V1

V2

 (5.7.20)

or

V1 = −Q(C11 + C21)

C11C22 − C2
12

V2 =
Q(C12 + C22)

C11C22 − C2
12

(5.7.21)

so that

∆V = V2 − V1 =
Q(C11 + 2C12 + C22)

C11C22 − C2
12

(5.7.22)

2Problem: Determine the properties of the coefficients of capacitance from those of the coefficients of
potential.
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Figure 5.9: Dielectric media with conducting surfaces

and
Q

∆V
=

C11C22 − C2
12

(C11 + C22 + 2C12)
= C (5.7.23)

is often called the “capacitance” of the capacitor.3

5.7.3 Electrostatic energy of a continuous distribution

Obviously the same conditions would apply to a continuous distribution. Imagine that a
continuous distribution is constructed from scratch inside a region that is filled by one or
more dielectric media and containing one or more conductors [see figure (5.9)]. Following
similar reasoning and putting together infinitesimal charges, we arrive at

U =
1

2

∫
V
d3~r′ ρf(~r

′)φ(~r′) +
1

2

∮
S
d2~r′ σf(~r

′)φ(~r′) (5.7.24)

where ρf(~r) and σf(~r) are just the volume and surface densities of the free charges in the
distribution, V is the total volume of the dielectric media (excluding the conductors) and
S is the surface bounding V . If there are M conductors embedded within the dielectrics,
S = S′ + S1 + S2 + ...SM . φ(~r) is the electrostatic potential due to the entire charge
distribution, bound and free, and subject to whatever boundary conditions are appropriate
for the system. Note however that the expression only accounts for the work that is done
on the free charge, and does not account for work that is necessary to produce a certain
state of polarization in the medium.

We will now make two simplifying assumptions, viz.,

3Problem: Compute the energy of the capacitor.
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• all the free surface charges lie on interfaces with conductors that may be present in
the dielectrics (such interfaces will be called conducting surfaces as opposed to the
non-conducting surfaces which would be interfaces between the dielectrics), and

• the free charge is bounded.

With the first assumption,

U =
1

2

∫
V
d3~r′ ρf(~r

′)φ(~r′) +
1

2

∮
S1+S2+...

d2~r′ σf(~r
′)φ(~r′) (5.7.25)

because no other surface will contribute to the energy integral. On the other hand, with
help from Gauss’ law for dielectrics, the expression for the volume density of free charge

ρf = ~∇ · ~D (5.7.26)

and the expression for the surface density of free charge,

σf = −n̂ · ~D (5.7.27)

where n̂ is the unit normal vector normal to the conducting surface and directed out of
the dielectric (hence the negative sign), we may rewrite the volume charge density and
the surface charge density on the conducting surfaces in terms of the electric displacement
vector

U =
1

2

[∫
V
d3~r′ [~∇′ · ~D(~r′)]φ(~r′)−

∮
S1+S2...

d2~r′ [n̂′ · ~D(~r′)]φ(~r′)

]
(5.7.28)

In the first integral, we could replace the divergence of ~D by

(~∇′ · ~D)φ = ~∇′ · (φ~D)− (~∇′φ) · ~D = ~∇′ · (φ~D) + ~E · ~D (5.7.29)

and use Gauss’ theorem to write the volume integral of the divergence as a surface integral,
with the result∫

V
d3~r′ ~∇′ · [φ(~r′) ~D(~r′)] =

∫
S′+S1+S2+...

d2~r′ [n̂′ · ~D(~r′)]φ(~r′) (5.7.30)

since Gauss’ theorem requires a unit outgoing normal. It should be evident that we will
be left only with a surface integral over the non-conducting outer surface S′, plus the
contribution from the second term in (5.7.29). If our charge distribution is bounded the
electric potential falls off inversely as the distance from the distribution, i.e., as r−1 and
the electric displacement vector as r−2 whereas the area grows as r2, the surface integral
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over S′ will fall off as r−1 and, if this outer surface is taken to infinity, the integral over
S′ also vanishes. Under these conditions,

U =
1

2

∫
V
d3~r′ ~E(~r′) · ~D(~r′) (5.7.31)

where the integration is over all dielectrics (external to the conductors), but may be
extended to all of space because the electric field inside a conductor vanishes. We are led
therefore to the concept of the energy density of the electrostatic field, which we define as

u =
1

2
~D · ~E (5.7.32)

This expression is valid only for linear dielectrics. Otherwise the energy of the final
configuration must be calculated as follows: consider an infinitesimal change in energy
due to some change in the macroscopic free charge density ρ existing in all of space. The
work done to accomplish this change is

δW = =

∫
d3~r′ δρf (~r′)φ(~r′) =

∫
d3~r′ ~∇ · δ ~D(~r′)φ(~r′)

=

∫
d3~r′

[
~∇ · {δ ~D(~r′)φ(~r′)}+ δ ~D(~r′) · ~E(~r′)

]
(5.7.33)

The first term is a surface integral which may be made to vanish by taking the surface
out to infinity. The total electrostatic energy can be written formally by allowing ~D to be
brought the initial value ~D = 0 to its final value ~D:

W =

∫
d3~r′

∫ D

0

~E(~r′) · δ ~D(~r′) (5.7.34)

If the medium is not linear, this integral will, in general, depend on the process by which
~D is brought from zero to its final value, i.e., it will depend on the past history of the
system (hysteresis).

5.8 Energy of a linear dielectric in an external field

An interesting problem is of the change in energy when a linear dielectric object is placed
in an external electric field with fixed sources. For simplicity, we assume that the the
dielectric is absent initially and the medium is just the vacuum in which there is an initial
electric field is ~E0, sourced by charges which are described by the density ρ0. The initial
energy of the system is then

W0 =
1

2

∫
d3~r( ~E0 · ~D0) (5.8.1)
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where ~D0 = ε0 ~E. When the dielectric, of volume V , is introduced into the initial vacuum,
the electric field gets modified to ~E and the displacement to ~D = ε(~r) ~E. We have included
a dependence of ε on ~r to indicate that it changes outside the dielectric. We will assume
that ε(~r) is a smooth function, changing rapidly but continuously at the boundary of the
dielectric. This is only to avoid mathematical complications that are not intrinsic to the
physical problem at hand. The energy is now

W =
1

2

∫
d3~r( ~E · ~D) (5.8.2)

and the change in energy is

W −W0 =
1

2

∫
d3~r( ~E · ~D − ~E0 · ~D0)

=
1

2

∫
d3~r( ~E + ~E0) · ( ~D − ~D0) +

1

2

∫
d3~r( ~E · ~D0 − ~E0 · ~D) (5.8.3)

The first integral vanishes because, by superposition and the conservation of ~E and ~E0,
we can set ~E + ~E0 = ~∇φ giving for the first term

1

2

∫
d3~r~∇φ · ( ~D − ~D0) = −1

2

∫
d3~rφ~∇ · ( ~D − ~D0) (5.8.4)

where we have ignored the surface term in going to the right hand expression because we
take the integration surface to infinity. This expression vanishes if no new free charge has
been introduced. The energy change is therefore

W −W0 = ∆W =
1

2

∫
d3~r( ~E · ~D0 − ~E0 · ~D) =

∫
d3~r(ε− ε0) ~E · ~E0 (5.8.5)

While the integration appears to be over all of space it is really only over the region of
space where ε 6= ε0, i.e., over V , the volume of the dielectric that was introduced. It
follows that

∆W = −1

2

∫
V
d3~r ~P · ~E0 (5.8.6)

where ~P is the polarization of the dielectric. The energy density of the electric field has
changed by

w = −1

2
~P · ~E0 (5.8.7)

which must be the potential energy of the dielectric. This should be compared with the
corresponding result for a dipole in an external electric field (2.3.16). It differs by a factor
of 1

2 , which accounts for the work done by the field to polarize the medium in the first
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place. The result shows that the dielectric will move toward regions of increasing field E0,
provided ε > ε0.

A consequence of this discussion is that dielectric media will experience forces, tending
to move toward regions of increasing field. If the sources of the applied external field are
maintained fixed there is no external source of energy and the change in energy can be
interpreted as the potential energy acquired by the dielectric medium. The force acting
on a dielectric medium is then simply

~F = − ~∇(∆W )
∣∣∣
Q

(5.8.8)

where the subscript is used to indicate that the sources are held fixed.

5.9 Multipoles: The multipole expansion

In describing dielectric media, it was sufficient to consider only the electric potential due
to dipoles. This is of course just an approximation in which the molecules of the material
are presumed neutral and the dipole approximation was used as the leading macroscopic
effect of distorting the molecules of the medium by the application of an external field.
Higher order effects also exist and the purpose of this chapter is to classify and examine
them in some detail.

Begin by considering the expression for the electrostatic potential due to some distri-
bution of charge when no non-trivial boundaries are present,

φ(~r) =
1

4πε0

∫
d3~r′

ρ(~r′)

|~r − ~r′|
(5.9.1)

where

|~r − ~r′|−1 =
[
r2 + r′2 − 2~r · ~r′

]−1/2
(5.9.2)

Let the origin of coordinates be located “near” the charge distribution and let the obser-
vation take place far from the source distribution, which is assumed to be localized so that
r � r′ for all points ~r′ locating an element of charge, then

|~r − ~r′|−1 =
1

r

[
1 +

(
r′

r

)2

− 2~r · ~r′

r2

]−1/2

(5.9.3)

Using the generalized binomial expansion

(1 + x)a = 1 + ax+
a(a− 1)

2!
x2 +

a(a− 1)(a− 2)

3!
x3 + ... (5.9.4)
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or, equivalently

(1 + x)−1/2 = 1− 1

2
x+

3

8
x2 − 5

16
x3... (5.9.5)

In the case we are examining, x = (r′/r)2 − 2(~r · ~r′)/r2, so we find

1

|~r − ~r′|
=

1

r

[
1− 1

2
{(r′/r)2 − 2(~r · ~r′)/r2}+

3

8
{(r′/r)2 − 2(~r · ~r′)/r2}2 + ....

]
=

1

r
+
~r · ~r′

r3
+

1

2r5
[3(~r · ~r′)2 − r′r2] + ... O(r−4) (5.9.6)

and the electrostatic potential (5.9.1) becomes

φ(~r) =
1

4πε0

∫
d3~r′ ρ(~r′)

[
1

r
+
~r · ~r′

r3
+

1

2r5
[3(~r · ~r′)2 − r′2r2] + ... O(r−4)

]
(5.9.7)

The first term can be written as

φ0(~r) =
Q

4πε0r
(5.9.8)

where Q =
∫
d3~r′ρ(~r′) is the total charge of the distribution. To this order the solution

behaves as a point charge located at the origin of the coordinates. This is called the
“monopole?’ contribution. The second term in the expansion is

φ1(~r) =
1

4πε0r3
~r ·
∫
d3~r′ ρ(~r′)~r′ (5.9.9)

so, taking into account the definition of the electric dipole moment ~p in (2.2.4), it can be
written as

φ1(~r) =
~p · ~r
r3

(5.9.10)

which will be recognized as the electric potential due to an electric dipole located at the
origin. It is called the electric “dipole” contribution. The third term can be rewritten as

φ2(r) =
1

8πε0r5

∑
ij

xixj

∫
d3~r′ρ(~r′)[3x′ix

′
j − r′2δij ] =

1

8πε0r5

∑
ij

Qijxixj (5.9.11)

where the integral

Qij =

∫
d3~r′ρ(~r′)[3x′ix

′
j − r′2δij ] (5.9.12)

is called the quadrupole moment tensor of the distribution. One can continue in this
fashion to obtain higher moments of the distribution, each correction getting suppressed
by an additional factor of 1/r.
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Figure 5.10: Quadrupole moment distribution.

It is interesting to understand the physical significance of this expansion. At very
large distances from the distribution (i.e., distances much larger than the characteristic
dimension of the distribution itself), it acts as a point charge to zeroeth order. The first
correction to the effective point charge is the dipole term, which can be interpreted as
the potential due to two charges separated by some distance that is characteristic of the
distribution. The next correction is the quadrupole term and so on.

We will now show that the quadrupole term can be interpreted as the lowest order
electric potential far from a distribution of four charges of equal magnitude located on
the vertices of a square of characteristic length a as shown in figure (5.10). Locating
the origin of coordinates at the lower left charge, the two positive charges are, say, at
positions ~r1 = (a, 0, 0) and ~r2 = (0, a, 0) and the diagonally opposite (negative) charge is
at ~r3 = (a, a, 0). The electric potential at any point ~r is then

φ(~r) =
q

4πε0

[
− 1

|~r|
+

1

|~r − ~r1|
+

1

|~r − ~r2|
− 1

|~r − ~r3|

]
(5.9.13)

Expanding the right hand side for a/r � 1,

|~r − ~ri|−1 = r−1

[
1 +

r2
i

~r2
− 2

~r · ~ri
r2

]−1/2

≈ r−1

[
1 +

~r · ~ri
r2

+
1

2r4
{3(~r · ~ri)2 − r2

i r
2}+ ...

]
(5.9.14)

where we have retained only the first three terms. The first is the monopole term, the
second is the dipole term and so on. It can be checked that the monopole term and the
dipole term vanish identically, giving the lowest order contribution from the third term
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(the quadrupole term) on the right hand side,

φ(~r) =
1

8πε0r5

∑
i

qi[3(~r · ~ri)2 − r2
i r

2] (5.9.15)

All the moments can all be interpreted in this way as the lowest order contributions to
the electric potentials due to 2n charges.

The moments of a distribution depend upon the manner in which the charges are
distributed about the origin. For example, consider a single charge located away from the
origin at ~r0. It admits all multipoles as long as ~r0 6= 0. In general the multipole expansion
depends on the choice of origin, only the the lowest order multipole being independent of
it.



Chapter 6

Currents and the Magnetic Field

Up until now we ave examined only static charges and charge distributions. When charges
are in motion the two laws of electrostatics,

~∇ · ~D = ρf ⇔
∮
S

~D · d~S = qf, (Gauss)

~∇× ~E = 0 ⇔
∮

~E · d~r = 0 (6.0.1)

where qf is the free charge, will be modified and enhanced by effects that are peculiar to
the motion of the charges.

6.1 Current and Current Density

Moving charges constitute a current, which is defined in the following way. Consider some
arbitrary surface S and let ∆Q represent the charge hat is transported across S in time
∆t, then

i = lim
∆t→0

∆Q

∆t
=
dQ

dt
(6.1.1)

is called the current across S and is measured in amperes: a current of 1 Ampere is said
to have flowed when a charge of 1 Coulomb is transported across S in 1 second. Charge
in materials is usually transported by electrons (carrying a negative charge of 1.6× 10−19

C) and/or “holes” i.e., atoms that have lost an electron in the outermost shell and are
therefore positively charged. We will consider such objects as “charge carriers”. Let there
be n charge carriers per unit volume of the material, each with a charge q, and let 〈~v〉
represent the average (drift) velocity of the carriers. Of course, individual carriers will
move more or less randomly about this mean velocity. The net effect of the random
motion will be ignorable and only 〈~v〉 will be relevant. Consider first, a surface δS, whose

114
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+

n
<v>

Figure 6.1: Normal to S is parallel to 〈~v〉.

n

<v>

Figure 6.2: Normal to S is not parallel to 〈~v〉.

normal is parallel to 〈~v〉, as in figure (6.1). The total number of charge carriers that are
transported across the surface δS in a time ∆t is then the number of carriers contained in
a volume 〈~v〉∆tδS, i.e.,

∆N = n〈~v〉∆tδS (6.1.2)

The number of carriers crossing the surface δS per unit time is then

δν =
∆N

∆t
= n〈~v〉δS (6.1.3)

and the current across δS is consequently δi = nq〈~v〉δS. More generally, if the normal n̂,
of δS, is not parallel to 〈~v〉, as in figure (6.2), then

δν =
∆N

∆t
= n(〈~v〉 · n̂)δS ⇒ δi = nq(〈~v〉 · n̂)δS (6.1.4)

and, most generally, if there are also several types of charge carriers,

δi =
∑
i

niqi〈~vi〉 · n̂δS (6.1.5)



116 CHAPTER 6. CURRENTS AND THE MAGNETIC FIELD

where qi is the charge carried by carrier type i with number density ni and drift velocity
〈~vi〉. The quantity

~j =
∑
i

niqi〈~vi〉, (6.1.6)

is called the current density, in terms of which one might express the current

i =

∫
S

~j · d~S. (6.1.7)

In applications, the current density is the more convenient of the two quantities measuring
the transport of charge.

Consider now a closed surface S. The net charge contained in the volume enclosed by
S is simply given by

Q =

∫
V
d3~r ρ(~r, t) (6.1.8)

where ρ is the volume density of charge. Now the rate of change of the charge contained
in S

dQ

dt
=

∫
V
d3~r

∂ρ

∂t
(6.1.9)

must be equal to the rate at which charge flows into or out of S. This is expressed by∫
V
d3~r

∂ρ

∂t
= −

∮
S

~j · d~S = −
∫
V
d3~r ~∇ ·~j (6.1.10)

The minus sign appears because if charge is leaving the bounded volume, then 〈~v〉 and
hence ~j is outgoing, i.e., the surface integral of ~j over S is positive while the rate of
change of Q is negative and vice versa. We therefore obtain the continuity equation,
which expresses the conservation of charge

∂ρ

∂t
+ ~∇ ·~j = 0 (6.1.11)

This simple equation will shortly become crucial in determining the consistency of the
equations of the electromagnetic field.

6.2 The Magnetic Field

Charges that are in motion with respect to the observer give rise to a new field called
the magnetic field and denoted by ~B. The magnetic field and the electric field will later
be combined into one field called the electromagnetic field, but at present we will treat
them separately. The presence of a magnetic field implies that other charges in motion
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Figure 6.3: Charges flowing in a conducting wire.

experience a Newtonian force. This force can be used to define the magnetic field, just as
the electrostatic force was earlier used to define the electrostatic field. A charge q with
velocity ~v relative to the laboratory frame in which there is a magnetic field, denoted by
~B, experiences a force given by

~Fm = q~v × ~B. (6.2.1)

If there is both an electric and a magnetic field present, the total force acting on q is

~F = q( ~E + ~v × ~B) (6.2.2)

This is called the “Lorentz force” on q.

6.3 Force and torque on a current carrying conductor

Consider a typical situation in which many charge carriers, say n per unit volume, with
drift velocity 〈~v〉 with respect to the Lab frame in which there is a magnetic field ~B. We
will think of the charges as flowing through some conducting element of a circuit (figure
(6.3)), then the net charge contained in a volume δV = A|δ~r| is

δq = qn|δ~r|A (6.3.1)

and the force acting on the length δ~r of the wire will be given by

δ ~F = qnA|δ~r|〈~v〉 × ~B (6.3.2)

If, now, we choose the direction of δ~r to be the same as the direction of 〈~v〉 we find

δ ~F = qnA|〈~v〉|︸ ︷︷ ︸ δ~r × ~B = iδ~r × ~B (6.3.3)
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Integrating over the circuit we would find the total force

~Fcirc = i

∮
C
d~r × ~B (6.3.4)

Further, if ~r is the position vector of the circuit element, the torque experienced by it in
the presence of the magnetic field is

δ~τ = ~r × δ ~F = i~r × (δ~r × ~B) (6.3.5)

Integrating over the entire circuit gives the net torque

~τcirc = i

∮
~r × (d~r × ~B) (6.3.6)

This expression can be greatly simplified if the magnetic field is uniform at least over the
area enclosed by the current loop. Suppose, without loss of generality, that the magnetic
field points in the ẑ direction and consider the identity

~r × (δ~r × ~B) + ~B × (~r × δ~r) + δ~r × ( ~B × ~r) = 0 (6.3.7)

(cyclic permutations), which implies that∮
C
~r × (d~r × ~B) =

∮
C

(~r × d~r)× ~B +

∮
( ~B × ~r)× d~r (6.3.8)

Now

(~r × d~r)× ~B = B(zdx− xdz, zdy − ydz, 0) (6.3.9)

and because ∮
C
d(xz) = 0 =

∮
C
zdx+

∮
C
xdz ⇒ −

∮
C
xdz =

∮
C
zdx (6.3.10)

we have ∮
C

(~r × d~r)× ~B = 2B

(∮
C
zdx,

∮
C
zdy, 0

)
(6.3.11)

With the same argument,∮
C

( ~B × ~r)× d~r = B

(
−
∮
C
zdx,−

∮
C
zdy, 0

)
(6.3.12)

showing that in this case ∮
C

( ~B × ~r)× d~r = −1

2

∮
C

(~r × d~r)× ~B (6.3.13)
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i dr
j d  r

3

Figure 6.4: Circuits replaced by current carrying regions.

Therefore,

~τcirc =
i

2

∮
C

(~r × d~r)× ~B = i ~A× ~B = ~µ× ~B (6.3.14)

where

~A =
1

2

∮
C
~r × d~r (6.3.15)

is the area enclosed by the circuit. The quantity ~µ = i ~A is called the magnetic moment
of the current carrying loop.

6.4 Magnetostatics: The Biot-Savart Law

Our next question is obviously to determine how the magnetic field itself depends upon
the motion of charges. After a series of experiments, the French mathematicians André
Marie Ampère and Jean-Baptiste Biot with his assistant Savart, which has since come
to be known as the Biot-Savart Law. This law may be stated as follows: if C1 and C2

represent two circuits in which flow currents i1 and i2 respectively, then the force exerted
on circuit “2” by circuit “1” is given by

~F1→2 =
µ0

2π
i1i2

∮
C1

∮
C2

d~r2 × [d~r1 × (~r2 − ~r1)]

|~r2 − ~r1|3
(6.4.1)

We may now compare this complicated force law with our expression (6.3.4) and determine
the magnetic field at the point labeled “2” on circuit C2 due to the current flowing through
C1. It is simply

~B(~r) =
µ0

2π
i1

∮
C1

d~r1 × (~r − ~r1)

|~r − ~r1|3
(6.4.2)

(where we have simply replaced ~r2 by ~r). Now we can rid ourselves of the explicit reference
to circuits and conductors, since it is really the current i.e., the charges in motion that
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generates the magnetic field, by replacing id~r → ~jd3~r as depicted in figure (6.4), which
gives

B(~r) =
µ0

2π

∫
V
d3~r′

~j(~r′)× (~r − ~r′)
|~r − ~r′|3

(6.4.3)

An important consequence is the following law (Gauss’ law for the magnetic field)

~∇ · ~B ≡ 0 (6.4.4)

This is very easy to prove. Simply take the divergence1

~∇ · ~B =
µ0

2π

∫
V
d3~r′ ~∇ ·

~j(~r′)× (~r − ~r′)
|~r − ~r′|3

= −µ0

2π

∫
V
d3~r′ ~j(~r′) · ~∇× ~r − ~r′

|~r − ~r′|3
≡ 0 (6.4.5)

because the last integral is seen to be the curl of the gradient of a potential.2

A second consequence is difficult to prove, but it may be done quite rigorously: let C
be a closed curve through which there is a non-vanishing and steady current, i, then∮

C

~B · d~r = µ0i (6.4.6)

This is Ampère’s law. It may be put into differential form quite easily by exploiting Stoke’s
theorem ∮

~B · d~r =

∫
S

~∇× ~B · d~S = µ0i = µ0

∫
S

~j · d~S

⇒ ~∇× ~B = µ0
~j (6.4.7)

To summarize then we have four equations that seem to define the electromagnetic field
in steady state, viz.,

~∇ · ~E =
ρ

ε0

~∇× ~E = 0

1Also make use of the identity (for any two vectors ~a and ~b): ~∇ · (~a ×~b) = (~∇ × ~a) ·~b − ~a · (~∇ × b),
taking ~a ≡ ~j and ~b ≡ (~r − ~r′)/|~r − ~r′|3.

2Notice that
(~r − ~r′)
|~r − ~r′|3 = −~∇φ, φ =

1

|~r − ~r′|
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~∇ · ~B = 0

~∇× ~B = µ0
~j (6.4.8)

Of these, the second and fourth will be modified in situations that are not steady. The
second equation was modified by Faraday through careful experimentation and the last by
Maxwell through purely theoretical arguments involving consistency. It is worth noting
however that the first and third equations are unaffected and therefore final. The third
equation implies that the magnetic field may be expressed as the rotation of another vector
field, which we will call the magnetic vector potential, as

~B = ~∇× ~A (6.4.9)

The magnetic vector potential is the magnetic analogue of the electric scalar potential.
One can obtain an expression for the magnetic vector potential in terms of the current
density by exploiting the expression for the magnetic field in (6.4.3):

B(~r) =
µ0

2π

∫
V
d3~r′

~j(~r′)× (~r − ~r′)
|~r − ~r′|3

= −µ0

2π

∫
V
d3~r′ ~j(~r′)× ~∇ 1

|~r − ~r′|

=
µ0

2π
~∇×

∫
V
d3~r′

~j(~r′)

|~r − ~r′|
(6.4.10)

where we have used ~∇× (φ~a) = ~∇φ× ~a+ φ~∇× ~a. It follows from its definition that the
most general form of the vector potential is

~A(~r) =
µ0

2π

∫
V
d3~r′

~j(~r′)

|~r − ~r′|
+ ~∇Ψ, (6.4.11)

where Ψ(~r) is an arbitrary scalar field. The freedom to add the gradient of an arbitrary
scalar field is a consequence of the fact that the rotation of a gradient vanishes, so the
second term gives no contribution to physical magnetic field. This implies an arbitrariness
in the definition of the magnetic field since for a given ~B the vector potential can be freely
transformed according to

~A→ ~A+ ~∇Ψ (6.4.12)

This is called a gauge transformation. The vector potential satisfies the equation

~∇× ~B = −~∇2 ~A+ ~∇(~∇ · ~A) = µ0
~j (6.4.13)

Taking the divergence of (6.4.11) gives

~∇ · ~A =
µ0

2π

∫
V
d3~r′ ~j(~r′) · ~∇ 1

|~r − ~r′|
+ ~∇2Ψ
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= −µ0

2π

∫
V
d3~r′ ~j(~r′) · ~∇′ 1

|~r − ~r′|
+ ~∇2Ψ

= −µ0

2π

∫
V
d3~r′ ~∇′ ·

~j(~r′)

|~r − ~r′|
+
µ0

2π

∫
V
d3~r′

~∇′ ·~j(~r′)
|~r − ~r′|

+ ~∇2Ψ

= −µ0

2π

∮
S
dS

~j(~r′) · n̂
|~r − ~r′|

+
µ0

2π

∫
V
d3~r′

~∇′ ·~j(~r′)
|~r − ~r′|

+ ~∇2Ψ. (6.4.14)

Now the second term vanishes by virtue of the fact that ~∇′ · j(~r′) = 0. If further there
are no currents on the bounding surface, S, we find that any choice of Ψ that satisfies
Laplace’s equation will ensure

~∇ · ~A = 0. (6.4.15)

On the other hand, if the first term does not vanish we let

~∇2Ψ =
µ0

2π

∮
S
dS

~j(~r′) · n̂
|~r − ~r′|

, (6.4.16)

again giving ~∇ · ~A = 0.3 Therefore the vector potential may quite generally be taken to
satisfy

~∇2 ~A = −µ0
~j. (6.4.17)

It is clear that the solution presented in (6.4.11) is a particular solution of the magne-
tostatic problem in the same sense as (2.5.4) is a particular solution of the electrostatic
problem.

Finally, in regions where ~j(~r) = 0,

~B = −µ0
~∇Φ∗. (6.4.18)

solves ~∇ × ~B = 0. The scalar function Φ∗(~r) is called the magnetic scalar potential.
Applying ~∇· ~B = 0 to (6.4.18) shows that the magnetic scalar potential satisfies Laplace’s
equation

~∇2Φ∗ = 0 (6.4.19)

which is the exact analogue of vacuum electrostatics. Therefore much of the work we have
done in electrostatics is directly applicable here. However, care must be taken with the
boundary conditions as we will shortly see.

3The choice ~∇ · ~A = 0 is called the Coulomb gauge.
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Figure 6.5: An infinite current carrying conductor

6.5 Simple Applications

6.5.1 An infinitely long current carrying wire

Suppose we desire the magnetic field close to a current carrying conductor. By “close”
we mean that the perpendicular distance from the conductor is small compared with the
length of the conductor itself. In this case we may consider the conductor to be effectively
an infinite line of current. Let the point P , at which we desire the field be a perpendicular
distance a from the the line of current as shown in figure (6.5) If ~r represents the vector
−−→
BP , and if ~r′ is the vector

−−→
BA, then ~r − ~r′ is the vector from the element d~r′ of the

conductor to P and we can write (two dimensions suffice)

~r = (0, a), ~r′ = (x, 0), ~r − ~r′ = (−x, a) (6.5.1)

so that the Biot-Savart law (6.4.2) takes the form

~B(~r) =
µ0i

4π

∫ ∞
−∞

adx

(x2 + a2)3/2
ẑ (6.5.2)

The integral is solved by the substitution x = a tan η; we find

~B =
µ0i

2πa
ẑ (6.5.3)

In fact, since our choice of x− y plane is completely arbitrary it should be clear that

~B = − µ0i

2πa
θ̂ (6.5.4)

in spherical coordinates, where θ̂ is the unit vector in the direction of increasing polar
angle.
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Figure 6.6: A circular loop

6.5.2 A current loop

Consider a current loop of radius a and a point, situated on its axis of symmetry at a
distance z from its plane as shown in figure (6.6). Imagine that the current is flowing in
a counter-clockwise fashion around the loop and that we are interested in the magnetic
field at the point P . Writing,

~r = (0, 0, z)
~r′ = (a cosϕ, a sinϕ, 0)
~r − ~r′ = (−a cosϕ,−a sinϕ, z)
d~r′ = (−a sinϕ, a cosϕ, 0)dϕ
d~r′ × (~r − ~r′) = (az cosϕ, az sinϕ, a2) (6.5.5)

gives

~B =
µ0i

4π

∮
C

(az cosϕ, az sinϕ, a2)

(a2 + z2)3/2
dϕ (6.5.6)

The first two components integrate to zero over a closed loop and the last component gives
2π when integrated, so that

~B =
µ0i

2

a2ẑ

(a2 + z2)3/2
(6.5.7)
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Figure 6.7: A solenoid

6.5.3 A solenoid

The field on the axis of a solenoid is produced by a number of loops that are tightly
packed. We imagine that the loops are of negligible thickness (i.e., the thickness of the
loop is small compared with the length of the solenoid). Let L be its length and let N be
the total number of loops so that n = N/L is the (linear) density of loops in the solenoid.
This means that there are ndx loops in a length dx of the solenoid. If i is the current
flowing through the solenoid, the current flowing in a length dx will therefore be nidx and
will produce a field

~B(x0) =
µ0ni

2

∫ L

0

a2x̂dx

(a2 + (x− x0)2)3/2
(6.5.8)

where we have used the result of the previous calculation, replacing i→ nidx. The integral
is easy to solve4, and one gets

~B(x0) =
µ0ni

2
(sin θ2 − sin θ1) =

µ0ni

2

[
L− x0√

a2 + (L− x0)2
+

x0√
a2 + x2

0

]
x̂ (6.5.9)

Observe the symmetry x0 ↔ L − x0. In most practical applications, a � L and the
expression can be expanded as

~B(x0) ≈ µ0ni

[
1− a2

4x2
0

− a2

4(L− x0)2
+

3a4

16x4
0

+
3a4

16(L− x0)4
+ ...

]
x̂ (6.5.10)

4Problem: Solve it by making the substitution

(x− x0) = a tan θ

which gives limits

θ1 = − tan−1
(x0

a

)
, θ2 = tan−1

(
L− x0

a

)
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Figure 6.8: A Distant Circuit

If we are not too close to the edges so that a � x0 and a � (L− x0), we can neglect all
but the first term in square brackets to get the approximation

~B(x0) ≈ µ0nix̂. (6.5.11)

6.5.4 A Distant Circuit

Consider the magnetic field of an arbitrarily shaped circuit situated very far from the point
P at which the magnetic field is being observed (in figure 6.8, this means that |~r| >> |~r′|
and the typical dimension of the circuit itself.)

We can begin with the expression for ~B(~r) as given by the Biot-Savart law,

~B(~r) =
µ0i

4π

∮
C

d~r′ × (~r − ~r′)
|~r − ~r′|

3

(6.5.12)

or the expression for the magnetic vector potential

~A(~r) =
µ0i

4π

∮
C

d~r′

|~r − ~r′|
(6.5.13)

where C represents the circuit. It is better to start with the vector potential. Since we
are interested in distant points, consider the expansion

|~r − ~r′| =
√
r2 + r′2 − 2~r · ~r′
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1

|~r − ~r′|
= r−1

[
1 +

( r
r′

)2
− 2~r · ~r′

r2

]−1

=
1

r

[
1 +

~r · ~r′

r2
+O

(
r′

r

)2
]

(6.5.14)

Then inserting the expansion into the integral expression for the magnetic vector potential,
we find

~A(~r) =
µ0i

4πr

[∮
C
d~r′ +

1

r2

∮
C
d~r′(~r · ~r′) + ...

]
(6.5.15)

The first integral computed around a closed curve vanishes exactly. The only contribution
is from the second integral (up to the present order). We can simplify the integration by
noting that

(~r′ × d~r′)× ~r = (~r′ · ~r)d~r′ − (~r · d~r′)~r′ (6.5.16)

and further that
d[~r′(~r · ~r′)] = d~r′(~r · ~r′) + ~r′(~r · d~r′) (6.5.17)

where we have used the fact that ~r is fixed. Adding the two we get

(~r′ × d~r′)× ~r + d[~r′(~r · ~r′)] = 2(~r · ~r′)d~r′ (6.5.18)

The right hand side is, of course, what we want to integrate. On the left, the integral of
the total derivative around a closed loop gives zero. We conclude that

~A(~r) ≈ µ0i

4πr3

∮
C

(~r′ × d~r′)× ~r =
µ0

4πr3
(~µ× ~r) (6.5.19)

where ~µ is the magnetic moment of the circuit. The magnetic field ~B is the curl of ~A,

~B(~r) ≈ µ0

4π

[
~µ

(
~∇ · ~r

r3

)
− (~µ · ~∇)

~r

r3

]
(6.5.20)

But the first term vanishes and the expression may be simplified

~B(~r) =
µ0

4π

[
− ~µ
r3

+
3(~µ · ~r)~r

r5

]
(6.5.21)

6.6 Faraday’s Law

Recall that, for an electric field we have so far two laws, both derived from Coulomb’s law,
viz.,

~∇ · ~D = ρ (Gauss’ Law)
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Figure 6.9: Faraday Experiment I

~∇× ~E = 0 (The electrostatic force is conservative) (6.6.1)

Coulomb’s law is obtained from data involving only static charges. When charges are in
motion, the second law does not generally hold. Writing this law in integral form,

~∇× ~E = 0⇔
∮
C

~E · d~r = 0 (6.6.2)

and the quantity
∮
~E · d~r is the net work done in moving a unit charge around a closed

loop (circuit). It is called the electromotive force (which is a misnomer as it has units
of work/unit charge. In the presence of moving charges, Coulomb’s law breaks down and
we must define the electric field by the Lorentz force law

~F = q( ~E + ~v × ~B). (6.6.3)

Consider the crude version of Farady’s first experiment depicted in Figure (6.9) In the
figure, ©G represents a galvanometer. As long as the bar magnet is held stationary, no
deflection of the galvanometer needle is observed, indicating that no current is flowing
through the loop. When the magnet is moved so that there is a changing magnetic flux
across the surface enclosed by the loop a current is induced. The current is such that

• It changes direction as the current is moved “into” the loop and “out” of the loop,
indicating that the current is sensitive to whether the flux is increasing or decreasing.

• It changes direction if the north pole is substituted for the south pole and vice versa,
indicating that it is sensitive to the orientation of the magnetic field.
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Figure 6.10: Faraday Experiment II

• There is no induced current when the magnet is held still.

Apparently, a changing magnetic flux through a current loop induces a current through
it. Next, consider the set-up in figure (6.10)

• When switch S is in the off position, no current flows through either current loop.

• When switch S is turned on a current is produced in the loop on the right and a
current is induced in the loop on the left in the opposite direction.

• If the switch is left on, no current is induced in the loop on the left once the current
in the loop on the right has reached steady state.

• When the switch is turned off, a current is once again induced in the loop on the
left, but in the opposite direction.

We can think of the right loop as a source for a magnetic field. As the switch is turned on
the current steadily rises, causing the magnetic field to also increase in intensity. There is
therefore a varying magnetic flux through the left loop which generates a current in it in
such a direction as to decrease the net flux through the loop. When the switch is turned
off the current in the right loop steadily decreases and so does the magnetic field and flux
through the left loop. A current is induced in the left loop, again in such a direction as
would hold the flux through it steady.

The results of a large number of experiments point to the fact that when there is a
changing magnetic flux through a current loop, the electromotive force (e.m.f.) across the
loop is not zero but depends on the rate of change of the flux through it. Specifically, if
ΦB is the magnetic flux through the loop then∮

C

~E · d~r = E = −dΦB

dt
= − d

dt

∫
S

~B · d~S (6.6.4)
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Figure 6.11: Sliding rod

We can use Stoke’s theorem to write this equation as∫
S

(~∇× ~E) · d~S = −
∫
S

∂ ~B

∂t
· d~S (6.6.5)

or

~∇× ~E +
∂ ~B

∂t
= 0 (6.6.6)

which is a modification of the second equation at the beginning of this section and is
known as Faraday’s Law of Induction. The negative sign implies that the induced e.m.f.
is such as to generate a current which would oppose the change in magnetic flux. This
statement is encapsulated in the so-called Lenz’s law, which states: “Any change in a
magnetic system will cause things to happen that oppose the change.”

As an example of how this works, consider the simple example shown in figure (6.11)
in which the circuit is closed by a rod that is able to slide freely along the rails. The
magnetic field is constant and points into the plane of the page. As long as the rod is
stationary, no current is detected in the galvanometer. If the rod has a velocity v then

ΦB =

∮
S

~B · d~S = Blx (6.6.7)

assuming that the normal to S is taken into the plane of the paper. Thus E = −dΦB/dt =
−Blv is rate at which the flux through the current loop is changing. The induced current
in the loop is

i =
Blv

R
(6.6.8)
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where R is the loop resistance. Lenz’s law gives its direction as clockwise if v is to the
right (decreasing flux) and counterclockwise if v is to the left (increasing flux).5.

6.7 Inductance

We have seen how circuits can “talk” to each other, i.e., be linked without actually being in
contact via each other’s magnetic fields. Thus changes in one circuit induce changes in its
neighbor. This is the phenomenon of “Inductance”. This linking two circuits depends on
the currents flowing through them as well as upon the geometry of the circuits. Assuming
the circuits to be rigid, i.e., the geometry stays time independent, the change in magnetic
flux depends only on the currents. Label the circuits by 1, 2, i, j, ...N and let Φij represent
the flux through circuit i due to the current in circuit j. The net magnetic flux through i
due to all circuits in the system will be

Φi =
N∑
j=1

Φij (6.7.1)

where the sum on the right does not exclude the circuit i itself. Thus

Φi =
N∑
j=1

∮
Si

~Bj(~ri) · d~Si (6.7.2)

where Bj(~ri) is the magnetic field due to the current through j at ~ri. From Faraday’s Law
we are interested in the rate at which the flux Φi changes,

dΦi

dt
=

N∑
j=1

dΦij

dt
=

N∑
j=1

dΦij

dij

dij
dt

=
∑
j

Mij
dij
dt

(6.7.3)

where ij is the current through circuit j and Mij = dΦij/dij is called the mutual induc-
tance of the circuits i and j. The self-inductance of circuit i is the diagonal element
Li = Mii of Mij and expresses the self-interaction of the current in i with its own magnetic
field.

From Faraday’s law,

Ei = −dΦi

dt
= −

N∑
j=1

Mij
dij
dt

(6.7.4)

Let us look at a simple example.
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Figure 6.12: A toroidal coil

6.7.1 The toroidal coil

We will first calculate the self inductance of a toroidal coil carrying a current i, as shown
in figure (6.12). Using the toroidal symmetry, we can apply Ampère’s law to the curve C
shown in the figure, passing through the center of the torus,∮

C

~B · d~r = µ0Ni (6.7.5)

By the symmetry, ~B on the curve will have constant magnitude and be directed tangent
to it at all points. Applying the right hand rule ~B = Bϕ̂, and we also have d~r = bdϕϕ̂,
where b is the radius of the curve. Ampère’s law gives

~B =
µ0Ni

2πb
ϕ̂ (6.7.6)

for N turns of wire. The magnetic flux through the toroidal coil is therefore

ΦB =

∮
S

~B · d~S ≈ µ0N
2i(b− a)2

2b
(6.7.7)

where we use d~S = NdSϕ̂ = 2πN(b − r)dr and approximate ~B by its value along the
curve passing through the center of the torus, given in (6.7.6). This approximation is

5Convince yourself that these directions for the current generate magnetic fields that oppose the change
in flux in each case
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good so long as the torus thickness is small compared with its radius, i.e., b − a << b.
The self-inductance of the coil is therefore

L =
dΦB

di
=
µ0N

2i(b− a)2

2b
(6.7.8)

Now imagine that the same configuration, but with a coil of N2 turns carrying a current
i2 wound around it. The magnetic field due to the first coil is given approximately by

~B1 =
µ0N1i1

2πb
ϕ̂ (6.7.9)

, giving for the flux through coil 2 the expression

Φ21 = µ0N1N2i1
(b− a)2

2b
(6.7.10)

Likewise,

Φ12 = µ0N1N2i2
(b− a)2

2b
(6.7.11)

and the mutual inductances are equal,

M21 =
dΦ21

di1
= µ0N1N2

(b− a)2

2b
=
dΦ12

di2
= M12 (6.7.12)

Comparing the mutual and self inductances, we find an interesting relationship between
them:

M12 = M21 =
√
L1L2 (6.7.13)

6.7.2 The Neumann Formula

We can get a general formula for the mutual inductance between two circuits of arbitrary
shape in a collection of circuits as shown in figure (6.13). From the n circuits, focus on
two of them, say i and j. Consider the flux through Ci due to the magnetic field produced
by Cj ,

Φij =

∫
Si

~Bj(~ri) · d~Si (6.7.14)

Using the expression for ~Bj at ~ri,

~Bj(~ri) =
µ0ij
4π

∮
Cj

d~rj ×
(~ri − ~rj)
|~ri − ~rj |3

= ~∇i × ~Aj(~ri) (6.7.15)

where
~Aj(~ri) =

µ0ij
4π

∮
Cj

d~rj
|~ri − ~rj |

(6.7.16)
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Figure 6.13: Two arbitrary circuits: the Neumann formula

Now we exploit Stoke’s theorem,

Φij =

∫
Si

~∇i × ~Aj(~ri) =

∮
Ci

~Aj(~ri) · d~ri (6.7.17)

which gives

Φij =
µ0ij
4π

∮
Ci

∮
Cj

d~ri · d~rj
|~ri − ~rj |

(6.7.18)

and hence the mutual inductance as

Mij =
dΦij

dij
=
µ0

4π

∮
Ci

∮
Cj

d~ri · d~rj
|~ri − ~rj |

(6.7.19)

This is the Neumann formula for the mutual inductance and shows quite generally that
Mij = Mji for any pair of circuits in a collection.



Chapter 7

Magnetic Media

When considering the microscopic structure of materials, one is led inevitably to the atom,
which we model roughly as consisting of a central nucleus with electrons in motion about
it. Electrons carry charge and their motion leads to electric currents, although there
may be no bulk motion of the material or the charge. These currents are due to bound
charges that circulate the nuclei, each circulation giving rise to a tiny current loop. Atomic
currents can also occur by quantum mechanical spin. When dealing with the magnetic
properties of materials, it is therefore convenient to separate whatever current is present
into two distinct pieces: a macroscopic piece that is due to a bulk movement of charge in
the material and a microscopic piece which averages over the current loops (orbital or spin)
associated with each atom. The term “microscopic” here is intended to be such a volume
element as is large compared with the typical atomic volume but small compared with
any volume element that will be experimentally probed. Thus even such a ”microscopic”
element of the material is assumed to contain a large enough number of atoms so that the
averaging process referred to above is meaningful. An approximation which exploits such
an averaging is called the “continuum approximation” and therefore largely ignores the
microscopic origin of phenomena.

We will concentrate on the microscopic currents. We know that current loops yield
magnetic fields and if the latter are required only at large distances (compared with the
typical size of the loop) from the loops, then each may be approximated by a magnetic
dipole [see (6.5.19)]. In most (un-magnetized) materials thermal fluctuations cause the
dipoles to orient randomly (see figure (7.1) with respect to one another, so that contribu-
tions of the individual dipoles to the bulk magnetic field cancel. However, if the current
loops are, for some reason, aligned so as to add coherently then there will be a bulk field
and the material is said to be magnetized. This can occur in several ways. In Paramag-
netic materials, the torque experienced by the atomic dipoles when an external magnetic
field is applied is sufficient to align them and the material develops a bulk magnetic field

135
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of its own. However, in a purely paramagnetic material the atomic dipoles do not interact
with one another and the effect disappears when the external magnetic field is turned
off. For materials in which the dipoles to interact, they will generally order themselves in
some way. When the effective interactions between them are such as to energetically favor
alignment, the material is said to be Ferromagnetic (a permanent magnet) and for mate-
rials in which the interactions favor anti-alignment the material is Anti-ferromagnetic.
Paramagnetic behavior is also observed in Ferromagnetic and Anti-ferromagnetic materi-
als if the temperature is high enough (the Curie temperature for ferromagnetic materials
and the Neel temperature for anti-ferromagnets). In atoms with no dipole moment, a
dipole moment may be induced by applying a strong external magnetic field. This occurs
because the Lorentz force on the electrons cause them to either speed up in their orbits or
slow down. Consider two electrons moving in circular orbits, one clockwise and the other
counterclockwise. The “average” dipole moment of our toy system is zero. Imagine that
an external magnetic field perpendicular to and into the plane of their motion is switched
on. The Lorentz force on the electron moving clockwise will cause it to speed up whereas
it will cause the electron moving counterclockwise to slow down. This has the effect of
generating a net dipole moment and therefore magnetic field in such a direction as opposes
the external field (which is just Lenz’s law at work). When this occurs in materials, it is
called Diamagnetism. Although all materials show a diamagnetic response, the induced
magnetic moment is very small in most everyday materials and can hardly be observed
when other forms of magnetic behavior are present.

We will not concern ourselves with these interactions here, but consider instead only
the effect of having a magnetization.

7.1 Magnetization

Let us divide the entire volume of the material into macroscopically small but microscop-
ically large pieces, in the sense indicated above. Let the volume of each piece be ∆v and
suppose that the magnetic dipole moment of the ith atom in this volume element is ~mi.

Definition: The magnetization of the material is the magnetic dipole moment per unit
volume of the material, i.e.,

~M = lim
∆v→0

1

∆v

∑
i∈∆v

~mi (7.1.1)

We shall assume that ~M is experimentally known and compute the material’s contribution
to the bulk magnetic field. In the unmagnetized state

∑
i ~mi = 0 and so is ~M as a result

of random orientations of the magnetic moments. In the presence of an external magnetic
field, torques on the atomic (molecular) current loops will align them and we expect ~M
to depend on ~B apart from the properties of the material itself.
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Figure 7.1: Randomly oriented magnetic dipoles in magnetic media

From the definition of the magnetization, the magnetic moment of a volume ∆v of the
material will be

∆~m = ~M∆v (7.1.2)

Using the expression we had for the magnetic field of a distant dipole, we write

~A(~r) =
µ0

4π

∫
V
d3~r′

~M(~r′)× (~r − ~r′)
|~r − ~r′|3

=
µ0

4π

∫
V
d3~r′ ~M(~r′)× ~∇′

(
1

|~r − ~r′|

)
(7.1.3)

where the integral is over the entire volume of the material. Using a familiar vector
identity, we can reexpress this integral as

µ0

4π

∫
V
d3~r′

[
~∇′ ×

~M(~r′)

|~r − ~r′|
−
~∇′ × ~M(~r′)

|~r − ~r′|

]
(7.1.4)

If we use the identity (~a is any vector field)∫
V
d3~r ~∇× ~a =

∮
S
~a× d~S (7.1.5)

on the first term, it transforms the expression for the magnetic vector potential due to the
magnetization into

~A(~r) =
µ0

4π

[∮
S

~M(~r′)× n̂′

|~r − ~r′|
+

∫
V
d3~r′

~∇′ × ~M(~r′)

|~r − ~r′|

]
(7.1.6)
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where n̂′ is the unit normal to the surface bounding the material. The vector potential is
now given as a sum over a bulk term (the second) and a surface term (the first). Both terms
have the standard form for the magnetic vector potential if we identify each numerator as
a current density, i.e.,

~JM (~r′) = ~∇′ ×M(~r′) (volume magnetization current density)

~jM (~r′) = ~M(~r′)× n̂′ (surface magnetization current density) (7.1.7)

in terms of which

~A(~r) =
µ0

4π

[∮
S

jM (~r′)

|~r − ~r′|
+

∫
V
d3~r′

JM (~r′)

|~r − ~r′|

]
(7.1.8)

In the end, however, we are interested in the expression for the magnetic field ~B(~r). For
this it is more convenient to take the curl of the expression in (7.1.3) for the vector potential

~B(~r) = ~∇× ~A(~r) =
µ0

4π

∫
V
d3~r′~∇×

[
~M(~r′)× (~r − ~r′)

|~r − ~r′|3

]
=

µ0

4π

∫
V
d3~r′

[
~M(~r′)~∇ · (~r − ~r′)

|~r − ~r′|3
− ( ~M(~r′) · ~∇)

(~r − ~r′)
|~r − ~r′|3

]
(7.1.9)

We recognize the first term as just µ0 times the magnetization at ~r, because

~∇ · (~r − ~r′)
|~r − ~r′|3

= 4πδ3(~r − ~r′) (7.1.10)

The second term can be put into a more transparent form if we use the vector identity

~∇(~a ·~b) = (~a · ~∇)~b+ (~b · ~∇)~a+ ~a× (~∇×~b) +~b× (~∇× ~a) (7.1.11)

taking ~a to be ~M(~r′) i.e., independent of ~r and ~b = (~r− ~r′)/|~r− ~r′|3. Then all derivatives
of ~a vanish as does the rotation of ~b. The second integral is reduced to

− µ0

4π
~∇
∫
V
d3~r

~M(~r′) · (~r − ~r′)
|~r − ~r′|3

(7.1.12)

which is the divergence of a scalar potential. Putting everything together gives the mag-
netic field due to a magnetized distribution of matter,

~B(~r) = µ0
~M(~r)− µ0

~∇Φ∗M (~r) (7.1.13)

where we have defined

Φ∗M (~r) =
1

4π

∫
V
d3~r

~M(~r′) · (~r − ~r′)
|~r − ~r′|3

(7.1.14)
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The potential Φ∗M is the magnetic scalar potential due to the magnetic material: it has
an interesting interpretation. Consider

Φ∗M (~r) =
1

4π

∫
V
d3~r

~M(~r′) · (~r − ~r′)
|~r − ~r′|3

=
1

4π

∫
V
d3~r ~M(~r′) · ~∇′ (~r − ~r

′)

|~r − ~r′|3

=
1

4π

∫
V
d3~r

[
~∇′ ·

~M(~r′)

|~r − ~r′|
−
~∇′ · ~M(~r′)

|~r − ~r′|

]
(7.1.15)

By Gauss’ theorem, the first term can be written as an integral over the bounding surface
and the scalar potential may be expressed as

Φ∗M (~r) =
1

4π

[∮
S
dS

( ~M(~r′) · n̂′)
|~r − ~r′|

+

∫
V
d3~r

(−~∇′ · ~M(~r′))

|~r − ~r′|

]
. (7.1.16)

This, of course, is identical to the expression for he electric scalar potential in a dielectric
medium if we identify

ρM (~r′) = −~∇′ · ~M(~r′)

σM (~r′) = ~M(~r′) · n̂′ (7.1.17)

as charges, called (respectively ) the volume and surface the “magnetic pole densities”.
Thus

Φ∗M (~r) =
1

4π

[∮
S
dS

σM (~r′)

|~r − ~r′|
+

∫
V
d3~r

ρM (~r′)

|~r − ~r′|

]
, (7.1.18)

which expression is already of a familiar form.

If there is a macroscopic current density also present then we must include its contri-
bution to the total magnetic field at any point. Doing this, we get

~B(~r) =
µ0

4π

∫
V
d3~r′

j(~r′)× (~r − ~r′)
|~r − ~r′|3

+ µ0
~M(~r)− µ0

~∇Φ∗M (~r) (7.1.19)

The current j(~r) includes all transport currents that may be present in the system. The
effect of the atomic (molecular) currents is found the the magnetization vector which
appears in the last two terms. Thus, we must only have a knowledge of j(~r) and M(~r)
everywhere in order to obtain ~B(~r) anywhere. The problem is, as said earlier, that while
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~j(~r) is easily determined or controlled, ~M(~r′) depends als on ~B(~r). We get around this by
a field redefinition: let

~H(~r) =
1

µ0
B(~r)− ~M(~r) (7.1.20)

then

~H(~r) =
1

4π

∫
V
d3~r′

j(~r′)× (~r − ~r′)
|~r − ~r′|3

− ~∇Φ∗M (~r) (7.1.21)

Superficially it appears that we have gone nowhere, since ~M still appears on the right
hand side through Φ∗M (~r). However, the rotation of a gradient being zero, we have

~∇× ~H(~r) =
1

4π

∫
V
d3~r′ ~∇× j(~r′)× (~r − ~r′)

|~r − ~r′|3
(7.1.22)

which can also be written as

~∇× ~H(~r) =
1

4π

∫
V
d3~r′

[
~j(~r′)~∇ · (~r − ~r′)

|~r − ~r′|3
− (~j(~r′) · ~∇)

(~r − ~r′)
|~r − ~r′|3

]
(7.1.23)

The first integral as before simply yields µ0
~j(~r). The second may be put into the form

−~∇Φ∗j (~r), where1

Φ∗j (~r) =
1

4π

∫
V
d3~r′

~j(~r′) · (~r − ~r′)
|~r − ~r′|3

=
1

4π

[∫
V
d3~r′

(−~∇′ ·~j(~r′))
|~r − ~r′|

+

∮
S
dS

(~j(~r′) · n̂′)
|~r − ~r′|

]
(7.1.24)

For steady flows ~∇′ ·~j(~r′) ≡ 0, so the first term vanishes. The surface term can be made to
vanish also if we take the bounding surface to be at infinity. This does not contradict the
possibility that the transport currents may be confined to a small region, since we may
simply take ~j(~r) to be vanishing outside that region. In any case, ~j(~r) is required to fall
off sufficiently rapidly at infinity so that the second term vanishes.

Finally, we have

~H(~r) =
~B(~r)

µ0
− ~M(~r)

~∇× ~H(~r) = ~j(~r) (for steady flows) (7.1.25)

The equation ~∇· ~B = 0 continues to hold, since it simply claims that there are no magnetic
monopoles. This is easy to show by taking the divergence of the right hand side of the

1Problem: Follow the steps after (7.1.9) to obtain the given result.
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equation for ~B(~r) in (7.1.19). The divergence of the first term vanishes as we have already
shown, and we are left with

~∇ · ~B(~r) = µ0(~∇ · ~M(~r)− ~∇2Φ∗M (~r)) (7.1.26)

This too vanishes. To show that it does, begin with the expression for Φ∗M (~r),

Φ∗M (~r) =
1

4π

[∮
S
dS

σM (~r′)

|~r − ~r′|
+

∫
V
d3~r

ρM (~r′)

|~r − ~r′|

]
,

⇒ ~∇2Φ∗M (~r) =
1

4π

[∮
S
dS σM (~r′)~∇2 1

|~r − ~r′|
+

∫
V
d3~r ρM (~r′)~∇2 1

|~r − ~r′|

]
(7.1.27)

and taking the bounding surface out to infinity, we get simply

~∇2Φ∗M (~r) = −ρM (~r) = ~∇ · ~M(~r) (7.1.28)

Let us end this section by writing out the electromagnetic field equations for steady flows:

~∇ · ~D = ρf

~∇× ~E +
∂ ~B

∂t
= 0

~∇ · ~B = 0

~∇× ~H = ~jf (7.1.29)

where jf is the transport current, and

~D = ε0 ~E − ~P (the electric displacement vector)

~H =
~B

µ0
− ~M (the magnetic intensity vector) (7.1.30)

Notice

• the symmetry in the equations,

• that only the first and last equations are sensitive to the presence of sources,

• that the middle two equations are written in terms of the vacuum fields ~E and ~B
and have the same form, no matter what the sources.

The middle two equations are really constraints. They tell us that the electric and magnetic
fields are not entirely independent of one another and are in fact manifestations of a single
field, the electromagnetic field, which consists of a single vector potential and a single scalar
potential. These equations can be understood more generally as geometric identities viz.,
the so-called Bianchi identities of gauge theories.
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Figure 7.2: Boundary conditions at the interface of two magnetic media

7.2 Boundary Conditions

Consider two magnetic media of different responses in contact with each other and whose
interface is denoted by the surface S in figure (7.2) As before, begin with the pillbox on
the left, whose cylindrical surface can be made as small as we desire. Then considering
only the flat surfaces of the pillbox, which respectively in medium 1 and medium 2. By
Gauss’ law for the magnetic field∫

S1+S2

~B · d~S = 0⇒ B1n = B2n (7.2.1)

i.e., the normal component of the magnetic field is continuous.
Turning to the rectangular closed curve on the right of figure (7.2) we have∮

C

~H · d~r =

∫
S

(~∇× ~H) · d~S =

∫
S

~jf · d~S (7.2.2)

and, referring to the figure,

∆l( ~H1 − ~H2) · t̂ = fג · (t̂× n̂)∆l∆A (7.2.3)

where we have introduced the current density per unit length of the surface, fג , hence the
extra factor of ∆l on the right. The factor A is just the area of the rectangular closed
curve and we have exploited the fact that t̂× n̂ gives the normal to the surface bounded by
the rectangular closed curve. Call f∆Aג = ~ιf , i.e., the transport current per unit length
along the surface, then using the symmetries of the triple product on the right the above
equation can be put in the form

( ~H1 − ~H2) = n̂×~ιf (7.2.4)
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Thus there is a discontinuity of the horizontal component of the magnetic intensity vector
if surface currents are present at the interface. If not, the tangential components of
the magnetic intensity vector are also continuous across the interface (as are the normal
components of ~B).

We have seen that the magnetization vector ~M generally depends on the external
applied field ~B, but it is convenient to write a phenomenological relationship of the form

~Mi( ~H) =
∑
j

χmij (
~H)Hj (7.2.5)

instead of a relationship directly in terms of the magnetic field, ~B. A magnetic medium
is isotropic if

χmij (
~B) = χm( ~H)δij (7.2.6)

in which case the magnetic intensity and the magnetic field vectors are oriented in the
same direction. χm( ~B) is the magnetic susceptibility of the medium. We then have

~H =
~B

µ0
− ~M =

~B

µ0
− χm( ~H) ~H ⇒ ~B = µ0[1 + χm( ~H)] ~H (7.2.7)

Define the magnetic permeability of the material by ~B = µ( ~H) ~H, i.e.,

µ( ~H) = µ0

[
1 + χm( ~H)

]
⇒ χm( ~H) =

µ( ~H)

µ0
− 1 (7.2.8)

The quantity Km = χm + 1 = µ/µ0 is called the relative permeability. A medium is said
to be linear if χm( ~H) is independent of ~H. We consider only linear, isotropic magnetic
media henceforth.

7.3 Examples

Let us now apply the techniques learned in electrostatics to solve problems in magneto-
statics.

7.3.1 Magnetic sphere in a uniform magnetic field

Consider a sphere of radius a, made of some linear, isotropic magnetic material and placed
in a uniform magnetic field ~B. We wish to find the magnetic field everywhere. As we have
seen, where the transport currents vanish identically,

~∇× ~H = 0⇒ ~H = −~∇Φ∗M (7.3.1)
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z-axis

Figure 7.3: Magnetic field inside and out of a magnetic medium

and because the material is isotropic we expect that

~H =
~B

µ
(7.3.2)

everywhere. In particular this means that ~B = −µ~∇Φ∗M ⇒ ~∇2Φ∗M = 0. Let us take the

uniform magnetic field to be oriented in the z direction so that ~B = B0ẑ. The problem is
therefore to find a solution to Laplace’s equation in spherical coordinates and subject to

~B∞ = lim
r→∞

~B(~r) = B0ẑ ⇒ Φ∗M = −B0z = −B0r cos θ + const. (7.3.3)

The general solution of Laplace’s equation in the exterior of the sphere may be written in
the form

Φ∗M,ext = A+
B

r
+

(
C1r +

C2

r2

)
cos θ +

(
D1r

2 +
D2

r3

)
(3 cos2 θ − 1) + ... (7.3.4)

At infinity, all terms in r−n, n ≥ 1 are vanishing, so

Φ∗M,ext(r →∞) = A+ C1r cos θ +D1r
2(3 cos2 θ − 1) + ... (7.3.5)

but, because of the behavior of Φ∗M at infinity, we see that A = 0 = D1 = E1 = ... and

Φ∗M,ext(r, θ) =
B

r
−
(
B0

µ0
r +

C2

r2

)
cos θ +

D2

r3
(3 cos2 θ − 1) + ... (7.3.6)

Again, since there are no transport currents in the interior, we must likewise have the
general solution

Φ∗M,int(r, θ) = A+
B

r
+

(
C1r +

C2

r2

)
cos θ +

(
D1r

2 +
D2

r3

)
(3 cos2 θ − 1) + ... (7.3.7)
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but regularity at the center requires B = 0 = C2 = D2 = ... and therefore

Φ∗M,int(r, θ) = A+ C1r cos θ +D1r
2(3 cos2 θ − 1) + ... (7.3.8)

The boundary conditions at the surface of the sphere tell us that the normal component
of ~B and the tangential components of ~H are continuous there. The normal component
of ~B is computed from µ(r̂ · ~∇Φ∗M ) in each region, thus

µ0
∂

∂r
Φ∗M,ext

∣∣∣∣
r=a

= µ
∂

∂r
Φ∗M,int

∣∣∣∣
r=a

(7.3.9)

This gives the following relationships (comparing terms with the same associated Legendre
polynomials),

B = 0

µ0

(
B0

µ0
− 2C2

a3

)
= µC1

−3µ0D2

a4
= 2µD1a

... ... (7.3.10)

Continuity of the potential across the surface gives

B

a
= A

−B0

µ0
a+

C2

a2
= C1a

D2

a3
= D1a

2

... ... (7.3.11)

These are compatible with the first set only if

A = 0

D2 = D1 = 0

E2 = E1

... ... (7.3.12)
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and the two equations

KmC1 = −B0

µ0
− 2C2

a3
, C1 = −B0

µ0
+
C2

a3
(7.3.13)

hold simultaneously. This system can be solved for C2 and C1. We find

C2 =
B0a

3

µ0

[
Km − 1

Km + 2

]
C1 = − 3B0

µ0(Km + 2)
(7.3.14)

Thus, we have found the desired potential everywhere:

Φ∗M,ext = −B0

µ0
r cos θ

(
1− a3

r3

[
Km − 1

Km + 2

])
Φ∗M,int = − 3B0

µ0(Km + 2)
r cos θ (7.3.15)

From the potential, we immediately calculate ~Bext/int as2

~Bext = −µ0
~∇Φ∗M,ext = B0ẑ +B0

a3

r3

[
Km − 1

Km + 2

]
(2 cos θ r̂ + sin θ θ̂)

~Bint = −µ~∇Φ∗M,int =
3KmB0

(Km + 2)
ẑ (7.3.16)

This field is shown in figure (7.3)

2Problem: Recall that ~B = −µ~∇Φ∗M and, in spherical coordinates:

~∇ = r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

ϕ̂

r sin θ

∂

∂ϕ

Also recall the non-vanishing derivatives of the unit vectors in spherical coordinates:

∂r̂

∂θ
= θ̂,

∂θ̂

∂θ
= −r̂, ∂ϕ̂

∂ϕ
= −r̂ sin θ − θ̂ cos θ

Combining these, show that

Br = −µ∂Φ∗M
∂r

, Bθ =
µ

r

∂Φ∗M
∂θ

, Bϕ = − µ

r sin θ

∂Φ∗M
∂ϕ
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7.3.2 Uniformly magnetized sphere

Now consider the problem of the magnetic field in all of space due to a uniformly magne-
tized sphere of radius a and magnetization ~M . Let the magnetization be in the ẑ direction,
so that ~M = Mẑ (M is constant). Once again, let us examine the solution of ~∇2Φ∗ = 0,
as there are no transport currents in this problem.

In spherical coordinates, the solution will be of the form

Φ∗(~r) = A+
B

r
+

(
C1r +

C2

r2

)
cos θ +

(
D1r

2 +
D2

r3

)
(3 cos2 θ − 1) + ... (7.3.17)

everywhere. As before, let the coefficients be barred for the interior solution and unbarred
for the exterior solution. Requiring tat the potential vanish at infinity eliminates all non-
negative powers of r, so

Φ∗ext =
B

r
+
C2

r2
cos θ +

D2

r3
(3 cos2 θ − 1) + ... (7.3.18)

Likewise, all terms that approach infinity as r → 0 must be set equal to zero. This gives

Φ∗int = A+ C1r cos θ +D1r
2(3 cos2 θ − 1) + ... (7.3.19)

With no surface currents, our boundary conditions are simply that the normal component
of ~B, the tangential components of ~H and the potential are continuous. Consider first the
normal component of ~B. If we write

~B = µ0( ~H + ~M) (7.3.20)

then continuity of the normal component of ~B implies that

Hint,n +Mn = Hext,n, (Mext,n = 0) (7.3.21)

Now Mn = M(ẑ · r̂) = M cos θ, therefore

− ∂

∂r
Φ∗ext

∣∣∣∣
r=a

=

(
− ∂

∂r
Φ∗int +M cos θ

)
r=a

(7.3.22)

or

B

a2
+

2C2

a3
cos θ+

3D2

a4
(3 cos2 θ−1)... = −(C1 cos θ+2D1a(3 cos2 θ−1)...)+M cos θ (7.3.23)

which gives

B = 0,
2C2

a3
= −C1 +M,

3D2

a4
= −2D1a, ... (7.3.24)
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Again, continuity of Φ∗ across the surface of the magnetized sphere implies that

A =
B

a
, C1a =

C2

a2
, D1a

2 =
D2

a3
... (7.3.25)

Comparing the two sets of relations, we find that D2 = E2 = ... = 0 and D1 = E1 = ...0.
Then we are left with

C2 = C1a
3

C2 = −C2a
3

2
+
Ma3

2
(7.3.26)

which together give

C2 =
1

3
Ma3, C1 =

1

3
M (7.3.27)

and thus we have solved the problem:3

Φ∗ext(r, θ) =
1

3

Ma3

r2
cos θ

Φ∗int(r, θ) =
1

3
Mr cos θ (7.3.28)

7.3.3 Magnetic shielding

Consider a cylindrically symmetric system in which there is an applied magnetic field
along the x̂ direction and an (effectively) infinite cylindrical shell of inner radius a and
outer radius b situated along the z−axis, as shown in figure (7.4). There are three regions
to consider, viz., r < a (inside the shell), a < r < b (in the shell itself) and r > b (outside
the shell). Assume that there are no transport currents, so that ~∇2Φ∗ everywhere. From
the cylindrically symmetric electrostatic problem we have solved before, we know that the
general form of the potential will be

Φ∗(ρ, ϕ) = A+B ln ρ+

∞∑
n=−∞,n 6=0

ρn(Cn cosnϕ+Dn sinnϕ) (7.3.29)

3Problem: Show from the given potentials that

~Bext = µ0

[
2

3

Ma3

r3
cos θr̂ − 1

3

Ma3

r3
sin θθ̂

]
~Bint = −1

3
µMẑ
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Figure 7.4: Magnetic field inside and out of a magnetic medium

We require that Φ∗ be an even function of ϕ. With the given external field, it must also
behave as

lim
ρ→∞

Φ∗(ρ, ϕ) = −B0x = −B0ρ cosϕ (7.3.30)

This means that Dn = 0 for all n. In the exterior (ρ > b) we are left with

Φ∗ext(ρ, ϕ) =
∞∑
n=1

ρ−nC−n cosnϕ−B0ρ cosϕ (7.3.31)

whereas in the interior (ρ < a), regularity at the center requires that

Φ∗int(ρ, ϕ) = A+

∞∑
n=1

ρnCn cosnϕ (7.3.32)

Inside the shell, we must in principle include all terms (even in ϕ), so that

Φ∗shell(ρ, ϕ) = A′ +B′ ln ρ+

∞∑
n=1

(C ′nρ
n + C ′−nρ

−n) cosnϕ (7.3.33)

Matching the shell and exterior solutions gives

A′ = 0 = B′

−B0 +
C−1

b2
= C ′1 +

C ′−1

b2

C−n
bn

= C ′nb
n +

C ′−n
bn

, n > 1 (7.3.34)



150 CHAPTER 7. MAGNETIC MEDIA

Likewise, matching the shell and interior solutions gives

A = A′ = 0

Cn = C ′n +
C ′−n
a2n

, n ≥ 1 (7.3.35)

Let us now apply the continuity of the normal components of ~B. For the exterior-shell
boundary we find

µ0(−B0 −
C−1

b2
) = µ(C ′1 −

C ′−1

b2
)

−µ0
C−n
bn+1

= µ(C ′nb
n−1 −

C ′−n
bn+1

), n > 1 (7.3.36)

Solving the system in (7.3.34) and (7.3.35) gives

C ′1 =
1

2b2µ

[
C−1(µ− µ0)− b2B0(µ+ µ0)

]
C ′−1 =

1

2µ

[
C−1(µ+ µ0)− b2B0(µ− µ0)

]
C ′n =

µ− µ0

2b2nµ
C−n, n > 1

C ′−n =
µ+ µ0

2µ
C−n, n > 1 (7.3.37)

Again, applying the continuity of the normal component of ~B across the shell-interior
boundary, we have

µ0Cn = µ

(
C ′n −

C ′−n
a2n

)
(7.3.38)

Combining these equations with (7.3.35) gives

C ′n =
Cn(µ+ µ0)

2µ

C ′−n =
Cna

2n(µ− µ0)

2µ
(7.3.39)

These conditions can be satisfied if we take Cn = 0 for all n > 1. Then C ′n = 0 = C ′−n
and therefore C−n = 0 for all n > 1. We are left with the relations:

C ′1 =
C1(µ+ µ0)

2µ
=

1

2b2µ

[
C−1(µ− µ0)− b2B0(µ+ µ0)

]



7.4. MAGNETIC ENERGY 151

C ′−1 =
C1a

2(µ− µ0)

2µ
=

1

2µ

[
C−1(µ+ µ0)− b2B0(µ− µ0)

]
(7.3.40)

These equations in turn yield (Km = µ/µ0)

C1 = − 4KmB0

(Km + 1)2 − a2/b2(Km − 1)2
(7.3.41)

and

C ′1 = − 2B0(Km + 1)

(Km + 1)2 − a2/b2(Km − 1)2

C ′−1 = − 2a2B0(Km − 1)

(Km + 1)2 − a2/b2(Km − 1)2

C−1 =
(b2 − a2)B0(K2

m − 1)

(Km + 1)2 − a2/b2(Km − 1)2
(7.3.42)

The “shielding” is apparent from the fact that the field inside the cylinder is given by
~Hint = C1x̂ and C1 is a decreasing function of Km, behaving as [(1− a2/b2)Km]−1 when
Km >> 1. Considerable shielding from the external magnetic field can be achieved within
the cylinder if, in addition, the thickness of the shell can be made significant.

7.4 Magnetic Energy

When we examined the electrostatic energy of a charge distribution, we considered the
work that was necessary to produce the given distribution. Electric charges are sources
of the electrostatic field, whereas electric currents are sources of the magnetic field. The
magnetic energy of a collection of electric circuits will just be the work that must be done
to create the given distribution.

Consider first a single circuit with a source voltage of V applied. The circuit may be
in a time varying magnetic field ~B, which will also induce an e.m.f. in it according to
Faraday’s law. If the resistance of the circuit is R, we can write the following equation
(Kirchoff’s voltage law)

V + E = iR = R
dq

dt
. (7.4.1)

Now the work done by the source in moving an electric charge dq through the circuit is

dW = V dq = −Edq + iRdq = (−Ei+ i2R)dt = idΦB + i2Rdt (7.4.2)

where we have put dΦB = −Edt. The term i2Rdt represents the energy dissipated into
the environment by resistance in the form of heat. The first term is the work done against
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the induced e.m.f. in the circuit. This is the work required to change the magnetic field
and we can write

dWB = idΦB (7.4.3)

For a rigid, stationary circuit, showing no energy loss other than resistive, dWB is the
change in magnetic energy of the circuit.

Now if there are N circuits,

dWB =
N∑
j=1

ijdΦj (7.4.4)

where Φj is the magnetic flux through circuit j. If the changes in the external magnetic
field are produced by changes in the currents only, then

dΦj =

N∑
k=1

dΦj

dik
dik =

N∑
k=1

Mjkdik (7.4.5)

where Mjk represents the mutual inductance between circuits j and k. It follows that

dWB =
N∑

j,k=1

Mjkijdik (7.4.6)

Now for linear media, Mjk is independent of the currents, so the integration may be done
quite easily. Let us imagine that all the currents are brought from zero to their maximum
value in concert, i.e., ij = αimax

j , α ∈ [0, 1], then

WB =
N∑

j,k=1

Mjki
max
j imax

k

∫ 1

0
αdα =

1

2

N∑
j,k=1

Mjki
max
j imax

k (7.4.7)

This gives the energy of the magnetic field of N static coupled circuits in linear magnetic
media as

U =
1

2

N∑
j,k=1

Mjkijik (7.4.8)

where we have now suppressed the superscript “max”. An alternative expression for the
energy of the magnetic field may be given in terms of the field itself; let us note that
expression (7.4.8) can also be written in terms of the magnetic flux by using

Φk =
N∑
j=1

Mkjij ⇒ U =
1

2

∑
k

Φkik (7.4.9)
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Now

Φk =

∫
Sk

~B · d~S =

∫
Sk

(~∇× ~A) · d~S =

∮
Ck

~A · d~r ⇒ U =
1

2

∑
k

ik

∮
Ck

~A · d~r (7.4.10)

The expression can be made more general by noting that if we had instead volumetric
current distributions, defined by densities, then the substitution∑

k

ik

∮
Ck

d~r →
∫
V
d3~r′j(~r′) (7.4.11)

yields

U =
1

2

∫
V
d3~r′j(~r′) ·A(~r′) (7.4.12)

However, since ~∇× ~H = ~j,

U =
1

2

∫
V
d3~r′(~∇′ ×H) · ~A (7.4.13)

But, applying the identity

(~∇′ × ~H) · ~A = (~∇′ × ~A) · ~H − ~∇′ · ( ~A× ~H) = ~B · ~H − ~∇′ · ( ~A× ~H) (7.4.14)

we find

U =
1

2

∫
V
d3~r′( ~B · ~H)− 1

2

∮
S
d~S · ( ~A× ~H) (7.4.15)

where we have used Gauss’ law. If we take the volume to be all of space and the surface
S to be at infinity, and if the fields fall off rapidly enough, the surface integral will vanish
and we will be left with

U =
1

2

∫
d3~r′( ~B · ~H). (7.4.16)

The energy density of the magnetic field has an expression that is similar to that of the
electrostatic field,

uB =
1

2
( ~B · ~H). (7.4.17)

For linear magnetic media ~H = ~B/µ in which case uB = ~B2/2µ = µ ~H2/2.

7.5 Maxwell’s equations

When all is said and done, the electromagnetic equations for stationary currents are given
by (7.1.29), which are supplemented with the boundary conditions in (7.2.1) and (7.2.4).
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Figure 7.5: Circuit showing the failure of the stationary electromagnetic equations

Unfortunately, it is easy to argue that the equations are inconsistent when the currents
are not stationary, i.e., when ∂ρ/∂t 6= 0.

To see why this is so, consider the circuit shown in figure (7.5). When the switch Sw is
turned on, a current flows through the wire, charging up the capacitor, C. We might apply
Ampère’s law to the surface closed loop bounding two surfaces S and S′ in the figure,∮

C

~H · d~r = i (7.5.1)

where i represents the current flowing through either S or S′. The problem is that the
current depends on which surface is considered – it is vanishing for surface S′, but not for
surface S. This ambiguity appears while the capacitor is charging (or discharging when
the switch is turned off), i.e., when ∂ρ/∂t 6= 0 on the capacitor, but not in the stationary
state.

Applying the continuity equation (6.1.11) to the right hand side of the first of the
electromagnetic field equations,

∂ρf
∂t

+ ~∇ ·~jf = 0⇒ ∂

∂t
~∇ · ~D + ~∇ ·~jf = ~∇ ·

(
∂ ~D

∂t
+~jf

)
= 0 (7.5.2)

Therefore, Maxwell proposed that the last of the electromagnetic equations should be
modified according to

~∇× ~H =
∂ ~D

∂t
+~jf

or

~∇× ~H − ∂ ~D

∂t
= ~jf (7.5.3)

To summarize, we give the complete, self-consistent set of electromagnetic field equations

~∇ · ~D = ρf
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~∇× ~E +
∂ ~B

∂t
= 0

~∇ · ~B = 0

~∇× ~H − ∂ ~D

∂t
= ~jf (7.5.4)

They are known today as Maxwell’s equations, although it should be noted that they are
the product of more than a century of careful experimentation and deep thinking by many.
We now turn to examining these equations in detail.



Chapter 8

Maxwell’s Equations

8.1 A brief review

Let’s begin with a brief revision of Maxwell’s equations (we will always use the MKS
system). Maxwell’s system consists of the four equations which you have seen in the
following form

~∇ · ~D = ρf

~∇× ~E +
∂ ~B

∂t
= 0

~∇ · ~B = 0

~∇× ~H − ∂ ~D

∂t
= ~jf (8.1.1)

where the suffix “f” represents “free”, i.e., only the unbound (transport) charges and cur-
rents appear on the r.h.s of the above equations. The fields ~E and ~B are the electric and
magnetic fields respectively and the fields ~D and ~H are respectively the electric displace-
ment and the magnetic intensity. The latter two fields are phenomenological, i.e., they
are defined according to what is actually relevant to the actual measurement of electric
and magnetic phenomena in materials. They are different from the electric and magnetic
fields only in dielectric or magnetic media.

Recall that the electric displacement is defined according to

~D = εo ~E + ~P , (8.1.2)

where ~P is the electric polarization vector of the dielectrics present. If we think of the
dielectric as consisting of a very large number of microscopic electric dipoles and consider
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a volume element ∆v which contains a large number of these dipoles (∆v is a volume
element that is considered to be macroscopically infinitesimal but microscopically large)
then the total electric dipole moment of ∆v is defined by

∆~p =
∑
i∈∆v

~pi, (8.1.3)

where i labels the dipoles inside ∆v and ~pi is the dipole moment of dipole i. The polar-
ization vector, ~P , is defined as the electric dipole moment per unit volume

~P = lim
∆v→0

∆~p

∆v
, (8.1.4)

This concept is useful only if we are interested in the fields on scales that are much larger
than the typical dipole length of the dielectric.

Likewise, the magnetic intensity vector is defined by

~H =
~B

µo
− ~M. (8.1.5)

The magnetization, ~M , is defined in a manner similar to our definition of the electric
polarization. Imagine that the magnetic medium is made up of a large number of magnetic
dipoles (microscopic current-loops), each of which has magnetic dipole moment, ~mi. The
total magnetic dipole moment of the volume element ∆v is just

∆~m =
∑
i∈∆v

~mi, (8.1.6)

and the magnetization vector ~M is defined as the magnetic dipole moment per unit volume

~M = lim
∆v→0

∆~m

∆v
. (8.1.7)

Again, the same comment we made before holds: ~M is a useful concept only if we are
interested in effects on scales that are much larger than the typical size of the magnetic
dipoles.

Notes:

• In addition to Maxwell’s equations we assume that the continuity equation of matter
holds, i.e.,

∂ρ

∂t
+ ~∇ ·~j = 0. (8.1.8)
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• The right hand sides of Maxwell’s equations as given in (8.1.1) involve only free
charge and current densities. That is because the microscopic effects of the bound
charges and currents (the electric and magnetic dipoles) are taken into account in
an average way through the polarization vector, ~P , and magnetization vector, ~M .
For this reason, Maxwell’s equations in the form given in (8.1.1) are usually called
the macroscopic Maxwell’s equations.

• It follows that ~D and ~H are derived fields. As said before, they are defined so as to
phenomenologically account for the contribution of the atomic charges and currents
in an average way (this is why ∆v must be microscopically large). A complete de-
scription of Maxwell’s equations in the form given in (8.1.1) must, therefore, include
relations between ~D and ~E and between ~H and ~B.

One could also write Maxwell’s equations in the following way:

~∇ · ~E =
ρ

εo

~∇× ~E +
∂ ~B

∂t
= 0

~∇ · ~B = 0

~∇× ~B − εoµo
∂ ~E

∂t
= µo~j (8.1.9)

but, now, the r.h.s. of the above equations no longer represent just the free charge and
current densities but all charge and current densities, bound and unbound. These are
usually called the “vacuum form” of Maxwell’s equations. One can say that this is the
“fundamental” form of Maxwell’s equations.

Notice that the central two equations remain unchanged and uncoupled to the charge
and current distributions. These two equations are not dynamical. They are actually
geometric identities (called Bianchi identities), common to all so-called “gauge theories”.
In practice they serve as constraints, reducing the number of independent fields as we see
in the following section.

8.2 An alternative description

Consider the third equation in (8.1.9) and note that

~∇ · ~B = 0→ ~B = ~∇× ~A. (8.2.1)

The vector ~A is a vector function (field) and is called the vector potential. It is a “potential”
in the sense that the magnetic field, which is related to the magnetic force on a charge, is



8.3. GAUGE INVARIANCE 159

a derivative of this vector. In the same way,

~∇× ~E +
∂ ~B

∂t
= 0

→ ~∇×

[
~E +

∂ ~A

∂t

]
= 0

→ ~E = −~∇φ− ∂ ~A

∂t
, (8.2.2)

where φ is a scalar function (field). It is called the scalar potential. Thus we see that
instead of the original six components of ~E and ~B, we have only four functions, viz., φ and
the three components of ~A. The dynamical equations are the first and last ones in (8.1.9).
They can be written in terms of (φ, ~A) by direct substitution of the above expressions for
the electric and magnetic fields. This gives

~∇ · ~E = −~∇2φ− ∂

∂t
~∇ · ~A =

ρ

εo
(8.2.3)

and

~∇× (~∇× ~A)− εoµo
∂

∂t

(
−~∇φ− ∂ ~A

∂t

)
= µo~j. (8.2.4)

The product εoµo will appear throughout. It has a very special meaning as the inverse
square speed of light in the vacuum as we will soon see. Let is therefore simplify our
notation by using “1/c2” for this quantity. Thus we write (8.2.4) as

1

c2

∂2 ~A

∂t2
− ~∇2 ~A+ ~∇

(
~∇ · ~A+

1

c2

∂φ

∂t

)
= µo~j. (8.2.5)

The two equations given in (8.2.3) and (8.2.5) are far from elegant. We will now look for
ways to (a) simplify these equations and (b) solve them. To do so we must first understand
some of their properties. The first of these is the so-called “gauge invariance”, which is
our next topic.

8.3 Gauge invariance

The dynamical equations are greatly simplified if we recognize that only the fields ~E and
~B are measured classically. (The situation is a bit more complicated when quantum effects
are accounted for.) But the electric and magnetic fields are derivatives of the scalar and
vector potentials. One easily checks that the transformation

~A→ ~A′ = ~A+ ~∇Λ, (8.3.1)
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for any scalar function of space and time, Λ, leaves the magnetic field unchanged (the curl
of a gradient is identically zero). It does not, however, leave the electric field unchanged:
notice that as ~A→ ~A′ = ~A+ ~∇Λ the electric field transforms as

~E → ~E′ = −~∇φ− ∂ ~A′

∂t
= −~∇φ− ∂ ~A

∂t
− ~∇∂Λ

∂t
= ~E − ~∇∂Λ

∂t
. (8.3.2)

However, we have said nothing about the transformation of φ. Consider the simultaneous
transformations

~A → ~A′ = ~A+ ~∇Λ

φ → φ′ = φ− ∂Λ

∂t
. (8.3.3)

Clearly ~B is unaffected by the above transformations as we saw earlier. But now, because
φ also is transformed, even ~E remains unaffected as one can explicitly check:

~E → ~E′ = −~∇φ′ − ∂ ~A′

∂t
= ~E. (8.3.4)

The transformations in (8.3.3) are called “gauge transformations”. The electric and mag-
netic fields are invariant under gauge transformations. This means that Maxwell’s equa-
tions are also invariant under gauge transformations, because they are written in terms
of the fields ~E and ~B. Notice that Λ is completely arbitrary. The freedom we have in
choosing Λ is called a “gauge freedom”. We will now see how a judicious choice of Λ can
simplify the dynamical equations in (8.2.3) and (8.2.5).

8.4 Choice of gauge

It should be clear that choosing a particular Λ is equivalent to choosing a particular
condition on the fields ~A and φ. A few examples will clarify this statement.

8.4.1 The Lorentz gauge

Consider the condition
~∇ · ~A+

1

c2

∂φ

∂t
= 0. (8.4.1)

(This is called the Lorentz condition.) Let us convince ourselves that this amounts to
choosing a particular Λ. For suppose that we have a solution (φ, ~A) that does not satisfy
the condition. Can we find a Λ such that the transformed pair (φ′, ~A′) (related therefore
to (φ, ~A) by a gauge transformation) does obey the condition? If we can, because the
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dynamical equations themselves are invariant under these transformations, then (φ′, ~A′)
will certainly obey Maxwell’s equations and, moreover, the electric and magnetic fields
derivable from (φ′, ~A′) will be identical to those derivable from (φ, ~A).

By hypothesis,

~∇ · ~A′ + 1

c2

∂φ′

∂t
= 0 (8.4.2)

and

~A′ = ~A+ ~∇Λ

φ′ = φ− ∂Λ

∂t
. (8.4.3)

Therefore,

~∇ · ~A+ ~∇ · ~∇Λ +
1

c2

∂φ

∂t
− 1

c2

∂2Λ

∂t2
= 0, (8.4.4)

which implies that

~∇2Λ− 1

c2

∂2Λ

∂t2
= −

(
~∇ · ~A+

1

c2

∂φ

∂t

)
. (8.4.5)

But, as we know the solution pair (φ, ~A) of Maxwell’s equations, the r.h.s. is known.
What we have, therefore, is an equation for Λ. If the equation admits solutions (subject
to appropriate boundary conditions about which we shall speak later) then such a Λ can
be found. Now, because (φ′, ~A′) obey Maxwell’s equations, then imposing the condition
in (8.4.1) it follows that the dynamical equations for (φ′, ~A′) are

1

c2

∂2 ~A′

∂t2
− ~∇2 ~A′ = µo~j

1

c2

∂2φ′

∂t2
− ~∇2φ′ =

ρ

εo
. (8.4.6)

Thus the condition (8.4.1) could be imposed from the start and the equations (8.4.6) used.
Maxwell’s equations in Lorentz gauge can be summarized as follows:

1

c2

∂2φ

∂t2
− ~∇2φ =

ρ

εo

1

c2

∂2 ~A

∂t2
− ~∇2 ~A = µo~j

1

c2

∂φ

∂t
+ ~∇ · ~A = 0. (8.4.7)

Notes:
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• The equations for φ and ~A are the same. The Lorentz gauge treats φ and ~A on an
equal footing.

• The vector and scalar fields decouple in this gauge.

• Even for potentials that satisfy the Lorentz gauge condition there is a degree of
arbitrariness that survives. Thus, for example, the r.h.s. of our equation for Λ
would turn into zero and our equation for Λ would read

~∇2Λ− 1

c2

∂2Λ

∂t2
= 0, (8.4.8)

and a transformation by a Λ that obeys this equation preserves the Lorentz condition.
All potentials that satisfy the Lorentz gauge condition are said to belong to the
Lorentz gauge.

• We will see in a short time that the Lorentz gauge condition is invariant under the
transformations of the special theory of relativity. This is very convenient, because
if it holds in one inertial frame it will hold in all inertial frames.

8.4.2 The Coulomb gauge

Another gauge condition that is often used is the so-called “Coulomb” gauge (or radiation
gauge or transverse gauge). The condition is simply

~∇ · ~A = 0. (8.4.9)

Let us see if it is a good gauge condition. Following the argument in the previous section,
let (φ, ~A) be a solution pair (of Maxwell’s equations) that does not obey the condition.
Can we find a Λ that would take the pair (φ, ~A)→ (φ′, ~A′) such that the new pair (φ′, ~A′)
does satisfy the condition? By hypothesis

~∇ · ~A′ = 0→ ~∇ · ~A+ ~∇2Λ = 0. (8.4.10)

This means that
~∇2Λ = −~∇ · ~A (8.4.11)

and, once again, we know the r.h.s. of the equation. Provided a solution to this equation
can be found, subject to appropriate boundary conditions, we can find a Λ that takes the
pair (φ, ~A) to a pair (φ′, ~A′) that obeys the Coulomb gauge condition. It is a good exercise
to show that in this gauge, the dynamical equations are

~∇2φ = − ρ
εo
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1

c2

∂2 ~A

∂t2
− ~∇2 ~A = µo~j −

1

c2
~∇∂φ
∂t
. (8.4.12)

The equation for the scalar potential is exceedingly simple.1 Using

~∇2 1

|~r − ~r′|
= −4πδ3(~r − ~r′), (8.4.13)

one can immediately write

φ(~r, t) =

∫
d3~r′

4πεo

ρ(~r′, t)

|~r − ~r′|
. (8.4.14)

This is precisely what we wrote down in electrostatics for a static charge distribution
described by the density ρ(~r). This is why the gauge is called the Coulomb gauge. Note,
however, that here the density may vary in time.

The quantity ~∇φ that appears on the r.h.s. of the equation for the vector potential,
~A, certainly has vanishing curl and this inspires hopes that it may be able to cancel an
irrotational portion of the current density vector which also occurs on the r.h.s. This is
actually so. Consider the continuity equation

∂ρ

∂t
+ ~∇ ·~j = 0. (8.4.15)

Now, using the equation for φ and taking a time derivative we get2

~∇2∂φ

∂t
= − 1

εo

∂ρ

∂t
=

1

εo
~∇ ·~j =

1

εo
~∇ ·~jl. (8.4.16)

It follows that

~∇∂φ
∂t

=
1

εo
~jl, (8.4.17)

which, when inserted into the equation for ~A in (8.4.12), gives

1

c2

∂2 ~A

∂t2
− ~∇2 ~A = µo~jt. (8.4.18)

Thus the field equations in Coulomb gauge can be summarized as

~∇2φ = − ρ
εo

1see section 9.
2Problem: Show that any vector can always be written as the sum of a “longitudinal” part, jl, and a

“transverse” part, jt, i.e., ~j = ~jl +~jt, where: ~∇× jl = 0 and ~∇ · jt = 0.
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1

c2

∂2 ~A

∂t2
− ~∇2 ~A = µo~jt

~∇ · ~A = 0. (8.4.19)

Notes:

• Because it is only the transverse part, ~jt, that acts as the source for ~A (and not the
entire current ~j), this gauge is also called the “transverse” gauge.

• It is often used in the vacuum, i.e., when no sources are present. In that case the
condition ~∇ · ~A = 0 can be supplemented by φ = 0. Then

~E = −∂
~A

∂t
, ~B = ~∇× ~A. (8.4.20)

• The gauge condition is not invariant under the transformations of the special theory
of relativity. This means that if it holds in one inertial frame it will not in general
hold in any other.

Other gauge conditions are used, depending upon the needs of the problem to be solved.3

Here we shall emphasize the above two.

8.5 The homogeneous wave equation: a first look

Let’s consider the dynamical equations in the Lorentz gauge. All the fields (φ and the
three components of ~A) obey an equation of the form[

1

c2

∂2

∂t2
− ~∇2

]
ψ(~r, t) = f(~r, t). (8.5.1)

where ψ ∼ {φ,Ai} and f ∼ {ρ, ji}. We will study this equation in some detail during this
course, but first let’s get a feeling for some of its simplest solutions. Take, for example,
f(~r, t) = 0 (no sources, so we’re asking for vacuum solutions). Any equation of this type
admits solutions of the form

ψ = ψ(ωt± ~k · ~r), (8.5.2)

where ω and ~k are arbitrary (even complex) constants and ψ is an arbitrary function of
its argument. To convince ourselves of this, take u = ωt± ~k · ~r so that ψ = ψ(u). Then

~∇ψ = ±~kψ′

3Problem: Show that one can choose A3 = 0 as a gauge condition. This is the “axial gauge” and is
quite useful at times.



8.5. THE HOMOGENEOUS WAVE EQUATION: A FIRST LOOK 165

∂ψ

∂t
= ωψ′, (8.5.3)

where ψ′ = dψ/du. Thus

~∇2ψ = ~k2ψ′′

∂2ψ

∂t2
= ω2ψ′′. (8.5.4)

Plug this into the wave-equation and find(
ω2

c2
− ~k2

)
ψ′′ = 0, (8.5.5)

which means that, either

|~k| = |ω|
c
, (8.5.6)

or ψ′′ = 0. But ψ′′ = 0 yields ψ = au + b. Ignoring this last possibility, consider the
following special function of the variable u = ωt± ~k · ~r:

ψ(~r, t) = ψoe
−i(ωt±~k·~r) (8.5.7)

or, explicitly in terms of the electromagnetic fields

φ(~r, t) = φoe
−i(ωt±~k·~r)

~A(~r, t) = ~Aoe
−i(ωt±~k·~r). (8.5.8)

Consider the special case in which ω and ~k are both real.4 The solution is harmonic and
represents plane waves propagating through space. The constant phase surfaces are given
by ωt± ~k · ~r = const. At any given time (t = to, fixed) we see that

~k · ~r = const∓ ωto. (8.5.9)

The r.h.s. is a constant, so this is the equation of a plane whose normal is k̂ (the unit
vector in the direction of ~k). Thus, the vector ~k is perpendicular to the constant phase
planes (see figure 1). It is called the wave-vector. The modulus |~k| is called the wave
number and ω is the angular frequency. The wavelength is simply

λ =
2π

|~k|
=

2πc

ω
. (8.5.10)

4We will take ~k and ω to be real, but ~Ao and φo may be complex. The physical fields are the real parts
of these solutions.
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Figure 8.1: Plane monochromatic waves

Thus we find that λf = c, where f = ω/2π is the frequency, i.e., the wave travels at the
speed c.

Let us now inquire about the measurable fields ~E and ~B. We have

~B = ~∇× ~A = ∓i~k × ~A

~E = −~∇φ− ∂ ~A

∂t
= ±i~kφ+ iω ~A, (8.5.11)

and we should not forget that these fields are in the Lorentz gauge. The gauge condition
supplements the above equations and reads

∓ i~k · ~A− iω

c2
φ = 0. (8.5.12)

We can eliminate φ using this equation,

φ = ∓c
2

ω
(~k · ~A). (8.5.13)

and substitute into (8.5.11) to find

~E = −ic
2

ω
~k(~k · ~A) + iω ~A = − ic

2

ω
~k × (~k × ~A)

~B = ∓i~k × ~A, (8.5.14)

so the equations are written entirely in terms of ~A. A straightforward calculation reveals

~E × ~B = ∓c
2

ω
~B2~k
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~B × ~k = ∓ ω
c2
~E

~k × ~E = ∓ω ~B. (8.5.15)

This means that the unit vectors (Ê, B̂,∓k̂) form a right handed basis. Because the wave-
vector is perpendicular to the planes of constant phase, the electric and magnetic fields
oscillate within these planes while the wave itself propagates perpendicular to them (see
figure 1).5 Our simple solution therefore represents plane, monochromatic electromagnetic
waves (light) propagating in a vacuum. We will build on this solution in the future.

Another simple solution, which also happens to be of great interest, is obtained by
examining the wave equation in a linear, isotropic conducting medium, i.e., by applying
Ohm’s law, ~j = g ~E (g is the conductivity of the medium), to write the source currents in
terms of the fields themselves. Taking

ρ = 0, ~j = σ ~E = −g

(
~∇φ+

∂ ~A

∂t

)
, (8.5.16)

starting from our original equations (8.2.3) and (8.2.5) and imposing a suitable gauge
condition, one finds6 a simple equation for both φ and ~A if the medium is also non-
dispersive: [

1

v2

∂2

∂t2
− ~∇2 + µg

∂

∂t

]
ψ = 0 (8.5.17)

where the speed of light in a vacuum (c = 1/
√
εoµo) is replaced by v = 1/

√
εµ, the electric

permitivity and magnetic susceptibility of the medium being ε and µ respectively, and
where ψ is either φ or ~A. The equation is again homogeneous, differing from the vacuum
equation by the first derivative term. It is called the “Telegrapher’s equation”. Again, we
may seek a harmonic solution of the form

ψ(t, ~r) = ψoe
−i(ωt±~κ·~r) (8.5.18)

but now we find the (dispersion) relation

ω2

v2
− ~κ2 + iωgµ = 0. (8.5.19)

Given that the conductivity, electric permitivity and magnetic susceptibility of the medium
are real, it is clear that ω and κ cannot both be real. This makes the solutions a great
deal richer than the vacuum plane waves we have examined. They will be examined in
some detail in Chapter 7.

5Problem: Obtain a solution of the wave equation in spherical coordinates (spherical symmetry) by
making the following approximation: neglect the angular dependence, i.e., let ψ = ψ(r). Show that
ψ(r) = ψo

r
ei(kr±ωt).

6See Chapter 7



Chapter 9

Space-time Symmetries

9.1 Introduction

Let us now consider the relationship that electromagnetism bears to the special theory of
relativity. Recall the electromagnetic field equations

1

c2

∂2φ

∂t2
− ~∇2φ =

ρ

εo

1

c2

∂2 ~A

∂t2
− ~∇2 ~A = µo~j (9.1.1)

in Lorentz gauge. We shall think of them as the action of an operator “�x”,

�x :=
1

c2

∂2

∂t2
− ~∇2, (9.1.2)

on a set of fields, (φ, ~A), which we collectively designate ψ. So we will write

�xψ = f. (9.1.3)

Now Newtonian mechanics is based on Galilean transformations: the “Galilean boosts”,

~r → ~r′ = ~r − ~vt

t → t′ = t (9.1.4)

(provided that the origin of space and time is chosen appropriately) plus spatial rotations

~r → ~r′ = R̂ · ~r (9.1.5)

168
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Figure 9.1: Boosts and rotations

where R̂ is a rotation matrix (see figure 2).
Consider a single particle within a collection of N particles with interactions between

them. If we label the particles by integers, Newton’s equations describing the evolution of
a single particle, say particle n, may be written as,

mn
d2~rn
dt2

= ~F extn + ~F intn = ~F extn +
∑
m6=n

~F intm→n, (9.1.6)

where ~F intm→n represents the (internal) force that particle m exerts over particle n. Assume
that the internal forces are derivable from a potential and that the potential depends only
on the spatial distance between the particles, i.e.,

F intn = −~∇nΦint
n = −

∑
m6=n

~∇nΦnm(|~rn − ~rm|). (9.1.7)

This is compatible with the third law (of action and reaction) and it also makes the
internal forces invariant w.r.t Galilean boosts. Thus, provided that the external force,
F ext, is invariant under Galilean boosts, the r.h.s. of Newton’s equations are invariant.
To see that this is so, specialize to just one space dimension and write the transformations
in the following form (we are making this more complicated than it really is so as to
introduce methods that will be useful in more complicated situations)[

dt′

dx′

]
=

[
1 0
−v 1

] [
dt
dx

]
(9.1.8)

and the inverse transformations as[
dt
dx

]
=

[
1 0
v 1

] [
dt′

dx′

]
. (9.1.9)

We can now read off
∂

∂t′
=
∂t

∂t′
∂

∂t
+
∂x

∂t′
∂

∂x
=

∂

∂t
+ v

∂

∂x
(9.1.10)
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and
∂

∂x′
=

∂t

∂x′
∂

∂t
+
∂x

∂x′
∂

∂x
=

∂

∂x
. (9.1.11)

Therefore
∂

∂x′n
Φnm(|~r′n − ~r′m|) =

∂

∂xn
Φnm(|~rn − ~rm|), (9.1.12)

so the r.h.s. is invariant (we assume that ~F ext is constructed to be invariant). Moreover
dt′ = dt and the transformation is linear so that the l.h.s. of Newton’s equations is also
invariant under these transformations. Newtonian dynamics are therefore invariant under
Galilean boosts.

9.2 Lorentz Transformations

This is not so for electrodynamics: let us see that the wave equation (even in the vacuum),

1

c2

∂2ψ

∂t2
− ~∇2ψ = 0, (9.2.1)

is not invariant under Galilean transformations. It is an experimental fact (the famous
experiment of Michelson and Morley) that the speed of light in a vacuum is constant,
independent of the observer. Using the transformations in (9.1.8) and (9.1.9) we have

∂2

∂t′2
=

(
∂

∂t
+ ~v · ~∇

)(
∂

∂t
+ ~v · ~∇

)
(9.2.2)

and
~∇′2 = ~∇2. (9.2.3)

Plugging this into the wave equation, we find

1

c2

∂2

∂t′2
− ~∇′2 → 1

c2

∂2

∂t′2
− ~∇2 +

2~v

c2
· ~∇ ∂

∂t
+

1

c2
(~v · ~∇)(~v · ~∇). (9.2.4)

Only the first two terms on the r.h.s. belong to the wave-equation. Moreover, there exists
no known kinetic transformation of the wave-function that can lead to a return to the
original form.1 We conclude that the electromagnetic wave-equation is not invariant under
Galilean transformations. This is either a disaster for electromagnetism or a disaster for

1Problem: Show that, on the contrary, the Schroedinger equation is invariant under Galilean transfor-
mations if they are supplemented with the following kinetic transformation of the wave-function:

ψ → ψ′ = e−
i
~ (~p·~r−Et)ψ

where ~p = m~v and E = m~v2/2. What does this mean?
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Newtonian mechanics. As we know, for very good reasons, Maxwell’s theory was preferred
over Newtonian mechanics and Galilean transformations. We must now ask: what are
the transformations that keep Maxwell’s equations form invariant (we will explain more
precisely what form invariance means later).

To answer this question we will think of the wave-equation as made up of two distinct
parts: the operator “�x” and the fields, which we collectively call ψ. Now “�x” is a second
order operator and we will require it to be a scalar (invariant). Later we will see that for
the equation itself to remain form invariant, the fields have to transform as scalars, vectors
or tensors. This will imply certain transformation properties of the potentials (φ, ~A).

Let us work with Cartesian systems and consider some general transformations of the
form

t → t′ = t′(t, ~r),

~r → ~r′ = ~r′(t, ~r). (9.2.5)

They must be

1. one-to-one: so that observers may be able to uniquely relate observations, and

2. invertible: so that the transformations can be made from any observer to the other
– there is no preferred observer.

Our functions must therefore be bijective. Let us assume that they are linear,

t′ = − 1

c2
(L00t+

∑
i

L0ixi),

x′i = Li0t+
∑
j

Lijxj . (9.2.6)

The reason for this peculiar definition will become clear later. For now let us only note
that the L’s are some constants that we would like to evaluate. In matrix form the
transformations could be written as[

dt′

dx′i

]
=

[
−L00

c2
−L0j

c2

Li0 Lij

] [
dt
dxj

]
. (9.2.7)

The matrix on the r.h.s. is really a 4×4 matrix and Lij represents a 3×3 matrix (the
spatial part). It must be invertible.

Take L00 = −c2 and L0i = 0 = Li0. The resulting transformations are pure spatial
rotations, transforming xi → x′i =

∑
j Lijxj and leaving t → t′ = t unchanged. Clearly

the wave-operator is a scalar under spatial rotations because in this case ~∇′2 = ~∇2 and
∂2
t′ = ∂2

t .
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More interesting are the “boosts”. These involve inertial observers with relative ve-
locities. Now Li0 6= 0 6= L0i. Consider relative velocities along the x direction and the
transformation 

dt′

dx′1
dx′2
dx′3

 =


α β 0 0
γ δ 0 0
0 0 1 0
0 0 0 1



dt
dx1

dx2

dx3

 . (9.2.8)

Notice that x′2 = x2 and x′3 = x3. This is because we have assumed that space is homo-
geneous and isotropic so that a boost in the x1 direction has no effect on the orthogonal
coordinates x2 and x3. We can consider then only the effective two dimensional matrix[

dt′

dx′

]
=

[
α β
γ δ

] [
dt
dx

]
(9.2.9)

(where x1 := x). Thus we find the inverse transformation[
dt
dx

]
=

1

‖‖

[
δ −β
−γ α

] [
dt′

dx′

]
, (9.2.10)

where ‖‖ represents the determinant of the transformation, ‖‖ = αδ − βγ. Thus we have

∂

∂t′
=

∂t

∂t′
∂

∂t
+
∂x

∂t′
∂

∂x
=

1

‖‖

(
+δ

∂

∂t
− γ ∂

∂x

)
∂

∂x′
=

∂t

∂x′
∂

∂t
+
∂x

∂x′
∂

∂x
=

1

‖‖

(
−β ∂

∂t
+ α

∂

∂x

)
, (9.2.11)

and our wave-operator becomes

1

c2

∂2

∂t′2
− ~∇′2 =

1

‖‖2

(
1

c2

(
+δ

∂

∂t
− γ ∂

∂x

)2

−
(
−β ∂

∂t
+ α

∂

∂x

)2
)

=
1

‖‖2

(
(δ2/c2 − β2)

∂2

∂t2
− (α2 − γ2/c2)

∂2

∂x2

−2(αβ − γδ/c2)
∂2

∂t∂x

)
. (9.2.12)

To return to the wave-operator in the frame S we need to set

δ2

c2
− β2 =

‖‖2

c2
,

α2 − γ2

c2
= ‖‖2,

αβ − γδ

c2
= 0. (9.2.13)
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We have four unknowns and three constraints, so there is really just one parameter that
determines all the unknowns. It is easy to find. Note that setting

δ = ‖‖ cosh η, β =
‖‖
c

sinh η (9.2.14)

solves the first of these equations, as

α = ‖‖ coshω, γ = c‖‖ sinhω (9.2.15)

solves the second. The last equation is then a relationship between η and ω. It implies
that

sinh η coshω − sinhω coshω = sinh(η − ω) = 0→ η = ω. (9.2.16)

Our boost in the x direction therefore looks like[
dt′

dx′

]
= ‖‖

[
cosh η 1

c sinh η
c sinh η cosh η

] [
dt
dx

]
. (9.2.17)

We notice that ‖‖ is not determined. We will henceforth take it to be unity.
What is the meaning of the parameter η? Consider a test body, which has a velocity u

observed in the S frame. Its velocity as measured in the S′ frame would be (the velocity
does not transform as a vector)

u′ =
dx′

dt′
=

(cosh η)dx+ c(sinh η)dt

(cosh η)dt+ 1
c (sinh η)dx

. (9.2.18)

Dividing by (cosh η)dt we find

u′ =
u+ c tanh η

1 + u
c tanh η

. (9.2.19)

Now suppose that the body is at rest in the frame S. This would mean that u = 0.
But, because S′ moves with velocity v relative to S, we can say that S should move with
velocity −v relative to S′. Therefore, because the test body is at rest in S, its velocity
relative to S′ should be u′ = −v. Our formula gives

u′ = −v = c tanh η → tanh η = −v
c
. (9.2.20)

This in turn implies that

cosh η =
1√

1− v2/c2
, sinh η = − v/c√

1− v2/c2
, (9.2.21)

so we can write the transformations in a recognizable form

t′ =
t− vx/c2√
1− v2/c2

,
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x′ =
x− vt√
1− v2/c2

,

y′ = y,

z′ = z. (9.2.22)

Notes:

• These are the Lorentz transformations of the special theory of relativity.2 They
reduce to Galilean transformations when v/c << 1.

• Because tanh η ∈ (−1, 1) it follows that the transformations are valid only for v < c.
The velocity of light is the limiting velocity of material bodies and observers. There
exists no transformation from the rest frame of light to the rest frame of a material
body.

• In general the matrix L̂ is made up of boosts and rotations. Rotations do not, in
general, commute with boosts and two boosts can lead to an overall rotation.

9.3 Tensors on the fly

One lesson that we learn is that we must work with the position vectors of events and
these are “four-vectors”, i.e., vectors having one time and three space components. It is
no longer useful or even correct to think of space and time as separate entities because
the Lorentz transformations mix the two. Continuing with a Cartesian system, label the
coordinates as follows:

xµ = (x0, xi) : µ ∈ {0, 1, 2, 3}, x0 = t, xi = xi. (9.3.1)

Let us be particular about the position of the indices as superscripts, distinguishing be-
tween superscripts and subscripts (soon we will see that this is important) and consider a

2For the very curious: Lorentz transformations can be put in four categories:

– Proper orthochronous: L↑+ with ‖‖ = +1, L0
0 ≥ +1

– Proper non-orthochronous: L↓+ with ‖‖ = +1, L0
0 ≤ −1

– Improper orthochronous: L↑− with ‖‖ = −1, L0
0 ≥ +1

– Improper non-orthochronous: L↓− with ‖‖ = −1, L0
0 ≤ −1

What we have are therefore proper orthochronous transformations.
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displacement, dxµ, in frame S letting the corresponding displacement in frame S′ be dx′µ.
By our transformations we know that

dxµ → dx′µ =
∑
ν

Lµνdx
µ, (9.3.2)

where Lµν is precisely the matrix we derived earlier for the special case of boosts in the x
direction. In that case

L0
0 = −L00/c

2 = cosh η,
L0

1 = −L01/c
2 = sinh η/c, L0

i = 0 ∀ i ∈ {2, 3},
L1

0 = L10 = c sinh η, Li0 = 0 ∀ i ∈ {2, 3},
L1

1 = L11 = cosh η, Lij = δij ∀ i, j ∈ {2, 3}, (9.3.3)

where δij is the usual Kronecker δ̂ (unit matrix),

δij =

{
1 i = j
0 i 6= j

(9.3.4)

In spacetime, we may set up a vector space V by defining a set of four unit vectors,
{û(µ)}, called a tetrad frame, spanning V , so that an arbitrary proper displacement in
space-time can be expressed as d~s =

∑
µ dx

µû(µ). Since the displacement itself should not
depend on the observer, it follows from (9.3.2) that under a Lorentz transformation

û(µ) → û′(µ) =
∑
α

û(α)(L
−1)αµ (9.3.5)

A vector is any object of the form ~A =
∑

µA
µû(µ), with four “contravariant” components,

Aµ, each of which transforms as dxµ (so that ~A is also observer independent), i.e.,

Aµ → A′µ =
∑
ν

LµνA
ν . (9.3.6)

It is both customary and useful to think of a vector in terms of its components, but it
is somewhat inconvenient to explicitly write out the summation (Σ) every time we have
sum over components. We notice, however, that only repeated indices get summed over;
therefore we will use Einstein’s convention and drop the symbol Σ, but now with the
understanding that repeated indices, occurring in pairs in which one member appears
“up” (as a superscript) and the other “down” (as a subscript), automatically implies a
sum. Thus, for example, we would write the above transformation of contravariant vectors
as

Aµ → A′µ = LµνA
ν . (9.3.7)
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Notice that the derivative operator does not transform as dxµ, but according to the inverse
transformation. In other words:

∂

∂xµ
:= ∂µ →

∂

∂x′µ
:= ∂′µ =

∂xα

∂x′µ
∂α. (9.3.8)

But since ∂x′µ/∂xα = Lµα, and

∂xα

∂x′µ
∂x′µ

∂xβ
= δαβ = (L−1)αµL

µ
β, (9.3.9)

it follows that

∂′µ =
∂xα

∂x′µ
∂α = ∂α(L−1)αµ, (9.3.10)

so the derivatives of a scalar function, ∂µφ(x), are not the components of a vector. Nev-
ertheless, we see that

dx′µ∂′µφ
′(x′) = (L−1)βµL

µ
αdx

α∂βφ(x) = δβαdx
α∂βφ(x) = dxµ∂µφ(x) (9.3.11)

is invariant.
Given any vector space, V , one can one can consider the space of all linear maps from

V to the real numbers, i.e., maps of the form ~ω : V → R,

~ω( ~A)
def
= ~ω · ~A ∈ R

satisfying
~ω(a ~A+ b ~C) = a~ω( ~A) + b~ω(~C) (9.3.12)

where ~A and ~C are in V , and a and a are real numbers. One may now define the sum of
two linear maps by

(a~ω + b~η)( ~A) = a~ω( ~A) + b~η( ~A) (9.3.13)

then it is easy to see that these maps themselves form a vector space, called the dual
vector space, ∗V . Given the tetrad {û(µ)}, spanning V , we could introduce a basis for the

dual vector space, {θ̂(µ)}, by requiring that

θ̂(ν)(û(µ)) = θ̂(ν) · û(µ) = δνµ (9.3.14)

For the inner product to remain invariant, it must hold that, under a Lorentz transforma-
tion,

θ̂(µ) → θ̂′(µ) = Lµαθ̂
(α). (9.3.15)

Any member of the dual vector space, ~ω can now be expressed as ~ω = ωµθ̂
(µ). ωµ are

called the “covariant” components of ~ω. They will transform as

ωµ → ω′µ = ωα(L−1)αµ, (9.3.16)
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so that, given any vector, ~A, and any dual vector, ~ω, one forms a scalar

− ~ω · ~A = −ωµAµ. (9.3.17)

This is the four dimensional dot product, the analogue of the three dimensional dot product
we are familiar with. The simplest example of a dual vector is the gradient of a scalar
function:

∇ = θ̂(µ)∂µφ(x), (9.3.18)

as we saw earlier.
We could generalize the concept of vectors to tensors by simply defining a rank (0, n)

tensor to be an multilinear map from a tensor product (an ordered collection) of vectors
to R, i.e., T : V ⊗ V . . . ⊗ V (n times) → R.3 A basis for T will evidently be θ̂(µ1) ⊗
θ̂(µ2) . . .⊗ θ̂(µn) and we could express T as

T = Tµ1µ2...µn θ̂
(µ1) ⊗ θ̂(µ2) . . .⊗ θ̂(µn), (9.3.19)

Its covariant components will transform as n copies of a dual vector,

T ′µνλ... = Tαβγ...(L
−1)αµ(L−1)βν(L−1)γλ . . . (9.3.20)

Similarly, we could define a rank (m, 0) tensor to be an multilinear map from a tensor
product of dual vectors to R, i.e., T : ∗V ⊗∗V . . .⊗∗V (m times)→ R. Following the same
reasoning as before, a basis for T will be û(µ1) ⊗ û(µ2) . . .⊗ û(µm) and we could express T
as

T = Tµ1µ2...µm û(µ1) ⊗ û(µ2) . . .⊗ û(µm) (9.3.21)

so that its contravariant coponents will transform as m copies of a vector,

Tµνλ... = LµαL
ν
βL

λ
γT

αβγ... (9.3.22)

More generally, we define “mixed” tensors as multilinear maps from a tensor product of
vectors and dual vectors, T : ∗V ⊗ ∗V . . .⊗ ∗V (m times)⊗ V ⊗ V . . .⊗ V (n times)→ R
and express it as

T = Tµν...λκ...û(µ) ⊗ û(ν) . . .⊗ θ̂(λ) ⊗ θ̂(κ) . . . , (9.3.23)

with V and ∗V appearing in any order in the product (the above is simply one example).
In this case, the tensor is said to have rank (m,n). Thus vectors and dual vectors are but
special cases of tensors: vectors are tensors of rank (1, 0) and dual vectors are tensors of
rank (0, 1). Just as we think of vectors and dual vectors in terms of their components, we
will also think of tensors in terms of their components. Thus we will speak of contravariant,
covariant and mixed tensors according to their components.

3A multilinear map acts lineraly on all its arguments.
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There is a one to one relationship between the covariant and contravariant tensors:
for every covariant tensor we can find a contravariant tensor and vice-versa. To see how
this comes about, let us rewrite the proper distance (??) in a slightly different way, using
matrix notation as follows:

ds2 = −d~s · d~s = −(û(µ) · û(ν))dx
µdxν = −ηµνdxµdxν , (9.3.24)

or

û(µ) · û(ν) = ηµν (9.3.25)

where, according to (??), ηµν is the matrix: diag(−c2, 1, 1, 1) i.e.,

η̂ = ηµν =


−c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 . (9.3.26)

It is a covariant tensor of rank two as we see from its transformation properties and is
called the Minkowski metric. Given that ds2 is invariant, we must have

− ds2 = ηµνdx
µdxν → η′αβdx

′αdx′β = η′αβL
α
µL

β
νdx

µdxν = ηµνdx
µdxν , (9.3.27)

which implies that

ηµν = LαµL
β
µη
′
αβ, (9.3.28)

or, by taking inverses,

η′αβ = (L−1)µα(L−1)νβηµν . (9.3.29)

However, ηµν is required to be an invariant tensor in Special Relativity, η′µν ≡ ηµν , and this

can be used in conjunction with (9.3.28) to derive expressions for the matrices L̂. It is an
alternative way of deriving the Lorentz transformations through the so-called generators
of the transformation (see Appendix B). Now the metric is invertible (‖η̂‖ 6= 0), with
inverse

η̂−1 = ηµν =


− 1
c2

0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (9.3.30)

and, by construction, ηµαηαν = δµν . (It may be easily shown that the inverse metric ηµν

transforms as

η′αβ = LαµL
β
νη
µν = ηαβ, (9.3.31)

i.e., according the rule for a contravariant tensor of rank two.)
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In (9.3.24), ηµν acts upon two contravariant vectors (two factors of dxµ) to create a
scalar, the proper distance between two events. But we had seen that invariants are con-
structed from the product of contravariant tensors and covariant tensors. Thus we expect
that ηµνdx

ν should transform as a covariant vector. In general, consider a contravariant
vector Aµ and construct the quantity

Aµ = ηµνA
ν . (9.3.32)

How does it transform? We see that

Aµ → A′µ = ηµνL
ν
αA

α = ηµνL
ν
αη

αγηγλA
λ = (ηµνL

ν
αη

αγ)(ηγλA
λ), (9.3.33)

where we have used ηαγηγλ = δαλ. But notice that (9.3.28) implies the identity

ηαβ = ηµνL
µ
αL

ν
β → ηγαηαβ = ηµνη

γαLµαL
ν
β

→ δγβ = (ηνµL
µ
αη

αγ)Lνβ = (L−1)γνL
ν
β

→ (L−1)γν = ηνµL
µ
αη

αγ . (9.3.34)

Therefore (9.3.33) reads
A′µ = Aγ(L−1)γµ, (9.3.35)

which is the transformation of a covariant vector. The Minkowski metric therefore maps
contravariant vectors to covariant vectors. In the same way it maps contravariant tensors
to covariant tensors:

Tα1,α2,...αn = ηα1β1ηα2β2 ...ηαnβnT
β1,β2,...βn . (9.3.36)

Likewise, the inverse metric ηµν maps covariant vectors to contravariant vectors, i.e., the
quantity Aµ defined by

Aµ = ηµνAν , (9.3.37)

transforms as a contravariant vector.4 Therefore, it maps covariant tensors to contravari-
ant tensors:

Tα1,α2,...αn = ηα1β1ηα2β2 ...ηαnβnTβ1,β2,...βn . (9.3.38)

This relationship between covariant tensors and contravariant tensors is why we originally
defined the boosts as in (9.2.7). Thus, Lµν = ηµαLαν which gives

L0
0 = η00L00 = −L00/c

2,

4Problem: Show this!
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L0
i = η00L0i = −L0i/c

2,

Li0 = ηijLj0 = Li0,

Lij = ηikLkj = Lij . (9.3.39)

Moreover, there is a natural way to define the (invariant) magnitude of a four-vector, Aµ.
It is simply

A2 = −AµAµ = −ηµνAµAν = −ηµνAµAν , (9.3.40)

which is the equivalent of the familiar way of defining the magnitude of an ordinary three-
vector.5 For example, the familiar operator �x can be written as

�x = −ηµν∂µ∂ν = −∂2, (9.3.41)

in which form it is manifestly a scalar. We see once again that the basic difference between
Newtonian space and Lorentzian space-time is that, in the case of the former, space and
time do not mix and both are absolute. In this case it is sufficient to consider only
spatial distances and Pythagoras’ theorem ensures that the metric is just the Kronecker δ
(with three positive eigenvalues), so there is no need to distinguish between covariant and
contravariant indices. In the case of a Lorentzian space-time an observer’s measurements
of space and time are not independent, neither is absolute and so one is forced to consider
the “distance” between events in space-time. The metric, ηµν , for space-time has signature
(−1, 3) i.e., it has one negative eigenvalue and three positive eigenvalues.

For an arbitrary boost specified by a velocity ~v = (v1, v2, v3) = (v1, v2, v3), we find the
following Lorentz transformations:

L0
0 =

1√
1− ~v2/c2

= γ,

Li0 = γvi,

L0
i =

γvi
c2
,

Lij = δij + (γ − 1)
vivj
~v2

. (9.3.42)

These are most easily derived using (9.3.28) and the fact that η′µν = ηµν . They reduce to
the transformations we had earlier for a boost in the x− direction, for then ~v = (v, 0, 0)

5When A2 < 0 the vector points within the light cone and is said to be “time-like”. When A2 > 0 it
points outside the light cone and is called “space-like” and when A2 = 0 the vector A is “light-like” or
“null”, pointing along the light cone.
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and

L̂ =


γ −γv

c2
0 0

−γv γ 0 0
0 0 1 0
0 0 0 1

 , (9.3.43)

which leads to precisely the transformations in (9.2.22). A more compact way to write
(9.3.42) is

t′ = γ[t− (~v · ~r)
c2

]

~r′ = ~r − γ~vt+ (γ − 1)
~v

v2
(~v · ~r) (9.3.44)

for a general ~v.
Spatial volume elements are not invariant under Lorentz transformations. We can make

a rough argument for this as follows: suppose that the volume measured by the proper
observer is dV then the observer moving relative to this observer with a velocity ~v will
observe the length dimension in the direction of motion contracted according to (??) and all
perpendicular length dimensions will remain unchanged, so we expect dV ′ = dV/γ. A more
precise treatment follows by mimicking the argument for length contraction. Consider the
transformation form (t, x)→ (t′x′)

dt′ = L0
0dt+ L0

jdx
j , dx′i = Li0dt+ Lijdx

j (9.3.45)

with dt′ = 0 because length measurements must be made subject to a simultaneous mea-
surement of the endpoints in every frame. Therefore dt = −L0

jdx
j/γ and

dx′i =

(
−1

γ
Li0L

0
j + Lij

)
dxj =

(
δij +

(1− γ)

γ

vivj
v2

)
dxj , (9.3.46)

so taking the Jacobian of the transformation gives

d3~r → d3~r′ = d3~r

∣∣∣∣∂x′i∂xj

∣∣∣∣ = d3~r/γ. (9.3.47)

The four dimensional volume element, d4x, is invariant for proper Lorentz transformations.
A consequence of the Lorentz transformation of volume is that the three dimensional

δ function, δ(3)(~r − ~r0), which is defined according to∫
d3~rδ(3)(~r − ~r0) = 1 (9.3.48)

cannot be invariant either. If we require the defining integral to remain invariant then

δ(3)(~r − ~r0)→ δ′(3)(~r′ − ~r′0) = γδ(3)(~r − ~r0). (9.3.49)

The four dimensional delta function, δ(4)(x− x0), will, however, be invariant.
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9.4 Covariance of Maxwell’s equations

A dynamical equation is said to be form invariant, or covariant, if both sides of the
equation have the same transformation properties. It is a general principle (Einstein’s
third principle of relativity, based on the notion that all inertial observers are equivalent)
that the fundamental dynamical equations of physics must be the same for all inertial
observers. We have constructed the wave operator “�x” to be a scalar under Lorentz
transformations. Therefore, if we want the equation[

1

c2

∂2

∂2
t

− ~∇2

]
ψ = f (9.4.1)

to be covariant both ψ and f must transform as scalars, or vectors, or tensors under the
same transformations. If both ψ and f are scalars then covariance is obvious. If both sides
transform as, for example, covectors, i.e., ψ is some covector Aµ and f is some covector
jµ then

�′xA
′
µ = j′µ → �x(L−1)αµAα = (L−1)αµjα (9.4.2)

(applying the transformation properties of covectors and the fact that �x is constructed
to be a scalar) and, therefore,

(L−1)αµ�xAα = (L−1)αµjα, (9.4.3)

because L is a constant (global transformation). This is possible if and only if

�xAµ = jµ, (9.4.4)

so we see that both the observer S′ and the observer S use the same equations of motion.
The same argument can be applied to any tensor field.

Now there is a natural way to construct a vector field from the potentials (φ, ~A). Define
the contravariant 4-vector potential Aµ as follows:

Aµ = (
φ

c2
, ~A); A0 =

φ

c2
, Ai = Ai. (9.4.5)

Obviously, the corresponding covariant 4-vector potential will be

Aµ = ηµνA
ν = (−φ, ~A). (9.4.6)

Define the second rank antisymmetric tensor (called the Maxwell field strength tensor) as

Fµν = ∂µAν − ∂νAµ. (9.4.7)
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It is obviously a covariant tensor because both the partial derivatives and Aµ transform
according to the inverse Lorentz transformation, (L−1).6 It is antisymmetric in its indices
and, importantly, made up of field gradients. We’ll see that its components are just the
electric and magnetic fields. Calculate (noting that F00 = 0 = Fii)

F0i = ∂0Ai − ∂iA0 =
∂Ai
∂t

+ ~∇iφ = −Ei, (9.4.8)

and
Fij = ∂iAj − ∂jAi = εijkB

k, (9.4.9)

where εijk is the Levi-Civita tensor.7 We’ll therefore write the matrix Fµν as

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 . (9.4.10)

What does the corresponding contravariant tensor look like? Convince yourselves that

Fµν =


0 E1/c

2 E2/c
2 E3/c

2

−E1/c
2 0 B3 −B2

−E2/c
2 −B3 0 B1

−E3/c
2 B2 −B1 0

 , (9.4.11)

and verify that the quantity −FµνFµν/2 = ~E2/c2 − ~B2 is a Lorentz scalar, i.e., it’s value
is the same for all inertial observers. This is just one example of a field invariant that is
constructed from the Maxwell field strength tensor. Likewise the product ∗FµνFµν ∼ ~E · ~B
is also a Lorentz scalar. Other invariants can be constructed.8

It is extremely important to know the invariants of any theory. The fact that they
do not change from inertial observer to inertial observer means that they can act as
powerful constraints. For example, consider the following question: does there exist an
electromagnetic field that is purely electric in one inertial frame and purely magnetic in
another? Without knowing the explicit form of the transformations of ~E and ~B we can

6Problem: Show explicitly that F ′µν = (L−1)αµ(L−1)βνFαβ . This transformation can now be used to
derive the transformation properties of the electric and magnetic fields – see Homework (2) problem (2).

7Recall that the three dimensional Levi-Civita symbol is defined by

εijk =


+1, (i, j, k) is an even permutation of (1, 2, 3)
−1, (i, j, k) is an odd permutation of (1, 2, 3)

0, otherwise

Problem: Show therefore that Bi = 1
2
εijkFjk.

8see Homework (2) problem (1).
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deduce that the answer is “no”. Suppose that the field is purely electric (non-vanishing)
in frame S and purely magnetic in frame S′, if S′ exists. Then we should have

~E2

c2
= −( ~B′)2 (9.4.12)

but the left hand side is ≥ 0 and the right hand side is ≤ 0. Therefore both must be zero
which contradicts our starting assumption that ~E 6= 0. To generalize this example a bit,
consider a frame S in which there is both an electric field, ~E and a magnetic field. ~B. Is
there a frame, S′, in which the electric field would disappear? Again, let us see what the
invariants say: we should have

~E · ~B = 0

~E2

c2
− ~B2 = −( ~B′)2 (9.4.13)

The first equation tells us that this would be possible only if the electric and magnetic
fields were perpendicular in the original frame, S. We will return to this point shortly.

Consider the transformations of the electric and magnetic fields. They they do not
transform as vectors but as the components of a tensor (the Maxwell field strength tensor,
of course). Thus, for example, we could use

E′i

c2
= F ′

0i
= L0

αL
i
βF

αβ

εijkB′k = F ′
ij

= LiαL
j
βF

αβ (9.4.14)

to determine9

~E′ = γ( ~E + ~v × ~B)− γ2

(γ + 1)

~v

c2
(~v · ~E)

~B′ = γ( ~B − ~v

c2
× ~E)− γ2

(γ + 1)

~v

c2
(~v · ~B) (9.4.15)

They do not transform as the spatial part of the displacement vector xµ. To develop on
the question in the previous paragraph: we saw that it might be possible to eliminate
the electric field by a boost if the two fields were perpendicular. For example, consider
the plane electromagnetic waves we obtained in section (5). They certainly satisfy the
condition ~E · ~B = 0. However, they also satisfy E2/c2 = B2, so ( ~B′)2 is also vanishing. Is
it possible then to eliminate both the electric and the magnetic field merely by choosing

9see homework 2 Problem (2)
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a suitable frame? If this were possible, the photon would simply disappear! Suppose that
~E′ = 0 = ~B′ (in frame S′), then according to (9.4.15),

~E + ~v × ~B =
γ

(γ + 1)

~v

c2
(~v · ~E)

~B − ~v

c2
× ~E =

γ

(γ + 1)

~v

c2
(~v · ~B) (9.4.16)

But, because ~E · ~B = 0, we have (~v · ~E)(~v · ~B) = 0, so the velocity should be perpendicular
either to ~E or to ~B. Suppose it is perpendicular to ~E. Then it follows that ~E = −~v × ~B.
But, for electromagnetic waves in the vacuum, ~E = c ~B × k̂, so ~v = ck̂. S′ is a frame
that travels in the direction of propagation at the speed of light. The result is nonsense,
of course, because the transformations (9.4.15) are not valid for v = c. Had we chosen
~v perpendicular to ~B instead, we would find c2 ~B = ~v × ~E. But we already know that
k̂× ~E = c ~B allowing us to once again identify ~v = ck̂. The conclusions are the same: you
cannot get rid of a photon by a boost. Of course, this is also obvious from the fact that
the equation �xAµ = 0 is Lorentz covariant.

Again, note that gauge transformations of the 4-vector potential can be written as

Aµ → A′µ = Aµ + ∂µΛ, (9.4.17)

which is another nice way to see how the formalism unifies the two potentials and their
properties. Fµν remains unchanged under these transformations, i.e., Fµν in invariant
under gauge transformations.

Maxwell’s equations are first order differential equations in the electric and magnetic
fields (or second order in the potentials). Let us therefore evaluate the quantity ∂µF

µν . In
the first place we notice that this is a contravariant vector, for consider its transformation
properties:

∂µF
µν → ∂′µF

′µν = (L−1)αµL
µ
βL

ν
γ∂αF

βγ

= δαβL
ν
γ∂αF

βγ = Lνγ∂αF
αγ . (9.4.18)

They are of a contravariant vector. Then let us evaluate (F 00 = 0):

∂µF
µ0 = ∂iF

i0 = − 1

c2
~∇ · ~E = − ρ

ε0c2
= −µ0ρ (9.4.19)

(using c2 = 1/ε0µ0) and

∂µF
µi = ∂0F

0i + ∂jF
ji =

∂Ei
∂t

+ εjik∂jBk



186 CHAPTER 9. SPACE-TIME SYMMETRIES

= −
[
(~∇× ~B)i −

∂Ei
∂t

]
= −µ0ji. (9.4.20)

We conclude that
∂µF

µν = −jν , (9.4.21)

where jµ is defined by

jµ = (j0, ji); j0 = µ0ρ, ji = µ0ji. (9.4.22)

Moreover, because the l.h.s. of (9.4.21) transforms as a contravariant vector, therefore jµ

should transform as a contravariant vector. Thus we know how the matter fields transform
as well. The continuity equation now has the particularly simple form

∂µj
µ = 0 (9.4.23)

and the entire content of Maxwell’s dynamics is in the simple equation of (9.4.21). As we
have seen, this equation must be supplemented by a gauge condition. The Lorentz gauge
condition reads

~∇ · ~A+
1

c2

∂φ

∂t
= ∂µA

µ = 0, (9.4.24)

in which form it is manifestly a scalar condition, remaining the same for all inertial ob-
servers.

What about the Bianchi identities? Define the “dual” tensor

∗Fµν =
1

2
εµναβFαβ, (9.4.25)

where εµναβ is the 4-dimensional Levi-Civita tensor defined in the usual way by

εµναβ =


+1, (µ, ν, α, β) is an even permutation of (0, 1, 2, 3)

−1, (µ, ν, α, β) is an odd permutation of (0, 1, 2, 3)

0, otherwise

(9.4.26)

The four dimensional Levi-Civita symbol is really a tensor density, but in Minkowski space
there is no noteworthy difference between a tensor density and a tensor. For our purposes,
therefore, the Levi-Civita symbol defined above is a contravariant tensor of rank four.10 It
should be clear from the properties of the Levi-Civita tensor that ∗Fµν is antisymmetric.
Its components are

∗F 0i =
1

2
ε0ijkFjk =

1

2
εijkFjk = Bi,

10Problem: Prove this! Use the fact that the Lorentz transformation matrices have unit determinant.
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∗F ij =
1

2
[εij0kF0k + εijk0Fk0] = −εijkFk0 = −εijkEk. (9.4.27)

We could write the tensor in matrix form as

∗Fµν =


0 B1 B2 B3

−B1 0 −E3 E2

−B2 E3 0 −E1

−B3 −E2 E1 0

 (9.4.28)

and, likewise, the corresponding covariant form, ∗Fµν = ηµαηνβ
∗Fαβ as

∗Fµν =


0 −c2B1 −c2B2 −c2B3

c2B1 0 −E3 E2

c2B2 E3 0 −E1

c2B3 −E2 E1 0

 . (9.4.29)

If we compare the expressions for Fµν and ∗Fµν we will see that the effect of taking the
dual is to transform ~E → c2 ~B and ~B → − ~E. This kind of a transformation is called a
duality transformation. Notice now that

∂µ
∗Fµν = εµναβ∂µFαβ = εµναβ∂µ(∂αAβ − ∂βAα) ≡ 0 (9.4.30)

(because whereas εµναβ is antisymmetric w.r.t. interchanges of its indices, the operators
∂µ∂α and ∂µ∂β are both symmetric). Let us now calculate ∂µ

∗Fµν :

∂µ
∗Fµ0 = ∂i

∗F i0 = −~∇ · ~B = 0,

∂µ
∗Fµi = ∂0

∗F 0i + ∂j
∗F ji =

∂Bi
∂t
− εjik∂jEk

= (~∇× ~E)i +
∂Bi
∂t

= 0. (9.4.31)

These will be recognized as the Bianchi identities. Thus the Bianchi identities may be
written in a single equation as

∂µ
∗Fµν = 0. (9.4.32)

Maxwell’s equations (all four of them) are therefore11

∂µ
∗Fµν = 0, Bianchi identities,

11For those who want to flex those muscles developed in Mechanics a bit, the following exercises are
instructive and highly recommended:

• Show that the l.h.s. of the dynamical equations can be obtained from varying the action∫
d4xFµνFµν
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∂µF
µν = −jν , dynamics. (9.4.33)

Notice that in the vacuum (jµ = 0), Maxwell’s equations are invariant under a duality
transformation.

9.5 Discrete Symmetries

The Lorentz transformations are continuous because they depend on the continuous pa-
rameters vi, which are simply the components of the velocity of one frame relative to the
other. There are also discrete transformations which may be of interest. We will consider,
in particular, three discrete transformations, two of them act directly on space-time, the
third acts on charge.

9.5.1 Parity

Parity, or space inversion, is the transformation that reflects the spatial coordinates, as if
in a mirror, so that

~r → −~r, t→ t (9.5.1)

We can represent this transformation as a matrix operation on space-time, just as we did
the Lorentz transformation. Thus

xµ = Pµνx
ν (9.5.2)

• Show that the Bianchi identities are obtained from the action
∫
d4x∗FµνFµν . This integral can be

written as a total derivative:∫
d4xFµν∗Fµν = 4

∫
d4x∂µW

µ = 4

∫
Σ

dσµWµ

where

Wµ = εµαβγAα∂βAγ

and the last integration is carried out on the bounding surface, Σ, therefore it depends on the
topology. In other words,

∫
d4xF ∗F is a topological term that can be added to the Lagrangian∫

d4xF 2. It does not contribute to the (local) equations of motion but does contribute to the action
if non-trivial boundaries are present. The quantity F ∗F is an invariant called the Euler invariant.

• Perform a Hamiltonian decomposition of the action and show that φ is a Lagrange multiplier field.
How many real dynamical fields (functions) does the electromagnetic field involve?

• Use Noether’s theorem to obtain the stress-energy tensor of the electromagnetic field, Tµν . Is it
symmetric? If not, symmetrize it.

• Define the angular momentum density M ij = xiT 0j − xjT 0i

• Compute the angular momentum density of the plane wave we had obtained earlier.

These are only for the especially brave! The less courageous will find the answers in Chapter 5.
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where

Pµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (9.5.3)

The spatial velocity and the spatial acceleration clearly get reversed under a parity trans-
formation. We can also determine how the metric tensor transforms under a parity trans-
formation by looking at the line element,

ds2 = ηµνdx
µdxν → ηµνP

µ
αdx

αP νβdx
β = (P T

µ
α ηµνP

ν
β)dxαdxβ = η′αβdx

αdxβ (9.5.4)

where P T is the transpose of P . But one verifies by direct computation that

η′αβ = (P T
µ
α ηµνP

ν
β) = ηαβ (9.5.5)

so it is invariant. What about the electromagnetic field? The transformation of the electric
and magnetic fields can be inferred directly from Lorentz force on a single charged particle,
if we assume that the basic laws of mechanics are invariant under parity transformations.
Then

~F = e[ ~E + ~v × ~B] (9.5.6)

should stay the same and since, under a parity transformation, ~F → −~F and ~v → −~v, all
else being unaffected, it follows that the equation remains the same if and only if

~E → − ~E

~B → ~B (9.5.7)

One could say that one is interested only in the electric and magnetic fields because that
is what we measure. Nevertheless, what about the electromagnetic potential Aµ? We see
that

~B = ~∇× ~A

~E = −~∇φ− ∂ ~A

∂t
(9.5.8)

are consistent only if ~A→ − ~A and φ→ φ. In other words, Aµ transforms as the coordinate
displacement dxµ under a parity transformation. Aµ is said to be a “vector” field under
parity transformations. If it had not transformed as dxµ under parity, it would be called a
“pseudovector” field because it would transform as a vector under Lorentz transformations
and as a scalar under parity.
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9.5.2 Time reversal

Time reversal, as the name suggests, reflects only the time coordinate,

~r → ~r, t→ −t (9.5.9)

Again, we can represent this transformation as a matrix operation on the space-time
coordinates,

xµ → Tµνx
ν

Tµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (9.5.10)

Following precisely the same argument as before, we see that the metric tensor is invariant
under time reversal and that ~F → ~F and ~v → −~v together imply that ~E → ~E and
~B → − ~B. From the definition of these fields in terms of the electromagnetic potential, we
see that ~A→ − ~A and φ→ φ, which is precisely the same as it was under parity.

9.5.3 Charge Conjugation

Charge conjugation is a transformation that changes the sign of the charge, leaving the
space-time coordinates unchanged

xµ → xµ, e→ −e. (9.5.11)

Naturally, the metric is unaffected by charge conjugation. However, the Lorentz force law
tells us that ~E → − ~E and ~B → − ~B, which is only possible if ~A → − ~A and φ → −φ or
Aµ → −Aµ.

9.6 Electromagnetic Duality

“Electromagnetic Duality” is a notable and curious property of the electromagnetic field
in the absence of sources. The vacuum Maxwell equations remain invariant under the
continuous transformation12

~E − ic ~B → eiθ( ~E − ic ~B), θ ∈ [0, 2π) (9.6.1)

12Problem: Check this claim.
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which, for θ = π
2 in particular, interchanges the electric and magnetic fields according to

~E → c ~B, ~B → −
~E

c
(9.6.2)

(recall that c = 1/
√
εoµo). This starting symmetry is broken in the presence of sources.

However, we can attempt (as did Dirac) to “complete” Maxwell’s equations by introducing
sources for the magnetic field as well, so that (8.1.9) turns into

~∇ · ~E = µoc
2ρe

~∇× ~E +
∂ ~B

∂t
= −µo~jm

~∇ · ~B = µoρ
m

~∇× ~B − εoµo
∂ ~E

∂t
= µo~j

e (9.6.3)

where we have used the superscripts “e” and “m” respectively to distinguish between the
electric and magnetic charge and current densities. The vacuum duality is restored by
transforming the charges and currents as well,(

ρe − iρ
m

c

)
→ eiθ

(
ρe − iρ

m

c

)
(
~je − i

~jm

c

)
→ eiθ

(
~je − i

~jm

c

)
(9.6.4)

A single magnetic charge is called a Dirac monopole. It is easy to see that the magnetic
field for a single, static monopole is

~B =
µo
4π

g

r2
r̂, (9.6.5)

where g is the magnetic charge. Away from the monopole the magnetic field is derivable
from a vector potential (since ~∇· ~B = 0), but the vector potential describing this particular
magnetic field,

~A =
µo
4π

g

r
tan

θ

2
ϕ̂ (9.6.6)

is singular on the half line θ = π. This singularity cannot be removed by any gauge trans-
formation Physically, it corresponds to an infinite solenoid confining a magnetic flux enter-
ing the monopole from infinity that equals the outgoing magnetic flux from the monopole.
It is called a Dirac “string”. The presence of a Dirac string (the infinite solenoid) would
pose a severe threat to the consistency of electromagnetism as a quantum theory due to
the fact that wave functions of particles would pick up a phase when surrounding a region
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in which a magnetic flux tube is present. This is the “Aharonov-Bohm’ effect. One can
show that the problem is circumvented if and only if the electric and magnetic charges
satisfy the following condition:

eq =
2πn

c
, n ∈ N. (9.6.7)

Therefore the presence of a single magnetic monopole in the universe would imply that
electric charge is quantized in units of 2π/gc. No magnetic monopoles have yet been
discovered.



Chapter 10

More general coordinate systems*

10.1 Introduction

As we have seen, very often the symmetries of a given physical system make Cartesian
coordinates cumbersome because it may turn out to be difficult to implement the boundary
conditions suited to the system in these coordinates. In that case, as we know well, we
turn to coordinate systems that are better adapted to the given symmetries. The new
coordinates are not usually Cartesian (for example, think of the problem of determining
geodesics on a sphere). A generic feature of such systems – and one that is exploited in the
physical problem – is that the coordinate surfaces are curved. They are therefore called
“curvilinear” systems. In this chapter we will develop some machinery to work with such
systems.

Suppose that we perform a coordinate transformation from a set of Cartesian coordi-
nates to a set of curvilinear coordinates that are given by ξµ. Imagine that the Cartesian
coordinates extend over the entire spacetime and let them be given by xa. We will as-
sume that the new coordinates are invertible functions of the Cartesian coordinates, i.e.,
ξµ = ξµ(x) and xa = xa(ξ). In the Cartesian system, the distance between two spatial
points is given by the 4-dimensional equivalent of Pythagoras’ theorem:

ds2 = −ηabdxadxb (10.1.1)

But the distance could just as well be expressed in terms of the new coordinates, ξµ(x), so,
exploiting Pythagoras’ theorem, which is given in a Cartesian frame, we write (Einstein’s
summation convention used throughout)

ds2 = −ηabdxadxb = −ηab
∂xa

∂ξµ
∂xb

∂ξν
dξµdξν = −gµν(ξ)dξµdξν (10.1.2)

193
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where we have made use of the chain rule:

dxa =
∂xa

∂ξµ
dξµ (10.1.3)

and called

gµν(ξ) = ηab
∂xa

∂ξµ
∂xb

∂ξν
(10.1.4)

This is the metric (it gives the distance between infinitesimally separated points) and it
is, in general, a function of the new coordinates. Henceforth throughout this section,
we’ll use the following notation: indices from the beginning of the alphabet, a, b, c, ..., will
represent a Cartesian basis and greek indices µ, ν, ... will represent a general (curvilinear)
basis. This will serve to distinguish indices that originate in the Cartesian system from
those whose origin is in the curvilinear system.

Let us define the matrix

eaµ(ξ) =
∂xa

∂ξµ
(10.1.5)

It is a function of position and is called the “vielbein”. A useful way is to think of it as
a collection of four vectors, {~eµ} = (~e0, ~e1, ~e2, ~e3), whose Cartesian components are given
by [~eµ]a = eai . These are the basis vectors of the new coordinate system ξµ(x). They are
(generally) functions of the position because the new basis is not (generally) rigid. If we
consider the identity transformations, for example, i.e., ξµ = (t, x, y, z) then it’s easy to
see that ~e0 = (1, 0, 0, 0), ~e1 = (0, 1, 0, 0), ~e2 = (0, 0, 1, 0) and ~e3 = (0, 0, 0, 1) or, said in
another way, eaµ = δaµ.

The metric in (10.1.4) can be thought of as the matrix whose components are the
(Cartesian) inner products of the ~eµ, i.e.,1

gµν(ξ) = ηabe
a
µe
b
µ = ~eµ · ~eν (10.1.6)

and it is manifestly a scalar under Lorentz transformations. Also, gij is invertible, if the
transformation x→ ξ is invertible, in which case we can define the inverse metric by

gµνgνκ = δµκ (10.1.7)

and it’s easy to see that

gµν = ηab
∂ξµ

∂xa
∂ξν

∂xb
= ~Eµ · ~Eν (10.1.8)

where ~Eµ is the vector with (covariant) Cartesian components

[ ~Eµ]a = Eµa =
∂ξµ

∂xa
(10.1.9)

1Problem: check that the identity transformation leads to gµν = ηµν
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It is called the inverse vielbein because, clearly,

eaµE
µ
b =

∂xa

∂ξµ
∂ξµ

∂xb
= δab , eaµE

ν
a =

∂xa

∂ξµ
∂ξν

∂xa
= δνµ (10.1.10)

where we have repeatedly used the chain rule from elementary calculus.

10.2 Vectors and Tensors

Now the set {~eµ} forms a complete basis in which any four vector can be expanded, i.e.,

A = Aµ~eµ (10.2.1)

and Aµ are the contravariant components of the vector in the directions given by the ~eµ.
We can think of the r.h.s. as giving the contravariant Cartesian components of the vector
according to

Aa = Aµeaµ (10.2.2)

in the original frame, while the contravariant components, Aµ, in the basis ~eµ, are given
in terms of its Cartesian components by the inverse relation

AaEµa = AνeaνE
µ
a = Aνδµν = Aµ (10.2.3)

Any vector can be specified by specifying either the components Aa or the components
Aµ. Naturally, there is also a description in terms of the covariant components of the
vector using the inverse vielbeins:

A = Aµ ~E
µ (10.2.4)

and the r.h.s. may be thought of as specifying the covariant Cartesian components of A,

Aa = AµE
µ
a , (10.2.5)

its covariant components, Aµ, in the basis ~Eµ being given by

Aµ = eaµAa (10.2.6)

in keeping with the relations for contravariant vectors.

We must next consider the transformation properties of the components, Cartesian
or curvilinear. Note that there are two kinds of transformations to think about, viz.,
Lorentz transformations, which concern the original Cartesian basis and general coordinate
transformations, which concern the new (curvilinear) basis.
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• Lorentz transformations act on the Cartesian coordinates, xa, so, when xa → x′a,

e′aµ =
∂x′a

∂ξµ
= Lab

∂xb

∂ξµ
= Labe

a
µ (10.2.7)

showing that eaµ transforms as a contravariant vector w.r.t. Lorentz transformations.
On the other hand, Eµa will transform as a covariant vector

E′µa =
∂ξµ

∂x′a
= (L−1)ba

∂ξµ

∂xb
= (L−1)baE

µ
b (10.2.8)

w.r.t. the same transformations

• Under general coordinate transformations, ξµ → ξ′µ,

e′
a
µ =

∂xa

∂ξ′µ
=
∂ξν

∂ξ′µ
∂xa

∂ξν
=
∂ξν

∂ξ′µ
eaν = (Λ−1)νµe

a
ν (10.2.9)

or

~e′µ =
∂ξν

∂ξ′µ
~eν = (Λ−1)νµ~eν (10.2.10)

and

E′
µ
a =

∂ξ′µ

∂xa
=
∂ξ′µ

∂ξν
∂ξν

∂xa
=
∂ξ′µ

∂ξν
Eνa = ΛµνE

ν
a (10.2.11)

or

~E′µ =
∂ξ′µ

∂ξν
~Eν = Λµν ~E

ν (10.2.12)

Note that Λ̂, unlike L̂, is not necessarily a constant matrix. These transformation
properties imply that the metric in (10.1.4) transforms (under coordinate transfor-
mations) as

g′µν = (Λ−1)αµ(Λ−1)βνgαβ (10.2.13)

and

g′µν = ΛµαΛνβg
αβ (10.2.14)

but is a Lorentz scalar.

It should be clear that the Cartesian components, Aa (Aa) transform only under Lorentz
transformations (they are “coordinate scalars”) and the components Aµ (Aµ) transform
only under general coordinate transformations (they are “Lorentz scalars”). How do they
transform? They follow the same rules as the Cartesian components, but transform under
Λ̂ instead of L̂. As a vector does not depend on the basis in which it is expanded,

A = A′µ~e′µ = A′µ(Λ−1)νµ~eν = Aν~eν (10.2.15)
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implying obviously that

A′µ = ΛµνA
ν (10.2.16)

and a completely analogous argument shows that

A′µ = (Λ−1)νµAν (10.2.17)

is the transformation property of the covariant components. The contravariant compo-
nents and the covariant components transform inversely to one another, so they must be
related by the metric

Aµ = gµνA
ν

Aµ = gµνAν (10.2.18)

because the metric and it’s inverse have precisely the transformation properties required.
Moreover, it’s easy to see now how we might construct scalars (under both Lorentz and
general coordinate transformations):

A2 = A · A = (Aµ~eµ) · (Aν~eν) = AµAν~eµ · ~eν = gµνA
µAν = AµAµ (10.2.19)

That A · A is really a scalar follows from

gµνA
µAν = ηabe

a
µe
b
νA

µAν = ηabA
aAb = AaAa (10.2.20)

or directly from

A′µA′µ = Λµα(Λ−1)βµA
αAβ = δβαA

αAβ = AαAα (10.2.21)

As usual we will define tensors as copies of vectors, their components in any basis being
given by

T = Tµνλ...~eµ ⊗ ~eν ⊗ ~eλ... = Tµνλ... ~E
µ ⊗ ~Eν ⊗ ~Eλ... (10.2.22)

where Tµνλ... and Tµνλ... are the contravariant and covariant components of T respectively.
Then their transformation properties are given by

T ′µνλ... = ΛµαΛνβΛλγT
αβγ... (10.2.23)

and

T ′µνλ... = (Λ−1)αµ(Λ−1)βν(Λ−1)γλTαβγ... (10.2.24)

respectively. Just as for vectors, the covariant and contravariant components of a tensor
are related by the metric (tensor):

Tµνλ... = gµαgνβgλγ ... Tαβγ... (10.2.25)
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and
Tµνλ... = gµαgνβgλγ ... T

αβγ... (10.2.26)

and one can interpolate between components in the original Cartesian basis and in the
curvilinear basis by simply applying the vielbein and its inverse, just as we did for vectors

T ab... = eaµe
b
ν ... T

µν..., Tµν... = EµaE
ν
b ... T

ab...

Tab... = EµaE
ν
b ... Tµν..., Tµν... = eaµe

b
ν ... T

ab... (10.2.27)

10.3 Differentiation

In differentiating a tensor, we are generally interested in measuring the rates of change
of the tensor as we move from point to point on the manifold. To do so we measure the
difference between the values of the tensor at infinitesimally close points, finally taking
the limit as the points approach each other. However, depending on what differences
we measure, the resulting rate of change may not have definite transformation properties
under general coordinate transformations. Below we will consider two ways to define the
“derivative” of a tensor so that the derivative is itself a tensor.

10.3.1 Lie Derivative

Often we may be interested in how the components of a given vector or tensor or even
just a function change(s) as we move along some curve, ξµ(λ), parametrized by λ, from
a point p to another point p′. To define the Lie derivative, we consider a special set of
curves, which are constructed from coordinate transformations. Consider a one parameter
family of coordinate transformations ξ′µ(λ, ξ) so that the λ = 0 transformation is just the
identity transformation, ξ′(0, ξ) = ξ. Let the coordinates of point p be ξµp . Holding ξp fixed,
ξ′µ(λ, ξp) represents the a curve passing through p at λ = 0. Suppose that we have chosen
our one parameter family of transformations so that the curve ξ′µ(λ, ξp) passes through p′

at δλ. Let Uµ(λ, ξp) be tangent to the curve. The point p′ is therefore represented by

ξ′µ = ξ′µ(δλ, ξp) = ξµp + δλUµ(ξp) (10.3.1)

This is the “active” view of coordinate transformations, where they are used to actually
“push points around”. If T is a tensor, it transforms as

T ′µ1µ2...
ν1ν2...(ξ

′) =
∂ξ′µ1

∂ξα1
...
∂ξβ1

∂ξ′ν1
...Tα1α2...

β1β2...(ξ) (10.3.2)

and therefore the left hand side of the above should give the value of T at p′ from its value
at p. The Lie derivative of T is then defined as

[£UT]µ1µ2...
ν1ν2...

= lim
δλ→0

1

δλ

[
Tµ1µ2...

ν1ν2...(ξ)− T ′µ1µ2...
ν1ν2...(ξ)

]
(10.3.3)
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It measures the rate of change of the functional form of the components of a tensor field
by a coordinate transformation, in the direction of U .

For scalar functions, we see immediately that this is just the directional derivative, for
if T is a scalar function, f(ξ), then f ′(ξ′) = f(ξ)⇒ f(ξ)− f ′(ξ) = δλUµ∂µf (to order λ),
therefore

£Uf(x) = lim
δλ→0

1

δλ

[
f(ξ)− f ′(ξ)

]
= Uµ∂µf(ξ) (10.3.4)

If T is a vector field, V µ(ξ), then

[£UV ]µ = lim
δλ→0

1

δλ

[
V µ(ξ)− V ′µ(ξ)

]
= lim

δλ→0

1

δλ

[
∂ξµ

∂ξ′α
V ′α(ξ′)− V ′µ(ξ)

]
= lim

δλ→0

1

δλ

[
∂ξµ

∂ξ′α
(V ′α(ξ) + δλUκ∂κV

α + ...)− V ′µ(ξ)

]
= lim

δλ→0

1

δλ

[
(δµα − δλ∂αUµ + ...)(V ′α(ξ) + δλUκ∂κV

α + ...)− V ′µ(ξ)
]

= Uκ∂κV
µ − V κ∂κU

µ (10.3.5)

Finally, for a co-vector field, Wµ(ξ)

£UW = lim
δλ→0

1

δλ

[
Wµ(ξ)−W ′µ(ξ)

]
= lim

δλ→0

1

δλ

[
∂ξ′α

∂ξµ
W ′α(ξ′)−W ′µ(ξ)

]
= lim

δλ→0

1

δλ

[
(δαµ + δλ∂µU

α + ...)(W ′α(ξ) + δλUκ∂κWα + ...)−W ′µ(ξ)
]

= Uκ∂κWµ +Wα∂µU
α (10.3.6)

and so on for tensors of higher rank.2 If £UT = 0, then T does not change as we move
along the integral curve of U . In this case, the vector U is called a “symmetry” of T. Note
that the Lie derivative of a tensor field T is of the same rank as T itself.

2Obtain the Lie derivative of second rank contravariant, covariant and mixed tensors. In general, the
Lie derivative of a mixed tensor takes the form

[£UT]µ1µ2...
ν1ν2...

= Uσ∂σT
µ1µ2...

ν1ν2... − T
σµ2...

ν1ν2...∂σU
µ1 − ...

+ Tµ1µ2...
σν2...∂ν1U

σ + ...

where the ellipsis means that we repeat the terms of each index of the same type.
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10.3.2 Covariant Derivative: the Connection

The Lie derivative can be thought of as an operator that acts upon a tensor to yield another
tensor of the same rank. However, when we think of a derivative, we think of the operator
∂a (say), which has the effect of increasing the rank of the tensor. Thus, for example,
if T is a rank (m,n) tensor (m contravariant indices and n covariant indices) then ∂T is
a tensor of rank (m,n + 1), if the partial derivative is applied in a Cartesian coordinate
system. However, ∂T is not a tensor in a general coordinate system, as we will see below.
We would like to obtain a derivative operator, ∇, in general curvilinear coordinates that
plays the role of ∂ in Cartesian coordinates, i.e., an operator which acts on an (m,n)
tensor to give an (m,n + 1) tensor. So let us begin with vectors. Imagine transporting
a vector from some point p to some other point p′. The basis vectors (the vielbeins) and
their inverses are not necessarily constant during this transport – they would be constant
only if the coordinate system is not curviliear. Instead of asking about changes in the
components of a vector A, let’s ask instead how the vector as a whole changes as we move
from p to p′. We find

δA = (δAµ)~eµ +Aµ(δ~eµ) (10.3.7)

Assume that the change in ~eµ is a linear combination of the ~eµ themselves. This is a
reasonable assumption because the basis at p is complete. Then

δ~eµ = (δΓνµ)~eν (10.3.8)

and Γνµ ≡ Γνµ(x) will be in general a function of the position. In fact we can obtain δΓνµ in

terms of ~eµ and ~Eµ as follows: begin with

~eµ · ~Eσ = δσµ ⇒ (δ~eµ) · Eσ = −~eµ · (δ ~Eσ) (10.3.9)

but, using (10.3.8), we see that

δΓνµ(~eν · ~Eσ) = δΓσµ = −~eµ · (δ ~Eσ) = (δ~eµ) · Eσ (10.3.10)

We can write
δA = (δAµ)~eµ +Aµ(δΓνµ)~eν (10.3.11)

and we see that the change in A is made up of two parts: (i) the change in its components
and (ii) the changing the basis, as we move from one point to another. The term δΓ takes
into account the change in basis. The difference, δA, is also a vector and is expandable in
the basis ~eµ. If we consequently write it as δA = (DAµ)~eµ, we find

DAµ = δAµ + (δΓµν )Aν (10.3.12)

but what does DAµ represent? Notice that if the basis is rigid then δ~eµ = 0 = δΓνµ and
there is no difference between the variations DAµ and δAµ. This equality fails in a general
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coordinate system, however, and the second term is important. The derivative corre-
sponding to the infinitesimal change given in (10.3.12) is called the “covariant derivative”
of Aµ,

DνA
µ ≡ ∇νAµ = ∂νA

µ + (∂νΓµλ)Aλ = ∂νA
µ + ΓµνλA

λ (10.3.13)

and the 3-index object Γµνλ = ∂νΓµλ is called a “connection”. Using (10.3.10), it can be
written as

Γµνλ = (∂ν~eλ) · ~Eµ. (10.3.14)

It is interesting to see that the ordinary derivative, ∂νA
µ of a contravariant vector does

not transform as a (mixed) tensor, but the covariant derivative, ∇νAµ, does. The fact
that the covariant derivative transforms as a tensor is of great importance. As we have
mentioned, the laws of physics should not depend on one’s choice of coordinates. This
means that they should “look the same” in any system, which is possible only if the two
sides of any dynamical equation transform in the same manner, i.e., either as scalars,
vectors or tensors under transformations between coordinate systems. Thus, covariant
derivatives and not ordinary derivatives are more meaningful in physics.

First let’s see that ∂νA
µ is not a tensor:

∂A′µ

∂ξ′ν
=
∂ξλ

∂ξ′ν
∂

∂ξλ

(
∂ξ′µ

∂ξκ
Aκ
)

=
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξκ
∂Aκ

∂ξλ
+
∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξκ
Aκ (10.3.15)

The first term on the r.h.s. corresponds to the tensor transformation, but the second term
spoils the transformation properties of ∂νA

µ. Let us then examine the transformation
properties of ∇νAµ:

∇′νA′µ = ∂′νA
′µ + Γ′µνκA

′κ

=
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξγ
∂Aγ

∂ξλ
+
∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξγ
Aγ +

∂ξ′κ

∂ξγ
Γ′µνκA

γ (10.3.16)

If we can show that
∂ξ′κ

∂ξγ
Γ′µνκ =

∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
Γσλγ −

∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξγ
(10.3.17)

then we will have

∇′νA′µ =
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ

[
∂Aσ

∂ξλ
+ ΓσλγA

γ

]
=
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
∇λAσ = (Λ−1)λνΛµσ∇λAσ (10.3.18)

and we will have accomplished the task of showing that ∇νAµ is a tensor. It is not so
difficult to show (10.3.17). First put it in the form

Γ′µνκ =
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
∂ξγ

∂ξ′κ
Γσλγ −

∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξγ
∂ξγ

∂ξ′κ
(10.3.19)



202 CHAPTER 10. MORE GENERAL COORDINATE SYSTEMS*

To show (10.3.19), write

Γ′µνκ = ∂′νΓ′µκ = (∂′ν~e
′
κ) · ~E′µ = −~e′κ(∂′ν ~E

′µ) (10.3.20)

where we have used the fact that Γµνκ = (∂ν~eκ) · ~Eµ, which follows from the definition of
δΓ in (10.3.8), and ~e′κ · ~E′µ = δµκ . Then

Γ′µνκ = − ∂ξ
γ

∂ξ′κ
∂ξλ

∂ξ′ν
~eγ ·

∂

∂ξλ

(
∂ξ′µ

∂ξσ
~Eσ
)

= − ∂ξ
γ

∂ξ′κ
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
~eγ · (∂λ ~Eσ)− ∂ξγ

∂ξ′κ
∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλ∂ξσ
~eγ · ~Eσ

=
∂ξγ

∂ξ′κ
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
Γσλγ −

∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλ∂ξγ
∂ξγ

∂ξ′κ
(10.3.21)

which is the desired result. Again, notice that without the second term the above would
correspond to a tensor transformation, but the second term spoils the transformation
properties. In fact it is precisely because of the presence of the second term that ∇νAµ
transforms as a tensor. Note also that if the unprimed coordinates were Cartesian,
(σ, λ, γ) ≡ (a, b, c), then Γabc ≡ 0 and

Γµνκ = −∂x
b

∂ξν
∂2ξµ

∂xb∂xc
∂xc

∂ξκ
(10.3.22)

which shows that Γµνκ is symmetric in (ν, κ).

In the Cartesian basis, the derivative of a vector is just ∂aA
b. If we now transform to

the curvilinear coordinates,

∂aA
b =

∂ξµ

∂xa
∂

∂ξµ
(Aνebν) = Eµa (∂µA

ν)ebν + EµaA
ν(∂µe

b
ν) (10.3.23)

so that

eaσE
λ
b ∂aA

b = eaσE
λ
b E

µ
a (∂µA

ν)ebν + eaσE
λ
b E

µ
aA

ν(∂µe
b
ν)

= ∂σA
λ + EλbA

ν(∂σe
b
ν) = ∂σA

λ + ΓλσνA
ν (10.3.24)

If we think of ∂aA
b as the components of a (mixed) tensor in the Cartesian system then,

in a general coordinate system, its components should be given by eaσE
λ
b ∂aA

b. The above
equation shows that its components in the general coordinate basis are given by the com-
ponents of the covariant derivative. In other words, derivatives of vectors in the Cartesian
coordinate system must be replaced by covariant derivatives in general coordinate systems.
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The connection measures the rate of change of the basis as we move from point to
point and is computed from the metric gµν as we will now see. Consider the change in
metric as we move from x to x+ dx,

δgµν = δ~eµ · ~eν + ~eµ · δ~eν = (δΓκµ)~eκ · ~eν + ~eµ · ~eκ(δΓκν)

→ ∂γgµν = Γκγµgκν + Γκγνgµκ (10.3.25)

If we take the combination

∂γgµν + ∂νgγµ − ∂µgνγ = Γκγµgκν + Γκγνgµκ + Γκνγgκµ + Γκνµgγκ − Γκµνgκγ − Γκµγgνκ

= Γκγνgµκ + Γκνγgκµ (10.3.26)

and use the fact we just saw that Γκγν = Γκνγ , i.e., ∂[γΓκν] ≡ 0, then

∂γgµν + ∂νgγµ − ∂µgνγ = 2Γκγνgµκ (10.3.27)

and

Γκγνgµκg
µρ = Γκγνδ

ρ
κ = Γργν =

1

2
gρµ [∂νgµγ + ∂γgµν − ∂µgγν ] (10.3.28)

where we have freely used the fact that gµν is symmetric.
It should be clear that the covariant derivative of a tensor copies the covariant deriva-

tive of the vector. Setting,
T = Tµν...~eµ~eν ... (10.3.29)

we get
δT = δTµν...~eµ~eν ...+ Tµν...(δ~eµ)~eν ...+ Tµν...~eµ(δ~eν)...+ ... (10.3.30)

from which it follows that

∇γTµν... = ∂γT
µν... + ΓµγλT

λν... + ΓνγλT
µλ... + ... (10.3.31)

We have defined the covariant derivatives of a contravariant vector. How about the co-
variant derivative of a covector? We should find

δA = (δAµ) ~Eµ +Aµ(δ ~Eµ) (10.3.32)

and we want to know what δ ~Eµ is. Use the fact that

eaµE
µ
b = δab → (δeaµ)Eµb + eaµ(δEµb ) = 0 (10.3.33)

Therefore
eaµ(δEµb ) = −(δeaµ)Eµb = −(δΓκµ)eaκE

µ
b (10.3.34)
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and, multiplying the l.h.s. by Eνa gives

Eνae
a
µ(δEµb ) = δνµ(δEµb ) = δEνb = −(δΓκµ)Eνae

a
κE

µ
b = −(δΓκµ)δνkE

µ
b = −(δΓνµ)Eµb (10.3.35)

Thus we have found simply that

δ ~Eµ = −(δΓµκ) ~Eκ (10.3.36)

which should be compared with (10.3.8) for the variation of ~eµ. Therefore

δA = (DAµ) ~Eµ = (δAµ) ~Eµ − (δΓµκ)Aµ ~E
κ (10.3.37)

and we could write the covariant derivative of the covector, Aµ

∇νAµ = ∂νAµ − ΓκνµAκ (10.3.38)

and of a co-tensor, Tµνκ...

∇γTµν... = ∂γTµν... − ΓλγµTλν... − ΓλγνTµλ... + ... (10.3.39)

in complete analogy with the covariant derivative of contravectors and tensors. In partic-
ular we see that

∇γgµν = ∂γgµν − Γκγµgκν − Γκγνgµκ ≡ 0 ≡ ∇γgµν (10.3.40)

by (10.3.25). This is called the “metricity” property.3

10.3.3 Absolute Derivative: parallel transport

Having defined the covariant derivative operator, in a general coordinate system, we may
now define the absolute derivative of a tensor, T, along some curve with tangent vector U
as the projection of the covariant derivative on the tangent, i.e., if the curve is specified
by ξµ(λ),

DT
Dλ

= U · ∇T (10.3.41)

The absolute derivative measures the total rate of change of the vector along the curve
ξµ(λ) and is a tensor of the same rank as T itself. It is also called the directional derivative
of T.

3Using the Lie derivative of the metric (a rank two co-tensor) show that if U is a symmetry of the
metric then it must satisfy

∇(µUν) = ∇µUν +∇νUµ = 0

The symmetry vectors of the metric are called Killing vectors. In Minkowski space there are 10 of them
and they generate the Poincaré group: translations, spatial rotations and boosts.
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A tensor T will be said to be “parallel transported” along a curve ξµ(λ) if and only if

DT
Dλ

= f(λ)T (10.3.42)

where f(λ) is an arbitrary function of the curve’s parameter. Let Aµ be parallely trans-
ported along the curve, then

U · ∇Aµ = Uσ(∂σA
µ + ΓµσκA

κ) =
dAµ

dλ
+ ΓµσκU

σAκ = f(λ)Aµ (10.3.43)

This is the condition for parallel transport. In particular, if Aµ is the tangent (velocity)
vector of the curve itself, we see that

dUµ

dλ2
+ ΓµσκU

σUκ =
d2ξµ

dλ2
+ Γµσκ

dξσ

dλ

dξκ

dλ
= f(λ)

dξµ

dλ
(10.3.44)

This is a second order equation for ξµ(λ). We notice that if the coordinates were Cartesian,
the connections would vanish and with f(λ) = 0 we would find simply

d2xa

dλ2
= 0 (10.3.45)

which we recognize to be the equation of a straight line, the shortest distance between
two points (the geodesic). The equation (10.3.44) generalizes this equation for geodesics
to arbitrary curved coordinate systems and is called the geodesic equation.

10.3.4 The Laplacian

A very important operator in physics is the Laplacian. It is an invariant under coordinate
transformations being defined, in an arbitrary system of coordinates, as �x = ∇µ∇µ.
Because it involves the covariant derivative its action will depend on whether it operates
on a scalar, a vector or a tensor. Consider its operation on a scalar function, φ (remember
that ∇µφ = ∂µφ is a vector)

�xφ = ∇µ∇µφ = ∂µ∇µφ+ Γµµκ∇κφ = ∂µg
µν∂νφ+ Γµµκg

κν∂νφ (10.3.46)

where we have used the fact that the covariant derivative operating on a scalar function
is just the partial derivative. But

Γµµκ =
1

2
gµρ[∂κgρµ + ∂µgρκ − ∂ρgµκ] (10.3.47)

Interchanging (µρ) in the middle term shows that it cancels the last, so

Γµµκ =
1

2
gµρ∂κgρµ (10.3.48)
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This expression may be further simplified: let g be the determinant of gµν , then

ln g = tr ln ĝ → δ ln g =
δg

g
= trĝ−1δĝ = gµρδgµρ (10.3.49)

and therefore
1

g
∂κg = gµρ∂κgµρ, Γµµκ = ∂κ ln

√
g (10.3.50)

which means that

�xφ = ∂µ(gµν∂νφ) + gµν(∂µ ln
√
g)∂νφ =

1
√
g
∂µ
√
ggµν∂νφ (10.3.51)

This is a very compact formula. Life is not so easy if the Laplacian, �x, operates on a
vector (worse, on a tensor), instead of a scalar. Then we have

�xA
µ = ∇ν∇νAµ = gνκ∇ν∇κAµ = gνκ[∂ν∇κAµ − Γλνκ∇λAµ + Γµνλ∇κA

λ]

= gνκ[∂ν(∂κA
µ + ΓµκλA

λ)− Γλνκ(∂λA
µ + ΓµλγA

γ)

+ Γµνλ(∂κA
λ + ΓλκγA

γ)] (10.3.52)

which is certainly more complicated. Let’s see how this works through some common
examples. Only the results will be given, the details are left to the reader.

10.4 Examples

Spherical Coordinates

Take the following coordinate functions: ξµ = (t, r, θ, φ) where

t = t
r =

√
x2 + y2 + z2

θ = cos−1

(
z√

x2 + y2 + z2

)
ϕ = tan−1

(y
x

)
(10.4.1)

and the inverse transformations: xa = xa(ξ)

t = t
x = r sin θ cosϕ
y = r sin θ sinϕ
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Figure 10.1: Spherical coordinates

z = r cos θ (10.4.2)

Let’s compute the vielbein

~et = (
∂t

∂t
,
∂x

∂t
,
∂y

∂t
,
∂z

∂t
) = (1, 0, 0, 0)

~er = (
∂t

∂r
,
∂x

∂r
,
∂y

∂r
,
∂z

∂r
) = (0, sin θ cosϕ, sin θ sinϕ, cos θ)

~eθ = (
∂t

∂θ
,
∂x

∂θ
,
∂y

∂θ
,
∂z

∂θ
) = r(0, cos θ cosϕ, cos θ sinϕ,− sin θ)

~eϕ = (
∂t

∂ϕ
,
∂x

∂ϕ
,
∂y

∂ϕ
,
∂z

∂ϕ
) = r(0,− sin θ sinϕ, sin θ cosϕ, 0) (10.4.3)

and its inverse

~Et = (
∂t

∂t
,
∂t

∂x
,
∂t

∂y
,
∂t

∂z
) = (1, 0, 0, 0)

~Er = (
∂r

∂t
,
∂r

∂x
,
∂r

∂y
,
∂r

∂z
) = (0, sin θ cosϕ, sin θ sinϕ, cos θ)

~Eθ = (
∂θ

∂t
,
∂θ

∂x
,
∂θ

∂y
,
∂θ

∂z
) =

1

r
(0, cos θ cosϕ, cos θ sinϕ,− sin θ)
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~Eϕ = (
∂ϕ

∂t
,
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z
) =

1

r
(0,− sin θ sinϕ, sin θ cosϕ, 0) (10.4.4)

It is easy to check that ~em · ~En = δnm and that eamE
m
b = δab . Now compute the inner

products to get the metric function: gtt = −1, grr = 1, gθθ = r2 and gϕϕ = r2 sin2 θ (all
other components vanish). In matrix notation,

gµν =


−c2 0 0 0

0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (10.4.5)

and the distance function is given explicitly by,

ds2 = c2dt2 − (dr2 + r2dθ2 + r2 sin2 θdϕ2) (10.4.6)

Next compute the connections using either Γµνκ = (∂ν~eκ) · ~Eµ or (10.3.28) to get the
non-vanishing components

Γrθθ = −r, Γrϕϕ = −r sin2 θ

Γθrθ = Γθθr =
1

r
, Γϕrϕ = Γϕϕr =

1

r

Γθϕϕ = − sin θ cos θ, Γϕϕθ = Γϕθϕ = cot θ (10.4.7)

(all others vanish). What is the action of of the Laplacian, �x, on a scalar function?

�xφ =
1
√
g
∂µ(
√
ggµν∂νφ) = − 1

c2
∂2
t φ+

1

r2
∂r(r

2∂rφ) +
1

r2 sin θ
∂θ(sin θ∂θφ) +

1

r2 sin2 θ
∂2
ϕφ

(10.4.8)
the spatial part of which will be recognized as the standard result from ordinary vector
analysis. Its action on vectors is quite a bit more complicated but can be written out,

�xA
0 =

[
− 1

c2
∂2
tA

0 +
1

r2
∂r(r

2∂rA
0) +

1

r2 sin θ
∂θ(sin θ∂θA

0) +
1

r2 sin2 θ
∂2
ϕA

0

]
�xA

r =

[
− 1

c2
∂2
tA

r +
1

r2
∂r(r

2∂rA
r) +

1

r2 sin θ
∂θ(sin θ∂θA

r) +
1

r2 sin2 θ
∂2
ϕA

r

− 2

r2
(Ar + r cot θAθ + r∂θA

θ + r∂ϕA
ϕ)

]
�xA

θ =

[
− 1

c2
∂2
tA

θ +
1

r4
∂r(r

4∂rA
θ) +

1

r2 sin θ
∂θ(sin θ∂θA

θ) +
1

r2 sin2 θ
∂2
ϕA

θ

+
2

r3
(∂θA

r − 1

2
r cos 2θAθ − r cot θ∂φA

ϕ)

]
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Figure 10.2: Cylindrical coordinates

�xA
ϕ =

[
− 1

c2
∂2
tA

ϕ +
1

r4
∂r(r

4∂rA
ϕ) +

1

r2 sin3 θ
∂θ(sin

3 θ∂θA
ϕ) +

1

r2 sin2 θ
∂2
ϕA

ϕ

+
2

r3 sin3 θ
(sin θ∂ϕA

r + r cos θ∂ϕA
θ)

]
(10.4.9)

We see that the Laplacian acts on the time component, A0, of Aµ, just exactly as it does
on a scalar. This is because the coordinate transformation was purely spatial. On the
other hand, its action on the space components mixes them.

Cylindrical coordinates

Take the following coordinate functions: ξµ = (t, ρ, ϕ, z) where

t = t
ρ =

√
x2 + y2

ϕ = tan−1
(y
x

)
z = z (10.4.10)

and the inverse transformations: xa = xa(ξ)

t = t
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x = ρ cosϕ
y = ρ sinϕ
z = z (10.4.11)

Let’s compute the vielbein

~et = (
∂t

∂t
,
∂x

∂t
,
∂y

∂t
,
∂z

∂t
) = (1, 0, 0, 0)

~eρ = (
∂t

∂ρ
,
∂x

∂ρ
,
∂y

∂ρ
,
∂z

∂ρ
) = (0, cosϕ, sinϕ, 0)

~eϕ = (
∂t

∂ϕ
,
∂x

∂ϕ
,
∂y

∂ϕ
,
∂z

∂ϕ
) = ρ(0,− sinϕ, cosϕ, 0)

~ez = (
∂t

∂z
,
∂x

∂z
,
∂y

∂z
,
∂z

∂z
) = (0, 0, 0, 1) (10.4.12)

and its inverse

~Et = (
∂t

∂t
,
∂t

∂x
,
∂t

∂y
,
∂t

∂z
) = (1, 0, 0, 0)

~Eρ = (
∂ρ

∂t
,
∂ρ

∂x
,
∂ρ

∂y
,
∂ρ

∂z
) = (0, cosϕ, sinϕ, 0)

~Eϕ = (
∂ϕ

∂t
,
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z
) =

1

ρ
(0,− sinϕ, cosϕ, 0)

~Ez = (
∂z

∂t
,
∂z

∂x
,
∂z

∂y
,
∂z

∂z
) = (0, 0, 0, 1) (10.4.13)

Again, it’s easy to check that ~em · ~En = δnm and that eamE
m
b = δab . Now compute the inner

products to get the metric function: gtt = −1, gρρ = 1, gϕϕ = ρ2 and gzz = 1 (all other
components vanish). In matrix notation,

gµν =


−c2 0 0 0

0 1 0 0
0 0 ρ2 0
0 0 0 1

 (10.4.14)

and the distance function is given explicitly by,

ds2 = c2dt2 − (dρ2 + ρ2dϕ2 + dz2) (10.4.15)

The non-vanishing components of the connections, obtained by using either Γµνκ = (∂ν~eκ) ·
~Eµ or (10.3.28) are just

Γρϕϕ = −ρ,
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Γϕρϕ = Γϕϕρ =
1

ρ
(10.4.16)

(all others vanish), while the action of the Laplacian, �x, on a scalar function is

�xφ =
1
√
g
∂µ(
√
ggµν∂νφ) = − 1

c2
∂2
t φ+

1

ρ
∂ρ(ρ∂ρφ) +

1

ρ2
∂2
ϕφ+ ∂2

zφ (10.4.17)

the spatial part of which being, as before, the standard result from ordinary vector analysis.
Its action on vectors can be written out and we leave this as a straightforward exercise.4,5

10.5 Integration: The Volume Element

When passing from Cartesian coordinates to general coordinates one must also take care
to account for the change in the integration measure, which follows the usual rule,∫

d4x→
∫
d4ξ

∥∥∥∥∂x∂ξ
∥∥∥∥ (10.5.1)

where ||∂ξ/∂x|| represents the Jacobian of the transformation. Now notice that under the
coordinate transformation that took xa → ξµ, the metric also underwent a transformation

ηab → gµν = ηab
∂xa

∂ξµ
∂xa

∂ξµ
= ηabe

a
µe
b
µ (10.5.2)

It follows, upon taking determinants, that

||ĝ|| = ||η̂||
∥∥∥∥∂x∂ξ

∥∥∥∥2

= −c2

∥∥∥∥∂x∂ξ
∥∥∥∥2

(10.5.3)

where we have used ||η̂|| = −c2. Therefore,∥∥∥∥∂x∂ξ
∥∥∥∥ =

1

c

√
−||ĝ|| (10.5.4)

We have previously used the notation g for the determinant of the metric, ĝ. Continuing
with this notation we notice that (10.5.1) can be written as∫

d4x→ 1

c

∫
d4ξ
√
−g (10.5.5)

4Problem: Write out �xAµ for each component of Aµ in cylindrical coordinates.
5Problem: Work out the details of the Rindler spacetime.
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Again, we see that if the transformation is just a Lorentz transformation,∫
d4x→

∫
d4x′ (10.5.6)

because the metric gµν then continues to be just the Lorentz metric. Thus we are led to
define

1

c

∫
d4ξ
√
−g (10.5.7)

as the correct volume integration measure in any system of coordinates. Simple examples
are spherical coordinates:

1

c

∫
d4ξ
√
−g =

∫
dt

∫
dr r2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ (10.5.8)

and cylindrical coordinates:

1

c

∫
d4ξ
√
−g =

∫
dt

∫
dz

∫
dρ ρ2

∫ 2π

0
dϕ (10.5.9)

but (10.5.7) has general applicability.



Chapter 11

Solutions of the Wave Equation

11.1 Green’s functions

Recall that the equations for the electromagnetic field in the Coulomb gauge read

~∇2φ = −ρ(~r, t)

εo
, �x

~A = µo~j(~r, t) (11.1.1)

and in the Lorentz gauge they read

�xAµ = jµ(x). (11.1.2)

The equations are linear and they can be solved exactly. In this chapter, we ask for the
general solutions and consider what boundary conditions must be applied when two or
more media are present in a given physical problem. We’ll begin examining solutions of
the equation for φ in the Coulomb gauge. This is because it is quite a bit simpler to do
than examining solutions to the others, but it contains many of the computational details
anyway. As a bonus we’ll prove the identity

~∇2 1

|~r − ~r′|
= −4πδ(~r − ~r′). (11.1.3)

11.1.1 Spatial Green’s function

Assume that the charge distribution we are interested in vanishes in all but a finite region
of space and that the only boundary condition on φ(~r, t) is the “trivial” condition at
infinity, i.e., that φ(~r, t) falls off to zero at least as fast as 1/r there. Now ask for a
solution of the form

φ(~r, t) =

∫
d3~r′G(~r, ~r′)ρ(~r′, t). (11.1.4)

213



214 CHAPTER 11. SOLUTIONS OF THE WAVE EQUATION

The three dimensional Laplacian is translation invariant outside the charge distribution
and, under these boundary conditions, we expect G(~r, ~r′) to be translation invariant also.
This means that G(~r, ~r′) = G(~r − ~r′). It is easy to see that

~∇2φ =

∫
d3~r′~∇2G(~r, ~r′)ρ(~r′, t) = −ρ(~r, t)

εo
, (11.1.5)

implies that

~∇2G(~r, ~r′) = − 1

εo
δ3(~r − ~r′). (11.1.6)

Any function that satisfies an equation of this type (where the r.h.s. is a δ−function) is
called a Green’s function. Let us write

G(~r, ~r′) =

∫
d3~k

(2π)3
G(~k)ei

~k·(~r−~r′), (11.1.7)

then,

~∇2G(~r, ~r′) =

∫
d3~k

(2π)3
(−~k2G(~k))ei

~k·(~r−~r′). (11.1.8)

But, keeping in mind the Fourier representation of the δ−function

δ3(~r − ~r′) =

∫
d3~k

(2π)3
ei
~k·(~r−~r′), (11.1.9)

we find that G(~k) must be given as

G(~k) =
1

εo~k2
(11.1.10)

and therefore

G(~r, ~r′) =

∫
d3~k

(2π)3εo

ei
~k·(~r−~r′)

~k2
= − 1

4π2εo

∫ ∞
0

dk

∫ π

0
d(cos θ)eik∆r cos θ, (11.1.11)

where we have used spherical coordinates in ~k−space, k = |~k| and ∆r = |~r−~r′|. Integrating
over the polar angle, we get

G(~r, ~r′) =
1

4π2εo

∫ ∞
0

dk

ik∆r

[
eik∆r − e−ik∆r

]
= − i

4π2εo∆r

∫ ∞
−∞

dk

k
eik∆r, (11.1.12)

where we have adjoined the second integral to the first by extending the limits of inte-
gration to run from (−∞,∞). Our central problem is then to evaluate this integral, but
it has a pole at k = 0. We therefore define it to be the principal part of an integral in
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Figure 11.1: Contour of integration

the complex k−plane along the contour shown in figure 3. Note that the contour must be
closed in the upper half plane so that the integral along the semi-circle at infinity vanishes,
contributing nothing to the integration (by Jordan’s lemma). If one defines the integral
by its principal value,

P

∫ ∞
−∞

dk

k
eik∆r = lim

ε→0

[∫ −ε
−∞

dk

k
eik∆r +

∫ ∞
ε

dk

k
eik∆r

]
, (11.1.13)

then it is easy to see that

P

∫ ∞
−∞

dk

k
eik∆r =

∮
C

dk

k
eik∆r −

∫
C1

dk

k
eik∆r (11.1.14)

(the contribution of the semicircle at infinity vanishes by Jordan’s lemma). But the first
integral on the r.h.s. is evidently zero because the contour contains no poles. It follows
that

P

∫ ∞
−∞

dk

k
eik∆r = −

∫
C1

dk

k
eik∆r = −1

2
×
∮
C

dk

k
eik∆r

= −1

2
× 2πi

∑
ResC = πi, (11.1.15)

where we have used the fact that C is a clockwise loop, which implies an overall minus
sign, and that the residue at k = 0 is just 1. We substitute this result in the expression
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(11.1.11) to obtain

G(~r, ~r′) =
1

4πεo|~r − ~r′|
. (11.1.16)

Therefore we have found the general solution for φ in the Coulomb gauge, it is

φ(~r) =

∫
d3r′

4πεo

ρ(~r′, t)

|~r − ~r′|
(11.1.17)

and, because of (11.1.6), we have also shown (11.1.3).1

11.1.2 Invariant Green’s function

We expect to be able to use the same techniques to solve (11.1.2) as we did to solve for
φ(~r, t) above. Let us therefore look for a solution of the form

Aµ(x) =

∫
d4x′G(x, x′)jµ(x′). (11.1.18)

Again, the four dimensional Laplacian is translation invariant so we expect that G(x, x′)
is also translation invariant, i.e., G(x, x′) = G(x− x′). Moreover, G(x, x′) is manifestly a
scalar and

�xG(x, x′) = δ4(x− x′). (11.1.19)

Now express G(x, x′) as a four dimensional Fourier transform,

G(x, x′) =

∫
d4k

(2π)4
G(k)eik(x−x′) (11.1.20)

and recall that

δ4(x− x′) =

∫
d4k

(2π)4
eik(x−x′). (11.1.21)

Now, �x ≡ −ηµν∂µ∂ν , so because

�xG(x, x′) =

∫
d4k

(2π)4
G(k)(−ηµν∂µ∂ν)eik(x−x′) =

∫
d4k

(2π)4
G(k)(ηµνkµkν)eik(x−x′)

=

∫
d4k

(2π)4
(−k2G(k))eik(x−x′), (11.1.22)

1Problem: The choice of contour is not at all unique. Show that one could take the contour C to include
the pole at k = 0 (C1 counter-clockwise in the lower half plane) with the same final result. Use the integral
we have just solved to obtain ∫ ∞

0

dx
sinx

x
=
π

2
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where k2 = −ηµνkµkν = −ηµνkµkν it follows that

G(k) = − 1

k2
, (11.1.23)

or

G(x, x′) = −
∫

d4k

(2π)4

eik(x−x′)

k2
. (11.1.24)

Now kµ = (−ω,~k) and x−x′ = (t− t′, ~r−~r′) (this is defined so that kµx
µ is dimensionless)

are four vectors. So k2 = −ηµνkµkν = −~k2 +ω2/c2 and k · (x−x′) = ~k · (~r−~r′)−ω(t− t′).
Therefore the integral is more complicated that in seems in our condensed notation:

G(x, x′) =

∫
d3~kdω

(2π)4

ei[
~k·(~r−~r′)−ω(t−t′)]

~k2 − ω2/c2
. (11.1.25)

Let us first perform the integral over the solid angle.

G(x, x′) =
1

(2π)3

∫ ∞
0

k2dk

∫ ∞
−∞

dω
e−iω∆t

k2 − ω2/c2

∫ 1

−1
dµeik∆rµ, (11.1.26)

where µ = cos θ, ∆r = |~r − ~r′| and ∆t = t− t′, and we are now using k = |~k|. Integrating
over µ gives

G(x, x′) =
−i

(2π)3∆r

∫ ∞
0

kdk
[
eik∆r − e−ik∆r

] ∫ ∞
−∞

dω
e−iω∆t

k2 − ω2/c2

=
−i

(2π)3∆r

∫ ∞
−∞

kdkeik∆r

∫ ∞
−∞

dω
e−iω∆t

k2 − ω2/c2
. (11.1.27)

Now let’s evaluate the ω−integral. Notice that the integral has two poles, at ω = ±ck.
Furthermore, ∆t can be either positive or negative (unlike ∆r = |~r− ~r′| ≥ 0) so one must
close the contour carefully (see figures 4 and 5).

• For ∆t > 0, we should close the contour in the lower half plane.

• For ∆t < 0, we should close the contour in the upper half plane.

This rule ensures that the integral over the semicircles at infinity will not contribute to the
contour integral (Jordan’s lemma). Even if we fix the way the contour will be closed at
infinity, we are still faced with two possible ways to go around each of the singular points.
We will not define the integral as its principal part this time (it will shortly become clear
why not) but instead by the contour chosen. Suppose we choose contour R.

• If ∆t < 0 then we must close the contour in the upper half plane. Then the contour
C contains no poles and the integral vanishes.



218 CHAPTER 11. SOLUTIONS OF THE WAVE EQUATION

Figure 11.2: Contour R

Figure 11.3: Contour A
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• If ∆t > 0 then we close the contour in the lower half plane and the contour C ′

contains two poles, so the integral does not vanish. We calculate its value∮
C′
dω

e−iω∆t

k2 − ω2/c2
=
−iπ
k

[eick∆t − e−ick∆t] (11.1.28)

(the minus arises because this contour is clockwise). Then

G(x, x′) =
1

8π2∆r

∫ ∞
−∞

dk
[
eik(∆r−c∆t) − eik(∆r+c∆t)

]
=

1

4π∆r
[δ(∆r − c∆t)− δ(∆r + c∆t)] , (11.1.29)

where we have used the fact that∫ ∞
−∞

dk

2π
eikZ = δ(Z). (11.1.30)

Clearly, because ∆r > 0 and ∆t > 0 it follows that the argument of the second δ−function
above is never zero and so we may write (keeping in mind that ∆t > 0)

GR(x, x′) =
Θ(t− t′)
4π|~r − ~r′|

δ(|~r − ~r′| − c(t− t′)), (11.1.31)

where Θ(t− t′) is the Heaviside Θ−function, defined by2

Θ(x) =


1 if x > 0

0 if x < 0
(11.1.32)

Let us examine this function carefully. It is non-vanishing only when t > t′. Now (t′, ~r′) are
coordinates associated with the sources (jµ) and (t, ~r) are associated with the observation.
This Green’s function is vanishing for observation times that are less than the source time.
We understand this as saying that the source time must always be earlier than the matter
time. This is therefore called the retarded or causal Green’s function. Moreover, the
δ− function is not supported unless ∆r = c∆t, so information of the source distribution
travels precisely at the speed of light and its support is precisely on the forward light cone.

Now let us consider the contour A. The treatment is similar and we’ll go through it
briefly:

• If ∆t > 0 we must close the contour in the lower half plane, but a look at figure
5 shows that the contour closed in the lower half plane contains no poles, so the
Green’s function is precisely zero for ∆t > 0.

2Note: Θ′(x) = δ(x).
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• If, on the contrary, ∆t < 0 the contour is closed in the upper half plane and the
Green’s function is not vanishing. So, for ∆t < 0 we have∮

C′
dω

e−iω∆t

k2 − ω2/c2
=
iπ

k
[eick∆t − e−ick∆t] (11.1.33)

(no extra minus sign here!), which gives

G(x, x′) =
1

8π2∆r

∫ ∞
−∞

dk
[
eik(∆r+c∆t) − eik(∆r−c∆t)

]
=

1

4π∆r
[δ(∆r + c∆t)− δ(∆r − c∆t)] . (11.1.34)

Again, because ∆r > 0 and ∆t < 0 the second δ−function is never supported so

GA(x, x′) =
Θ(t′ − t)
4π|~r − ~r′|

δ(|~r − ~r′|+ c(t− t′)). (11.1.35)

Notice that it is non-vanishing only when t′ > t. This Green’s function is vanishing for
observation times that are greater than the source time. We understand this as saying
that the source time must always be later than the matter time. This is therefore called
the advanced or acausal Green’s function. Moreover, the δ− function is not supported
unless ∆r = −c∆t, so information of the source distribution travels precisely at the speed
of light, but on the backward light cone.3

We are now ready to write down our solutions to the four dimensional wave equation
in the presence of sources. Because the equations are linear we may add to the solution
in (11.1.18) an arbitrary solution of the homogeneous equation �xAµ = 0. Then we have

Aµ(x) = Ain
µ (x) +

∫
d4x′GR(x, x′)jµ(x′), (11.1.36)

or

Aµ(x) = Aout
µ (x) +

∫
d4x′GA(x, x′)jµ(x′). (11.1.37)

The reason for the superscripts “in” and “out” are the following: as t → −∞ the sec-
ond term (integral) in (11.1.36) approaches zero and the only contribution at t → −∞
comes from the term Ain

µ (x), so these functions clearly have the interpretation of being an
“incoming” field. On the contrary, as t → +∞ the integral in (11.1.37) approaches zero
and the only contribution is from the term Aout

µ (x), which is therefore interpreted as an
“outgoing” field.

3Problem: Explain in terms of causality why we chose not to define the Green’s function by its principal
part.
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There are several other ways of going around the singularities at ω = ±ck, but most
of them are of interest only in the quantum theory. In this course we will be interested
only in GR,A. Later on we will use them to compute the electromagnetic fields of moving
charges, but for now we will spend a few weeks describing some simple phenomena which
can understood using only the plane wave solution to the homogeneous equation (jµ = 0)
we obtained earlier.

11.2 Mode Expansions

11.3 Boundary conditions

We have seen that the equations for the electromagnetic field (Aµ) are linear second order
differential equations. Of course, they must be solved subject to boundary conditions
and in the previous sections we obtained solutions subject to the trivial conditions that
the field falls of at least as fast as 1/r at infinity. In general, fields that obey second
order differential equations are required in physics to be to be C(1) except, possibly, at
the location of sources, where they are required to be continuous but not necessarily
differentiable. Maxwell’s equations, given in terms of ~E and ~B, are the first integrals of
the field equations for Aµ. As the electric and magnetic fields are first derivatives of the
potentialsAµ, we expect them to be continuous everywhere except, possibly, at the location

of sources. What does this mean for ~E and ~B at the boundary between two media? The
discontinuities encountered by the electric and magnetic fields at the interface between two
media can be deduced from the integral form of Maxwell’s equations themselves. Let us
begin by determining the implications of the Bianchi identities ((a) no magnetic monopoles
and (b) Faraday’s law of induction),

~∇ · ~B = 0 = ~∇× ~E +
∂ ~B

∂t
. (11.3.1)

• Consider the first equation. We have

~∇ · ~B = 0→
∮
S

~B · d~S = 0, (11.3.2)

where S is a closed surface. Consider a cylindrical “pill-box”, as shown in figure
9, that contains a patch of the interface between the two media. But, as we are
interested only in the boundary between the media “1” and “2” we can make the “
pill-box” infinitesimally thin so that the sides of the cylinder do not contribute to
the surface integral. Then, if B1n is the normal component of ~B in medium “1” (the
projection of ~B on the normal n̂, i.e., B1n = ~B(1) · n̂1 = ~B(1) · n̂) and if B2n is minus
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Figure 11.4: Boundary conditions for the normal component

the normal component of ~B in medium “2”, i.e., B2n = − ~B(2) · n̂2 = B(2) · n) we
have

(B1n −B2n)∆S = 0→ B1n = B2n, (11.3.3)

which means that the normal component of the magnetic field must be continuous
across the boundary between the media.

• Consider second equation, i.e., Faraday’s law (see figure 10),

~∇× ~E +
∂ ~B

∂t
= 0→

∫
S

~∇× ~E · d~S +
∂

∂t

∫
S

~B · d~S = 0, (11.3.4)

or ∫
S

~∇× ~E · d~S = − ∂

∂t

∫
S

~B · d~S. (11.3.5)

Again, by shrinking the sides of the curve C (see figure 10) the area within the curve
can be made as small as we wish. Therefore, assuming that ~B is well behaved (does
not behave as a δ− function, for example) the integral on the r.h.s. approaches zero.
But applying Stokes theorem we find∫

S

~∇× ~E · d~S =

∮
C

~E · d~r = 0. (11.3.6)

Let t̂1 and t̂2 be the tangents to the curve in the media “1” and “2” respectively.
Clearly, t̂2 = −t̂1 = −t̂ (say). Then, if, as before, we define E1t = ~E(1) · t̂1 = ~E(1) · t̂
and E2t = − ~E(2) · t̂2 = ~E(2) · t̂, the integral yields∮

C

~E · d~r = (E1t − E2t)∆l = 0, (11.3.7)

whence it follows that the tangential component of the electric field must be contin-
uous across the boundary between the media.
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Figure 11.5: Boundary conditions for the tangential component

These two conditions were derived using the Bianchi identities. Let us now see what the
dynamical equations have to say. These are

~∇ · ~D = ρf

~∇× ~H − ∂ ~D

∂t
= ~jf (11.3.8)

and involve the sources. We expect, therefore, that these equations will imply, under
certain conditions, the discontinuity of some of the components of the electric and magnetic
field

• Beginning with the first equation, consider its integral form (see figure 9)∮
S

~D · d~S =

∫
V
ρfdV = Qfcont, (11.3.9)

where V is the volume of the pill-box, S is its bounding surface and Qfcont is the free
charge contained in the pill-box. If, as before, we shorten the box so that it becomes
infinitesimally thick then the charge contained will simply be the free charge on
the surface between the media and contained within the pill-box. Using the same
notation as we had before, let σf be the surface density of the free charge. Then

(D1n −D2n)∆S = σf∆S → D1n −D2n = σf . (11.3.10)

We conclude that the normal component of the electric displacement vector is dis-
continuous across a boundary between two media if free surface charges are present,
the discontinuity being proportional to the surface density of the free charge.
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• Finally, integrate the second equation (see figure 10) to get∮
C

~H · d~r =
∂

∂t

∫
S

~D · d~S +

∫
S

~jf · d~S (11.3.11)

and assume that the electric displacement vector is well behaved, then making the
thickness of the curve C infinitesimal we find that the first integral on the r.h.s.
vanishes and we are left with ∮

C

~H · d~r =

∫
S

~jf · d~S. (11.3.12)

Now if the free current density is well behaved then the right hand side is zero because
the area contained within the curve is vanishing and we conclude that the tangen-
tial component of the magnetic intensity vector is continuous across the boundary.
However, if the current density is not well behaved (this occurs, for example in an
ideal conductor where the conductivity goes to infinity) then the last integral need
not vanish. Call

j⊥∆l =

∫
S

~jf · d~S. (11.3.13)

Then we obviously find a discontinuity in the tangential component of ~H

H1t −H2t = j⊥. (11.3.14)

These four conditions summarize the boundary conditions appropriate to the electric and
magnetic fields at the boundary between two media. We shall have occasion to use them
shortly.

11.4 Poynting’s theorem: energy and momentum density

We know that the electrostatic potential energy of a system of charges producing an
electric field is given by

UE =
1

2

∫
Vol

d3~r ~E · ~D, (11.4.1)

where “Vol” is the electric field external to all conductors. Therefore

uE =
1

2
~E · ~D (11.4.2)

can be thought of as the electric energy density. Similarly,

UM =
1

2

∫
Vol

d3~r ~H · ~B (11.4.3)
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(where “Vol” is now all of space) is the energy of the magnetic field with density

uM =
1

2
~H · ~B. (11.4.4)

Consider the equations

~∇× ~E +
∂ ~B

∂t
= 0

~∇× ~H − ∂ ~D

∂t
= ~jf (11.4.5)

and take the scalar product of the first with ~H,4

~H · (~∇× ~E) + ~H · ∂
~B

∂t
= ~∇ · ( ~E × ~H) + ~E · (~∇× ~H) + ~H · ∂

~B

∂t
= 0, (11.4.6)

so that

~∇ · ( ~E × ~H) = − ~H · ∂
~B

∂t
− ~E · (~∇× ~H) = − ~H · ∂

~B

∂t
− ~E · ∂

~D

∂t
−~jf · ~E, (11.4.7)

where we have used

~∇× ~H =
∂ ~D

∂t
+~jf (11.4.8)

in the last step above. Now, if the media are isotropic, linear and non-dispersive then
~D = ε ~E and ~B = µ ~H so that

~E · ∂
~D

∂t
= ε ~E · ∂

~E

∂t
=

1

2
ε
∂ ~E2

∂t
=

1

2

∂

∂t
( ~E · ~D) (11.4.9)

and similarly

~H · ∂
~B

∂t
=

1

2

∂

∂t
( ~H · ~B). (11.4.10)

It follows that
~∇ · ( ~E × ~H) = −1

2

∂

∂t
( ~E · ~D + ~H · ~B)−~jf · ~E. (11.4.11)

4The first term is

~H · (~∇× ~E) = εijkHi(∂jEk) = ∂j(ε
ijkHiEk)− εijkEk∂jHi

so
~H · (~∇× ~E) = ~∇ · ( ~E × ~H) + ~E · (~∇× ~H)
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Given the expressions in (11.4.2) and (11.4.4) for the electric and magnetic energy densities,
it certainly makes sense to define an “energy density” of the electromagnetic field by

u =
1

2
( ~E · ~D + ~H · ~B) = uE + uM . (11.4.12)

Let’s call the vector ~S = ~E × ~H, then (11.4.11) reads

∂u

∂t
+ ~∇ · ~S = −~jf · ~E (11.4.13)

In the absence of charges, ~jf = 0 and this equation looks strikingly like a continuity
equation. The r.h.s. may therefore be thought of as a “source” term. We can understand
it’s significance by integrating over a volume V bounded by some surface Σ; then

d

dt

∫
V
d3~r u+

∮
Σ
d~σ · ~S = −

∫
V
d3~r ~jf · ~E, (11.4.14)

and

• the first term represents the rate of change of electromagnetic energy stored in the
volume V ,

• the second term represents the rate of flow of energy across the bounding surface,
Σ, and

• the source term should represent the rate at which the energy is transferred either
into or out of the volume V , depending upon its sign.

To understand the meaning of the source term better, consider the work done per unit
time by the electromagnetic (Lorentz) force ~F acting on a single charged particle:

~F · ~v = q( ~E + ~v × ~B) · ~v = q~v · ~E. (11.4.15)

If there were N particles, with charges qn and velocities ~vn, then the work done per unit
time would be ∑

n

qn~vn · ~E, (11.4.16)

but, by definition, the current density is

~jf (~r, t) =
∑
n

qn~vnδ
3(~r − ~rn(t)) (11.4.17)

giving, for the volume integral of interest,∫
V
d3~r ~jf · ~E =

∑
n

∫
V
d3 ~r qn~vn · ~E δ3(~r − ~rn(t)) =

∑
n

qn~vn · ~E(~rn(t)), (11.4.18)
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which, as we have seen, is precisely the work performed by the electromagnetic field per
second. The r.h.s. of (11.4.14) is the negative of this, so it is the work performed upon (or
transferred to) the electromagnetic field per second by the transport currents.

The vector ~E × ~H represents a momentum density, i.e., momentum per unit area, for
the electromagnetic field. It is called the Poynting vector.



Chapter 12

Lagrangians and Hamiltonians*

In a modern approach, it is insufficient to formulate a theory exclusively in terms of the
equations of motion. One must always attempt to formulate it in terms of an “action”
principle. While the action itself does not have direct physical content in classical physics
(it does in the quantum theory, as a probability amplitude for classical configurations),
it possesses all the local symmetries of the theory. Symmetries lead to conservation laws,
and these are derived most elegantly from the action. Moreover, the quantum theory is so
heavily dependent on the canonical formulation that the use of an action is indispensible.

12.1 Lagrangian description of mechanics

Although our goal is to arrive at a fully relativistic formulation of electrodynamics in terms
of an action principle, it is worth remembering first how the mechanics of point particles
is formulated.1 Consider a system having f degrees of freedom and described by a set of
coordinates, qi, (i ∈ {1, 2, 3...N} and velocities, q̇i. The Lagrangian is a function of the
coordinates and velocities,

L = L(qi, q̇i, t) (12.1.1)

and the action is the functional

S[q] =

∫ 2

1
dt L(qi, q̇i, t) (12.1.2)

where “1” and “2” are fixed points in the configuration space and only trajectories, qi(t),
that begin at “1” and terminate at “2” will be considered. Hamilton’s principle declares

1Our treatment will only emphasize those aspects that are useful to achieve our goal. For a complete
treatment the reader should consult one of the many excellent texts in classical mechanics.

228
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that the classical trajectories are obtained by requiring the action to be stationary (ex-
tremized) if

L = T (qi, q̇i, t)− V (qi, q̇i, t) (12.1.3)

where T is the total kinetic energy of the system and V is its total potential energy.
Suppose that all the coordinates are independent, so that f = N . To find the stationary
points of the action functional one considers infinitesimal variations of the coordinates.
Now variations may be of two types: (a) variation of the functional form

qi(t)→ q′(t) = qi(t) + δ0qi(t) = qi(t) + αη(t) (12.1.4)

where α is some small parameter and η(t) is an arbitrary function, and (b) variation of
the parameter t:

t→ t′ = t+ ε(t) (12.1.5)

where ε(t) is an arbitrary but infinitesimal change in t. A variation of the parameter can
be expected to induce a variation of the configuration space variables according to

δ1qi(t) = qi(t+ ε(t))− qi(t) = ε(t)q̇i(t) (12.1.6)

In general, therefore, an arbitrary variation is made up of two parts: (i) a part that is
purely functional, which we represent by δ0, and (ii) a part that arises from a change in
the (time) parameter, which we denote by δ1,

qi(t)→ q′i(t
′) = q′i(t) + εq̇i(t) = qi(t) + δ0qi(t) + δ1q̇i(t) (12.1.7)

giving the “total” variation,

δq(t) = q′i(t
′)− qi(t) = δ0qi(t) + δ1qi(t) (12.1.8)

up to first order in the variations and which we will henceforth represent by δ.
Our first goal is to determine the configurations that lead to a stationary action func-

tional. This is achieved by considering a special sub-set of the possible variations, viz.
functional variations of the coordinates that vanish at the end points (at t1 and t2, i.e.,
η(t1) = η(t2) = 0). Under such a variation, the action suffers the change

δS[q] =

∫ 2

1
dt

[
∂L
∂qi

δ0qi +
∂L
∂q̇i

δ0q̇i

]
=

∫ 2

1
dt

[
∂L
∂qi

δ0qi +
∂L
∂q̇i

δ0
dqi
dt

]
=

∫ 2

1
dt

[
∂L
∂qi

δ0qi +
d

dt

(
∂L
∂q̇i

δ0qi

)
− d

dt

(
∂L
∂q̇i

)
δ0qi

]
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=
∂L
∂q̇i

δ0qi

∣∣∣∣2
1

+

∫ 2

1
dt

[
∂L
∂qi

δ0qi −
d

dt

(
∂L
∂q̇i

)
δ0qi

]
(12.1.9)

Now the first term vanishes because the functional variations, δ0qi, are chosen to vanish
on the boundaries. Thus

δS[q] =

∫ 2

1
dt

[
∂L
∂qi
− d

dt

(
∂L
∂q̇i

)]
δ0qi (12.1.10)

According to Hamilton’s principle, the action is required to be stationary (δS = 0), then
the integral on the r.h.s. is vanishing, which is possible only if the integrand vanishes.
However, because δ0qi is otherwise arbitrary, this means that

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0 (12.1.11)

which are the so-called Euler equations.2 We have assumed, of course, that the Lagrangian
contains at most the first derivatives of the generalized coordinates. If it contains higher
derivatives, appropriate modifications to the above derivation of the Euler equations must
be made.

If the system is subject to external constraints, then the coordinates, qi, are not all in-
dependent and there are relations between them. Suppose that there are M such relations
(constraints) so that the number of degrees of freedom is f = N −M . We will consider
only the case of holonomic constraints, or constraints that can be reduced by integration
to holonomic constraints, in which case they can be given by M relations of the form
ga(qi, t) = 0, between the coordinates only (and not the velocities). Then the Lagrangian
must be augmented with Lagrange multipliers, λa, one for each relation, in defining the
action:

S[q] =

∫ 2

1
dt

[
L+

∑
a

λaga(qi, t)

]
(12.1.12)

and variations must be performed treating the coordinates qi as independent. Variations
w.r.t. λa must also be performed and they simply return the constraints,

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
+
∑
a

λa
∂ga(qi, t)

∂qi
= 0

ga(qi, t) = 0 (12.1.13)

These are the Euler-Lagrange equations of motion.

2Problem: Check that the Euler equations are Newton’s equations for a single particle with kinetic
energy 1

2
m~v2 and potential energy V (~r).
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12.2 Noether’s theorem in Mechanics

As mentioned in the introduction to this section, a powerful way to view the conservation
laws of mechanics is to think of them as resulting from the symmetries of the Lagrangian.
Let us see how this works for a system with a finite number of degrees of freedom. Consider
the change in the action under an arbitrary variation of the parameter t, i.e., t → t′ =
t+ ε(t) as well as a functional variation of the coordinates, qi(t). We find

δS =

∫
dt[ε̇(t)L+ δL] =

∫
dt[ε̇(t)L+ ε(t)L̇+ δ0L] =

∫
dt

[
d

dt
(εL) + δ0L

]
(12.2.1)

where we have used dt → dt′ = dt(1 + ε̇), or δ(dt) = δ1(dt) = dtε̇ and δ1L = ε(t)L̇. But
we know how to write δ0L, so

δS =

∫
dt

[
d

dt
(εL) +

∂L
∂qi

δ0qi +
∂L
∂q̇i

δ0q̇i

]
(12.2.2)

It is easy to see, from the definition of the functional derivative, that the operation of
taking a time derivative commutes with the operation of making a functional variation,
i.e., [δ0,

d
dt ]qi(t) = 0, so

δS =

∫ 2

1
dt

[
d

dt
(εL) +

∂L
∂qi

δ0qi +
d

dt

(
∂L
∂q̇i

δ0qi

)
− d

dt

(
∂L
∂q̇i

)
δ0qi

]
=

∫ 2

1
dt

[
d

dt
(εL) +

d

dt

(
∂L
∂q̇i

δ0qi

)]
=

∫ 2

1
dt
d

dt

[
(εL) +

(
∂L
∂q̇i

δ0qi

)]
(12.2.3)

after using Euler’s equations. Note that we have not set the total derivative term∫ 2

1
dt
d

dt

(
∂L
∂q̇i

δ0qi

)
directly to zero because we do not assume that the functional variation vanishes at the
boundary. It is convenient at this point to exchange the functional variation of qi(t) for a
total variation according to

δ0qi(t) = δqi(t)− δ1qi(t) = δqi(t)− ε(t)q̇i(t) (12.2.4)

and write

δS =

∫ 2

1
dt
d

dt

[(
L − ∂L

∂q̇i
q̇i

)
δt+

(
∂L
∂q̇i

)
δqi

]
(12.2.5)

where we have called ε(t) = t′(t)− t = δt. This is done only to maintain the same notation
in both terms. Imagine that the variations result from some global transformations and
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depend on a certain set of parameters, ωa, a ∈ {1, 2, ...}. These global transformations
could be, for example, translations, rotations, boosts, etc. We can write

δS =

∫ 2

1
dt
d

dt

[(
L − ∂L

∂q̇i
q̇i

)
δt

δωa
+

(
∂L
∂q̇i

)
δqi
δωa

]
δωa (12.2.6)

If S[q] is invariant under the global transformation, we have δS[q] = 0 and therefore (ωa

is arbitrary) (
L − ∂L

∂q̇i
q̇i

)
δt

δωa
+

(
∂L
∂q̇i

)
δqi
δωa

(12.2.7)

is a constant of the motion (it is conserved). This is “Noether’s theorem” applied to
systems with a finite number of degrees of freedom. Let us examine some special conse-
quences:

• Time translations: Take t→ t′ = t+ ε (ε = δωa constant) and qi(t)→ q′i(t
′) = qi(t)

(trajectories do not depend on the choice of the time origin) so δq = 0. If S is
invariant under time translations, δS = 0 and

H =
∂L
∂q̇i

q̇i − L (12.2.8)

is a constant of the motion. The quantity

pi =
∂L
∂q̇i

(12.2.9)

is the “momentum” conjugate to the coordinate qi. H is, of course, the “Hamilto-
nian”

H = piq̇i − L (12.2.10)

of the system which, in this case, is interpreted as its energy. Thus, energy conser-
vation is a consequence of time translation invariance.

• Spatial translations: Take qi → qi + ai and t→ t′(t) = t, so that δωa = ai = δqi and
δt = 0. If the action is invariant under spatial translations of some or all of the N
coordinates then the momenta,

pi =
∂L
∂q̇i

(12.2.11)

conjugate to those coordinates is conserved. Thus momentum conservation in any
direction is a consequence of space translation invariance of the action. A coordinate
whose conjugate momentum is conserved is called cyclic.
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• Spatial Rotations: Consider now a single particle with coordinates qi = xi (the usual
Cartesian coordinates). General rotations of the coordinate system may be written
as products of rotations about the individual axes, of which there are three. If we
consider an infinitesimal rotation, for example, about the z−axis we have

Rzij = δij + δθ3U3
ij (12.2.12)

where

U3
ij =

 0 1 0
−1 0 0
0 0 0

 = [ε3]ij (12.2.13)

is the “generator” of rotations about the z−axis. Here [εk]ij = εkij is, of course, the
Levi-Civita tensor, and, for example, [ε3]ij is to be thought of as a matrix ε̂3, whose
components are given by the Levi Civita symbol ε3ij . For an infinitesimal rotation
about the x− axis we would have

Rxij = δij + δθ1U1
ij (12.2.14)

where

U1
ij =

0 0 0
0 0 1
0 −1 0

 = [ε1]ij (12.2.15)

and, finally about the y axis,

Ryij = δij + δθ2U2
ij (12.2.16)

where

U2
ij =

0 0 −1
0 0 0
1 0 0

 = [ε2]ij (12.2.17)

An arbitrary infinitesimal rotation of the coordinates xi of our particle would there-
fore take the form (sum over repeated indices)

δxi = δθk[εk]ijxj (12.2.18)

and the time parameter remains unchanged, t′ = t or δt = 0. The parameters of the
transformation are the angles θk and

δxi
δθk

= εkijxj (12.2.19)
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It follows from Noether’s theorem that, if the action for the particle is invariant
under spatial rotations, the quantity

Lk = −εkijpixj = (~r × ~p)k (12.2.20)

(which will be recognized as the angular momentum of the particle) is conserved.
Conservation of angular momentum is a consequence of invariance of the action under
spatial rotations. Similarly, if the action is invariant under Lorentz transformations
(is a Lorentz scalar) then a four dimensional generalization of the above that is
appropriate to the Lorentz group is obtained.

With these examples, the power of Noether’s theorem should be evident. Let us turn
now to another, equivalent, formulation of mechanics, which treats the Hamiltonian as
the fundamental object of interest.

12.3 Hamiltonian description of Mechanics

In the previous section we had seen that when the Lagrangian has no explicit dependence
on time then the quantity

H =
∂L
∂q̇i

q̇i − L (12.3.1)

is conserved and interpretable as the total energy of the system. The momentum conjugate
to the coordinate qi is defined to be

pi =
∂L
∂q̇i

(12.3.2)

and the Hamiltonian is therefore written as

H = piq̇i − L (12.3.3)

Equation (12.3.3) can be viewed as a Legendre transformation from the variables (q̇i, qi)
to the variables (pi, qi). If we think of pi as an independent variable and the definition
(12.3.2) as giving the velocities in terms of the momenta, then in this form H depends on
(pi, qi). This is easy to see, because

∂H
∂q̇i

= pi −
∂L
∂q̇i
≡ 0 (12.3.4)

We do something similar in thermodynamics: recall that all the thermodynamic potentials
are obtained by Legendre transformations of the internal energy.3)

3From the first law of thermodynamics, the internal energy, U , may be thought of as a function of the
state variables (S, V ) with T = ∂U/∂S and p = −∂U/∂V . An example of a Legendre transformation is
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The Hamiltonian function provides an alternative description of the dynamics. Con-
sider the action functional expressed in terms of the Hamiltonian as follows

S =

∫ 2

1
dtL(qi, q̇i, t) =

∫ 2

1
dt[piq̇i −H(qi, pi, t)] (12.3.5)

and perform a variation of the action, treating pi and qi (but not q̇i) as independent
variables and holding both pi and qi fixed at the end points. It is easy to see that, if the
action is stationary under variations w.r.t. pi then

q̇i =
∂H
∂pi

, (12.3.6)

and if it is stationary under variations w.r.t. qi then (remember to hold qi fixed at the
end points)

ṗi = −∂H
∂qi

. (12.3.7)

These are the so-called Hamiltonian equations of motion or simply Hamilton’s equations.
The first equation confirms the fact that if H(qi, pi, t) is a Legendre transformation of
L(qi, q̇i, t) then L(qi, q̇i, t) is a Legendre transformation of H(qi, pi, t). We see that the
Hamiltonian equations of motion are a set of first order differential equations as opposed
to the Euler-Lagrange equations which are second order differential equations. However,
there are 2n coupled equations in the Hamiltonian description, whereas there are only n
coupled equations in the Lagrangian description. The two descriptions are equivalent.

A convenient way to write these equations is by introducing the “Poisson bracket”.
Suppose A(qi, pi, t) and B(qi, pi, t) are two arbitrary functions on phase-space. The Poisson
bracket between A and B is defined by

{A,B}P.B. =
∑
i

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
(12.3.8)

Now qi and pi are certainly functions on the phase space. We see that

{qi, pj}P.B. = δij (12.3.9)

the Helmholz free energy, F = U − TS, of a system. The free energy is a function of (T, V ). This is seen
from

F = U − TS → dH = dU − TdS − SdT = −SdT − pdV

where we have used the first law, dU = TdS − pdV . Another example is the enthalpy H = U + pV . It
should be clear that H = H(S, p). Finally, making a double Legendre transformation, G = U+pV −TS we
get the Gibbs potential which must therefore be a function of the variables (p, T ). Verify the dependencies
of that last two thermodynamic potentials explicitly by using the first law.
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Moreover, a simple calculation will show that

q̇i = {qi,H}P.B., and ṗi = {pi,H}P.B. (12.3.10)

are different ways of expressing Hamilton’s equations. Indeed, the time evolution of any
phase-space function, A(qi, pi, t) is seen to be given simply by4

Ȧ = {A,H}P.B. +
∂A

∂t
(12.3.11)

The Hamiltonian formulation of the classical dynamics of any physical theory is essential
to the construction of its corresponding quantum theory.5

We wish to generalize these considerations to continuous systems, i.e., systems with
an infinite number of degrees of freedom. This is the subject of the following sections.

12.4 Lagrangian description of fields

The fundamental difference between a “field” and a system of point particles is that a
field has an uncountably infinite number of degrees of freedom, a countable number at
each point in space. In this sense the Lagrangian, L, is itself a functional, an integral
over space of some function (the Lagrange density function, L) of the fields and their
derivatives. How this comes to be is best understood by an example.

Consider an infinitely long elastic rod laid along the x−axis, that is able to sustain
oscillatory displacements of the particles composing it in a direction parallel to the rod.
We “discretize” the rod by imagining that it is made up of a very large number of point
like particles that are spaced a distance a apart and connected by massless springs (which
simulate the interaction between neighboring atoms in the rod). Consider the nth particle
and denote it’s displacement from equilibrium by ηn. Its kinetic energy is

Tn =
1

2
mnη̇

2
n (12.4.1)

4Problem: Prove this.
5The quantum theory can be thought of as arising from the non-commutativity of the phase-space

variables qi and pi. This is realized by promoting the observables (phase-space functions like A(qi, pi.t))
to operators on a Hilbert space and replacing of the classical Poisson brackets by commutators. Thus, for
example,

{qi, pj}P.B. = δij → [qi, pi] = iδij (12.3.12)

and

Ȧ = {A,H}P.B. +
∂A

∂t
→ Ȧ = i[A,H] +

∂A

∂t
(12.3.13)

in the Heisenberg picture.
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giving, for all the particles together, the total kinetic energy

T =
1

2

∑
n

mnη̇
2
n (12.4.2)

The total potential energy could be be written as the sum of the potential energies of the
springs which are stretched (or compressed) according to the displacements of neighboring
particles:

V =
1

2

∑
n

kn(ηn+1 − ηn)2 (12.4.3)

The Lagrangean for the entire system follows from Hamilton’s prescription:

L = T − V =
1

2

∑
n

mn

[
η̇2
n − ω2

n(ηn+1 − ηn)2
]

(12.4.4)

which will be convenient to write the the following form

L =
1

2

∑
n

a
(mn

a

)[
η̇2
n − (aωn)2

(
ηn+1 − ηn

a

)2
]

(12.4.5)

Now consider taking the limit as a→ 0 of the above. The quantity mn/a can be interpreted
as the mass per unit length or the linear mass density of the rod, which we take to be
some constant, µ. It is clear that in the same limit,

lim
a→0

ηn+1 − ηn
a

= lim
a→0

η(t, x+ a)− η(t, x)

a
=

∂

∂x
η(t, x) (12.4.6)

and that

η̇n →
∂

∂t
η(t, x), (12.4.7)

but what about aω2
n? A little thought will show that this is related to the Young’s modulus,

Y , of the rod by
amnω

2
n = Y (12.4.8)

which we’ll take to be independent of position. Thus, in the continuum limit, the La-
grangian function can be written as

L(η̇, η′, x) =

∫ ∞
−∞

dx

[
µ

2

(
∂η(t, x)

∂t

)2

− Y
(
∂η(t, x)

∂x

)2
]

(12.4.9)

The quantity within square brackets is a density function (in this case a linear density)
called the Lagrange density, L, and

S =

∫
dt

∫ ∞
−∞

dx L(η̇(t, x), η′(t, x), x, t). (12.4.10)
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is the action. η(t, x) is a “field” (the field of displacements from equilibrium of the rod’s
constituents, or the elementary excitations of the rod)

We may now consider a general field theory as one that is described by a Lagrangian
functional,

L[φA, ∂µφ
A, t] =

∫
d3~r L(φA(t, ~r), ∂µφ

A(t, ~r), t, ~r) (12.4.11)

where φA(t, ~r) is a symbol that denotes a field exhibiting definite transformation properties
in space-time, i.e., which transforms either as a scalar (eg. Higgs field), vector (eg. Elec-
tromagnetic field, other gauge bosons of the standard model), spinor (eg. Dirac/Majorana
field for fermions) or tensor (eg. gravitational field) and “A” represents the collection of
indices carried by it. The field theory is specified by an action

S =

∫
dt L[φA, ∂µφ

A, t] =

∫
d4x L(φA(x), ∂µφ

A(x), x) (12.4.12)

from which the equations of motion are to be derived using Hamilton’s principle.
Following the arguments given earlier for point particles, we realize at the onset that

field variations are also of two types: (a) functional variations,

φA(x)→ φ′A(x) = φA(x) + δ0φ
A(x) (12.4.13)

and (b) variations that arise because of a change in the parameters (in this case the four
space-time coordinates),

xµ → x′
µ

= xµ + εµ(x) (12.4.14)

where εµ represents an infinitesimal change in xµ. This induces a change in the field
according to

δ1φ
A(x) = φA(x′)− φA(x) = φA(x+ ε)− φA(x) = εµ∂µφ

A (12.4.15)

A general change is thus made up of both components, i.e.,

δφA(x) = φ′A(x′)− φA(x) = φ′A(x+ ε)− φA(x)

= φ′A(x)− φA(x) + ε · ∂φA = δ0φ
A(x) + δ1φ

A(x) (12.4.16)

up to first order in the variations, of course. To apply Hamilton’s principle to the action
we first consider only functional variations that vanish at the boundary (usually taken to
be at infinity). Then

δS =

∫
d4xδL =

∫
d4x

[
∂L

∂φA
δ0φ

A +
∂L

∂(∂µφA)
δ0∂µφ

A

]
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=

∫
d4x

[
∂L

∂φA
δ0φ

A + ∂µ

(
∂L

∂(∂µφA)
δ0φ

A

)
− ∂µ

(
∂L

∂(∂µφA)

)
δ0φ

A

]
=

∫
d4x

[
∂L

∂φA
− ∂µ

(
∂L

∂(∂µφA)

)]
δ0φ

A (12.4.17)

where we have interchanged ∂µ and δ0, because [∂µ, δ0]φ = 0, and used the fact that the
integral of the total derivative is a surface term (an integral over the bounding surface)
which vanishes exactly∫

M
d4x ∂µ

(
∂L

∂(∂µφA)
δ0φ

A

)
=

∫
∂M

dσµ

(
∂L

∂(∂µφA)
δ0φ

A

)
≡ 0 (12.4.18)

by our condition that the variation δ0φ vanishes there. But, as δ0φ is otherwise arbitrary,
and the action is stationary (δS = 0) we necessarily arrive at Euler’s equations

∂L

∂φA
− ∂µ

(
∂L

∂(∂µφA)

)
= 0 (12.4.19)

for a field theory governed by the Lagrange density L. Of course, Lagrange multipliers
and the Euler-Lagrange equations may be used when constraints are involved.

We may apply these equations to the action we wrote down earlier for the elastic rod.
The field is η(t, x) and the Lagrange density does not depend on η(t, x) but only on its
derivatives. Therefore we have

∂t

(
∂L

∂η̇

)
+ ∂x

(
∂L

∂η′

)
= 0 = µ

∂2η

∂t2
− Y ∂

2η

∂x2
(12.4.20)

which is a wave equation for perturbations that travel at the speed of sound, vs =
√

Y
µ ,

in the rod.

12.5 Noether’s theorem for fields

Noether’s theorem is quite a bit more powerful when applied to fields than when it is
applied to a system of point particles. The theorem simply states that to every symmetry
of the action there exists a corresponding current that is conserved. Its proof follows the
general lines of reasoning that were introduced when the number of degrees of freedom
was finite (point particles). Therefore, consider a general variation, including coordinate
changes, of the action in (12.4.12)

δS =

∫
[(δd4x)L + d4xδL] (12.5.1)
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and we need to determine, first, δd4x. This is just an infinitesimal change in coordinates

x′µ = xµ + εµ(x) → ∂x′µ

∂xν
= δµν + ∂νε

µ(x) (12.5.2)

The change in measure, δd4x is determined via the Jacobian

d4x→ d4x′ = d4x det(
∂x′µ

∂xν
) = d4x det(δµν + ∂νε

µ) = d4x det Ĵ (12.5.3)

where Ĵµν = (1̂ + ∂ε)µν is the Jacobian of the transformation. But the determinant of a
matrix Ĵ is related to its trace according to6

ln det Ĵ = tr ln Ĵ (12.5.4)

so that
det Ĵ = etr ln Ĵ = etr ln(1̂+∂ε) ≈ etr∂̂ε ≈ 1 + ∂µε

µ (12.5.5)

It follows that
δd4x = d4x′ − d4x = d4x(∂ · ε) (12.5.6)

and therefore that

δS =

∫
d4x[(∂ · ε)L + δL] =

∫
d4x[(∂ · ε)L + ε · ∂L + δ0L]

=

∫
d4x

[
∂µ(Lεµ) +

∂L

∂φA
δ0φ

A +
∂L

∂(∂µφA)
δ0∂µφ

A

]
(12.5.7)

Interchanging δ0 and ∂µ ([δ0, ∂µ]φA = 0), we find

δS =

∫
d4x

[
∂µ(Lεµ) +

∂L

∂φA
δ0φ

A + ∂µ

(
∂L

∂(∂µφA)
δ0φ

A

)
− ∂µ

(
∂L

∂(∂µφA)

)
δ0φ

A

]
(12.5.8)

which, if we use the equations of motion (Euler’s equations), simplifies to

δS =

∫
d4x ∂µ

[
Lεµ +

∂L

∂(∂µφA)
δ0φ

A

]
(12.5.9)

As before, exchange the functional variation of φ(x) above for a total variation and find

δS =

∫
d4x ∂µ

[(
Lδµν −

∂L

∂(∂µφA)
∂νφ

A

)
εν +

∂L

∂(∂µφA)
δφA

]
(12.5.10)

6This is easy to prove: let λn be the eigenvalues of Ĵ , so

det Ĵ =
∏
n

λn → ln det Ĵ = ln(
∏
n

λn) =
∑
n

lnλn = tr ln Ĵ
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We imagine again that the variations result from some global transformations that depend
on a certain set of constant parameters, ωa, a ∈ {1, 2, ...}. Then

δS =

∫
d4x ∂µ

[(
Lδµν −

∂L

∂(∂µφA)
∂νφ

A

)
δxν

δωa
+

∂L

∂(∂µφA)

δφA

δωa

]
δωa (12.5.11)

If the action is invariant under the transfomations, δS = 0, then because the parameters
are arbitrary it follows that

jµa =

(
∂L

∂(∂µφA)
∂νφ

A − Lδµν

)
δxν

δωa
− ∂L

∂(∂µφA)

δφA

δωa
(12.5.12)

is a conserved current, i.e.,,
∂µj

µ
a ≡ 0. (12.5.13)

This is Noether’s first theorem applied to fields.
As a special application, let’s consider space-time translations: xµ → x′µ = xµ + δεµ

(we can think of the constant parameters δωa as being δεµ) and suppose that δφA(x) = 0
(since fields are Lorentz scalars, vectors or tensors, they must be invariant under constant
translations) then

δxµ

δεσ
= δµσ (12.5.14)

and

jµσ = Lδµσ −
∂L

∂(∂µφA)
∂σφ

A (12.5.15)

is conserved. What we have obtained in an important conserved quantity, a (mixed)
second rank tensor, obeying

∂µj
µ
σ = 0 (12.5.16)

called the “stress-energy” or “energy-momentum” tensor of the field.7.
If it turns out that jµν = jµσησν is symmetric, the fact that it is conserved allows us to

define a conserved 4-vector current that we can identify with the energy-momentum flow
of the field,

Pσ =

∫
d3~r℘σ =

∫
d3~rj0

σ, Pµ =

∫
d3~r℘µ =

∫
d3~rj0µ (12.5.17)

where j0µ = j0
ση

σµ. It is easy to check that8

dPµ

dt
≡ 0, (12.5.18)

7Problem: Compute the stress-energy tensor of the field η(t, x), representing the excitations of an elastic
rod.

8Problem: Show that Pµ transforms as a 4-vector.
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if the fields fall off sufficiently fast, because

dPµ

dt
=

d

dt

∫
d3~rj0µ =

∫
d3~r∂tj

0µ = −
∫
d3~r∂ij

iµ = −
∮
S
dS n̂ij

iµ, (12.5.19)

where S is a bounding surface at infinity and n̂i is normal it. This is just Gauss’ law.
Assuming that the fields fall off fast enough that there is no energy-momentum flux across
the surface at infinity, the surface integral vanishes and we have the desired result.

As mentioned, the stress tensor, jµν , as defined above, is not generally symmetric in its
indices (although it may be in some important cases). It is also not uniquely defined as a
conserved quantity because we could add to it any divergence free, second rank tensor. In
particular, the divergence of a third rank tensor which is antisymmetric in two indices, eg.,
a tensor kλµν which is antisymmetric in (λ, µ), gives a second rank tensor, ∆µν = ∂λk

λµν

which satisfies this criterion. In other words, if we define

tµν = jµν + ∆µν = jµν + ∂λk
λµν (12.5.20)

then tµν is still trivially conserved by the antisymmetry of kλµν .9

Suppose that, by doing the above, we could find a tensor, tµν , that is symmetric in
its indices, (µ, ν), and conserved as well. It turns out that we can generally do this and
we will see an example of it when we work with the electromagnetic field in the following
chapter. Consider an infinitesimal Lorentz transformation, δxµ = δωµνxν . Then

δxµ

δωαβ
=

1

2

(
δµαδ

ν
β − δ

µ
βδ

ν
α

)
xν , (12.5.21)

where we have exploited the antisymmetry of δωµν . Suppose also that under the Lorentz
transformation,

δφA(x)

δωµν
= GAµν (12.5.22)

where GAµν is antisymmetric in (µ, ν) and depends on the transformation properties of φA.
We now find that

Mµ
αβ =

1

2
(jµαxβ − j

µ
βxα) + Sµαβ (12.5.23)

is conserved, where

Sµαβ =
∂L

∂(∂µφA)
GAαβ (12.5.24)

Mµ
αβ is called the “total angular momentum” tensor density and

Lµαβ =
1

2
(jµαxβ − j

µ
βxα) (12.5.25)

9Observe that ∂µ∆µν = ∂µ∂λk
λµν ≡ 0 because the partial derivatives commute whereas k is antisym-

metric in those indices.
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is called the “orbital angular momentum” tensor density. Sµαβ is called the “intrinsic
angular momentum” tensor density.

From the conservation of Mµ
αβ follows

∂µS
µ
αβ =

1

2
(jαβ − jβα) (12.5.26)

which says that if jαβ is a symmetric tensor then Ŝ is separately conserved. Otherwise
the intrinsic angular momentum can be exchanged for the orbital angular momentum and
vice-versa. The extent to which this occurs is measured by the antisymmetric part of the
canonical energy momentum tensor.

With the symmetrized stress-energy tensor, tµν , let us define the modified angular
momentum tensor density

L̃µαβ = tµαxβ − t
µ
βxα, (12.5.27)

and the modified intrinsic angular momentum tensor density

S̃µαβ = Sµαβ −
1

2
(∆µ

αxβ −∆µ
βxα). (12.5.28)

Both would be separately conserved.10. We then have∫
d3~rL̃0αβ =

∫
d3~r(xβ℘α − xα℘β)

def
= Lαβ (12.5.29)

where ℘µ = t0µ is the momentum density. The formula is reminiscent of the way in which
ordinary angular momentum is defined in point particle mechanics and is how we define
the angular momentum of a field. We see once again that

dLµν

dt
≡ 0, (12.5.30)

if the fields fall off fast enough at infinity. We will have occasion to use these concepts in
the next chapter when we work with the electromagnetic field and attempt to determine
its properties. Let us now turn to the Hamiltonian description of field theories.

12.6 Hamiltonian description of fields

Our treatment of the Hamiltonian dynamics of fields may parallel the treatment of point
particles. However, we need to be a bit more careful now than we were before, because
the Lagrangian is really a functional and not a function as it was for point particles.
Because we need to make a Legendre transformation on the Lagrangian to arrive at the

10Problem: Show this!
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Hamiltonian, we will be required to define functional derivatives. We have actually already
done this, but implicitly. Let us make this more explicit. Suppose that we are given a
Lagrangian density function

L = L(φA(x), ∂µφ
A(x), x), (12.6.1)

and a Lagrangian functional

L[φA, ∂µφ
A, t] =

∫
d3~r L(φA(~r, t), ∂µφ

A(~r, t), ~r, t). (12.6.2)

We will define the nth functional (or variational) derivative of L w.r.t. φA(~r, t) by

δnL[φA] =

∫
d3~r1...d

3~rn
δnL[φA]

δφA1(~r1, t)...δφAn(~rn, t)
δφA1(~r1, t)...δφ

An(~rn, t) ≡
∂nL[φA + αηA]

∂αn

∣∣∣∣
α=0

(12.6.3)
This definition is purely formal. δnL represents the nth functional variation of the La-
grangian functional, each variation being performed precisely as we did for the action
functional we have been working with till now. For instance we will recognize the first
functional derivative from the definition above as

δL =

∫
d3~r

δL
δφA(~r, t)

δφA(~r, t) (12.6.4)

If, for φA(x) ∈ C and all C∞ variations δφA, all the successive variations δnL can be
expressed in the above form up to some k ∈ N, then the functional L is said to be a Ck

functional on C.
Now define the momentum conjugate to the field (variable) φ(x) as

πA(x) =
δL

δφ̇A(x)
, (12.6.5)

and the Hamiltonian by a Legendre transformation as

H[πA, φ
A, ∂iφ

A, t] =

∫
d3~r πA(~r, t)φ̇A(~r, t)− L =

∫
d3xH(πA, φ

A, ∂iφ
A, t), (12.6.6)

where H is the Hamiltonian density function. It is not difficult to see that H is indeed
independent of φ̇A, t, because taking a functional derivative of H w.r.t. φ̇A yields

δH
δφ̇A(x)

= πA(x)− δL
δφ̇A(x)

≡ 0 (12.6.7)

As was the case for point particles, the equations of motion are recovered by varying the
action

S =

∫ 2

1
d4x

[
πA(x)φ̇A(x)− H(πA(x), φA(x), ∂iφ

A(x), x)
]

(12.6.8)



12.6. HAMILTONIAN DESCRIPTION OF FIELDS 245

independently w.r.t. each of variables (πA(x), φA(x)), keeping both fixed at the boundaries
“1” and “2”. One finds that

φ̇A(x) =
δH

δπA(x)
=

∂H

δπA
, π̇A(x) = − δH

δφA(x)
= − ∂H

∂φA
+ ∂i

(
∂H

∂(∂iφA)

)
(12.6.9)

For example, for the Lagrangian density (12.4.9) describing the elementary excitations of
the rod, we have (suppressing the x dependence)

π = µη̇, H = πη̇ − L =
π2

2µ
+ Y η′2 (12.6.10)

giving the equations of motion

η̇ =
∂H

∂π
=
π

µ
, π̇ = −∂H

∂η
+

(
∂H

∂η′

)′
= Y η′′ (12.6.11)

To obtain the Lagrangian equation of motion from the above canonical ones, use the first
to replace π with µη̇ in the second and get

µη̈ − Y η′′ = 0 (12.6.12)

as we had before.

As in the case of point particles, the canonical equations can also be given in terms of
Poisson brackets. Let A[π, φ, t] and B[π, φ, t] be two functionals of the phase space, {φ, π},
then define the Poisson brackets between them as

{A,B}t=t′P.B =

∫
d3~r

[
δA

δφA(~r, t)

δB
δπA(~r, t)

− δA
δπA(~r, t)

δB
δφA(~r, t)

]
(12.6.13)

If we compare the above expression with the definition we used for point particles, we will
notice that only two things have changed, viz., (a) there is an additional integration over
space and (b) the ordinary derivatives have been replaced by functional derivatives. Both
changes are dictated by the fact that we are now dealing with Lagrangian functionals.
Had we more than one field, say φa, then a sum over all fields present (i.e.,

∑
a) would

also have to be thrown into the definition, just as we sum over all the degrees of freedom
for point particles. Note, finally, that the Poisson brackets are defined at equal times.

Consider the functional

F [φA] =

∫
d3~r φA(~r, t) (12.6.14)

then

{F ,H}t=t′P.B. =

∫
d3~r

δH
δπA(~r, t)

=

∫
d3~r φ̇A(~r, t) (12.6.15)
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and likewise,

F [π] =

∫
d3~r πA(~r, t) (12.6.16)

leads to

{F ,H}t=t′P.B. = −
∫
d3~r

δH
δφA(~r, t)

=

∫
d3~r π̇A(~r, t) (12.6.17)

From these equations it will be clear that we could also define the fundamental Poisson
bracket relations

{φA(~r, t), φB(~r′, t′)}t′=tP.B. = 0 = {πA(~r, t), πB(~r′, t′)}t′=tP.B.

{φA(~r, t), πB(~r′, t′)}t′=tP.B. = δABδ
3(~r − ~r′) (12.6.18)

and write

φ̇A(~r, t) = {φA(~r, t),H(t′)}t′=tP.B.

π̇B(~r, t) = {πB(~r, t),H(t′)}t′=tP.B. (12.6.19)

They would yield the canonical equations of (12.6.9).11

11Problem: Show this!



Chapter 13

The Electromagnetic Field and
Sources*

13.1 Action for massive, free particles

The relativistic point particle extremizes its proper time (this can be thought of as a
generalization of Fermat’s principle, which was originally enunciated for the motion of
light “corpuscles”),

Sp = −mc2

∫
dτ = −mc

∫ 2

1

√
−ηµνdxµdxν = −mc2

∫ 2

1
dt

√
1− ~v2

c2
(13.1.1)

where dτ = ds/c = 1
c

√
−ηµνdxµdxν and the constant “mc2” is chosen so that Sp has the

dimension of action (or angular momentum: J·s). One sees quite easily that this action
principle reduces to Hamilton’s principle (V = 0) when the velocity of the particle relative
to the observer is small compared with the velocity light, for then√

1− ~v2

c2
≈ 1− 1

2

~v2

c2
(13.1.2)

which, when inserted into (13.1.1) gives

Sp ≈
∫ 2

1
dt

[
1

2
m~v2 −mc2

]
(13.1.3)

The second term is, of course, just a constant (later to be identified with the rest mass
energy of the particle) and can be dropped without affecting either the equations of motion
or the conservation laws. The first term is the non-relativistic kinetic energy of the particle
and the action is therefore just that of a free non-relativistic point particle.

247
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The momentum conjugate to xi is

pi =
∂L
∂ẋi

=
mvi√

1− ~v2/c2
= γmvi, (13.1.4)

which reduces to pi = mvi when |~v| << c, and Euler’s equations give

d~p

dt
=

d

dt
(γm~v) =

d

dt

m~v√
1− ~v2/c2

= 0 (13.1.5)

which are the equations of motion of the particle. The Lagrangian does not depend
explicitly on time, so we expect that the Hamiltonian is the total energy and is conserved,

E = H = piẋ
i − L =

m~v2√
1− ~v2/c2

+mc2
√

1− ~v2/c2 =
mc2√

1− ~v2/c2
(13.1.6)

The quantity

mR =
m√

1− ~v2/c2
(13.1.7)

is generally called the “relativistic mass” or simply “mass” of the particle, whereas the
parameter m we used initially is called the “rest” mass of the particle and can be thought
of as its mass when measured in its proper frame (~v = 0). We have just obtained the
popular Einstein relation,

E = mRc
2. (13.1.8)

Notice that the energy of the particle is not zero in the rest frame. Associated with the
proper (rest) mass, is the proper energy, E = mc2.

The Hamiltonian is rightly thought of as obtained by a Legendre transformation of the
Lagrangian and should be expressed in terms of the momenta and coordinates but not the
velocities. This is easily accomplished by noting that (13.1.4) gives

~p2 =
m2~v2

1− ~v2/c2
→ ~v

c
=

~p√
~p2 +m2c2

(13.1.9)

Thus we get

1− ~v2

c2
=

~p2

~p2 +m2c2
, (13.1.10)

which, when inserted into (13.1.6), gives another well known result,

H = E =
√
~p2c2 +m2c4. (13.1.11)

Again we recover the rest mass energy, E = mc2 when we set ~p = 0.
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Let us note that the momentum

pi = mγvi = m
dt

dτ

dxi
dt

= m
dxi
dτ

(13.1.12)

is quite manifestly the spatial component of the four-vector1

pµ = m
dxµ
dτ

= mUµ. (13.1.13)

where we have defined the “four velocity vector” Uµ = dxµ/dτ . What is its time compo-
nent? We have

p0 = −mc2 dt

dτ
= − mc2√

1− ~v2/c2
= −E (13.1.14)

so we see that the spatial momentum and the energy are components of one four-vector
momentum,

pµ = m
dxµ

dτ
, p0 =

E

c2
, pi =

mvi√
1− ~v2/c2

(13.1.15)

With this definition of the four-vector momentum, formula (13.1.11) for the energy is seen
to result from a purely kinematic relation, because

p2 = ηµνp
µpµ = m2ηµν

dxµ

dτ

dxν

dτ
= −m2

[
ds

dτ

]2

= −m2c2 (13.1.16)

(the kinematic relation being, of course UµU
µ = −c2, remember it). Therefore, expanding

the l.h.s.,

p2 = −E
2

c2
+ ~p2 = −m2c2, → E2 = ~p2c2 +m2c4 (13.1.17)

Interestingly, taking the square root allows for both positive and negative energies but we
have chosen the positive sign, thereby excluding negative energy free particles by fiat.

Euler’s equations as given in (13.1.5) are not in a manifestly covariant form. They
can, however, be put in such a form if we multiply by γ, expressing them as

γ
d~p

dt
=
dt

dτ

d~p

dt
=
d~p

dτ
= 0 (13.1.18)

This is the equation of motion for a free particle, so the r.h.s. is zero. The l.h.s. transforms
as the spatial components of a four-vector and we need not worry about the transforma-
tion properties of the r.h.s., since it vanishes. In the presence of an external force the

1Problem: Convince yourself that pµ = mdxµ/dτ is indeed a four-vector under Lorentz transformations.
Remember that the proper time, τ , is a scalar. Determine the transformation properties of the four-vector
momentum.
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r.h.s. should not vanish and the principle of covariance requires that both sides of the
equations of motion should transform in the same way under Lorentz transformations.
Let us tentatively write a covariant equation of motion as

dpµ

dτ
= fµ (13.1.19)

where fµ is a four-vector. It must be interpreted as the relativistic equivalent of Newton’s
“force”. But what is the connection between the four-vector force, fµ, and our beloved
Newtonian force, which we will call ~FN? To find the relationship, consider the instan-
taneous rest-frame of the particle (quantities in the rest frame will be represented by an
over-bar), in which τ = t and p0 = m, pi = 0. In this frame, the time component of the

l.h.s of (13.1.19) is evidently zero and therefore so is f
0
. The spatial part of the force

equation in this (proper) frame reads

dpi

dt
= f

i
, (13.1.20)

which identifies the spatial components, f
i
, of f

µ
with the Newtonian force, ~FN , on the

particle. Thus we have found that in the instantaneous rest frame of the particle

f
µ

= (0, ~FN ). (13.1.21)

To determine fµ in an arbitrary frame we merely need to perform a boost. Therefore, in
a frame in which the instantaneous velocity of the particle is ~v, we find in particular that

f0 = −γ~v ·
~FN
c2

(13.1.22)

i.e.,
dE

dt
= −~v · ~FN (13.1.23)

The equation makes perfect sense, saying simply that the rate of energy gain (loss) of the
particle is simply the power transferred (removed) to (from) the system by the external
Newtonian forces. The same boost also gives the spatial components of the relativistic
force in an arbitrary frame as

~f = ~FN + (γ − 1)
~v

v2
(~v · ~FN ) (13.1.24)

Notice that it has the non-relativistic limit (γ ≈ 1) ~f ≈ ~FN , as it should.
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We have given two forms of the action for the massive point particle in (13.1.1) although
we have concentrated so far on the last of these. The first form is actually quite interesting.
We had,

Sp =

∫ 2

1

√
−ηµνdxµdxν . (13.1.25)

If λ is any parameter describing the particle trajectories then we could write this in the
form

Sp =

∫ 2

1
dλ
√
−ηµνUµ(λ)U

ν
(λ) (13.1.26)

where

Uµ(λ) =
dxµ(λ)

dλ
(13.1.27)

is tangent to the trajectories xµ(λ) and λ is an arbitrary parameter. The action is therefore
reparameterization invariant, i.e., it does not depend on the choice of parameter. All that
we have said earlier corresponds to a particular choice of λ (= t) which, loosely speaking, is
like fixing a “gauge”. After all, isn’t this essentially what we did with the electromagnetic
field? We exploited the gauge freedom to fix the representative field configuration.

13.2 Action for the Electromagnetic field

The electromagnetic field equations of motion in the previous section are derivable from
an action principle. Consider the following (gauge invariant) action,

SA = − 1

4µo

∫
d4xFµνF

µν (13.2.1)

and ask what field configuration would extremize it. Varying w.r.t. the fields, Aµ, gives
the Euler equations of motion,

δL
δAµ

− ∂ν
[

δL
δ(∂νAµ)

]
≡ 0 (13.2.2)

where L(A, ∂A) is the Lagrangian functional,

L(A, ∂A) = − 1

4µo

∫
d3~r FµνF

µν (13.2.3)

of the system. The Euler equations give precisely the dynamical equations

∂µF
µν = 0 (13.2.4)
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in the absence of sources.2

Let us compute the Hamiltonian of the electromagnetic field. Write the action as

SA = − 1

4µo

∫
d4x

[
F0iF

0i + FijF
ij
]

= − 1

4µo

∫
d4x

[
− 2

c2
ηijF0iF0j + FijF

ij

]
= − 1

4µo

∫
d4x

[
− 2

c2
ηij(∂0Ai − ∂iA0)(∂0Aj − ∂jA0) + FijF

ij

]
(13.2.5)

First we notice that there are no time derivatives of the scalar potential, A0. Therefore
the momentum conjugate to it is identically zero. The momenta conjugate to the space
components of the electromagnetic field are

πi =
∂L

∂(∂0Ai)
= −F

0i

µo
=
F i0

µo
,= − Ei

µoc2
(13.2.6)

so that the “velocities” are given in terms of the momenta as

∂0Ai = Ȧi = µoc
2πi + ∂iA0 (13.2.7)

It follows that the Hamiltonian density function may be written as

H = πiȦi − L = πi(µoc
2πi + ∂iA0)− 1

2
µoc

2πiπ
i +

1

4µo
FijF

ij

=
1

2
µoc

2πiπi +
1

4µo
FijF

ij + πi∂iA0 (13.2.8)

and the Hamiltonian functional as

H =

∫
d3~r

[
1

2
µoc

2πiπi +
1

4µo
FijF

ij −A0∂iπ
i

]
(13.2.9)

where we have performed an integration by parts in writing the last term and assumed
that the fields fall of rapidly enough at infinity that the surface terms disappear. In the
form above it becomes clear that the time-component of the electromagnetic field is a
Lagrange multiplier field (this is why π0 ≡ 0) while

∂iπ
i = 0 = ~∇ · ~E (13.2.10)

(which is just Gauss’ Law in the vacuum) is a constraint. Therefore, given that the gauge
freedom allows us to choose one extra constraint in the form of a gauge condition, we learn
that the electromagnetic field in the vacuum has two physical degrees of freedom.

2Prove that (13.2.2) actually gives the correct dynamical equations in the absence of sources (jµ = 0).
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The remaining two terms in the Hamiltonian density will be recognized as the energy
density of the electromagnetic field,

1

2
µoc

2πiπi +
1

4µo
FijF

ij =
1

2

[
εo ~E

2 +
~B2

µo

]
. (13.2.11)

We may define the fundamental Poisson brackets by

{Ai(t, ~r), πj(t, ~r′}P.B. = δji δ
(3)(~r − ~r′) (13.2.12)

(equal time!) and derive the canonical equations of motion from these fundamental rela-
tions. Thus,

Ȧi(t, ~r) = {Ai(t, ~r),H}P.B. = µoc
2πi + ∂iA0 (13.2.13)

which will be recognized as the expression we had earlier for the velocities in terms of the
momenta, and

π̇i(t, ~r) = {πi(t, ~r),H}P.B. =
1

µo
∂jF

ji (13.2.14)

which are precisely the Euler equations in (13.2.4)3

13.3 Inclusion of Sources

How shall we get a suitable coupling of the electromagnetic field to sources? The simplest
Lorentz invariant integral we might construct which involves a 4-vector potential is the
line integral,

e

∫
dxµAµ. (13.3.1)

where we have thrown in an electric charge which is a scalar and makes no difference to
the Lorentz invariance of the expression. e is the electric charge. It is certainly a Lorentz
scalar, but is it gauge invariant? Consider the gauge transformation Aµ → A′µ = Aµ+∂µΛ.
Our line integral goes to

Sint = e

∫ 2

1
dxµAµ → e

∫ 2

1
dxµA′µ = e

∫ 2

1
dxµ(Aµ + ∂µΛ)

= e

∫ 2

1
dxµAµ + e(Λ2 − Λ1) (13.3.2)

Thus, under a gauge transformation, our line integral has changed by a constant. However,
an action is defined only up to the addition of a constant, because the addition of a constant

3Check this!
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makes absolutely no difference to the equations of motion. Therefore, although our line
integral is not gauge invariant its change by a gauge transformation is only by a constant
and we expect that the equations of motion that would follow from it will stay gauge
invariant. Rewrite the integral as

Sint = e

∫ 2

1
dxµAµ = e

∫ 2

1
dt vµ(t)Aµ(t, r(t))

= e

∫
d4x vµ(t)Aµ(~r, t)δ(3)(~r − r(t)) (13.3.3)

where vµ = dxµ/dt is the velocity (not the 4-velocity vector!) and r(t) is the particle’s
trajectory. In the last rewrite we have replaced the integral over time by an integral over
space-time and introduced a δ− function to eliminate the extra integral over the spatial
volume. This, of course, is just a trick in order to be able to easily combine the two
integrals (13.2.1) and (13.3.1) into one. Consider then the modified action

S ′ =
∫
d4x

[
− 1

4µo
FµνF

µν + evµAµδ
(3)(~r − r(t))

]
(13.3.4)

and extremize it w.r.t. variations of Aµ. We easily find

∂νF
νµ = −eµovµδ(3)(~r − r(t)) (13.3.5)

which identifies the current 4-vector as jµ = eµov
µδ(3)(~r − r(t)).4 Thus, for the spatial

components we have
ji = eviδ(3)(~r − r(t)) (13.3.6)

and for the time component (v0 = 1)

ρ = eδ(3)(~r − r(t)), (13.3.7)

precisely as we have used in the past for the current corresponding to a single point
particle! Indeed it will also yield the Lorentz force law via the Euler equations for the
particle, as we shortly see. The line integral must be thought of as an “interaction” action
for a charged particle (charge e) interacting with the electromagnetic field.

To complete the action for the charged particle and the electromagnetic field, we
simply add to (13.3.5) the action for the free particle. The complete action, S, will then
be S = SA + Sint + Sp, i.e.,

S =

∫
d4x

[
− 1

4µo
FµνF

µν +
(
evµAµ −mc

√
−ηµνvµvν

)
δ(3)(~r − r(t))

]
(13.3.8)

4For jµ to be a satisfactory current density, it must be conserved, i.e., ∂µj
µ = 0. (a) Satisfy yourself

that this is indeed a necessary condition. (b) Prove that the current defined in this way is indeed conserved.
If you cannot do so, see Chapter 10.
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Because the last term does not contain the electromagnetic field, it is transparent to
variations of the field and so does not affect Maxwell’s dynamical equation. However, to
describe the particle’s motion we must vary w.r.t. the particle’s position and for this it is
necessary to consider the second two terms of (13.3.8)

S ′′ =
∫ 2

1
dt
[
evµAµ −mc

√
−ηµνvµvν

]
=

∫ 2

1
dτ
[
eUµAµ −mc

√
−ηµνUµUν

]
(13.3.9)

We find
∂L′′

∂xµ
− d

dτ

(
∂L′′

∂Uµ

)
= 0 = eUν∂µAν −

d

dτ
[eAµ +mUµ] (13.3.10)

where we have used UµU
µ = −c2. But we can write

dAµ
dτ

=
dxν

dτ
∂νAµ = Uν∂νAµ (13.3.11)

so that the above equation of motion for the particle becomes

m
dUµ
dτ

= e(∂µAν − ∂νAµ)Uν = eFµνU
ν (13.3.12)

We see that, because of the interaction Lagrangian, the electromagnetic field is no longer
source free and the particle is no longer free but subject to an external force. What is this
force? Consider a non-relativistic particle, so that U0 ≈ 1 and U i ≈ vi. Then (τ ≈ t)

m
dvi
dt
≈ e[Fi0 + Fijv

j ] = e[Ei + εijkv
jBk] = eEi + e(~v × ~B)i (13.3.13)

which must be recognized as precisely the Lorentz force on the particle. Equation (13.3.12)
is known as the Minkowski equation and is the correct generalization of the Newton-
Lorentz force equation of non-relativistic electrodynamics. The particular line integral
that gave us the interaction action is said to correspond to a minimal coupling between
the electromagnetic field and the particle.

The generalization to a system of non-interacting particles is trivial. Simply sum over
the particles in the free action and the interaction action, i.e., consider the action

S =

∫
d4x

[
− 1

4µo
FµνF

µν +

N∑
n=1

(
e(n)v

µ
(n)Aµ −m(n)c

√
−ηµνvµ(n)v

ν
(n)

)
δ(3)(~r − r(n)(t))

]
(13.3.14)

It gives the following expression for the current that couples to the electromagnetic field

∂νF
νµ = −jµ, jµ(~r, t) =

∑
(n)

µoenv
µ
(n)(t)δ

(3)(~r − r(n)(t)) (13.3.15)
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and for each particle it gives the expected relativistic equation of motion

m(n)
dU

(n)
µ

dτ
= e(n)FµνU

ν
(n). (13.3.16)

Having an action that clearly is correct as far as the equations of motion go, let us compute
the Hamiltonian for the particle in an electromagnetic field and then the total Hamiltonian
of the system. We have already done so for the electromagnetic field in the absence of
sources and separately for the free particle. The only addition then is the interaction term,
but this will be seen to change things quite dramatically. Let us begin with the particle
action (including the interaction term),

S ′′ =

∫ 2

1
dt
[
−mc

√
−ηµνvµvν + eAµv

µ
]

=

∫ 2

1
dt

[
−mc2

√
1− ~v2

c2
+ e~v · ~A+ eA0

]
(13.3.17)

and compute the particle conjugate momenta,

~p =
m~v√
1− ~v2

c2

+ e ~A (13.3.18)

This expression is easily inverted, as before, to yield the velocities in terms of the conjugate
momenta

~v

c
=

(~p− e ~A)√
(~p− e ~A)2 +m2c2

(13.3.19)

Performing a Legendre transformation then yields the Hamiltonian of the particle in the
presence of the electromagnetic field,

H = piẋ
i − L =

√
(~p− e ~A)2c2 +m2c4 − eA0. (13.3.20)

The square-root has the same structure as the Hamiltonian for the free particle: the
difference is that the momentum has been changed

~p→ ~p− e ~A (13.3.21)

by the presence of the electromagnetic field. What are the canonical equations of motion
for the particle? We evaluate the Poisson brackets,

~v = ~̇r = {~r,H}P.B. =
(~p− e ~A)c√

(~p− e ~A)2 +m2c2

(13.3.22)
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which is precisely the expression already obtained above, and

ṗi = {pi,H}P.B. =
ec(pj − eAj)∂iAj√
(~p− e ~A)2 +m2c2

+ e∂iA0 = evj∂iAj + e∂iA0 (13.3.23)

where, in the last expression, we have used the relation between the velocity and the
momenta. This does not look the same as the Minkowski equation (13.3.12), but indeed
it is. In showing that the equations are the same one should note that the derivative in ~̇p
is w.r.t. coordinate time whereas, in (13.3.12), the momentum derivative is w.r.t. proper
time. Also, the relationship between the momenta and velocities in (13.3.18) involves the
electromagnetic field. Write

dpi
dt

=
dτ

dt

dpi
dτ

=
1

γ

d

dτ
(mUi + eAi), (13.3.24)

where we have used (13.3.18), then the canonical equations may be written as

m
dUi
dτ

= eU j∂iAj + eU0∂iA0 − e
dAi
dτ

= e(∂iAν − ∂νAi)Uν = eFiνU
ν (13.3.25)

which is the spatial part of (13.3.12)
To get the total Hamiltonian for the system, simply add the Hamiltonian for the

electromagnetic field itself (in the absence of sources, since we have already taken the
source action with the interaction term into account). We find

H =
1

2

∫
d3~r

[
εo ~E

2 +
~B2

µo

]
+

√
(~p− e ~A)2c2 +m2c4 − eA0. (13.3.26)

These considerations are readily generalized to a system with many charged particles.
We must now turn to the symmetries of our Lagrangian and what these symmetries

tell us about the conserved quantities.

13.4 Conservation Laws

There are three conservation laws, viz., conservation of (a) energy and momentum (b)
orbital angular momentum and (c) intrinsic angular momentum, which we will examine
in this section

13.4.1 Energy and Momentum

Let’s consider the effects of a global translation, xµ → xµ + εµ, (εµ const.) such that
δAµ = 0. Invariance of the action under this transformation leads to the (conserved)
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electromagnetic stress tensor:

jµν = Lδµν −
∂L

∂(∂µAα)
∂νAα (13.4.1)

where

L = − 1

4µo
FαβF

αβ (13.4.2)

A simple calculation gives

µoj
µ
ν = Fµα∂νAα −

1

4
δµνF

2, µoj
µν = Fµα∂νAα −

1

4
ηµνF 2 (13.4.3)

where F 2 = FαβF
αβ. While the second term is symmetric in its indices, the first term is

not, so we must try to find a divergence free tensor that, when added to the expression on
the r.h.s. of the above equation, gives a symmetric tensor. In the previous chapter, the
prescribed way was to add the divergence of a third rank tensor, i.e., ∆µν = ∂λk

λµν , where
k is antisymmetric in (λ, µ), to the expression obtained directly from Noether’s theorem.

Consider then the tensor

∆µν = − 1

µo
∂α(FαµAν) (13.4.4)

Thus we have chosen kλµν = F λµAν , which is antisymmetric in (λ, µ) so ∂µ∆µν ≡ 0 by
consruction. Moreover,

∂α(FαµAν) = (∂αF
αµ)Aν + Fαµ(∂αA

ν) = −jµAν + Fαµ(∂αA
ν) (13.4.5)

by Maxwell’s equations. The first term vanishes at all points where there are no sources,
i.e., at all points at which jµ = 0. At such points, adding ∆µν to jµν yields a symmetric
tensor. We may therefore define the vacuum electromagnetic stress tensor by

tµν = jµν + ∆µν =
1

µo

[
Fµα(∂νAα − ∂αAν)− 1

4
ηµνF 2

]
=

1

µo

[
−FµαFαν −

1

4
ηµνF 2

]
(13.4.6)

It is both symmetric and conserved at points where there are no sources. With it, we
can compute the linear and angular momenta of the electromagnetic field. The linear
momentum is simply

Pµ =

∫
d3~r tµ0 (13.4.7)

so that the momentum density, ℘µ = tµ0, has components,

℘0 =
1

µo

[
F 0jFj

0 +
1

4c2
F 2

]
=

1

2µoc2

[
~E2

c2
+ ~B2

]
=

1

2c2

[
εo ~E

2 +
~B2

µo

]
=
E
c2

(13.4.8)
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(where E , as we expect, this is the Hamiltonian (energy) density of the electromagnetic
field) and

℘i =
1

µo
F ijFj

0 = − 1

µo
εijkBk

Ej
c2

=
1

µoc2
( ~E × ~B)i, (13.4.9)

which we will recognize as the famous “Poynting vector” whose integral on a surface does,
in fact, represent the rate of electromagnetic energy flow across that surface. Note the
fact that when ℘µ is evaluated for the plane wave of Chapter I we get

~℘ = ±E
c
k̂ (13.4.10)

where k̂ is the unit vector in the direction of propagation. In words, the plane wave
satisfies a dispersion relation that is typical of a massless particle!

13.4.2 Orbital Angular Momentum

With our (symmetric) tµν , we may proceed to construct the modified angular momentum
tensor density of the electromagnetic field in terms of the conserved tensor density

L̃λµν = xνtλµ − xµtλν . (13.4.11)

As we learned in the previous chapter, the angular momentum density is

L̃0µν = L̃0µν = xν℘µ − xµ℘ν (13.4.12)

and the total angular momentum

Lµν =

∫
d3~r L̃0µν (13.4.13)

is conserved. The angular momentum tensor is antisymmetric in its indices and so it has
six independent components. Of these, the three spatial components, lij , are of particular
interest to us at this point. Define the vectors

li = −1

2
εijkl

jk (13.4.14)

so that ~l = (~r × ~℘), which parallels the definition of the angular momentum in classical
particle mechanics, except that we must bear in mind that we are dealing here with fields
and that lij is really a density. ~℘ is the Poynting vector, therefore we find

~l =
1

µoc2
~r × ( ~E × ~B), (13.4.15)
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and

~L =
1

µoc2

∫
d3~r

[
~r × ( ~E × ~B)

]
(13.4.16)

The remaining three components of the angular momentum density of the electromagnetic
field are the time-space components, l0i. These three components are necessary to have a
covariant generalization of angular momentum. Their conservation is a statement on the
center of mass motion.

13.4.3 Intrinsic Angular Momentum

Turn next to the modified intrinsic angular momentum in (12.5.28). To compute Sµαβ we
require the transformation of the electromagnetic field under Lorentz transformations,

Aµ(x)→ A′µ(x′) =
∂x′µ

∂xλ
Aλ(x)⇒ δAµ =

1

2
(δµαηβλ − δ

µ
βηαλ)Aλδωαβ (13.4.17)

so

Gµαβ =
1

2
(δµαηβλ − δ

µ
βηαλ)Aλ (13.4.18)

and

Sµαβ = − 1

2µo
(FµαAβ − FµβAα) = − 1

2µo
Fµ[αAβ] (13.4.19)

and from this we should subtract 1
2∆µ

[αxβ], where the brackets indicate the required
antisymmetrization. The result can be given as

S̃µαβ = − 1

µo
Fµ[αAβ] +

1

2µo
∂σ(F σµA[αxβ]) (13.4.20)

It is easy to see that S̃ is not gauge invariant. However, one can define a gauge invariant
spin denisty vector by simply restricting ~A above to its solenoidal part (using the Helmholz
decomposition5).

5The Helmholz decomposition of a vector is the statement that any vector, ~F in three dimensions can
be decomposed into a solenoidal component (~∇ · ~F = 0) and an irrotational component (~∇ × ~F = 0) as
follows:

~F = −~∇ϕ(~r) + ~∇× ~A(~r) = ~Firr + ~Fsol

ϕ =

∫
V

d3~r
~∇′ · F (~r′)

4π|~r − ~r′| −
∮
S

~F (~r′) · d~S′

4π|~r − ~r′|

~A =

∫
V

d3~r
~∇′ × F (~r′)

4π|~r − ~r′| +

∮
S

~F (~r′)× d~S′

4π|~r − ~r′|

where S bounds V .
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13.5 Energy and Momentum with sources

Finally, let us see what the divergence of tµν yields when sources are present and what
this means for energy and momentum conservation (we have, after all, called tµν a stress-
energy or energy momentum tensor, so its divergence law should tell us something about
this!). Taking the divergence of tµν we find

∂µt
µν =

1

µo

[
−∂µFµαFαµ − Fµα∂µFαν −

1

2
ηµνFαβ∂µF

αβ

]
=

1

µo

[
jαFα

µ − Fµα∂µFαν −
1

2
ηµνFαβ∂µF

αβ

]
(13.5.1)

so that, taking the first term on the right hand side to the left and re-grouping the
remaining terms on the right, we have

∂µt
µν − 1

µo
jαFα

µ = − 1

µo

[
Fαβ

(
∂αF βν +

1

2
∂νFαβ

)]
(13.5.2)

Now, because Fµν is antisymmetric in its indices, the following

∂νFαβ + ∂βF να + ∂αF βν ≡ 0 (13.5.3)

is an algebraic identity that can be verified simply by expansion (it is sometimes called
the homogeneous Maxwell equations). It allows us to write the right hand side of 13.5.2
as

− 1

µo
Fαβ

(
∂αF βν − 1

2
(∂βF να + ∂αF βν)

)
= − 1

µo
Fαβ

(
∂αF βν + ∂βFαν

)
(13.5.4)

where, in the last equation above we have written

Fαβ∂
βF να = −Fαβ∂βFαν (13.5.5)

and

Fαβ∂
αF βν = Fβα∂

βFαν = −Fαβ∂βFαν (13.5.6)

to simplify the terms. We see that the right hand side must be identically zero because it
is the product of an antisymmetric tensor (Fαβ) and a symmetric one. Therefore,

∂µt
µν =

1

µo
jαFα

ν (13.5.7)
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(it is conserved in the absence of sources6). In the presence of sources, therefore, we get,
for the time-component (ν = 0),

∂tt
00 + ∂it

i0 =
1

µo
jiFi

0 (13.5.8)

or
∂℘0

∂t
+ ~∇ · ~℘ = − 1

µoc2
~j · ~E (13.5.9)

or
∂E
∂t

+ ~∇ · ~S = − 1

µo
~j · ~E (13.5.10)

where we have defined the Poynting vector, ~S, as ~S = 1
µo

( ~E × ~B). If the right hand side
vanishes, this is a continuity equation and expresses the conservation of energy momentum.
If it does not vanish, then it represents the rate at which energy is transferred either to or
from the electromagnetic field by the charge currents present in the system.

For the space components (ν = i), we have

∂tt
0i + ∂kt

ki =
1

µo
(j0F0

i + jkFk
i) = −

[
ρ ~E +

1

µo
~j × ~B

]i
(13.5.11)

or
∂℘i

∂t
− ∂ktki =

[
ρ ~E +

1

µo
~j × ~B

]i
(13.5.12)

which represents the conservation of stress. The four vector on the right hand side of
equation 13.5.7,i.e.,

fµ = − 1

µo
jαFα

ν =

(
1

µo
~j · ~E, ρ ~E +

1

µo
~j × ~B

)
(13.5.13)

is called the “Lorentz force density”.

The fact that the electromagnetic stress energy tensor is not divergence free in the
presence of sources means that we’re missing something: after all, we know that energy
and momentum must be globally conserved. This means that the stress energy tensor
of the sources must compensate in some way, leading to a conserved total stress energy
tensor. The most obvious candidate for the stress energy tensor of a single particle is just

τµν =
m

E
UµUνδ(3)(~r − r(t)) = pν

dxµ

dt
δ(3)(~r − r(t)) =

1

e
jµpν (13.5.14)

6Of course we do not expect it to be conserved in the presence of sources because, in deriving the stress
tensor, we used only the Lagrangian density of the electromagnetic field.
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where E is the particle energy and jµ is the source current. It is symmetric in its indices,
as is apparent from the first expression on the right, although this is not obvious in the
last expression. Its generalization to many particles should be obvious by now.7 Take
the divergence of this tensor, remembering that the current, jµ, is conserved. This means
that the only contribution to the divergence comes from a derivative of pν . However, pν

involves just time – it is not a function of space – so ∂µp
ν = dpν/dt. Then use (13.3.12)

to find

∂µτ
µν =

1

e

dpν

dt
j0 =

dpν

dτ

dτ

dt
δ(3)(~r − r(t))

= eF ναUα
dτ

dt
δ(3)(~r − r(t)) = F ναvαδ

(3)(~r − r(t))

→ ∂µτ
µν = F ναjα = −jαFαν . (13.5.15)

Thus
Θµν = tµν + τµν (13.5.16)

is indeed conserved. It is the full energy momentum tensor we have talked about and
represents the total energy and momentum of the field plus matter. Its conservation
declares that the total energy-momentum is neither created nor destroyed.

7Yes, construct it and go through the discussion that follows for a single particle! Make sure it works
for the multiparticle system too!



Chapter 14

The Homogeneous Wave Equation

14.1 Isotropic, linear, non-dispersive media

We will now make two somewhat restrictive assumptions, viz.,

• the scales of interest are large compared to the interatomic distances (a typical
electric or magnetic dipole length). Thus we shall use the macroscopic Maxwell’s
equations as given in (8.1.1).

• The media that enter into our problems are all isotropic, linear and non-dispersive.

Recall that in most dielectrics the electric polarization vector is given by the phenomeno-
logical relation1

~P = χe(E) ~E (14.1.1)

where the quantity χe(E) is called the electric susceptibility of the material. If we write
~D = ε(E) ~E, then from the definition of ~D we find ε(E) = εo+χe(E) and ε(E) is called the
permitivity of the material. Frequently, and particularly for weak electric fields, it is found
that the permitivity (or susceptibility) is independent of the electric field. Such media are
said to be linear dielectrics. The notion of a linear magnetic material is the same. In a
large class of materials, if they are isotropic, one has the phenomenolgical relation2

~M = χm(H) ~H (14.1.2)

1If a dielectric is anisotropic then we replace (14.1.1) by Pi = χeij(E)Ej (sum over repeated indices!)

and ~P does not necessarily have the same direction as ~E. χeij is the electric susceptibility tensor. It is a
tensor w.r.t. spatial rotations.

2Again, if a medium is anisotropic then we replace (14.1.2) by Mi = χmij (H)Hj and ~M does not

necessarily have the same direction as ~H. χmij is the magnetic susceptibility tensor.

264
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where χm(H) is called the magnetic susceptibility of the medium. Again, if we write
~B = µ(H) ~H then as µ(H) = µo(1 + χm(H)). The quantity µ is called the permeability
of the magnetic medium (Km = µ/µo = 1 + χm is called the relative permeability). If
the susceptibility (or permeability) does not depend on ~H then the medium is said to
be linear. In dispersive media such simple relationships between the polarization vector
and the electric field or the magnetization vector and the magnetic field are not possible:
the permitivity and permeability may also depend on the frequency of the electric and
magnetic fields.

Thus, for the present, ~B = µ ~H and ~D = ε ~E and both ε and µ are constants. In this
case, defining

~B = ~∇× ~A, ~E = −~∇φ− ∂φ

∂t
(14.1.3)

as before, our dynamical equations turn into

−~∇2φ− ∂

∂t
~∇ · ~A =

ρf
ε

1

v2

∂2 ~A

∂t2
− ~∇2 ~A+ ~∇

(
~∇ · ~A+

1

v2

∂φ

∂t

)
= µ~jf (14.1.4)

where v = 1/
√
µε is the speed of light in the medium. We notice that all our previous

work is appropriate for and can be translated to the case of isotropic, linear and non-
dispersive media by simply changing (a) the speed of light (c → v), (b) the permitivity
and permeability (εo → ε and µo → µ)3 and (c) replacing the sources by the transport
charge and current densities. (In terms of the electric and magnetic fields, the dynamical
equations read

~∇ · ~E =
ρf
ε

~∇× ~B − 1

v2

∂ ~E

∂t
= µ~jf (14.1.5)

and the Bianchi identities are, naturally, unchanged.) In particular, imposing the Lorentz
condition appropriate to the medium we should find that the potentials obey the wave
equation [

1

v2

∂2

∂t2
− ~∇2

]
ψ = f (14.1.6)

with the difference that the velocity of light in the vacuum, c, is replaced by its velocity
in the medium, v, and the source, f , by the transport charge and current densities.

3The refractive index of the medium is defined by n =
√
µε/µoεo = c/v, where c is the velocity of light

in the vacuum. This number is experimentally greater than unity which means that light travels slower
in a medium than it does in a vacuum. This behavior is contrary to that of mechanical waves (waves that
use the properties of the medium to propagate, like sound) whose velocity normally increases with the
medium’s density.
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14.2 Non-conducting medium

For example, the source-free, plane, monochromatic electromagnetic wave in an isotropic,
linear and non-dispersive medium looks identical to its counterpart in the vacuum (with
the appropriate changes as indicated above):

~A = ~Aoe
i(~κ·~r−ωt)

φ = φoe
i(~κ·~r−ωt) (14.2.1)

where ~κ2 = ω2/v2 = n2ω2/c2 and |~κ| is the wave-number. A scalar relation between the
wave-vector and the frequency is called a “dispersion” relation. We will take both ~κ and
ω to be real, but ~Ao and φo may be complex. The electric and magnetic fields are related
to the potentials by

~B = ~∇× ~A → ~B = i~κ× ~A

~E = −~∇φ− ∂ ~A

∂t
→ ~E = −i~κφ+ iω ~A (14.2.2)

and one must supplement these relations, as before, with the gauge condition

i~κ · ~A− iω

v2
φ = 0. (14.2.3)

Thus,

~E × ~B =
v2

ω
~B2~κ =

c2

n2ω
~B2~κ

~B × ~κ =
ω

v2
~E =

n2ω

c2
~E

~κ× ~E = ω ~B (14.2.4)

The electric and magnetic fields oscillate as before within the constant phase planes while
the wave itself propagates perpendicular to them. We could write the solutions for the
electric and magnetic fields as

~E = ~Eoe
i(~κ·~r−ωt)

~B = ~Boe
i(~κ·~r−ωt) (14.2.5)

It should be remembered that no restrictions have been placed on the vectors ~Eo and
~Bo. In particular, they should ab inicio be considered as complex vectors. However, the
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physical ~E and ~B fields must be real, so in the end we are interested in the real part of
the solutions above. As we take κ to be real, it follows that ~Bo = n/c(κ̂× ~Eo) (from the
last equation in (14.2.4)). A wave that obeys the condition that both the electric field and
the magnetic field are perpendicular to ~κ is called a transverse wave.4

14.2.1 Energy and momentum density

We will now examine these solutions. To start with we will be interested in the time
averaged values of the electromagnetic energy density and the Poynting vector. Let us
prove a little theorem.

Theorem:

Let f(~r, t) = fo(~r)e
iωt and g(~r, t) = go(~r)e

iωt be two arbitrary complex functions such that
fo and go (both also complex) do not depend on t. Then

〈Re(f(~r, t)),Re(g(~r, t))〉τ =
1

2
Re(f∗o go) (14.2.6)

where f∗ is the complex conjugate of f and 〈 , 〉τ represents the time average over one
period (τ = 2π/ω), i.e.,

〈f(t), g(t)〉τ =
1

τ

∫ τ

0
dt f(t)g(t) (14.2.7)

The proof is very simple. We can write fo(~r) = u(~r) + iv(~r) and go(~r) = p(~r) + iq(~r) so
that

f(~r, t) = (u+ iv)(cosωt+ i sinωt) = (u cosωt− v sinωt) + i(v cosωt+ u sinωt)
g(~r, t) = (p+ iq)(cosωt+ i sinωt) = (p cosωt− q sinωt) + i(q cosωt+ p sinωt)(14.2.8)

so that

Re(f) · Re(g) = up cos2 ωt− (uq + vp) cosωt sinωt+ vq sin2 ωt (14.2.9)

The definition in (14.2.7) therefore involves three integrals: over cos2 ωt, cosωt sinωt and
sin2 ωt. Now we know that the second of these is identically zero and the first and last are
simply 1/2. Evidently therefore,

〈Re(f(~r, t)),Re(g(~r, t))〉τ =
1

2
(up+ vq) =

1

2
Re(f∗o go)

4Problem: Show that if ~κ is real then (14.2.4 imply that (Re( ~E),Re( ~B), ~κ) form a right-handed or-
thogonal set. Hint: expand ~E = ~ER + i ~EI ~B = ~BR + i ~BI . Then noting that κ̂ is real, verify that
~BR,I × κ̂ = n/c ~ER,I and κ̂ × ~ER,I = c/n ~BR,I . This solves part of the problem. Argue quickly that
~ER × ~BR = BR

2
κ̂!
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Now the plane wave solutions in (14.2.1) are, in general, complex and the physical fields
are obtained by taking the real parts. Let us assume, however, that ~κ and ω are real. The
electromagnetic energy density is

u =
1

2

(
ε[Re( ~E)]2 +

1

µ
[Re( ~B)]2

)
=

1

2
ε

(
[Re( ~E)]2 +

c2

n2
[Re( ~B)]2

)
(14.2.10)

where we have used 1/εµ = v2 = c2/n2. Therefore, applying the theorem we just proved

〈u〉 =
1

2
ε

(
〈[Re( ~E)]2〉+

c2

n2
〈[Re( ~B)]2〉

)
=

1

4
ε

(
| ~Eo|2 +

c2

n2
| ~Bo|2

)
(14.2.11)

Again, using the fact that ~Bo = n/c(κ̂× ~Eo) we find

〈u〉 =
1

2
ε| ~Eo|2 (14.2.12)

We may compute the time averaged Poynting vector likewise:

〈~S〉 = 〈Re( ~E)× Re( ~H)〉 =
1

µ
〈Re( ~E)× Re( ~B)〉 =

1

2µ
Re( ~E∗ × ~B)

=
1

2µ
Re( ~E∗o × ~Bo) =

n

2µc
Re( ~E∗o × (κ̂× ~Eo))

=
n

2µc
| ~Eo|2κ̂ =

c

n
〈u〉κ̂ = 〈u〉vκ̂ (14.2.13)

which is a simple relationship that the momentum density bears to the energy density.
It is similar to the relation ~j = ρ~v for the current density, where ρ is the mass density.
This similarity reinforces our conceptualization of ~S as an energy current density, i.e., as
energy density in transport at the phase velocity, v = c/n.

14.2.2 Polarization

Let us now take a look at another feature of our complex solutions, this one showing how
the complex constants carry information about the behavior of the fields. Recall (14.2.5)
and assume that ~κ and ω are real. Then only ~Eo and ~Bo are complex vectors. Take an
arbitrary, real and rigid right handed basis (ê1, ê2, ê3), such that one of the basis vectors,
say ê3, points in the direction of ~κ, i.e., ê3 = κ̂. Then ê1 and ê2 lie in the constant phase
plane containing ~E and ~B. We could write

~Eo = E1ê1 + E2ê2 (14.2.14)
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where E1,2 are clearly the components of ~Eo in the directions of, respectively, ê1 and ê2.
E1,2 are, in general, complex numbers, so let us write them as a magnitude times a phase,
i.e.,

E1,2 = |E1,2|eiφ1,2 (14.2.15)

Although we have used arbitrary phases, φ1 and φ2, for the components of ~Eo, only the
difference between the phases will be of physical relevance. Our solution, for example, for
the real part of the electromagnetic field reads

Re( ~E) = |E1|ê1 cos(~κ · ~r − ωt+ φ1) + |E2|ê2 cos(~κ · ~r − ωt+ φ2). (14.2.16)

Consider this expression at some fixed spatial point, say ~r = 0 (for convenience), then

Re( ~E) = |E1|ê1 cos(ωt− φ1) + |E2|ê2 cos(ωt− φ2) (14.2.17)

and let’s now examine some special cases:

• Case 1: φ1 = φ2 = 0.

We have
Re( ~E) = (|E1|ê1 + |E2|ê2) cos(ωt) (14.2.18)

so that the electric field oscillates along the same straight line from a maximum of

+
√
|E1|2 + |E2|2

to a minimum of
−
√
|E1|2 + |E2|2.

The situation is analogous to two coupled harmonic oscillators in which the springs
have the same Hooke’s constant and the relative phase between them is zero (see
figure 11). In such a situation, the electric field is said to be linearly polarized.

• Case 2: φ1 = π
2 , φ2 = 0.

In this case we find the solution

Re( ~E) = |E1|ê1 sinωt+ |E2|ê2 cosωt = Exê1 + Ey ê2 (14.2.19)

where we have defined Ex = |E1| sinωt and Ey = |E1| cosωt. These are the (time-

dependent) components of the ~E−field in the directions of the basis vectors ê1 and
ê2. Now notice that

Ex = |E1|
√

1− cos2 ωt = |E1|

√
1−

E2
y

|E2|2
(14.2.20)
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Figure 14.1: Linear Polarization
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Figure 14.2: Right (negative helicity) Elliptical Polarization

so that
E2
x

|E1|2
+

E2
y

|E2|2
= 1 (14.2.21)

which is the equation of an ellipse. The electric field vector therefore traces out
an ellipse in the (ê1, ê2) plane, as shown in figure 12, in a clock-wise direction. The
electric field is said to be right (negative “helicity”) elliptically polarized. Notice that
(a) if |E1| = |E2| then the ellipse becomes a circle and the field is right (negative
helicity) circularly polarized and (b) if φ1 = −π/2 and φ2 = 0 (so that the relative
phase is the opposite) then the electric field would sweep in an counter-clock-wise
direction and the wave would be left ( positive helicity) elliptically polarized or, if
|E1| = |E2|, left (positive helicity) circularly polarized.

For arbitrary phases we still find elliptical polarization, but in general with the principal
axes not oriented along ê1 and ê2. (As the frequencies of the two components are the
same, we won’t find the analogue of Lissajou’s figures.) For the electric field at ~r = 0, one
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has

Re( ~E) = |E1|ê1 cos(ωt− φ1) + |E2|ê2 cos(ωt− φ2) (14.2.22)

or

Ex = |E1| cos(ωt− φ1)

Ey = |E2| cos(ωt− φ2) (14.2.23)

Notice that

Ex = |E1| cos(ωt− φ2 + δ), δ = φ2 − φ1

= |E1|(cos(ωt− φ2) cos δ − sin(ωt− φ2) sin δ)

= |E1|(
Ey
|E2|

cos δ −

√
1−

E2
y

|E2|2
sin δ) (14.2.24)

i.e., (
Ex
|E1|

− Ey
|E2|

cos δ

)2

= sin2 δ

(
1−

E2
y

|E2|2

)
(14.2.25)

Rearranging terms gives the equation

E2
x

|E1|2
+

E2
y

|E2|2
− 2

ExEy
|E1||E2|

cos δ = sin2 δ (14.2.26)

This will be recognized as an ellipse whose principal axes make an angle, say θ, with the
basis vectors (ê1, ê2). To determine the angle θ, simply perform a rotation by θ and require
that the equation (14.2.26), written in terms of the new components of ~Eo, viz. E′x and
E′y, returns to the standard form. This procedure gives,5

tan 2θ =
2|E1||E2|
|E2|2 − |E1|2

cos δ (14.2.27)

Again we find the similarity with two harmonic oscillators of the same Hooke’s constant.
We see that only the relative phase, δ, is relevant and that θ = 0 when δ = π

2 . Of course,
when |E1| = |E2| the ellipse degenerates to a circle and the question of rotating the basis
does not arise.

5Problem: Show this!



272 CHAPTER 14. THE HOMOGENEOUS WAVE EQUATION

An alternative description of the polarization can be given in the basis ê± = 1√
2
(ê1 ±

iê2), then ê1 = 1√
2
(ê+ + ê−) and ê2 = i√

2
(ê+ − ê−). They are orthonormal, obeying the

relations
ê∗± · ê∓ = 0, ê∗± · ê3 = 0, ê∗± · ê± = 1 (14.2.28)

and we can write (14.2.14) as
~Eo = E+ê+ + E−ê− (14.2.29)

where E± = 1√
2
(E1 ∓ iE2).

What about ~B? Because (Ê, B̂, κ̂) form a right-handed basis, ~B = n/c(κ̂× ~E) and it
follows that (recall that κ̂ = ê3) if

Re( ~E) = |E1|ê1 cos(ωt− φ1) + |E2|ê2 cos(ωt− φ2) (14.2.30)

then
Re( ~B) =

n

c
(|E1|ê2 cos(ωt− φ1)− |E2|ê1 cos(ωt− φ2)) (14.2.31)

so ~B follows ~E, tracing an ellipse that is rotated 90o counter-clockwise.
The polarization state of radiation that is received in detectors can tell us a lot about

the source of the radiation when direct access to the source is impossible.6 Thus, for
example, the polarization state of radiation from some distant super-nova explosion or
pulsar can tell us about the physical processes that led to the emission of the waves we
eventually received, even though we have no direct access to the physical processes on the
object of interest. In practice this is not so easy, however, because no natural source emits
perfectly monochromatic radiation and there is always a superposition of waves of different
frequencies even though the radiation may appear predominantly monochromatic.

14.3 Conducting medium

So far we have always assumed that ~k and ω are real. Although this was not necessary, it
made sense for non-conducting media and is compatible with the dispersion relation. We

6Problem: The polarization state of the plane wave is known if it can be written in one of the forms
given in (14.2.14) or (14.2.29). However, confronted with a plane wave solution, ~E, how can we tell its
form (polarization)? There are effectively just three parameters to be determined from the electric field,
viz. |E1,2| and the relative phase, δ. One can define four parameters, the Stokes parameters (not all of
them will be independent), which contain this information. In the basis (ê1, ê2),

so = |ê1 · ~E|2 + |ê2 · ~E|2
s1 = |ê1 · ~E|2 − |ê2 · ~E|2
s2 = 2Re[(ê1 · ~E)∗(ê2 · ~E)]
s3 = 2Im[(ê1 · ~E)∗(ê2 · ~E)]

Compute each parameter, sa, and convince yourself that the three parameters are indeed determined from
them. Also, show that they obey the relation s2

o − s2
1 − s2

2 − s2
3 = 0.
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now consider the case of plane, monochromatic wave solutions in conducting media. The
situation is much more complicated, because the dispersion relation is such that both ω and
κ cannot be taken to be simultaneously real. A conducting medium is dissipative. This,
as we will shortly see, is because in conducting media the current density is proportional
to the electric field (Ohm’s Law),

~j = g ~E (14.3.1)

where g is the electric conductivity of the medium. Physically, the medium is dissipative
because the movement of charges within the conducting medium extracts energy from the
electromagnetic field. Begin, as before, with Maxwell’s equations and set

~B = ~∇× ~A, ~E = −~∇φ− ∂A

∂t
(14.3.2)

Substituting these into the dynamical equations we get (ρ = 0)

−~∇2φ− ∂

∂t
(~∇ · ~A) = 0

1

v2

∂2 ~A

∂t2
− ~∇2 ~A+ µg

∂ ~A

∂t
+ ~∇

(
~∇ · ~A+

1

v2

∂φ

∂t
+ µgφ

)
= 0 (14.3.3)

and examining the second equation makes it clear that the best gauge condition to choose
would be7

~∇ · ~A+
1

v2

∂φ

∂t
+ µgφ = 0 (14.3.4)

Then one finds the same homogeneous equation for both φ and ~A, i.e.,[
1

v2

∂2

∂t2
− ~∇2 + µg

∂

∂t

]
ψ = 0 (14.3.5)

which differs from the ordinary wave-equation by a first order time-derivative term. It
turns out that this term makes all the difference. Let us solve this equation by a separation
of variables. Assume a harmonic solution

ψ(~r, t) = e−iωtψ(~r) (14.3.6)

and find that the equation for ψ(~r) is just

~∇2ψ +

(
ω2

v2
+ iωµg

)
ψ = ~∇2ψ +

ω2

v2

(
1 + i

g

εω

)
ψ = 0 (14.3.7)

The constant ε/g has dimensions of time and represents a characteristic relaxation time,
τ , of the conductor. Notice that as g approaches infinity (perfect conductor), τ approaches

7Problem: Show that this is an acceptable gauge condition.



274 CHAPTER 14. THE HOMOGENEOUS WAVE EQUATION

zero and vice versa. When τ is large compared to the period of the electromagnetic wave,
the imaginary term becomes negligible and we return to the usual time independent wave
equation for the fields. However, as τ becomes small (compared to 1/ω) the imaginary
term dominates. In that case, the effective equation inside the conductor becomes

~∇2ψ + iωµg ≈ 0 (14.3.8)

which is a time independent diffusion equation for the fields. For most metals, τ ≈ 10−14

s, which implies that diffusion dominates for all frequencies lower than optical frequencies.
In other words, propagation is negligible for those frequencies.

A solution for ψ(~r) may still be written in the form

ψ(~r) = ei~κ·~r (14.3.9)

but now we see that the dispersion relation reads

ω2

v2
+ iωµg − ~κ · ~κ = 0 (14.3.10)

so ω and ~κ cannot both be real. If ω is real, so it is the angular frequency of the wave,
then, as v is also real, κ2 = ~κ · ~κ cannot be real unless g = 0 (which takes us back to a
non-conducting medium). The solutions take the formal form

~A = ~Aoe
i(~κ·~r−ωt)

φ = φoe
i(~κ·~r−ωt) (14.3.11)

but we should be careful in interpreting it because, while ω is real, ~κ is complex. As
before, these equations should be supplemented with our gauge condition, which reads

i~κ · ~A− i
( ω
v2

+ iµg
)
φ = 0 (14.3.12)

This last equation helps express φ in terms of ~A as

φ =
(~κ · ~A)
ω
v2 + iµg

(14.3.13)

Then, taking derivatives, we find

~E = −i~κ (~κ · ~A)
ω
v2 + iµg

+ iω ~A

~B = i~κ× ~A (14.3.14)
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and it is a straightforward exercise to prove the following relations

~E × ~B =
ω

~κ2
~B2~κ =

c2

n2ω
~B2~κ

~B × ~κ =
~κ2

ω
~E =

n2ω

c2
~E

~κ× ~E = ω ~B (14.3.15)

where we have defined the refractive index, n = cκ/ω, in analogy with plane waves in
non-conducting media. Formally, therefore, there is no distinction between these and the
relations in (14.2.4). But, we must proceed with great care in interpreting them because
the refractive index n is no longer real but complex. In general, this means that the vectors
~E and ~B are neither in phase nor are they necessarily perpendicular to each other. Let us
note first that using the dispersion relation

n =
c

ω

√
ω2

v2
+ iωµg = nR + inI (14.3.16)

where nR,I refer respectively to the real and imaginary parts of the refractive index, n.
By equating real and imaginary parts, one finds nR,I in terms of the real constants. Thus

(nR + inI)2 = nR
2 − nI2

+ 2inRnI =
c2

v2
+ i

µgc2

ω
(14.3.17)

giving

nR
2 − nI2

=
c2

v2

2nRnI =
µgc2

ω
(14.3.18)

These equations can be solved,

nR =

√√√√1

2

[
c2

v2
+

√
c4

v4
+
µ2g2c4

ω2

]

nI =

√√√√1

2

[
− c

2

v2
+

√
c4

v4
+
µ2g2c4

ω2

]
(14.3.19)

keeping in mind that only the real solutions are meaningful. Using c = 1/
√
εoµo and

v = 1/
√
εµ, they may also be written as

nR,I = c

√
µ

2

√
±ε+

√
ε2 +

g2

ω2
(14.3.20)
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Figure 14.3: Plane of constant phase and of constant amplitude

which is a very convenient form as they are expressed exclusively in terms of the properties
of the medium and the frequency of the radiation.

Likewise, because ~κ is not real, let us also write the general form of ~κ as

~κ = ~κR + i~κI (14.3.21)

where ~κR,I are real vectors and refer to the real/imaginary parts of ~κ respectively. With
this we find that

~E = ~Eoe
−~κI ·~rei(~κ

R·~r−ωt)

~B = ~Boe
−~κI ·~rei(~κ

R·~r−ωt) (14.3.22)

which show a piece that exponentially decays in the direction of ~κI (this is e−~κ
I ·~r) and

another piece which oscillates (this is ei(~κ
R·~r−ωt)). The surfaces of constant phase are once

again planes given by the equation

~κR · ~r = const. (14.3.23)

and so having ~κR for a normal. The surfaces of constant amplitude, on the other hand,
while also planes, obey the equation

~κI · ~r = const. (14.3.24)

and are not in general parallel to the planes of constant phase. Planes of constant phase
form an angle

θ = cos−1(κ̂R · κ̂I) (14.3.25)
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with planes of constant amplitude (see figure 13).

Now, because ~κ (or n) is complex the relations (14.3.15) are by no means simple to
interpret. For example, consider the last of these:

(~κR + i~κI)× ( ~ER + i ~EI) = (~κR × ~ER − ~κI × ~EI) + i(~κI × ~ER + ~κR × ~EI)

= ω( ~BR + i ~BI) (14.3.26)

implies that

(~κR × ~ER − ~κI × ~EI) = ω ~BR

(~κI × ~ER + ~κR × ~EI) = ω ~BI (14.3.27)

and so on. So we cannot say anything about the relative orientations of the vectors Re( ~E),
Re( ~B) and Re(~κ). A greatly simplified situation is one in which both ~κR and ~κI point in
the same direction. In that case, we may write

~κ = (κR + iκI)û (14.3.28)

where û is a unit vector in the direction common to the real and imaginary parts of ~κ. In
this case we may relate the real and imaginary parts of n and ~κ in a straightforward way:

nR =
cκR

ω
, nI =

cκI

ω
(14.3.29)

Now we see that the second and third of (14.3.15) are

~B × û =
n

c
~E

û× ~E =
c

n
~B (14.3.30)

We immediately deduce that Re( ~E) and Re( ~B) are perpendicular to û, so the waves are
certainly transverse. However, because n is complex, we cannot conclude that Re( ~E)
and Re( ~B) are perpendicular to each other except if the relative phase between ~E and ~B
vanishes, i.e., linear polarization.8

The amplitude of the wave decays as

exp
[
−κI û · ~r

]
= exp

[
−ωn

I

c
û · ~r

]
= exp

[
−ωn

I

c
ξ

]
(14.3.31)

8Problem: Prove this!
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where ξ = û · ~r represents the depth traveled in the medium by the wave. The amplitude
therefore decays to 1/e of its original value when

ξ =
1

κI
=

c

ωnI
= δ (14.3.32)

However, the real wave-number is now κR = ωnR/c = 2π/λ, giving c/ω = λnR/2π, thus

δ =
nR

nI
λ

2π
(14.3.33)

The distance at which the wave amplitude falls to 1/e of its original value (δ) is called the
“skin depth” of the medium. We see that for media in which ~κR and ~κI have the same
direction, the skin depth is proportional to the ratio of nR/nI . Thus, if nR/nI ≈ 1 the
wave will not even penetrate one wavelength into the medium and the medium is opaque.
If, on the contrary, nR/nI >> 1 then the wave will penetrate many wavelengths into the
medium without suffering an appreciable loss of amplitude. In this case the medium is
transparent.

Checking back with equation (14.3.20) we see that

• if ω >> |g/ε|then nR ≈ c/v >> nI

• if ω << |g/ε| then nR ≈ nI ≈ c
√
µg/2ω



Chapter 15

Interfaces between media

15.1 Introduction

So far we have considered only the propagation of waves in conducting and non-conducting
media but we have not considered the behavior of these waves when they encounter a
boundary between two media of different electric and magnetic properties. It is known
from daily experience that the waves suffer reflection and refraction at such boundaries.
The phenomena of reflection and refraction divide themselves into two classes, viz.

1. Kinematic properties

(a) Geometric optics laws of reflection

(b) Snell’s laws (of refraction)

2. Dynamical properties

(a) Intensities of reflected and refracted beams

(b) Phase changes and polarization of the beams

The kinematic properties are a consequence of the very existence of boundary conditions,
which implies that the spatial and temporal variation of the fields must be the same at
all points of incidence. The dynamical properties result from the boundary conditions
appropriate to the media being considered and have been discussed in section 10.

15.2 Interfaces: non-conducting media

Consider, therefore, a plane monochromatic wave that is incident (at an arbitrary angle) at
a plane boundary separating two media which we label “1” and “2” respectively. Assume

279
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Figure 15.1: Reflection and Refraction: non-conducting media

for definiteness that the ray is incident from medium “1”. The situation is shown in
figure 14. Let n̂ be the normal to the boundary, pointing into medium “2” as shown
and let the wave-vectors in each region be given by ~κ1 (incident), ~κ′1 (reflected) and ~κ2

(transmitted) respectively. The two media are defined by their respective permitivities
and permeabilities, (ε1,2, µ1,2). The incident ray ~κ1 makes an angle “i” with the normal,
the reflected ray, ~κ′1, an angle “r′” with the normal and the transmitted ray, ~κ2 an angle
“r” with the normal. We can write the following expressions for the electric and magnetic
fields in each case

1. Incident ray:

~E1 = ~E1oe
i(~κ1·~r−ωt)

~B1 =
n1

c
κ̂1 × ~E1oe

i(~κ1·~r−ωt) (15.2.1)

2. Reflected ray:

~E′1 = ~E′1oe
i(~κ′1·~r−ωt)

~B′1 =
n1

c
κ̂1 × ~E′1oe

i(~κ′1·~r−ωt) (15.2.2)

3. Transmitted ray:

~E2 = ~E2oe
i(~κ2·~r−ωt)

~B2 =
n1

c
κ̂2 × ~E2oe

i(~κ2·~r−ωt) (15.2.3)
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Kinematics

Let us now apply the kinematic requirement that the spatial and temporal variations
should be the same at the point of incidence; we find then that

~κ1 · ~r = ~κ′1 · ~r = ~κ2 · ~r
∣∣
incidence

(15.2.4)

Each term in the above equation defines a plane normal to the respective wave-vector,
which is not surprising as surfaces of constant phase are planes for the solutions we are
using. We will now show the first part of both the geometric optics “laws of reflection”
and “Snell’s law”, i.e., that the vectors (~κ1, ~κ

′
1, ~κ2, n̂) all lie in the same plane, the plane of

incidence. Take the planar interface to be given by z = 0, so that the origin of coordinates
is on the interface itself. This simplifies the considerations without loss of generality, for
then n̂ is perpendicular to the position ~r of the point of incidence. Consider the identity

n̂× (n̂× ~r) = (n̂ · ~r)n̂− n̂2~r (15.2.5)

but, since n̂2 = 1 and n̂ · ~r = 0, we have

~r = −n̂× (n̂× ~r) (15.2.6)

Thus (15.2.4) reads

~κ1 · n̂× (n̂× ~r) = ~κ′1 · n̂× (n̂× ~r) = ~κ2 · n̂× (n̂× ~r)
∣∣
incidence

(15.2.7)

In the triple product, exchange the dot product for the vector product1 and re-write the
above equations as

(~κ1 × n̂) · (n̂× ~r) = (~κ′1 × n̂) · (n̂× ~r) = (~κ2 × n̂) · (n̂× ~r)
∣∣
incidence

(15.2.8)

But ~r is arbitrary (we have in no way specified its location), so it must be true that

~κ1 × n̂ = ~κ′1 × n̂ = ~κ2 × n̂ (15.2.9)

Now, ~κ1 × n̂ points in the direction of the normal to the plane of incidence, i.e., (by
definition) the plane containing ~κ1 and n̂. Likewise ~κ′1 × n̂ and ~κ2 × n̂ define normals to
the planes of reflection (plane containing ~κ′1 and n̂) and refraction (plane containing ~κ2

and n̂). The fact that these normals all point in the same direction imply that the planes
are coincident. Thus we have proved that (~κ1, ~κ

′
1, ~κ2, n̂) lie in the same plane.

Next let us take a closer look at figure 14 and write out the conditions explicitly. We
have from either (15.2.4) or (15.2.9)

κ1 sin i = κ′1 sin r′ = κ2 sin r. (15.2.10)

1Problem: Verify that this is allowed
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Figure 15.2: The electric field is perpendicular to the plane of incidence.

But κ2 = n2ω/c and κ1 = n1ω/c = κ′1, so i = r′, which is the law of reflection (the angle
of incidence is equal to the angle of reflection) and we also have

sin i

sin r
=
κ2

κ1
=
n2

n1
(15.2.11)

which is Snell’s law (of refraction). We have not had to use any property of the electric
and magnetic fields to arrive at these laws because they are purely kinematic in nature and
would hold true for waves of any kind (sound, for example). The truly dynamical properties
will, however, depend heavily on the nature of the waves that are being considered. We
will now consider these properties for electromagnetic waves.

Dynamics

The Dynamical properties are obviously obtained from the boundary conditions which are
peculiar to the nature of the waves. In this case we must apply boundary conditions that
are appropriate to the electric and magnetic fields. It is always true that

• The normal component of the magnetic field, ~B, and the tangential component of
the electric field, ~E, are continuous across the boundary

Further, we will assume that the surface charge density of the interface is zero (σ = 0) as
is the surface current density (j⊥ = 0) because we are considering non-conducting media.
Then,

• The normal component of the electric displacement, ~D, and the tangential compo-
nent of the magnetization vector, ~H, are continuous across the boundary
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These two conditions translate into the following equations

[ε1( ~E1o + ~E′1o)− ε2 ~E2o] · n̂ = 0

( ~E1o + ~E′1o − ~E2o)× n̂ = 0[n1

c
(κ̂1 × ~E1o + κ̂′1 × ~E′1o)−

n2

c
(κ̂2 × ~E2o)

]
· n̂ = 0[

n1

µ1c
(κ̂1 × ~E1o + κ̂′1 × ~E′1o)−

n2

µ2c
(κ̂2 × ~E2o)

]
× n̂ = 0 (15.2.12)

Let us recognize that

• the first equation arises because of the continuity of the normal component of ~D,

• the second equation arises because of the continuity of the tangential component of
~E,

• the third equation arises because of the continuity of the normal component of ~B,

• the last (fourth) equation arises because of the continuity of the tangential compo-
nent of ~H.

In applying the conditions we will now consider separately the two cases in which

1. the electric field is perpendicular to the plane of incidence (shown in figure 15)

2. the electric field is in to the plane of incidence (shown in figure 16)

Case 1: Electric field perpendicular to the plane of incidence (see figure 15)

In this case the first equation in (15.2.12) is empty: since all electric fields are perpendicular
to the normal, n̂, the inner product is automatically zero. Again, as the electric field is
perpendicular to the plane of incidence and n̂ is a unit vector it follows from the second
equation in (15.2.12) that

E1o + E′1o − E2o = 0 (15.2.13)

Now as κ̂× ~E generically points in the direction of ~B it follows that

(κ̂1 × ~E1o) · n̂ = E1o sin i

(κ̂′1 × ~E′1o) · n̂ = E′1o sin i

(κ̂2 × ~E2o) · n̂ = E2o sin r (15.2.14)
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Figure 15.3: The electric field is in the plane of incidence.

and it follows that the third equation in (15.2.12) gives

n1

c
(E1o + E′1o) sin i− n2

c
E2o sin r = 0 (15.2.15)

But, using Snell’s law we see that this equation duplicates the second equation and there-
fore provides no fresh information. On the other hand, the last equation in (15.2.12)
gives

n1

µ1c
(E1o − E′1o) cos i− n2

µ2c
E2o cos r = 0 (15.2.16)

Thus we have ended up with two non-trivial and independent conditions: (15.2.13) and
(15.2.16). Using (15.2.13) to write E2o = E1o + E′1o we get from (15.2.16),

E′1o
E1o

=
n1 cos i− µ1

µ2
n2 cos r

n1 cos i+ µ1

µ2
n2 cos r

(15.2.17)

from which it also follows that

E2o

E1o
=

2n1 cos i

n1 cos i+ µ1

µ2
n2 cos r

(15.2.18)

The ratios r12 = E′1o/E1o and t12 = E2o/E1o are called the Fresnel coefficients, respectively
for reflection and for transmission, at the interface between two non-conducting media.
They give the amplitudes of the reflected ray and the transmitted ray in terms of the
amplitude of the incident ray. They therefore represent the fraction of incident flux that
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is reflected and refracted respectively. These expressions may be further put in terms of
the angle of incidence only by using Snell’s law:

sin i

sin r
=
n2

n1
→ cos r =

1

n2

√
n2

2 − n2
1 sin2 i (15.2.19)

giving

r⊥12 =
E′1o
E1o

=
n1 cos i− µ1

µ2

√
n2

2 − n2
1 sin2 i

n1 cos i+ µ1

µ2

√
n2

2 − n2
1 sin2 i

t⊥12 =
E2o

E1o
=

2n1 cos i

n1 cos i+ µ1

µ2

√
n2

2 − n2
1 sin2 i

(15.2.20)

As we said, these coefficients determine the portion of the incident flux that its reflected
and refracted. We can make this notion more precise by noting that the flux is given by
the Poynting vector as

〈~S〉 =
n

2µc
| ~Eo|2κ̂ (15.2.21)

In terms of the Poynting vector in each region, one can define the “reflectance”, R, and
“transmittance”, T , by the quantity of energy that reflects off or flows past the interface.
This involves the projection of 〈~S〉 on the normal n̂ to the interface, so we define:

R =
n̂ · 〈~S′1〉
n̂ · 〈~S1〉

, T =
n̂ · 〈~S2〉
n̂ · 〈~S1〉

(15.2.22)

Clearly, therefore, for the case in hand,

R⊥ = r⊥12
2

T⊥ =
µ1n2 cos r

µ2n1 cos i
t⊥12

2
=
µ1

√
n2

2 − n2
1 sin2 i

µ2n1 cos i
t⊥12

2
(15.2.23)

It is not a difficult exercise to prove that R⊥+T⊥ = 1, which expresses energy conservation
at the interface.2

Case 2: Electric field in the plane of incidence (see figure 16)

The boundary conditions read a bit differently now that the electric field is in the plane
of incidence. From (15.2.12) we have

~E1o · n̂ = E1o sin i

2Problem: Prove this.
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~E′1o · n̂ = E′1o sin i

~E2o · n̂ = E′1o sin r (15.2.24)

and again

~E1o × n̂ = E1o cos i

~E′1o × n̂ = −E′1o cos i

~E2o × n̂ = E′2o cos r (15.2.25)

Thus the first condition in (15.2.12) yields a non-trivial equation

n2ε1(E1o + E′1o)− n1ε2E2o = 0 (15.2.26)

which may be put in a slightly different form by noting that

n1 =
c

v
→ n1

c
=
√
ε1µ1 (15.2.27)

and likewise
n2

c
=
√
ε2µ2. (15.2.28)

First dividing by c and then by
√
ε1ε2µ1µ2 gives√

ε1
µ1

(E1o + E′1o)−
√
ε2
µ2
E2o = 0 (15.2.29)

The second equation yields an independent condition

(E1o − E′1o) cos i− E2o cos r = 0 (15.2.30)

Now for the conditions on ~B. As ~B points out of the plane of incidence, the third equation
in (15.2.12) is empty. The fourth gives

n1

µ1c
(E1o + E′1o)−

n2

µ2c
E2o = 0 (15.2.31)

Again, using the expressions above for n1,2, (15.2.31) reads√
ε1
µ1

(E1o + E′1o)−
√
ε2
µ2
E2o = 0 (15.2.32)
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which is precisely (15.2.26), so this equation does not provide any new information. We
have just two conditions (as we did when the electric field was perpendicular to the plane
of incidence), viz.,

n2ε1(E1o + E′1o)− n1ε2E2o = 0

(E1o − E′1o) cos i− E2o cos r = 0 (15.2.33)

from which we find, eliminating first E2o, as before,

r
‖
12 =

E′1o
E1o

=
ε2n1 cos i− ε1n2 cos r

ε2n1 cos i+ ε1n2 cos r
(15.2.34)

and then

t
‖
12 =

E2o

E1o
=

2ε1n2 cos i

ε2n1 cos i+ ε1n2 cos r
(15.2.35)

Eliminating ε1,2 from the above expressions by using their relationship to n1,2 and further
using Snell’s law to express cos r in terms of sin i, i.e.,

cos r =
1

n2

√
n2

2 − n2
1 sin2 i (15.2.36)

we find

r
‖
12 =

E′1o
E1o

=

µ1

µ2
n2

2 cos i− n1

√
n2

2 − n2
1 sin2 i

µ1

µ2
n2

2 cos i+ n1

√
n2

2 − n2
1 sin2 i

t
‖
12 =

E2o

E1o
=

2n1n2 cos i

µ1

µ2
n2

2 cos i+ n1

√
n2

2 − n2
1 sin2 i

(15.2.37)

The reflectance and transmittance for this case follows from their respective definitions

R‖ = r
‖
12

2

T ‖ =
µ1n2 cos r

µ2n1 cos i
t
‖
12

2
=
µ1

√
n2

2 − n2
1 sin2 i

µ2n1 cos i
t
‖
12

2
(15.2.38)

Of course R‖ + T ‖ = 1 as before.3 We have considered only linearly polarized waves
and said nothing of the most general case, that of elliptical polarization. However, we
know that the latter can be obtained as a linear combination of the two types of linear
polarization (⊥ and ‖) that we have considered and so the Fresnel coefficients in the general
case may be deduced from the above formulæ following the methods outlined before.

3Problem: Verify this.
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Physical Implications

The expressions for the transmittance and reflectance obtained in the two cases treated
above imply that there are two particularly interesting angles of incidence. We ask: is
there any angle for which, in each case, the reflectance is (a) unity (perfect reflectance)
and (b) zero (perfect transmittance).

Perfect reflectance:

If we want to have R⊥ = 1 then from (15.2.23)

(n1 cos i− µ1

µ2

√
n2

2 − n2
1 sin2 i) = ±(n1 cos i+

µ1

µ2

√
n2

2 − n2
1 sin2 i) (15.2.39)

so two situations arise.

• Choosing the positive sign we see that the term inside the square-root must be zero,
so the solution is

sin ic =
n2

n1
(15.2.40)

The angle ic is called the “critical” angle. The phenomenon is called “total internal
reflection” – all of the incident energy is reflected and there is no transmission.
Evidently for it to be a real angle n2 < n1, so total internal reflection occurs when
the ray propagates from a medium with a higher refractive index to one with a lower
refractive index (glass to air, say, or water to air or glass to water) and not vice-versa.
For angles of incidence that are greater than ic, Snell’s law would give

sin r =
n1 sin i

n2
>
n1 sin ic
n2

= 1 (15.2.41)

so there is no real refracted ray (r is not a real angle as sin r > 1) and the ray
continues to be totally reflected off the surface.

• The second solution is one that would be obtained by taking the negative sign in
(15.2.39). Then we would simply get cos ig = 0 or ig = π/2. This is “grazing”
incidence. We notice that as the incidence angle approaches grazing incidence the
reflectance increases rapidly toward unity. This is why a calm lake would look very
like a mirror when viewed at grazing angles.

The same conclusions are arrived at by looking at R‖ = 1. Thus both polarizations obey
the same phenomena.

Perfect transmittance
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To have R⊥ = 0 (so that T⊥ = 1) we require

n1 cos i =
µ1

µ2

√
n2

2 − n2
1 sin2 i (15.2.42)

Squaring both sides and doing a wee bit of algebra we find quite simply

cos i =
µ1

n1

√
n2

2 − n2
1

µ2
2 − µ2

1

, µ1 6= µ2 (15.2.43)

and no solution if µ1 = µ2 i.e., there is always reflectance of this polarization when the two
media have the same magnetic properties. On the other hand, to have R‖ = 0 (T ‖ = 1)
we must satisfy the equation

µ1

µ2
n2

2 cos i = n1

√
n2

2 − n2
1 sin2 i. (15.2.44)

It gives, after a bit of algebra,

cos i =

√√√√n2
1(n2

2 − n2
1)

µ2
1

µ2
2
n4

2 − n4
1

(15.2.45)

If the two media have the same magnetic properties (µ1 = µ2) then i = iB takes a
particularly simple form:

cos iB =
n1√
n2

1 + n2
2

→ tan iB =
n2

n1
(15.2.46)

The angle iB is called Brewster’s angle. For this angle of incidence, all of the polarization
in the plane of incidence will be transmitted. But we have just seen that to have R⊥ = 0
(T⊥ = 1) the two media must have different magnetic properties (i.e., µ1 6= µ2) or there
is no solution for the incidence angle. Thus for media that have the same magnetic
permeability, only the perpendicular polarization is reflected at the incident angle iB, i.e.,
the reflected ray is polarized perpendicular to the plane of incidence in this particular case.

15.3 Interfaces: non-conducting/conducting medium

The fundamental difference between a non-conducting medium and a conducting medium
is in the dispersion relation: the wave-vector ~κ in a conducting medium must be complex
whereas it can be chosen to be real in a conducting medium. This has certain consequences
some of which we shall now examine.
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Kinematics

Let medium “1” be a non-conducting medium and medium “2” be conducting. Consider
the condition of no spatial and temporal variation of the phase at the incidence point. It
implies that the frequencies in both regions are the same and further that

~κ1 · ~r = ~κ′1 · ~r = ~κ2 · ~r = ~κR2 · ~r + i~κI2 · r (15.3.1)

By the same arguments we have applied before, we could re-write this equation as

~κ1 × n̂ = ~κ′1 × n̂ = ~κR2 × n̂+ i~κI2 × n̂ (15.3.2)

But, because ~κ1 and ~κ′1 are both real (medium “1” is non-conducting) it follows that

~κI2 × n̂ = 0 (15.3.3)

and, assuming that ~κI2 6= 0, it follows that ~κI2 must point in the direction of the normal to
the surface. The amplitude of the wave in the conducting medium therefore decays as

exp
[
−κI n̂ · ~r

]
(15.3.4)

so that the skin depth (perpendicular to the interface) is simply

δ =
1

κI
. (15.3.5)

Furthermore we derive the same laws of reflection and refraction: (a) the incident ray, the
refracted ray, the reflected ray and the normal are in the same plane (same argument as
before) and (b) the sine law

κ1 sin i = κ′1 sin r′ = κ2 sin r (15.3.6)

which implies that i = r′ (because κ1 = κ′1) and

sin i

sin r
=
κR2
κ1

(15.3.7)

These expressions simplify considerably for normal incidence (i = 0). The last equation
says that r = 0 and therefore ~κ2 = (κR2 + κI2)n̂. Because, in this particular case (only),

nR,I2 = cκR,I2 /ω, the skin depth can be written as

δ =
nR

nI
λ

2π
(15.3.8)

precisely as we had before.
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Let us briefly consider the case of oblique incidence. Treating this case is algebraically
more complicated than it is for non-conducting media, but it is conceptually the same.
Fundamentally, we would like to express Snell’s law in terms of the real and imaginary
parts of the refractive index as we had it in section (14). However, because the real and
imaginary parts of ~κ2 now point in different directions, the relationship between them and
nR,I is considerably more complex. Recall the relations (g is the conductivity of medium
“2”)

n2 =
cκ2

ω
=
c

ω

√
ω2

v2
2

+ iωµ2g (15.3.9)

and

~κ2
2 = (~κR2 + i~κI2) · (~κR2 + i~κI2) = κR2

2 − κI2
2

+ 2i~κR2 · ~κI2 =
ω2

v2
2

+ iωµ2g (15.3.10)

The first of these led to our expressions for the real and imaginary components of the
refractive index of the conducting medium, viz.,

nR,I = c

√
µ2

2

√
±ε2 +

√
ε22 +

g2

ω2
(15.3.11)

We could similarly use the second to obtain the real and imaginary parts of ~κ2 in terms
of the conducting medium’s fundamental parameters, (ε2, µ2, g). However, this would
implicitly involve the incident angle via the imaginary part:

κR2
2 − κI2

2
=

ω2

v2
2

2~κR2 · ~κI2 = 2κR2 κ
I
2 cos r = 2κI2

√
κR2

2 − κ2
1 sin2 i = ωµ2g (15.3.12)

where we have used the fact that κ̂I2 = n̂ and

sin r =
κ1

κR2
sin i→ cos r =

1

κR2

√
(κR2 )2 − κ2

1 sin2 i (15.3.13)

From the second equation in (15.3.12) we find κI2 in terms of the other variables (v2 =
1/
√
ε2µ2):

κI2 =
ωµ2g

2

√
κR2

2 − κ2
1 sin2 i

(15.3.14)

When this is inserted into the first equation we end up with an equation for κR2 ,

κR2
2 − ω2µ2

2g
2

4(κR2
2 − κ2

1 sin2 i)
= ε2µ2ω

2 (15.3.15)
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which may be solved to recover κR2 in terms of (ε2, µ2, g) and the angle of incidence, i. It

gives a quartic equation in κR2 (more precisely, a quadratic equation in κR2
2
)

κR2
4 − κR2

2 [
κ2

1 sin2 i+ ε2µ2ω
2
]
− ω2

4

[
g2µ2

2 − 4ε2µ2κ
2
1 sin2 i

]
= 0 (15.3.16)

Thus we find

κR2 =

√
1

2

[
ε2µ2ω2 + κ2

1 sin2 i
]

+
1

2

√[
ε2µ2ω2 + κ2

1 sin2 i
]2

+ ω2
[
g2µ2

2 − 4ε2µ2κ2
1 sin2 i

]
(15.3.17)

where we have chosen the solution with the positive sign to ensure the positivity of κR2
2
.

Knowing κR2 we could easily extract κI2 using (15.3.12). This complicated expression may
be slightly simplified by replacing

κ1 =
ω

v1
= ω
√
ε1µ1 (15.3.18)

(κ1 is the wave-number in medium “1” which is non-conducting). We find the following
final expression:4

κR2 = ω

√
1

2

√
(ε2µ2 + ε1µ1 sin2 i) +

√
(ε2µ2 − ε1µ1 sin2 i)2 +

g2µ2
2

ω2
(15.3.19)

(We could, of course, also express κR2 in terms of nR,I , using n2 = cκ2/ω, although this will
not eliminate the dependence of the result on the incident angle.) One sees that Snell’s
law is deceptively simple looking: while it reads

sin i

sin r
=
κR2
κ1

(15.3.20)

we have seen that κR2 depends on sin i. Thus the “angle of refraction”, r, is really quite
a complicated function of the angle of incidence. However suppose that the conducting
medium approaches a perfect conductor (g → ∞) then κR2 is approximately independent
of the incident angle, being dominated by the term containing g,

κR2 ≈
√
gµ2ω

2
(15.3.21)

4Problem: To verify that this complicated expression makes sense, check the two limits: i = 0 and
g = 0. In the first limit we know that the real and imaginary parts of ~κ2 point in the same direction
i.e., the direction of the normal, n̂, to the interface. Thus ~κ2 = (κR2 + κI2)n̂ and therefore, in particular,
nR2 = cκR2 /ω. But we know the general result (see section (14)) for nR2 . Make sure that the i = 0 limit
yields precisely this expression. The second limit should yield a non-conductor. Check that this is indeed
so.
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but as g →∞, Snell’s law gives r ≈ 0. Thus, for every angle of incidence the propagation
in the conductor is almost directly into it, i.e., almost in the direction of n̂. In this case,
the expression for the skin-depth, derived before for normal incidence, holds for any angle
of incidence. However, the attenuation in the conducting medium in this case is extremely
large (κI2 is then proportional to g) and the skin-depth is very small.

Can r = π
2 ? This would mean that there is some angle of incidence for which the

refracted ray is grazing. When r = π
2 we have, by Snell’s law

sin i =

√
1

2ε1µ1

√
(ε2µ2 + ε1µ1 sin2 i) +

√
(ε2µ2 − ε1µ1 sin2 i)2 +

g2µ2
2

ω2
(15.3.22)

By squaring both sides this equation can be simplified to read

(ε2µ2 − ε1µ1 sin2 i) = −
√

(ε2µ2 − ε1µ1 sin2 i)2 +
g2µ2

2

ω2
(15.3.23)

The equation has no solution unless g = 0, in which case we return to the results for two
non-conducting media. Alternatively, we could have obtained this directly from (15.3.12)
for then ~κR2 · ~κI2 = 0 which implies that g = 0.

The dynamics are quite difficult to describe, owing to the fact that κ2 is complex. This
complicates the matching conditions and we will not consider the dynamics in this course.



Chapter 16

Wave Guides and Resonant
Cavities

16.1 Introduction

We will now consider another situation of practical importance: the propagation of elec-
tromagnetic waves inside conducting shells that are either hollow or filled with a non-
conducting medium. If the ends of the conducting shell are sealed, also by conducting
surfaces, then the objects are called Cavities, otherwise they are called Wave Guides. We
consider Wave Guides first (see figure 17): they are used in the transmission of electro-
magnetic power.

Our equation in the dielectric medium inside the hollow shell (this could also be a

Figure 16.1: A cylindrical Wave Guide

294
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vacuum) are [
1

v2

∂2

∂t2
− ~∇2

]{
φ
~A

}
= 0 (16.1.1)

and we want solutions that respect the symmetry of the problem. Let z be the (open)
axis of the shell, so that (x, y) are the transverse directions as shown in the figure. We
look for harmonic solutions.

16.2 Wave Guides

As there are no end surfaces, the z− direction is unbounded and we expect there to exist
traveling waves in this direction. Let us then search for solutions that possess the following
z−dependence {

φ
~A

}
=

{
φ(x, y)
~A(x, y)

}
ei(κz−ωt) (16.2.1)

Of course, this implies that the solution for ~E and ~B will have the same form as for the
potentials, {

~E
~B

}
=

{
~E(x, y)
~B(x, y)

}
ei(κz−ωt) (16.2.2)

and, in the absence of sources, they also obey the same equations of motion, i.e.,[
1

v2

∂2

∂t2
− ~∇2

]{
~E
~B

}
= 0 (16.2.3)

We do not expect the solutions to have the simple form of a plane wave in the transverse
direction because of the presence of the conducting boundary. The symmetry is such that
it is convenient to separate the gradient operator into longitudinal (along z) and transverse
(in the (x, y) plane) parts. Let ê3 point in the z− direction and write

~∇ = ê3∂z + ~∇t. (16.2.4)

Then, we may write the three dimensional Laplace operator as ~∇2 = ∂2
z + ~∇2

t and our
equation for the electric and the magnetic fields can be put in the form[

1

v2

∂2

∂t2
− ~∇2

t −
∂2

∂z2

]{
~E
~B

}
= 0, (16.2.5)

whereupon, using the dependence on (t, z) that we have imposed (this dependence implies
that ∂t → −iω and ∂z → iκ), we find[

~∇2
t +

(
ω2

v2
− κ2

)]{
~E(x, y)
~B(x, y)

}
= 0, (16.2.6)
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Let us also separate ~E (and ~B) into longitudinal and transverse parts:

~E = Ez ê3 + ~Et, ~B = Bz ê3 + ~Bt (16.2.7)

where
~Et = ê3 × ( ~E × ê3), ~Bt = ê3 × ( ~B × ê3) (16.2.8)

and consider Maxwell’s equations, written explicitly in terms of the longitudinal and trans-
verse components. The two scalar equations are quite trivial to expand

~∇ · ~D = ρ = 0 → ∂zEz + ~∇t · ~Et = 0

~∇ · ~B = 0 → ∂zBz + ~∇t · ~Bt = 0. (16.2.9)

Separating the vector equations requires a bit more work, but it can be done by projecting
along the z axis and transverse to it as we show now. Take the Bianchi identity

~∇× ~E +
∂ ~B

∂t
= 0 (16.2.10)

and consider its decomposition that is obtained first by taking the scalar product with ê3

and then by taking the vector product with the same. We can write the two equations

ê3 ·

(
~∇× ~E +

∂ ~B

∂t

)
= 0, longitudinal part

ê3 ×

(
~∇× ~E +

∂ ~B

∂t

)
= 0 transverse part (16.2.11)

Now

ê3 · (~∇× ~E) = εijkê3i∂jEk, (16.2.12)

and because εijk is totally antisymmetric in its indices while ê3 points in the direction of z,
we find that the indices j, k can only be transverse: the longitudinal part of the equation
thus reads

ê3 · (~∇t × ~Et) +
∂Bz
∂t

= 0 (16.2.13)

The transverse part may be simplified if we note that1

ê3 × (~∇× ~E) = ~∇tEz −
∂ ~Et
∂z

(16.2.14)

1Problem: Convince yourself that this is true. Use the necessary vector identities, etc.
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which gives

~∇tEz −
∂ ~Et
∂z

+ ê3 ×
∂ ~B

∂t
= 0 (16.2.15)

This Bianchi identity therefore yields the two equations. Likewise the same decomposition
of the last of Maxwell’s equations,

~∇× ~H − ∂ ~D

∂t
= ~j = 0 (16.2.16)

yields (by duality)

ê3 · (~∇t × ~Bt)−
1

v2

∂Ez
∂t

= 0

~∇tBz −
∂ ~Bt
∂z
− 1

v2
ê3 ×

∂ ~Et
∂t

= 0 (16.2.17)

The six equations above constitute Maxwell’s equations decomposed into their longitudinal
and transverse parts. Using ∂t → −iω and ∂z → iκ, and cancelling a common phase factor,
we may summarize them as follows for future use

~∇t · Et(x, y) = −iκEz(x, y)

~∇t ·Bt(x, y) = −iκBz(x, y)

ê3 ·
(
~∇t × ~Et(x, y)

)
= iωBz(x, y)

~∇tEz(x, y) = iκ ~Et(x, y) + iωê3 × ~Bt(x, y)

ê3 ·
(
~∇t × ~Bt(x, y)

)
= −i ω

v2
Ez(x, y)

~∇tBz(x, y) = iκ ~Bt(x, y)− i ω
v2
ê3 × ~Et(x, y) (16.2.18)

These equations must obviously be supplemented with appropriate boundary conditions,
namely that the tangential component of the electric field and the normal component of
the magnetic field vanish at the perfectly conducting boundary. If n̂ is the unit normal to
the surface, then

n̂× ~E
∣∣∣
C

= 0, n̂ · ~B
∣∣∣
C

= 0 (16.2.19)

is the correct mathematical way to express these conditions, where C represents the (per-
fectly) conducting surface. Let us now consider some special solutions.

Transverse Electromagnetic (TEM) Waves
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One particular solution is obtained by letting Ez = 0 = Bz. From the third equation
in (16.2.18) and the first equation in (16.2.18) it then follows that

~∇t × ~Et(x, y) = 0, ~∇t · ~Et(x, y) = 0 (16.2.20)

i.e, the electric field is a solution of the electrostatic problem. It follows that

~∇t × (~∇t × ~E(x, y)) = 0 = ~∇t(~∇t · ~Et(x, y))− ~∇2
t
~E(x, y) = −~∇2

t
~E(x, y) (16.2.21)

and therefore, from (16.2.6) that κ = ω/v. Furthermore, the sixth equation in (16.2.18)
then gives

~Bt(x, y) =
1

v
ê3 × ~Et(x, y) (16.2.22)

Notice that the connection between ~Et and ~Bt is just the same as for a plane wave in
an infinite medium. Such a solution is called a ”Transverse Electro-Magnetic” or TEM
wave. We only have to find a solution to the corresponding electrostatic problem in two
dimensions. The fact that ~Et(x, y) is irrotational implies that ~Et(x, y) = −~∇tΦ(x, y) (Φ
is the electrostatic potential) and so we ask for a solution of ~∇2

tΦ = 0.
As an example, consider the cylindrical wave guide shown in figure 17. The general

solution to the electrostatic problem with cylindrical symmetry was obtained in the first
part of this subject: in terms of the radial coordinate, ρ, and the azimuthal angle, ϕ,

ρ =
√
x2 + y2

ϕ = tan−1
(y
x

)
(16.2.23)

it is

Φ(ρ, ϕ) = ao + bo ln

(
ρ

ρo

)
+

∞∑
n=1

ρn(an cosnϕ+ bn sinnϕ) +

∞∑
n=1

ρ−n(cn cosnϕ+ dn sinnϕ)

(16.2.24)
If the boundary is a perfect cylindrical conductor of radius R then it cannot support an
electric field, which means that Φ should be constant at ρ = R. This is only possible if Φ
is independent of ϕ, i.e., if all the coefficients an, bn, cn and dn vanish for n ≥ 1. We’re
left with

Φ(ρ) = ao + bo ln

(
ρ

ρo

)
, (16.2.25)

but this potential is typical of a line charge if bo 6= 0. As there is no line charge in this
problem we should also set bo = 0 which means that Φ is a constant everywhere, whose
value is equal to its value on the conducting boundary! Thus a TEM wave cannot exist
in a single, perfectly conducting, cylindrical wave guide. Of course we could have two
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Figure 16.2: A co-axial cable can support TEM waves

or more cylindrical surfaces as, for example, in figure 18. In that case TEM waves are
supported.2

Transverse Electric (TE) Waves

A more general solution is obtained by requiring only that Ez = 0. This yields the
“Transverse Electric” (TE) wave. If Ez = 0, the fourth equation in (16.2.18) implies that

~Et(x, y) = −ω
κ
ê3 × ~Bt(x, y)→ ê3 × ~Et(x, y) =

ω

κ
~Bt(x, y) (16.2.26)

and the fifth equation in (16.2.18) gives

~∇t × ~Bt(x, y) = 0→ ~Bt(x, y) = −~∇tψ(x, y) (16.2.27)

Thus, from the second equation we find

~∇2
tψ(x, y) = iκBz(x, y) (16.2.28)

Again, using (16.2.26) in the sixth equation in (16.2.18) gives

~∇tBz(x, y) = i

(
κ− ω2

κv2

)
~Bt(x, y) = −i

(
κ− ω2

κv2

)
~∇tψ(x, y)

→ Bz = −i
(
κ− ω2

κv2

)
ψ(x, y) (16.2.29)

which finally implies that ψ obeys the equation

(~∇2
t + γ2)ψ(x, y) = 0, γ2 =

ω2

v2
− κ2 (16.2.30)

2Problem: Find the TEM fields in this case. Assume the situation depicted in figure 18 and that the
potentials on the inner and outer conductors are respectively ΦA and ΦB .
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Figure 16.3: A rectangular Wave Guide

The boundary conditions are obviously given by (16.2.19), but how do they translate into
conditions on ψ for the case of TE waves in the wave guide? Notice that Ez = 0 so the
first condition (n̂× ~E|C = 0) is empty. The second condition reads

n̂ · ~B
∣∣∣
C

= 0→ n̂ · ~∇tψ(x, y)
∣∣∣
C

:=
∂ψ

∂n

∣∣∣∣
C

= 0 (16.2.31)

or, in words, the normal derivative (directional derivative normal to the surface) of ψ
should vanish on the boundary. Together the two equations, viz., (16.2.30) and (16.2.31),
completely and uniquely define an eigenvalue problem describing the system.

This time let us apply the above considerations to the case of a rectangular wave-guide
as shown in figure 19. In this case, we consider the equation[

∂2

∂x2
+

∂2

∂y2
+ γ2

]
ψ(x, y) = 0 (16.2.32)

and separate variables, i.e., let ψ(x, y) = ψ1(x)ψ2(y). This procedure results in two
equations:

∂2ψ1

∂x2
= −λ2ψ1

∂2ψ2

∂y2
= −(γ2 − λ2)ψ2 (16.2.33)

where λ2 is an arbitrary constant, which we take, to be positive to ensure oscillatory
solutions. The general solution is therefore

ψ(x, y) = ψo cos(λx+ φ1) cos(
√
γ2 − λ2y + φ2) (16.2.34)
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where φ1,2 are arbitrary constants, but we must satisfy the boundary conditions. The
normal to the surfaces of the guide are n̂ = (∓1, 0, 0) for the surfaces x = 0, a (see figure
19) and n̂ = (0,∓1, 0) for the surfaces y = 0, b. Thus, we must have

∂ψ1

∂x

∣∣∣∣
x=0,a

= 0,
∂ψ2

∂y

∣∣∣∣
y=0,b

= 0 (16.2.35)

It is easy to see that these conditions imply that φ1 = φ2 = 0 and

λ =
nπ

a
, γ = π

[
n2

a2
+
m2

b2

] 1
2

(16.2.36)

for arbitrary integers, n,m. The solution for ψ(x, y) is therefore

ψ(x, y) = ψo cos(
nπx

a
) cos(

mπy

b
) (16.2.37)

Let us observe that they are standing waves in the transverse directions, with wave-
numbers, respectively κx = nπ/a and κy = mπ/b. That the solution should have this
form in the transverse directions should be intuitively obvious. It depends on two integers.
Every pair of integers (n,m) is referred to as a mode. If we define the wave-vector ~κ =
(κx, κy, κ), then the dispersion relation reads

ω2

v2
− ~κ2 = 0. (16.2.38)

If we write out the solution for κ (the component describing propagation in the z− direc-
tion):

κ2 =
ω2

v2
− π2

[
n2

a2
+
m2

b2

]
(16.2.39)

then we find that frequencies that yield a real value of κ must obey the condition

ωnm ≥
π
√
µε

[
n2

a2
+
m2

b2

] 1
2

(16.2.40)

If, for example, a > b then the minimum frequency allowed is given by the mode n =
1,m = 0 (the TE1,0 mode), or

ω10 =
π

a
√
µε

(16.2.41)

Below this frequency, κ is imaginary and the wave is attenuated in the z− direction. The
problem of TE waves in a rectangular wave guide is thus completely solved in principle.3

3Problem: Solve the problem of TE waves in a cylindrical wave guide and determine the modes.
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Figure 16.4: Infinite, parallel conducting planes

Transverse Magnetic (TM) waves

Another situation is obtained by letting Bz = 0. These yield the Transverse Magnetic
(TM) waves. It should be clear, however, that the dynamical equations will have the same
form (by duality, of course, because these are “vacuum” solutions!). Indeed, all that is
required is the interchange ~E → ~B and ~B → − ~E/v2. However, the boundary conditions
are different and this must be taken into account.4 The solution, subject to the boundary
conditions appropriate to the rectangular wave guide treated in the previous section is
given by

ψ(x, y) = ψo sin(
nπx

a
) sin(

mπy

b
) (16.2.42)

where γ is still given by (16.2.36). The lowest (non-vanishing) mode is given by n = 1 = m
(the TM1,1 mode), so its cut-off frequency is greater than that of the TE1,0 mode.5

Let us consider in a bit more detail the problem of TM waves between two infinite,
parallel conducting planes situated, say, at y = 0, b (see figure 20). Let the waves propagate
only in the y− z plane, for convenience (one can always orient the axis so that this is so).
By arrangement, then, we seek solutions representing traveling waves in the z− direction:

~E = ~E(x, y)ei(κz−ωt)

4Problem: Show that the appropriate boundary condition to be applied to ψ(x, y) (in this case,
~Et(x, y) = −~∇tψ(x, y)) for TM waves is ψ|C = 0.

5Problem: Determine the factor by which the cut-off frequency of the TM1,1 mode is greater than that
of the TE1,0 mode.
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~B = ~B(x, y)ei(κz−ωt) (16.2.43)

and havings Bz = 0. Consider the set of equations in (16.2.18). From the third we
conclude that

~∇× ~Et(x, y) = 0 → ~Et(x, y) = −~∇tψ(x, y) (16.2.44)

and therefore the first gives
~∇2
tψ(x, y) = iκEz(x, y) (16.2.45)

Now the last equation in (16.2.18) implies that

~Bt(x, y) =
ω

κv2
ê3 × ~Et(x, y) → ê3 × ~Bt = − ω

κv2
~Et(x, y) (16.2.46)

which, when inserted into the fourth equation gives

~∇tEz(x, y) = −iκ~∇tψ +
iω2

κv2
~∇tψ (16.2.47)

or

Ez(x, y) = −i
(
κ− ω2

κv2

)
ψ(x, y) (16.2.48)

This means that the equation for ψ(x, y) is simply

(~∇2
t + γ2)ψ(x, y) = 0, γ2 =

ω2

v2
− κ2 (16.2.49)

Knowing ψ(x, y) we determine ~E and knowing ~E we determine ~B. We see, as promised
earlier, that the dynamical equations are related to those for TE waves by duality. But
what of the boundary conditions? We must require n̂× ~E|C = 0 or simply that ψ|C = 0.
Also (and this is important) we cannot allow traveling waves or standing waves in the
x−direction.6 The general solution (before applying the boundary conditions) is then just

ψ = ψo cos(γy + φ) (16.2.50)

where φ is an arbitrary phase. Applying the boundary condition ψ|0,b = 0 then gives
φ = π

2 and γ = nπ/b. The solution turns out to be

ψ(y) = ψo sin
(nπy

b

)
(16.2.51)

from which we may extract the electric and magnetic fields by taking suitable derivatives
and using (16.2.46).7 The condition

γ2 =
ω2

v2
− κ2 =

n2π2

b2
→ κ2 =

ω2

v2
− n2π2

b2
(16.2.52)

6Question: Why?
7Problem: Do it!



304 CHAPTER 16. WAVE GUIDES AND RESONANT CAVITIES

implies, again, that there is a minimum frequency for traveling waves (in the z− direction):

ω1 =
π

b
√
εµ

(16.2.53)

below which κ is imaginary.

16.3 Resonant Cavities

We now turn to another problem, one that is closely related to wave guides, that of resonant
cavities (or cavity resonators). Resonant cavities consist of a finite region of space filled
with a non-conducting medium and bounded by a conducting medium. They are used in
the storage of electromagnetic energy. In practice one never has perfect (lossless) dielectric
media or perfect conductors, although this is the case we will consider here. Thus there
are practical losses of energy, but these are small compared with other means of storage
as, for example, the standard LC circuit.

In its ideal form the cavity resonator will be made up of a lossless dielectric bounded by
a perfect conductor. As the region is finite, it does not necessarily have an axial symmetry
that can be exploited and it will not be convenient to use the decomposition of Maxwell’s
equations into “longitudinal” and transverse components as was done in the treatment
of wave guides. Instead we will use the equations given in (16.2.3) for the electric and
magnetic fields. If we want harmonic solutions, then let

~E = ~E(~r)e−iωt, ~B = ~B(~r)e−iωt (16.3.1)

Our dynamical equation, for example for the electric field, becomes

(~∇2 + ω2) ~E(~r) = 0. (16.3.2)

We will consider a special kind of resonant cavity: one that has the shape of a rectangular
parallelpiped of sides (a, b, c) as shown in figure 21. Other geometries are possible of
course, but in practice the rectangular parallelpiped and the cylindrical cavity are most
common.8 The geometry of the rectangular parallelpiped implies that we can work in
Cartesian coordinates. Thus we have(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ ω2

)
~E(x, y, z) = 0 (16.3.3)

8We will not be treating the cylindrical resonant cavity in this course for a good reason: the coordinate
system that respects cylindrical symmetry are the cylindrical coordinates, but we have not learned how
to apply the Laplacian on vector fields in curvilinear coordinates! This is not as simple as applying the
Laplacian on a scalar field, because if curvilinear coordinates are used one has to account for the basis
vectors that appear in the expansion (eg. ~E = Eiêi) of the vector field. These are not rigid, as they are
for Cartesian coordinates, but change from point to point.
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Figure 16.5: A Rectangular Resonant Cavity

and, for each component of ~E we may solve the equation by the separation of variables.
This procedure is, by now familiar to all. For each component of ~E, we will end up
with three equations, one each in x, y and z, two arbitrary constants which we choose
in such a way as to have standing waves and three arbitrary phases, all of which are to
be determined from the boundary conditions. The boundary conditions imply that the
tangential component of the electric field on the walls of the conducting boundary should
vanish,

n̂× ~E
∣∣∣
C

= 0 (16.3.4)

where n̂ represents the normal to the bounding surfaces.

The general solution, for example for the x−component of the ~E field, is found to be

Ex = E(0)
x cos(

√
ω2 − λ2

x − σ2
x x+ φ(1)

x cos(λxy + φ(2)
x ) cos(σxz + φ(3)

x ) (16.3.5)

and the boundary condition requires that

Ex|y=0,b = Ex|z=0,c = 0 (16.3.6)

The conditions at y = 0 = z imply that φ
(2)
x = φ

(3)
x = π

2 , while the conditions at y =
b, z = c require

λx =
nπ

b
, σx =

mπ

c
(16.3.7)
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for n,m ∈ N. Thus we have

Ex = E(0)
x cos(

√
ω2 − n2π2

b2
− m2π2

c2
) x+ φ(1)

x ) sin(
nπy

b
) sin(

mπz

c
) (16.3.8)

In a similar fashion we may write the solutions for the other two components:

Ey = E(0)
y sin(

lπx

a
) cos(

√
ω2 − l2π2

a2
− m2π2

c2
) y + φ(2)

y ) sin(
mπz

c
)

Ez = E(0)
z sin(

lπx

a
) sin(

nπy

b
) cos(

√
ω2 − l2π2

a2
− n2π2

b2
) z + φ(3)

z ) (16.3.9)

where l,m, n ∈ N are arbitrary integers. Again, the divergence equation, ~∇ · ~E = 0, is
solved by taking

ω2 =
l2π2

a2
+
n2π2

b2
+
m2π2

c2
(16.3.10)

and φ
(1)
x = φ

(2)
y = φ

(3)
z = 0. The final form of the solution is then

Ex = E(0)
x cos(

lπx

a
) sin(

nπy

b
) sin(

mπz

c
)e−iωt

Ey = E(0)
y sin(

lπx

a
) cos(

nπy

b
) sin(

mπz

c
)e−iωt

Ez = E(0)
z sin(

lπx

a
) sin(

nπy

b
) cos(

mπz

c
)e−iωt (16.3.11)

and the condition ~∇ · ~E = 0 translates simply into the condition ~κ · ~E = 0, i.e., that the
wave-vector ~κ = π(l/a, n/b,m/c) is perpendicular to ~E. An analogous treatment of the
cylindrical resonant cavity would give a solution in terms of Bessel functions instead of
the trigonometric functions we have found for the rectangular case. We will not develop
these solutions in this course.



Chapter 17

Time Varying Charge
Distributions

17.1 General Considerations

So far we have said very little about how the waves treated in the previous chapters are
actually generated. Naturally we expect that radiation is produced by charges in motion
or, more precisely, by the inhomogeneous part,

Aµ(x) =

∫
d4x′GR(x, x′)jµ(x′) (17.1.1)

of our general solutions in Part I of these notes. In Part III we will concentrate on
the integral on the r.h.s. of the above equation and its physical interpretation. Let us
imagine that we have a localized system of charges and currents occupying a region, R,
of space, whose characteristic dimension is d. Specify the current 4-vector describing the
distribution by jµ(~r, t). In studying processes that radiate electromagnetic waves, we are
particularly interested in the so-called “spectral distribution” of the radiation, i.e., in
the intensity of the radiation that is emitted at very large distances (compared to the
typical size of the distribution itself) as a function of the frequency and the solid angle
of emission. The spectral distribution is best examined by working with the temporal
Fourier transforms of the fields and currents. Consider, therefore, the temporal Fourier
transform of the current

jµ(~r, ω) =

∫ ∞
−∞

dt√
2π
eiωtjµ(~r, t). (17.1.2)
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The functions jµ(~r, ω) are the Fourier components of ~j(~r, t), ω is the frequency and the
inverse transformation is

jµ(~r, t) =

∫ ∞
−∞

dω√
2π
e−iωtjµ(~r, ω) (17.1.3)

Now we know that the (retarded) solution for the vector potential, Aµ(x), in the absence
of external incoming or outgoing radiation takes the form

Aµ(x) =

∫
d4x′GR(x, x′)jµ(x′) =

c

4π

∫
d3~r′

∫
dt′

jµ(~r′, t′)

|~r − ~r′|
δ(ct′ + |~r − ~r′| − ct) (17.1.4)

(notice that d4x ≡ cdtd3~r) and inserting (17.1.3) into the r.h.s. of this equation yields

Aµ(~r, t) =
c

4π

∫ ∞
−∞

dω√
2π

∫
d3~r′

∫
dt′

jµ(~r′, ω)e−iωt
′

|~r − ~r′|
δ(ct′ + |~r − ~r′| − ct) (17.1.5)

But the r.h.s. of this equation can be greatly simplified by exploiting the δ−function and
integrating over t′. Recall that

δ(f(x)) =
∑
α

δ(x− xα)

|f ′(x)|xα |
(17.1.6)

where xα are the roots of the equation f(x) = 0 and f ′(x) is the derivative of f(x) w.r.t.
x. Using this we have

Aµ(~r, t) =
1

4π

∫ ∞
−∞

dω√
2π
e−iωt

∫
d3~r′

jµ(~r′, ω)

|~r − ~r′|
eik|~r−~r

′| (17.1.7)

where k = ω/c. Again, if we note that the vector potential Aµ(x) also has a temporal
Fourier expansion just like jµ(x), i.e.,

Aµ(~r, t) =

∫ ∞
−∞

dω√
2π
e−iωtAµ(~r, ω) (17.1.8)

and compare the two expressions, we find that

Aµ(~r, ω) =
1

4π

∫
d3~r′

jµ(~r′, ω)eik|~r−~r
′|

|~r − ~r′|
(17.1.9)

All relevant information (the fields ~E and ~B) can be computed if the potentials are known,
i.e., if we are able to solve the integrals that appear in the above formula for Aµ(~r, ω).
However, in practice this is impossible to do except in some very simple cases. Therefore
let us establish some general properties of the solution under some special conditions.



17.1. GENERAL CONSIDERATIONS 309

Figure 17.1: Localized charge distributions

When necessary we will assume that the relevant frequencies, ω, are such that the corre-
sponding wavelengths λ = 2πc/ω are very large compared with the characteristic size, d,
of the distribution, i.e., λ >> d (see figure 22). (What this means is that the Fourier coef-
ficients in (17.1.2) are appreciable only when λ >> d.) This is called the long wavelength
approximation. Further we will consider the following observational “zones”:

• The “near” (static) zone (|~r| << λ): This is the region in which the observation
point is distant from the source but much less than one wavelength away from it.
In this case the exponent in the integral on the r.h.s. of (17.1.9) is much less than
unity and the exponential can be safely approximated as “one”,

Aµ(~r, ω) ≈ 1

4π

∫
d3~r′

jµ(~r′, ω)

|~r − ~r′|
(17.1.10)

The solutions are quasi-stationary, i.e., harmonic but otherwise static.

• The “far” (radiation) zone (|~r| >> λ): In the far zone, k|~r − ~r′| >> 1. Let us
consider the expansion

|~r − ~r′| = |~r|

√
1 +

~r′2

~r2
− 2

n̂ · ~r′
|~r|
≈ |~r| − n̂ · ~r′ (17.1.11)

where n̂ is the unit vector in the direction of ~r. Therefore, in the far zone we have

Aµ(~r, ω) =
eikr

4πr

∫
d3~r′jµ(~r′, ω)e−ikn̂·~r

′
(17.1.12)

where r = |~r|. The appearance of the term eikr/r signals that asymptotically the
fields correspond to outgoing spherical waves. Again,

eikn̂·~r
′

=

∞∑
n=0

(−ik)n

n!
(n̂ · ~r′)n (17.1.13)
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but, as k|~r′| << 1 we see that the successive terms in the series will fall off very
rapidly so that the main contributions to the integral come from the lowest non-
vanishing terms.

• The “intermediate” (induction) zone (|~r| ≈ λ) The intermediate zone is more diffi-
cult because neither of the approximations made in the preceeding two cases will
succeed. In this case the exact expressions in (17.1.9) and (17.1.8) should be used.

Away from charges, the electric and magnetic fields are extracted from our solutions by
taking appropriate derivatives:

~B = ~∇× ~A (17.1.14)

and

~∇× ~B =
1

c2

∂ ~E

∂t
→ − ik

c
~E(~r, ω) = ~∇× ~B(~r, ω)

→ ~E(~r, ω) =
ic

k
~∇× (~∇× ~A(~r, ω)) (17.1.15)

where, taking into account the definition of jµ(x), the three vector potential is

~A(~r, ω) =
µo
4π

∫
d3~r′

~j(~r′, ω)eik|~r−~r
′|

|~r − ~r′|
(17.1.16)

17.2 Current densities

Before we go on to discussing the fields produced by some interesting charge distributions,
we should say a few words about the currents. Recall that in Part I we discovered that
the current density jµ(x) is defined by

jµ = (j0, ji); j0 = µ0ρ, ji = µ0ji (17.2.1)

and must transform as a contravariant vector. Consider a single particle of charge e. We
can later construct more complex densities by putting together individual charges. Now
we know that in the non-relativistic limit, at least, the current three-vector should take
the form

~j = e~vδ(3)(~r − r(t)), (17.2.2)

where r(t) is the trajectory of the particle. In the same spirit, a natural definition of the
charge density would be

ρ = eδ(3)(~r − r(t)) (17.2.3)
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The question is this: is the vector defined by (17.2.1), with ρ and ~j as given in (17.2.2)
and (17.2.3) a four-vector density as required, i.e., does it transform appropriately under
Lorentz transformations?

Nav̈ely it certainly doesn’t look like a four-vector density, because we know that the
three vector velocity ~v does not transform as a vector in special relativity (and, again, the
δ−function, δ(3)(~r−r(t)), appears to make matters worse!). We can unify the description of
the current and density by considering the appropriate generalization of the three velocity,
i.e., the four-vector velocity which is defined by

Uµ =
dxµ

dτ
(17.2.4)

where dτ = ds/c is the proper time (and so it is a scalar under Lorentz transformations).
Uµ is manifestly a four-vector and its spatial components are

U i =
dxi

dτ
=
dxi

dt

dt

dτ
=

vi√
1− ~v2/c2

, U0 =
1√

1− ~v2/c2
(17.2.5)

with the following non-relativistic limits

lim
c→∞

U i = vi, lim
c→∞

U0 = 1. (17.2.6)

It should therefore be clear that the quantity

jµ = eµo

∫
dτ Uµ(τ)δ(4)(x− x(τ)) = eµo

∫
dτ

dxµ

dτ
δ(4)(x− x(τ)) (17.2.7)

is a four-vector density under Lorentz transformations. However, we can replace the
integration variable by the coordinate time parameter, t, writing

jµ = eµo

∫
dt

dxµ

dt
δ(3)(~r − r(τ))δ(t− t(τ)) (17.2.8)

and perform the integration over t with the help of the δ−function. We should find just

jµ = eµo
dxµ(t)

dt
δ(3)(~r − r(t)). (17.2.9)

Its components are precisely those given in (17.2.1), (17.2.2) and (17.2.3) above, so these
definitions were sound to begin with. If we had N charges, en, with trajectories ~rn(t), the
four-vector current density representing the distribution would be simply

jµ = µo

N∑
n=1

enδ(~r − ~rn(t))
dxµn(t)

dt
(17.2.10)
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as we had used in Chapter 6.
Let’s also verify that it does obey the conservation condition. We see that

~∇ ·~j(~r, t) =
∑
n

en
∂

∂xi
δ(3)(~r − ~rn)

dxin(t)

dt

= −
∑
n

en
∂

∂xin
δ(3)(~r − ~rn)

dxin
dt

= −
∑
n

en
∂

∂t
δ(3)(~r − ~rn) = − ∂

∂t
ρ(~r, t) (17.2.11)

or, in our covariant language,

∂µj
µ = 0 (17.2.12)

in which form, manifest covariance is obvious.

17.3 Fields in the far zone: Spectral Distribution

The electric and magnetic fields in the far zone are radiation fields and merit further
attention. Using equations (17.1.15) and (17.1.12) we find,

~B(~r, ω) ≈ µo
4π

(
~∇e

ikr

r

)
×
∫
d3~r′~j(~r′, ω)e−ikn̂·~r

′
. (17.3.1)

Now it is an easy exercise to check that

~∇e
ikr

r
=
eikr

r

[
ik − 1

r

]
n̂, (17.3.2)

where n̂, as before, is the unit vector pointing in the direction of ~r. Therefore, neglecting
terms of order r−2 we have

~B(~r, ω) ≈ ikµo
4π

eikr

r

∫
d3~r′ [n̂×~j(~r′, ω)] e−ikn̂·~r

′
(17.3.3)

To compute the electric field we need to take one more rotation of the above. Again,
neglecting terms of order r−2 we come up with

~E(~r, ω) ≈ − ickµo
4π

eikr

r

∫
d3~r′ [n̂× (n̂×~j(~r′, ω))] e−ikn̂·~r

′
(17.3.4)

Thus we find that
~E(~r, ω) = c ~B(~r, ω)× n̂ (17.3.5)
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and
~B(~r, ω) =

1

c
n̂× ~E(~r, ω), (17.3.6)

so the electric and magnetic fields in the far zone are perpendicular to each other and to
the direction n̂, which is the direction of propagation of the outgoing spherical waves.

Next, consider the flux of energy across any surface. It is given by the Poynting vector

~S =
1

µo
Re( ~E)× Re( ~B) =

1

cµo
Re( ~E)× [n̂× Re( ~E)] = cεo[Re( ~E)]2n̂ (17.3.7)

Alternatively,
~S =

c

µo
(Re( ~B)× n̂)× Re( ~B) =

c

µo
[Re( ~B)]2n̂ (17.3.8)

Now if we call ~k = kn̂ = n̂ω/c and

~j(~k, ω) =

∫
d3~r′~j(~r′, ω)e−i

~k·~r′ =

∫
dt

∫
d3~r′~j(~r′, t)e−i(

~k·~r′−ωt) (17.3.9)

then

~B(~r, ω) ≈ ikµo
4π

eikr

r
[n̂×~j(~k, ω)] (17.3.10)

and, for the electric field,

~E(~r, ω) ≈ − ickµo
4π

eikr

r
n̂× [n̂×~j(~k, ω)] (17.3.11)

we obviously find the analogous expression. Note that the reality of ~j(~r, t) ensures the
relation

~j∗(~k, ω) = ~j(−~k,−ω) (17.3.12)

between the Fourier components of ~j and their complex conjugates.
Let us evaluate the time averaged power radiated, at a fixed frequency, across the

surface of a large sphere of radius r, with element d~σ = r2n̂dΩ (where Ω is the solid
angle). This is given by

I(ω) = 4π

∫
Σ
〈~S〉 · d~σ =

4πr2c

µo

∫
Ω
dΩ 〈[Re( ~B(~r, ω)e−iωt)]2〉

=
2πr2c

µo

∫
Ω
dΩ ~B∗(~r, ω) · ~B(~r, ω) =

2πr2c

µo

∫
Ω
dΩ| ~B(~r, ω)|2 (17.3.13)

using theorem (14.2.6). With (17.3.10), the above expression allows us to write the average
power radiated in the frequency interval (ω, ω + dω) within the solid angle dΩ as

d2I(ω) =
µoω

2

2c
|n̂×~j(~k, ω)|2dΩdω

4π
=
µoω

2

2c
[~j ·~j∗ − (n̂ ·~j)(n̂ ·~j∗)]dΩdω

4π
(17.3.14)
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This is called a spectral distribution. The central problem in understanding the radiation
fields in the far zone is in the determination of ~j(~k, ω). It is most often not easy to do
and we must make approximations. These approximations will be the subject of future
sections, but let us first have a look at some cases that are important and in which ~j(~k, ω)
can be determined exactly.

17.4 Examples

17.4.1 Point Charge in Uniform motion

As our first and particularly simple application of the formalism above, we’ll now compute
the fields seen by a distant observer due to a single point charge in uniform motion. All we
need is the Fourier transform of the current density for a point charge in uniform motion.
The current density is

~j(~r, t) = e~vδ(3)(~r − r(t)) (17.4.1)

where r(t) is the trajectory of the particle. Its Fourier transform may be calculated as

~j(~k, ω) = e~v

∫ ∞
−∞

dt

∫
d3~r′δ(~r′ − r(t))e−i(

~k·~r′−ωt)

= e~v

∫ ∞
−∞

dt eiω(t−n̂·r(t)/c) = e~v

∫ ∞
−∞

dt eiωt(1−n̂·~v/c)

=
e~v

ω
δ

(
1− n̂ · ~v

c

)
(17.4.2)

Because |~v| < c, this is always vanishing for a particle in the vacuum and we have just
proved that a charge in uniform motion does not radiate.

Note: This is true only in a vacuum. In a medium the speed of light is less than c and
a uniformly moving particle can radiate. This is called Cerenkov radiation. In a medium
we should replace c by the velocity of light in the medium: c/n where n is the refractive
index of the medium. Then the δ− function is supported when

1 =
n

c
n̂ · ~v =

nv cos θ

c
→ θ = cos−1

( c

nv

)
(17.4.3)

which angle defines the opening angle of a cone along which the radiation will be emitted.

17.4.2 Point Charge in uniform circular motion: Synchrotron Radiation

A modestly more complicated example is presented by a charge in uniform circular motion.
Consider the following (simplified) treatment of a charge in instantaneous circular motion,
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Figure 17.2: Charge in uniform circular motion

assuming that the particle has a circular motion in the x − y plane (see figure 23). It is
convenient to go to cylindrical coordinates and because the motion is circular only the ϕ
component of the current vector will be non-vanishing. Let ωo be the angular velocity of
the charge (ωo is constant) and let R be the radius of the circle, then it is easy to see that

~j(~r′, t′) = ~v′δ(3)(~r′ − r(t′)) = eωoδ(z
′)δ(r′ −R)δ(ϕ′ − ωot′)ϕ̂′(t) (17.4.4)

and all other components vanish identically. We must compute

~j(~k, ω) =

∫
dt′
∫
d3~r′~j(~r′, t′)e−i(

~k·~r′−ωt′) (17.4.5)

so let us first evaluate ~k · ~r′. We have (in Cartesian coordinates)

n̂ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ

~r′ = r′ cosϕ′x̂+ r′ sinϕ′ŷ (17.4.6)

giving
~k · ~r′ = ω

c
n̂ · ~r′ = ω

c
r′ sin θ cos(ϕ− ϕ′) (17.4.7)

Moreover, because ϕ̂′ ≡ ϕ̂′(t′) depends on t′ and we will eventually be integrating over t′,
it is convenient to make the time dependence explicit by expressing ~j(~r′, t′) in terms of
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the (rigid) basis vectors x̂, ŷ and ẑ:

~j(~r′, t′) = eωoδ(z
′)δ(r′ −R)δ(ϕ′ − ωot′)[− sinϕ′x̂+ cosϕ′ŷ] (17.4.8)

Therefore

~j(~k, ω) = e

∫
dt′eiωt

′
∫
r′dr′dϕ′dz′ ~j(~r′, t′)e−i

ω
c
r′ sin θ cos(ϕ−ϕ′)

= eωo

∫
dt′eiωt

′
∫
r′dr′dϕ′dz′ δ(z′)δ(r′ −R)δ(ϕ′ − ωot′) ×

[− sinϕ′x̂+ cosϕ′ŷ] e−i
ω
c
r′ sin θ cos(ϕ−ϕ′)

Performing the integrals over the δ−functions is easy and leads to

~j(~k, ω) = eωoR

∫
dt′eiω(t′− 1

c
R sin θ cos(ϕ−ωot′))[− sinωot

′x̂+ cosωot
′ŷ] (17.4.9)

Now recall that the speed of the particle, v, is given by ωoR, so we could replace R = v/ωo.
Again, because the motion is periodic, what is really needed is a discrete Fourier transform.
We could obtain this without starting from the beginning by letting ω/ωo = n ∈ N and
restricting the integration to the interval t′ ∈ [−π/ωo,+π/ωo]. Call ωot

′ = u then

~j(~k, ω) = eR

∫ π

−π
du ei(nu−n

v
c

sin θ cos(ϕ−u))[− sinu x̂+ cosu ŷ] (17.4.10)

Of course, the situation is cylindrically symmetric and let us exploit this fact. Cylindrical
(axial) symmetry allows us to choose any convenient value of ϕ. The choice ϕ = π/2
brings the integral above to standard form:

~j(~k, ω) = eR

∫ π

−π
du [− sinu x̂+ cosu ŷ]ei(nu−n

v
c

sin θ sinu) (17.4.11)

It is convenient to compute the components separately. Thus, consider the integral

−
∫ π

−π
du sinu ei(nu−n

v
c

sin θ sinu)x̂ =

= − 1

2i

∫ π

−π
du[ei([n+1]u−n v

c
sin θ sinu) − ei([n−1]u−n v

c
sin θ sinu)]

=
i

2
[Jn+1(z)− Jn−1(z)] (17.4.12)

where z = nvc sin θ and where Jn(z) is a Bessel function of order n ∈ N. Likewise, the
second term

−
∫ π

−π
du cosu ei(nu−n

v
c

sin θ sinu)ŷ =
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1

2

∫ π

−π
du[ei([n+1]u−n v

c
sin θ sinu) + ei([n−1]u−n v

c
sin θ sinu)]

=
1

2
[Jn+1(z) + Jn−1(z)] (17.4.13)

Combining the two we find

~j(~k, ω) =
eR

2
[Jn+1(z)(ix̂+ ŷ) + Jn−1(z)(−ix̂+ ŷ)] (17.4.14)

The spectral distribution is obtained directly from the expression we had earlier. We easily
compute (noting that, with ϕ = π/2 we have n̂ = ŷ sin θ + ẑ cos θ)

~j ·~j∗ =
e2R2

2
[J2
n+1(z) + J2

n−1(z)]

(n̂ ·~j)(n̂ ·~j∗) =
e2R2

4
[Jn+1(z) + Jn−1(z)]2 sin2 θ (17.4.15)

which gives

dIn =
µoe

2n2v2

8c

[
(Jn+1(z) + Jn−1(z))2 + (Jn+1(z)− Jn−1(z))2 cos2 θ

] dΩ

4π
(17.4.16)

where we’ve replaced ωR by vω/ωo = nv. The Bessel function is highly peaked about
θ = π/2, which is in the plane of the orbit and vanishes along the z−axis.1 Thus there is
no power radiated along the axis of rotation and most of it is radiated in the plane of the
orbit. Of course, we also know the electric and magnetic fields, if we know ~j(~k, ω). In the
far zone, they follow directly from (17.3.10) and (17.3.11).2

The formula above can be simplified in special cases. First, let us note the following
identities obeyed by the Bessel functions

Jn+1(z) + Jn−1(z) =
2n

z
Jn(z)

Jn+1(z)− Jn−1(z) = −2
d

dz
Jn(z) (17.4.17)

Using them, we might re-express the formula (17.4.16) in terms of Jn(z) as follows

dIn =
µoe

2n2v2

2c

[
n2

z2
J2
n(z) +

(
d

dz
Jn(z)

)2

cos2 θ

]
dΩ

4π
(17.4.18)

1It is a good exercise to plot these angular distributions!
2Problem: Compute the electric and magnetic fields to leading order in 1/r, for uniform circular motion.
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Figure 17.3: An oscillating Dipole

17.4.3 Radiation from an oscillating Dipole

Consider the radiation from an oscillating dipole. The physical setup is shown in figure 24.
The dipole consists of two charged spheres of opposite charges, ±q(t)situated respectively
at z = ±a/2. The two spheres are connected by an infinitesimally thin wire of length a.
The current in the wire must be precisely dq/dt so as to conserve charge. The current
density is in the ẑ direction and given by

~j(~r′, t′) = q̇(t′)δ(x′)δ(y′)Θ
(a

2
− |z′|

)
ẑ = I(t′)δ(x′)δ(y′)Θ

(a
2
− |z′|

)
ẑ (17.4.19)

where I(t) is the current in the wire and Θ(x) above represents the Heaviside θ−function.
(We have used the capital Θ only to distinguish the Heaviside function from the polar
angle, θ.) Its function is to ensure that the current vanishes outside the assembly. Note,
first of all, that I(t) is a function only of t and not of z; this uniform current can be
achieved in practice only if the length of the wire is small compared with the wavelength
of the radiation. Let

I(t′) = Ioe
−iω̃t′ (17.4.20)

be a harmonic function of time (so the current oscillates at a definite frequency), and
calculate

~j(~k, ω) = ẑIoδ(ω − ω̃)

∫
dx′dy′dz′δ(x′)δ(y′)Θ

(a
2
− |z′|

)
e−i

ω
c
n̂·~r′
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= ẑIoδ(ω − ω̃)

∫ a/2

−a/2
dz′e−i

ω
c
z′ cos θ

= − 2icIo
ω cos θ

δ(ω − ω̃) sin
(ω
c
a cos θ

)
ẑ. (17.4.21)

The δ−function formally says that the frequency is fixed to be ω̃. We are now able to
compute the fields in the far zone: they are given by3

~B(~r, ω̃) =
ik̃µo
4π

eik̃r

r
[n̂×~j(~k, ω̃)] =

2Io
4πεoc2

eik̃r

r
tan θ sin

(
ω̃

c
a cos θ

)
ϕ̂

~E(~r, ω̃) = − ickµo
4π

eik̃r

r
n̂× [n̂×~j(~k, ω̃) ]

= − 2Io
4πεoc

eik̃r

r
tan θ sin

(
ω̃

c
a cos θ

)
θ̂ (17.4.22)

to leading order in 1/r. Higher order corrections (O(r−2) and O(r−3)) may likewise be
calculated.

The angular distribution of the (monochromatic) radiation, on the other hand, is
similarly found from our master equations:

dI(ω̃) =
µoω̃

2

2c
[~j ·~j∗ − (n̂ ·~j)(n̂ ·~j∗)]dΩ

4π
=

2I2
o

εoc
tan2 θ sin2

(
ω̃

c
a cos θ

)
dΩ

4π
(17.4.23)

This time we find that the angular dependence is more complicated but it can be simplified
if we remember that we are considering the long wavelength limit, i.e., d = a << λ. Put
ω̃ = 2πc/λ and approximate

sin2

(
ω̃

c
a cos θ

)
= sin2

(
2πa

λ
cos θ

)
≈ 4π2a2

λ2
cos2 θ (17.4.24)

Then

dI(λ) =
2πI2

o

εoc

a2

λ2
sin2 θdΩ (17.4.25)

The radiation vanishes along the axis of the dipole, achieving its maximum value in the
x− y plane.

3Problem: Compute the corrections of order r−2 and r−3 to these formulæ.
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17.4.4 The Half-Wave Antenna

In the previous example, we had restricted ourselves to a wire that is small compared to
one wavelength, so the variation of the current along the z−axis was ignored. Let us now
consider the same example with a = λ/2 and a current that behaves as

~j(~r′, t′) = Ioe
−iω̃t′δ(x′)δ(y′)Θ

(
λ

4
− |z′|

)
cos

(
2πz′

λ

)
ẑ (17.4.26)

where ω̃ = 2πc/λ. This is called a half-wave antenna for an obvious reason: its length is
precisely one half the wavelength of the radiation. The amplitude of the current oscillates
harmonically at the frequency ω̃. As usual we need to compute ~j(~k, ω):

~j(~k, ω) = Ioδ(ω − ω̃)

∫ λ/4

−λ/4
dz′ cos

(
2πz′

λ

)
e−i

2πz′
λ

cos θ

=
λIo

π sin2 θ
δ(ω − ω̃) cos

(π
2

cos θ
)
ẑ (17.4.27)

and our master equations give us the asymptotic fields

~B(~r, ω̃) =
ikµo
4π

eik̃r

r
[n̂×~j(~k, ω̃)] =

iµoIo
2π sin θ

eik̃r

r
cos
(π

2
cos θ

)
ϕ̂

~E(~r, ω̃) = − ickµo
4π

eik̃r

r
n̂× [n̂×~j(~k, ω̃) ]

= − icµoIo
2π sin θ

eik̃r

r
cos
(π

2
cos θ

)
θ̂ (17.4.28)

as well as the angular distribution of the radiation for this case

dI(ω̃) =
µoω

2

2c
[~j ·~j∗ − (n̂ ·~j)(n̂ ·~j∗)]dΩ

4π

=
cµoI

2
o

2 sin2 θ
cos2

(π
2

cos θ
) dΩ

4π
(17.4.29)

17.5 More General Distributions: Further Approximations

We now consider some approximations in the near and far zones, assuming always the
long wavelength approximation. We are always interested in

~j(~k, ω) =

∫ ∞
−∞

dt′
∫
d3~r′~j(~r′, t′)e−i(

~k·~r′−ωt′) (17.5.1)
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Now the exponent e−i
~k·~r′ may be expanded in a Taylor series,

e−i
~k·~r′ =

∑
n

(−i~k · ~r′)n

n!
(17.5.2)

so the expression for ~j(~k, ω) becomes

~j(~k, ω) =
∑
n

(−ik)n

n!

∫ ∞
−∞

dt′
∫
d3~r′(n̂ · ~r′)n~j(~r′, t′)eiωt′ (17.5.3)

In the long wave-length approximation,

~k · ~r′ = 2π

λ
n̂ · ~r′ << 1 (17.5.4)

the expansion above can be thought of as a perturbation series in d/λ, where d is the
characteristic size of the distribution.

17.5.1 The Electric Dipole Approximation: Fields and Radiation

Retaining only the n = 0 term (neglecting all higher order corrections) we would have,

~j(~k, ω) ≈
∫ ∞
−∞

dt′
∫
d3~r′~j(~r′, t′)eiωt

′
(17.5.5)

This is called the “Electric Dipole” approximation for reasons we will see below. Let us
note the identity ∫

V
d3~r′~j =

∮
Σ
~r′(~j · n̂′)dσ′ −

∫
V
d3~r′ ~r′(~∇′ ·~j) (17.5.6)

where Σ is some bounding surface enclosing the volume V . If the bounding surface is
taken to be at infinity and assuming that the charge distribution is localized, there is no
flux across the surface Σ, so that∫

V
d3~r′~j = −

∫
V
d3~r′ ~r′(~∇′ ·~j) (17.5.7)

Now, the continuity equation for an arbitrary distribution of charges, means that

~∇′ ·~j(~r′, t′) = −∂ρ(~r′, t′)

∂t′
(17.5.8)

where ρ(~r′, t′) is the charge density. Inserting this into our expression for ~j(~k, ω) we find,
to leading order,

~j(~k, ω) ≈
∫ ∞
−∞

dt′ eiωt
′
∫
d3~r′~j(~r′, t′) =

∫ ∞
−∞

dt′ eiωt
′
∫
d3~r′ ~r′

∂ρ(~r′, t′)

∂t′
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= −iω
∫ ∞
−∞

dt′ eiωt
′
∫
d3~r′ ~r′ρ(~r′, t′) (17.5.9)

where we have simply integrated by parts. But now notice that

~d(t′) =

∫
d3~r′ ~r′ρ(~r′, t′) (17.5.10)

represents the electric dipole moment of the charge distribution and the integral on the
r.h.s. of (17.5.9) represents the Fourier transform of the dipole moment (this is where the
approximation gets its name from), which we call ~d(ω). Thus we have

~jd(~k, ω) ≈ −iω~d(ω). (17.5.11)

and the magnetic and electric fields in the far zone are given by (17.3.10) and (17.3.11) of
section 20. They are

~Bd(~r, ω) ≈ ω2µo
4πc

eikr

r
[n̂× ~d(ω)]

~Ed(~r, ω) ≈ −ω
2µo
4π

eikr

r
[n̂× (n̂× ~d(ω))] (17.5.12)

to order r−1, showing leading order behavior that is typical of radiation fields.
We may write the spectral distribution due to the time-varying dipole moment of the

distribution as

d2I(ω) =
µoω

4

2c
|~d(ω)|2 sin2 θ

dΩdω

4π
(17.5.13)

using (17.3.14).

17.5.2 The Magnetic Dipole and Electric Quadrupole Approximation

The next order in the Taylor expansion is quite a bit more difficult to work with. It
involves three terms, one of which is interpretable as the radiation from a magnetic dipole
and the other two as the electric “quadrupole” radiation. Consider the term with n = 1.
We should have

~j(~k, ω) = −iω
c

∫ ∞
−∞

dt′eiωt
′
∫
d3~r′(n̂ · ~r′)~j(~r′, t′) (17.5.14)

The vector potential can be written as a sum of two terms, one of which gives a transverse
magnetic induction and the other of which gives a transverse electric field. To see this,
write the integrand above as the sum of two parts as follows

(n̂ · ~r′)~j =
1

2
[(n̂ · ~r′)~j + (n̂ ·~j)~r′] +

1

2
(~r′ ×~j)× n̂ (17.5.15)
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The second (antisymmetric) part is related to the magnetization due to ~j,

~M =
1

2
(~r ×~j) (17.5.16)

and leads to the “magnetic dipole” contribution to this approximation. The second term
is the “electric quadrupole” contribution.

Consider, first, only the magnetic dipole contribution: for the far-zone fields we need
the Fourier transform of the current,

~jm(~k, ω) = −i ω
2c

∫ ∞
−∞

dt′eiωt
′
∫
d3~r′[~r′ ×~j(~r′, t′)]× n̂

= −iω
c

∫ ∞
−∞

dt′eiωt
′
~m(t′)× n̂

= −iω
c
~m(ω)× n̂ (17.5.17)

where we have defined the magnetic dipole moment,

~m(t′) =
1

2

∫
d3~r′[~r′ ×~j(~r′, t′)] =

∫
d3~r′M(~r′, t′) (17.5.18)

and ~m(ω) is its Fourier transform. It is now a trivial matter to give the electric and
magnetic fields. To leading order in 1/r we find

~Em(~r, ω) ≈ −ck
2µo

4π

eikr

r
n̂× [n̂× (~m× n̂)] =

ω2µo
4πc

eikr

r
~m(ω)× n̂

~Bm(~r, ω) ≈ ω2µo
4πc2

eikr

r
n̂× [~m(ω)× n̂] (17.5.19)

We see that the behavior of the magnetic dipole fields is related to the behavior of the
electric dipole fields by the correspondence ~d→ ~m, ~Bd → − ~Em and ~Ed → ~Bm.

Next we consider the quadrupole contribution, but this is a bit more complicated. We
must develop the integral

jq(~k, ω) = − iω
2c

∫ ∞
−∞

dt′eiωt
′
∫
d3~r′[(n̂ · ~r′)~j + (n̂ ·~j)~r′]. (17.5.20)

It can be written as

jq(~k, ω) = −ω
2

2c

∫
d3~r′[~r′(n̂ · ~r′)ρ(~r′, ω)] (17.5.21)

after integrating by parts, using the continuity equation and letting ∂t → −iω. We can
now write the fields (to leading order in 1/r) as

~Bq(~r, ω) ≈ − iω
3µo

8πc2

eikr

r

∫
d3~r′(n̂× ~r′)(n̂ · ~r′)ρ(~r′, ω)
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~Eq(~r, ω) ≈ iω3µo
8πc

eikr

r

∫
d3~r′[n̂× (n̂× ~r′)](n̂ · ~r′)ρ(~r′, ω) (17.5.22)

However, from the definition of the quadrupole moment tensor:

Qij =

∫
d3~r′[3r′ir

′
j − r′

2
δij ]ρ(~r′) (17.5.23)

we see that, if we define the vector ~Q by (summation over repeated indices)

Qi =
1

3
(njQij) =

∫
d3~r′[r′i(n̂ · ~r′)−

1

3
r′

2
ni]ρ(~r′), (17.5.24)

then

n̂× ~Q =

∫
d3~r′(n̂× ~r′)(n̂ · ~r′)ρ(~r′). (17.5.25)

Thus we may express the fields in terms of the quadrupole moment tensor as

~Bq(~r, ω) ≈ − iω
3µo

8πc2

eikr

r
[n̂× ~Q]

~Eq(~r, ω) ≈ iω3µo
8πc

eikr

r
[n̂× (n̂× ~Q)] (17.5.26)

The fields to this order are a sum of the magnetic dipole and the electric quadrupole fields
given above. The spectral distribution is straightforward to write out, but the angular
distribution is quite complicated.

As one can imagine, evaluating the higher order corrections (beyond the electric
quadrupole approximation) is prohibitively complicated in this technique. A more sys-
tematic development of the multipole expansion requires some fairly sophisticated math-
ematical tools.

17.6 The Multipole Expansion



Chapter 18

The Liénard Wiechert Potentials

We turn now to some exact solutions of the inhomogeneous equation. Naturally such
solutions can be given and interpreted only when the charge distribution is exceedingly
simple, i.e., involving a small number of charges. We consider a single point charge in
arbitrary motion.

18.1 Potentials for a single point charge

A single point charge in arbitrary motion (we have already seen that a point charge in
uniform motion does not radiate) is described by the 4-vector current

jµ(x) = eµo

∫
dτUµ(τ)δ(4)(x− x(τ)) (18.1.1)

where Uµ = dxµ/dτ is time-like (see figure 25). We have chosen to use the 4-vector form
of the current here for reasons that will become clear soon. Note that time-like velocities
obey the relation UµUµ = U2 = −c2. This follows from the definition of the proper time:

dτ2 = − 1

c2
ηµνdx

µdxν → − c2 = ηµν
dxµ

dτ

dxν

dτ
= UµUµ = U2 (18.1.2)

We are interested, as before, in evaluating the integral

Aµ(x) =

∫
d4x′GR(x, x′)jµ(x′), (18.1.3)

but this time we want an exact and manifestly covariant solution. Therefore, insert the
4-vector expression for jµ given above into the integral on the r.h.s. and write

Aµ(~r, t) =
eµoc

4π

∫
dτdt′d3~r′

Θ(t− t′)Uµ(τ)

|~r − ~r′|
δ(t′ − t(τ))δ(3)(~r′ − r(τ))δ(|~r − ~r′| − c(t− t′))

(18.1.4)

325
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Figure 18.1: Time-like trajectory of a (massive) particle

An integration over ~r′ immediately yields

Aµ(~r, t) =
eµoc

4π

∫
dτdt′

Θ(t− t′)Uµ(τ)

|~r − r(τ)|
δ(t′ − t(τ))δ(|~r − r(τ)| − c(t− t′)) (18.1.5)

and a further integration over t′ may now be performed to give

Aµ(~r, t) =
eµoc

4π

∫
dτ

Θ(t− t(τ))Uµ(τ)

|~r − r(τ)|
δ(|~r − r(τ)| − c(t− t(τ))) (18.1.6)

We are left with an integral over the particle proper time. Let

f(τ) = |~r − r(τ)| − c(t− t(τ)) (18.1.7)

and assume that f(τ) has only one root, τo(~r, t), such that t > t(τo). This makes sense
because a time-like trajectory can be expected to intersect the light cone of the observation
point in two points, one in the past and one in the future (see figure 26), then

δ(f(τ)) =
δ(τ − τo)∣∣∣ḟ(τ)|τo

∣∣∣ (18.1.8)

where ḟ(τ) = df(τ)/dτ . Finally, performing the integral over τ , we get

Aµ(~r, t) =
e

4πcεo

Uµ(τo)

|ḟ(τo)||~r − r(τo)|
(18.1.9)
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Figure 18.2: Meaning of the retarded potentials

To complete the calculation, we must evaluate ḟ(τ) and demonstrate manifest covariance.
Take the derivative of f(τ):

df

dτ
=

d

dτ
|~r − r(τ)|+ c

dt(τ)

dτ
(18.1.10)

and notice that,

d

dτ
|~r − r(τ)| =

d

dτ

√
~r2 + r2(τ)− 2~r · r(τ)

= − ~r − r(τ)

|~r − r(τ)|
· dr(τ)

dτ
= −n̂ · dr(τ)

dτ
(18.1.11)

where n̂ is the unit vector that points in the direction of ~r − r(τ). Therefore,

df

dτ
= c

dt(τ)

dτ
− n̂ · dr(τ)

dτ
(18.1.12)

and

ḟ(τ)|~r − r(τ)| = c|~r − r(τ)|dt(τ)

dτ
− (~r − r(τ)) · dr(τ)

dτ
(18.1.13)

We know that U0 = dt(τ)/dτ and U i = dri/dτ define the particle velocity 4-vector, so, if
we define the (null, RµRµ = 0) vector Rµ according to

R0(~r, τ) =
1

c
|~r − r(τ)|, ~R(~r, τ) = ~r − r(τ) (18.1.14)
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then

|ḟ(τ)||~r − r(τ)| = −U(τ) ·R(~r, τ) (18.1.15)

and (18.1.9) can be put in the form

Aµ(~r, t) = − e

4πcεo

Uµ(τo)

U(τo) ·R(~r, τo)
(18.1.16)

where U ·R = UαRα is the 4-d scalar product between the velocity 4-vector and Rµ(~r, τ).
Rµ(~r, τo) represents the segment of the observation point’s light cone between its intersec-
tion with the particle trajectory in the past and the point itself. It is directed from the
intersection point to the observation point.

Whereas the formula in (18.1.16) is manifestly covariant, it is subtle and not as simple
to interpret as it might appear. Remember that τo(~r, t) is a root of the equation f(τ) = 0,
which is verified only on the light-cone of the observation point, while the Θ−function
requires us to select the root that lies in the past of the observation point. The situation
is shown schematically in figure 26. The particle trajectory intersects the light cone of
the observation point in two points, one in the past (at τo) and the other in the future
(at τ1). Only the past intersection contributes to the potentials. Therefore the potentials
Aµ(~r, t) above are called “retarded potentials” (in this case, of a single charge in arbitrary
motion). The solution is formally exact.

Let us now try to uncover the subtleties of (18.1.16). Begin by determining the poten-
tial in a particularly trivial case: that of a point charge situated at the origin of coordinates.
Thus r = 0 and t = τ , giving ḟ(τ) = c. Also, U0 = −c2, Ui = 0 and U · R = −c|~r|, so
clearly Ai(~r) = 0 and

−A0(~r) = φ(~r) =
e

4πεo|~r|
(18.1.17)

which we recognize as the electrostatic potential of a single point charge. A boost will give
the potentials seen by an observer whose velocity is ~v relative to the charge and we can
calculate the fields by simply taking derivatives of these.1 In the general case, (18.1.16)
can be put in a more recognizable, but non-covariant form. Use

U0 = − c2√
1− ~v2/c2

, ~U =
~v√

1− ~v2/c2
(18.1.18)

then

Aµ(~r, t) =
e

4πcεo

vµ(τo)

v(τo) ·R(~r, τo)
(18.1.19)

1Problem: Show that one recovers the transformations for ~E and ~B derived in Part I, noting that in
this case ~B = 0 because the charge is static in this frame.
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where vµ = (1, ~v) = dxµ/dt. Separating the time and space components we get

−A0(~r, t) = φ(~r, t) =
e

4πεo

1

(1− ~v(τo)
c · n̂)|~r − r(τo)|

=

[
e

4πεo(1− ~v
c · n̂)R

]
ret

~A(~r, t) =
e

4πεo

~v(τo)/c
2

(1− ~v(τo)
c · n̂)|~r − r(τo)|

=

[
e~v/c2

4πεo(1− ~v
c · n̂)R

]
ret

(18.1.20)

where R = |~r − r(τ)| and the square brackets with the subscript “ret” means that the
quantity within the brackets is to be evaluated at the retarded time, τo.

18.2 The Field Strength Tensor

We are interested in computing the Maxwell field strength tensor Fαβ = ∂[αAβ] (the
square brackets indicate antisymmetrization). One could compute this directly from the
expressions in (18.1.16), but it is less exhausting to do so from the integral expression in
(18.1.6)

Aµ(~r, t) =
e

4πcεo

∫
dτ

Θ(t− t(τ))Uµ(τ)

|~r − r(τ)|
δ(|~r − r(τ)| − c(t− t(τ))) (18.2.1)

We have seen that the integral on the right, although not manifestly a 4-vector, is indeed
so (it does indeed give us a 4-vector as (18.1.16) shows). Before we proceed, let’s put the
integral in a form that explicitly shows this. Let x̃ = (t(τ), r(τ)) and note that

δ([x− x̃]2) = δ(−c2(t− t)2 + |~r − r|2) = δ([|~r − r|+ c(t− t)][|~r − r| − c(t− t)])

=
1

2c|~r − r|
[δ(|~r − r|+ c(t− t)) + δ(|~r − r| − c(t− t))] (18.2.2)

With the Θ−function in the integral, only the second δ−function above is selected, so the
expression for Aµ(~r, t) is equivalent to

Aµ(~r, t) =
e

2πεo

∫
dτΘ(t− t(τ))Uµ(τ)δ([x− x̃(τ)]2) (18.2.3)

which is manifestly covariant as desired. Now let us take the required derivatives to obtain
Fµν . A derivative w.r.t. xν will act on two terms in the integrand, viz., the Θ−function
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and the δ−function. Only the time derivative will act on the Θ−function. Now we know
that Θ′(x) = δ(x), so the (time) derivative, acting on Θ will constrain t = t(τ), which
would restrain the delta function to δ(|~r − r(τ)|2). This, in turn, is supported only when
the particle trajectory intersects the point of observation. Exclude this possibility from
consideration, then we might ignore derivatives of Θ(t − t(τ)). We need to consider only
one term: the derivative of the δ−function. Thus we arrive at

Fµν = ∂[µAν](~r, t) =
e

2πεo

∫
dτΘ(t− t(τ))∂[µδ([x− x̃(τ)]2)Uν](τ), (18.2.4)

but what is the derivative of the δ−function? We have (g = [x− x̃(τ)]2)

∂µδ([x− x̃(τ)]2) = ∂µg
d

dg
δ(g) = ∂µg

dτ

dg

d

dτ
δ(g) =

∂µg

ġ

d

dτ
δ(g)

= − [xµ − x̃µ(τ)]

U · [x− x̃(τ)]

d

dτ
δ([x− x̃(τ)]2) (18.2.5)

so we get

Fµν = ∂[µAν](~r, t) = − e

2πεo

∫
dτΘ(t− t(τ))

d

dτ
δ([x− x̃(τ)]2)

[x− x̃(τ)][µUν](τ)

U · [x− x̃(τ)]
. (18.2.6)

Perform an integration by parts to get

Fµν = ∂[µAν](~r, t) =
e

2πεo

∫
dτ

d

dτ

[
[x− x̃(τ)][µUν](τ)

U · [x− x̃(τ)]

]
Θ(t−t(τ))δ([x− x̃(τ)]2). (18.2.7)

The last integral is carried out in exactly the same manner as before: simply replace

Θ(t− t(τ))δ([x− x̃(τ)]2)→ Θ(t− t(τ))
1

2c
δ(|~r − r(τ)| − c(t− t(τ)) (18.2.8)

and repeat the steps performed earlier to get

Fµν = − e

4πεoc

[
1

U ·R
d

dτ

[
R[µUν]

U ·R

]]
ret

. (18.2.9)

where we have used the fact that Rµ = xµ − x̃µ(τ) in the end.2

2This equality follows from the fact that the δ−function requires (x− x̃)0 = t− t(τ) = 1
c
|~r− r(τ)| = R0

and (x− x̃)i = (r − r(τ))i = Ri.
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18.3 The Fields

Finally, from Maxwell’s field strength tensor we want to extract the physical fields. To do
so we must, of course, evaluate the derivative w.r.t. the particle proper time, τ . Thus,

d

dτ

[
R[µUν]

U ·R

]
=

(U ·R)(Ṙ[µUν] +R[µU̇ν])−R[µUν](U̇ ·R+ U · Ṙ)

(U ·R)2
(18.3.1)

Now Ṙµ = −Uµ, U2 = −c2 and U̇µ is the acceleration. Moreover it should be clear that
U[µUν] = 0. The expression for Fµν therefore simplifies to

Fµν = − e

4πεoc

[
1

U ·R
(U ·R)(R[µU̇ν])−R[µUν](U̇ ·R+ c2)

(U ·R)2

]
ret

(18.3.2)

Let us note that there is one term above that behaves as R−2 and two terms that behave
as R−1. As we have seen before, behavior of the fields as R−1 indicates a flux of energy
across a large sphere and so is typical of radiation fields. Not coincidentally, the two terms
that behave as R−1 are linearly proportional to U̇ , i.e., to the acceleration. The important
lesson here is that there is no energy flux at infinity (in other words, there are no radiation
fields) without acceleration.

In the absence of acceleration the expression reduces to (these are sometimes referred
to as the “velocity fields”)

Fµν =
ec

4πεo

[
R[µUν]

(U ·R)3

]
ret

(18.3.3)

giving (no acceleration)

Ei = Fi0 =
ec

4πεo

[
R[iU0]

(U ·R)3

]
ret

=
ec

4πεo

[
RiU0 −R0Ui

(U ·R)3

]
ret

~E =
e

4πεoγ2

 n̂− ~v/c(
1− ~v

c · n̂
)3
R2


ret

(18.3.4)

and
~B = [n̂× ~E]ret (18.3.5)

The acceleration (radiation) fields may likewise be computed (the calculation is more
laborious, but quite straightforward):

Ei = Fi0 = − e

4πεoc

[
(R[iU̇0])

(U ·R)2
−
R[iU0](U̇ ·R)

(U ·R)3

]
ret
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Figure 18.3: Emission from a relativistic accelerated particle

= − e

4πεoc

[
(RiU̇0 −R0U̇i)

(U ·R)2
− (RiU0 −R0Ui)(U̇ ·R)

(U ·R)3

]
ret

~E =
e

4πεoc2

 [n̂× {(n̂− ~v/c)× ~a}](
1− ~v

c · n̂
)3
R


ret

(18.3.6)

where ~a = ~̇v = d~v/dt is the acceleration (note, not the proper acceleration) and once
again

~B = [n̂× ~E]ret, (18.3.7)

which completes the expressions for the fields. Remember that these expressions are
exact.

18.3.1 Example: Larmor’s formula

We conclude this section by considering a simple example: the radiation from a charge
whose velocity is small compared with the velocity of light in the frame in which the
measurement is being performed. We will be concerned only with the radiation term and
set ~v/c ≈ 0. In this limit the acceleration term is

~Ea ≈
e

4πεoc2

[
[n̂× (n̂× ~a)]

R

]
ret

. (18.3.8)

From the expression for the instantaneous flux

cεo| ~Ea|2n̂ (18.3.9)
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we might compute the power radiated at infinity per solid angle, using the formulas of the
previous sections, to be

dI =
e2

4πεoc3
[n̂× (n̂× a)]2dΩ (18.3.10)

Let θ be the angle between n̂ and ~a, so that n̂ · ~a = a cos θ. Then

[n̂× (n̂× ~a)]2 = (a cos θn̂− ~a)2 = a2 sin2 θ (18.3.11)

where a = |~a|, so the angular dependence of the power radiated is sin2 θ and the total
power radiated is the integral of the power radiated per solid angle over the entire solid
angle

I =
e2

4πεoc3
a2

∫ 2π

0
dφ

∫ π

0
dθ sin3 θ =

2

3

e2a2

εoc3
(18.3.12)

This is the Larmor formula for the total power radiated by a non-relativistic, accelerated
charge. Because we treated only the non-relativistic limit (γ ≈ 0), the angular dependence
of the radiation was simple: just sin2 θ, where θ is measured relative to the acceleration
direction, as we have seen. This is maximum in the plane perpendicular to the acceleration.
For relativistic particles the angular dependence is significantly different as the velocity
dependence of the acceleration fields cannot be ignored. One finds instead (see figure 27),
for example for a particle accelerated in the direction of its velocity, that the peak intensity
is radiated at an angle ≈ ± 1

2γ , which defines the opening angle of a cone whose axis lies
along the velocity vector and whose value can be quite small for large values of γ (extreme
relativistic motion).



Appendix A

The δ−function

A.1 Introduction

Consider the electrostatic potential φ, which obeys

~∇2φ(~r) = −ρ(~r)

εo
(A.1.1)

in the Coulomb gauge (~∇ · ~A = 0). In the case of a single point charge, q, we know that
in the vacuum outside the source the electrostatic potential is given by

φ(~r) =
1

4πεo

q

|~r − ~r0|
(A.1.2)

were ~r0 represents the position of the point charge. and ~r 6= ~r0. Likewise, for any number,
N , of discrete point charges

φ(~r) =
1

4πεo

N∑
j=1

qj
|~r − ~rj |

(A.1.3)

is the potential. Of course, this is a vacuum solution, so it obeys

~∇2φ(~r) = 0 (A.1.4)

Now if we had a continuous distribution instead of a discrete one, we could generalize
(A.1.3) to something like

φ(~r) =

∫
d3~r′ G(~r′, ~r)ρ(~r′) (A.1.5)

where the integration is over all of space. Taking the three dimensional Laplacian of the
r.h.s. gives

~∇2φ(~r) =

∫
d3~r′ [~∇2G(~r′, ~r)]ρ(~r′) (A.1.6)

i
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so that, to satisfy (A.1.1), the function ~∇2G(~r′, ~r) should be a very strange object: it must
have support (it must be non-vanishing) only for ~r = ~r′ and must have no support when
~r 6= ~r′. Moreover, for the integral to give a non-zero result, ~∇2G(~r, r) should be very large
(infinite!) where it has support. Such an object we will formally call a δ−function. It is
not really a well defined function but the limit of a sequence of functions as we will shortly
see. We will write

~∇2G(~r′, ~r) = − 1

εo
δ(3)(~r′ − ~r) (A.1.7)

where δ(3)(~r′ − ~r) is such that

∫
d3~r′ δ(3)(~r′ − ~r) = 1∫

d3~r′ δ(3)(~r′ − ~r)f(~r′) = f(~r) (A.1.8)

for all well-behaved functions f(~r).

A.2 The δ−function as a distribution

It is easier to work in one dimension and, in any case, the three dimensional δ−function
can be thought of as a product of three one dimensional δ−functions:

δ(3)(~r′ − ~r) = δ(x′ − x)δ(y′ − y)δ(z′ − z). (A.2.1)

Let x ∈ (a, b) and define the object δ(x′ − x) by

∫ b

a
dx′ δ(x′ − x) =


0 x /∈ (a, b)

1 x ∈ (a, b)

∫ b

a
dx′ f(x′)δ(x′ − x) =


0 x /∈ (a, b)

f(x) x ∈ (a, b)
(A.2.2)

Normally, we’ll be concerned with all of space, so the limits will be from −∞ to ∞. Let
us consider some examples.
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Figure A.1: The sequence of functions in (A.2.3)

A.2.1 An example

Consider the sequence of functions (see figure A1)

δn(x) =


0 x < − 1

2n

n x ∈ (− 1
2n ,

1
2n)

0 x > 1
2n

(A.2.3)

and note that ∫ ∞
−∞

δn(x)dx =

∫ 1
2n

− 1
2n

ndx = 1, ∀ n ∈ N (A.2.4)

while ∫ ∞
−∞

dx δn(x)f(x) =

∫ 1
2n

− 1
2n

nf(x)dx =
[g(1/2n)− g(−1/2n)]

1/n
(A.2.5)

where g(x) is the primitive of f(x). Calling ε = 1
n and taking the limit as n→∞ (ε→ 0)

we have

lim
n→∞

∫ ∞
−∞

dx δn(x)f(x) = lim
ε→0

[g(ε/2)− g(−ε/2)]

ε
= g′(0) = f(0) (A.2.6)

Thus we may define the δ−function as

δ(x) = lim
n→∞

δn(x) (A.2.7)

because in this limit both conditions in (A.2.2) are obeyed.
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Figure A.2: The sequence of functions in (A.2.8)

A.2.2 Another example

Consider a slightly more complicated sequence of functions

δn(x) =
n√
π
e−n

2x2
(A.2.8)

and again note that ∫ ∞
−∞

dx δn(x) = 1, ∀ n ∈ N (A.2.9)

Now let us consider ∫ ∞
−∞

dx δn(x)f(x) =
n√
π

∫ ∞
−∞

dx e−n
2x2
f(x). (A.2.10)

Expanding f(x) about the origin in a Taylor series

f(x) =
∞∑
j=0

f (j)xj

j!
(A.2.11)

our integral becomes
n√
π

∑
j

f (j)

j!

∫ ∞
−∞

dx xje−n
2x2
. (A.2.12)

where f (j) is the jth derivative of f(x) at x = 0. Clearly, the only non-vanishing contri-
butions come from even j.∫ ∞

−∞
dx δn(x)f(x) =

n√
π

∑
j

f (2j)

(2j)!

∫ ∞
−∞

dx x2je−n
2x2
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=
∑
j

f (2j)

(2j)!

Γ(j + 1
2)

√
π

n−2j . (A.2.13)

We see that the limit as n→∞ of the r.h.s. is just f(0). Thus we also have

lim
n→∞

∫ ∞
−∞

dx δn(x)f(x) = f(0) (A.2.14)

and we could define

δ(x) = lim
n→∞

δn(x), δn(x) =
n√
π
e−n

2x2
, (A.2.15)

thereby getting an alternative representation for the δ−function.

A.2.3 Properties

We may likewise analyze expressions such as

δ(x) = lim
n→∞

δn(x), δn(x) =
n

π

1

1 + n2x2

δ(x) = lim
n→∞

δn(x), δn(x) =
sinnx

πx
=

1

2π

∫ n

−n
dt eixt

δ(x) = lim
n→∞

δn(x), δn(x) =
sin2 nx

nπx2
(A.2.16)

with the same results.
Here is a list of some of the more interesting properties of the δ−function. They can

be proved by simply applying the defining equations.

1. δ(cx) = 1
|c|δ(x) (therefore, δ(−x) = δ(x)), or more generally,

δ(g(x)) =
∑
j

δ(x− xj)
|g′(xj)|

(A.2.17)

where xj is a simple zero of the function g(x), i.e., g(xj) = 0 and g′(xj) 6= 0,

2. g(x)δ(x− xo) = g(xo)δ(x− xo),

3.
∫∞
−∞ dx δ(x− y)δ(x− z) = δ(y − z) and

4. Θ′(x) = δ(x), where Θ(x) is the Heaviside Θ−function.

Note, however, that the limits of the defining sequences themselves do not exist on the
real line, i.e., the δ−function has no meaning independently. The only meaning that can
be given the object is via its defining integrals. It is a distribution.
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A.3 The δ−function in curviliear coordinates

Beginning with the δ−function in a cartesian system, we can deduce its form in a general
curvilinear coordinate system by using its defining properties. By definition∫

dnx′δn(x′ − x) = 1 =

∫
dnξ′

∥∥∥∥∂x′∂ξ′

∥∥∥∥ δn(x′ − x)∫
dnx′δn(x′ − x)f(x′) = f(x) =

∫
dnξ′

∥∥∥∥∂x′∂ξ′

∥∥∥∥ δn(x′ − x)f(x′) (A.3.1)

where ‖‖ is the Jacobian of the transformation, f is a scalar function and, on the r.h.s.,
x = x(ξ). But we have seen in Chapter 3 that the Jacobian can be replaced by the
determinant of the metric, i.e.,

1 =

∫
dnξ′

∥∥∥∥∂x′∂ξ′

∥∥∥∥ δn(x′ − x) =
1

c

∫
dnξ′

√
−g(ξ′)δn(x′ − x). (A.3.2)

Now we define the n dimensional δ−function in a general coordinate system in the same
way as we had before: ∫

dnξ′δn(ξ′ − ξ) = 1∫
dnξ′f(ξ′)δn(ξ′ − ξ) = f(ξ). (A.3.3)

Then, simply comparing the expressions above, we find

δn(x′ − x) =
c√
−g(ξ)

δn(ξ′ − ξ) (A.3.4)

Thus cg−
1
2 (ξ)δn(ξ′− ξ) is a scalar under general coordinate transformations and δn(ξ′− ξ)

is a scalar density. As examples let’s write the three dimensional δ−function in spherical
coordinates (in three dimensions, the factor of c does not appear of course):

δ(3)(~r′ − ~r) =
1

r2 sin θ
δ(r′ − r)δ(θ′ − θ)δ(ϕ′ − ϕ) (A.3.5)

and in cylindrical coordinates:

δ(3)(~r′ − ~r) =
1

ρ
δ(ρ′ − ρ)δ(ϕ′ − ϕ)δ(z′ − z). (A.3.6)

Notice the density factors in each case.
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