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Chapter 1

Special Relativity

In physics, a “theory of relativity” is an assertion that the Universe is objective. Its goal
is to provide an isomorphism between sets of measurements performed in two (different)
inertial frames of reference via an automorphism of the underlying space-time. Galilean
relativity is based on the concepts of a universal or “absolute” space and an “absolute”
time, by which is meant that measurements of spatial distances and time intervals are
observer (or frame) independent provided that the spatial distances are measured by a
simultaneous measurement of the endpoints. Toward the end of the nineteenth century,
however, Maxwell’s formulation of electromagnetism, which was completed in 1865, had
exposed certain fundamental inconsistencies between the new and extremely successful
electromagnetic theory and the Galilean conception of space and time. Today we know
that Galilean transformations cease to yield results that agree with experiment when the
relative velocity of the two frames being compared is a significant fraction of the speed of
light.

In 1887, A. Michelson and E. Morley were able to provide convincing evidence, by
means of a very clever and now famous experiment named after them, that the speed of
light is the same in all directions and that light does not require a medium in which to
travel. At the time their experiment was performed such a medium was assumed to exist
because electromagnetic waves were not considered to be different from other well-known
mechanical waves (eg. sound) and all mechanical waves were known to require a medium
in which to propagate. The putative medium in which light traveled was dubbed the
luminiferous aether and was thought to pervade all of space. When wave propagation
occurs in a medium, the frame that is at rest relative to it assumes a special place in the
theory and the “speed” of the wave is its speed as measured in this frame. Thus, the
speed of sound in air at STP is approximately c = 343 m/s in the frame of the air. An
inertial observer moving relative to the air with a velocity v⃗ in the direction of the wave
propagation or opposite it would observe that the speed of the wave is c∓v, in accordance

1



2 CHAPTER 1. SPECIAL RELATIVITY

with the principles of Galilean relativity. The Michelson and Morley experiment was
designed to measure the velocity of the earth relative to the luminiferous aether as it
revolves around the sun during the course of a year. The results were null and the speed
of light was found to be the same for propagation in all directions, indicating that the
aether was absent. If no such medium exists then the wave speed could be the same for
all inertial observers, in other words, a universal constant of nature. This agreed with
Maxwell’s theory of electromagnetism, by which electromagnetic waves propagate in a
vacuum at a speed that depends only on the fundamental constants. Motivated by the
Michelson-Morley result and by Maxwell’s theory, A. Einstein recognized in 1905 that the
failure of Galilean relativity at high relative velocities is a consequence of the breakdown
of the concepts of “absolute” space and “absolute” time mentioned above. When they are
abandoned and replaced by the experimental requirement that the speed of light is the
same in all inertial frames, we arrive at a dramatically new conception of space and time
and therefore of mechanics as well. This modification is known as Einstein’s “special”
theory of relativity, or simply Special Relativity and is the topic of this chapter.

We introduce Einstein’s theory in this chapter. We will not dwell much on the questions
and experiments that led up to it, neither shall we concern ourselves too much with the
apparent paradoxes (there are many, all of them safely resolved). It is assumed that the
reader has had some exposure to the topic, so we rather concentrate on a mathematical
formulation of the theory and a framework that will be useful for the objectives of these
notes.

1.1 The Principle of Covariance

It is a general principle that the laws of physics must be the same in all inertial frames.
If this were not true, there would be no way to compare the measurements of one inertial
observer with those of any other.

Mathematically, the fundamental laws of physics would be same in all inertial frames
of reference if the equations describing them have the same form in all inertial frames, that
is, if the set of transformations that relate one inertial frame to another (automorphisms of
space-time) would, when applied to the two sides of any fundamental equation of physics,
transform each side in precisely the same way as the other. This is the principle of
covariance and equations that have this property are said to be covariant. To further
elaborate on this idea, we recall that the transformations that relate two inertial frames
will in turn determine the transformation properties of physical quantities such as velocity,
acceleration, etc. If they leave a physical quantity the same in every inertial frame then
that quantity is an invariant or a scalar. Other quantities may not remain invariant
but they will transform in a prescribed way. Covariance requires that both sides of the
fundamental equations must have the same transformation properties. Thus a scalar
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quantity can only be related to another scalar quantity, a vector to a vector and so on.
We will see below that Newton’s laws are covariant under Galilean transformations

but Maxwell’s equations are not. This signals an incompatibility between mechanics and
electromagnetism, and incompatibilities always indicate that modifications to one or both
theories are required at a fundamental level. While it is possible that both theories are
wrong, it is more fruitful at first to accept one as correct and modify the other so as to
make its equations covariant under the transformations that are compatible with the first.
Given the fundamental agreement between the predictions of electromagnetism and the
experiment of Michaelson and Morley, Einstein chose the transformations that preserve the
form of Maxwell’s equations over the Galilean transformations of Newtonian mechanics.
The result is a new formulation of classical mechanics that accounts for the fact that the
speed of light is a finite and universal constant of nature. In the end, of course, only
experiment can decide which theory is correct and, indeed, in the years that followed
Einstein’s 1905 paper, it has resoundingly confirmed his choice.

1.1.1 Galilean tranformations

We are familiar with Galilean relativity, which we may conveniently think of as two sets
of transformations viz., the “boosts”

r⃗ → r⃗′ = r⃗ − v⃗t, t→ t′ = t (1.1.1)

(provided that the frames are coincident at t = 0) and spatial rotations

r⃗ → r⃗′ = R̂ r⃗, t→ t′ = t (1.1.2)

where R̂ is a rotation matrix (see figure 1.1). The second of (1.1.1) expresses the abso-
luteness of time intervals, as dt′ = dt is the same for all inertial observers. To see that
spatial intervals are also absolute one must remember that the measurement of a distance
involves a simultaneous measurement of the endpoints and therefore one has

|dr⃗′|dt′=0 = |dr⃗ − v⃗dt|dt′=dt=0 = |dr⃗|. (1.1.3)

Consider a single particle within a collection of N particles with interactions between
them. If we label the particles by integers, Newton’s equations describing the evolution of
a single particle, say particle n, may be written as,

mn
d2r⃗n
dt2

= F⃗ extn + F⃗ intn = F⃗ extn +
∑
m̸=n

F⃗ intm→n, (1.1.4)

where F⃗ intm→n represents the (internal) force that particle m exerts over particle n. Assume
that the external forces are invariant under Galilean boosts,

F⃗
′ext
n = F⃗ extn , (1.1.5)
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Figure 1.1: Boosts and rotations

and that the internal forces are derivable from a potential that depends only on the spatial
distance between the particles, i.e.,

F⃗ intn = −∇⃗nΦintn = −
∑
m ̸=n
∇⃗nΦnm(|r⃗n − r⃗m|). (1.1.6)

This is compatible with the third law (of action and reaction) and it also makes the
internal forces invariant under Galilean boosts. To see that this is so, specialize to just
one space dimension and write the transformations in the following form (we are making
this more complicated than it really is so as to introduce methods that will be useful in
more complicated situations) [

dt′

dx′

]
=

[
1 0
−v 1

] [
dt
dx

]
(1.1.7)

and the inverse transformations as[
dt
dx

]
=

[
1 0
v 1

] [
dt′

dx′

]
. (1.1.8)

We can now read off
∂

∂t′
=
∂t

∂t′
∂

∂t
+
∂x

∂t′
∂

∂x
=

∂

∂t
+ v

∂

∂x
(1.1.9)

and
∂

∂x′
=

∂t

∂x′
∂

∂t
+
∂x

∂x′
∂

∂x
=

∂

∂x
. (1.1.10)

Therefore
∂

∂x′n
Φnm(|x′n − x′m|) =

∂

∂xn
Φnm(|xn − xm|), (1.1.11)

as claimed and the r.h.s. of Newton’s equations are invariant. Moreover dt′ = dt and the
transformation is linear so that the left hand side (l.h.s.) of Newton’s equations is also
invariant under these transformations. Therefore, subject to the conditions of (1.1.5) and
(1.1.6), the equations of Newtonian dynamics are invariant under Galilean boosts.
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1.1.2 Lorentz Transformations

In electrodynamics, on the other hand, in free space one typically ends up with the wave
equation,

□xψ =
1

c2
∂2ψ

∂t2
− ∇⃗2ψ = 0, (1.1.12)

where c is the speed of light in the vacuumn, determined by two constants, viz., the
permitivity and the permeability of space, and ψ is the “wave function”, which can be
the electromagnetic scalar or vector potential. Now it is an experimental fact that the
speed of light in a vacuum is universal, i.e., the same for all inertial observers. However,
then (1.1.12) is not invariant under Galilean transformations. Using the transformations
in (1.1.7) and (1.1.8) we have

∂2

∂t′2
=

(
∂

∂t
+ v⃗ · ∇⃗

)(
∂

∂t
+ v⃗ · ∇⃗

)
(1.1.13)

and
∇⃗′2 = ∇⃗2. (1.1.14)

Plugging this into the wave equation, we find

1

c2
∂2

∂t′2
− ∇⃗′2 → 1

c2
∂2

∂t2
− ∇⃗2 +

2v⃗

c2
· ∇⃗ ∂

∂t
+

1

c2
(v⃗ · ∇⃗)(v⃗ · ∇⃗), (1.1.15)

but only the first two terms on the r.h.s. correspond to the wave-equation. Moreover,
there is no known kinetic transformation of the wave-function that can return the wave
equation to its original form,1 so we must conclude that the electromagnetic wave-equation
is not invariant under Galilean transformations. This signals an incompatibility between
electromagnetism and Newtonian mechanics, therefore, by the principle of covariance, one
or both of them must be modified. As we now know, Maxwell’s theory was preferred
over Newtonian mechanics, which leads us to ask: what are the transformations that
keep Maxwell’s equations covariant? Once we have answered this question we will be in
a position to address the problem of constructing a theory of mechanics that is indeed
covariant under them.

To answer the first question, assume that the transformations that relate two inertial
frames continue to be linear (as the Galilean transformations are) and think of the wave-
equation as made up of two distinct parts: the second order differential operator, “□x”, and

1Problem: Show that, on the contrary, the Schroedinger equation is invariant under Galilean transfor-
mations if they are supplemented with the following kinetic transformation of the wave-function:

ψ → ψ′ = e−
i
ℏ (p⃗·r⃗−Et)ψ

where p⃗ = mv⃗ and E = mv⃗2/2. What does this mean?
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the wave function, ψ, each transforming in its own way under the above transformations.
For covariance, we will require “□x”, to transform as a scalar (invariant). Let us work
with Cartesian systems and consider some general transformations of the form

t → t′ = t′(t, r⃗),

r⃗ → r⃗′ = r⃗′(t, r⃗). (1.1.16)

They must be

1. one-to-one: so that observers may be able to uniquely relate observations, and

2. invertible: so that the transformations can be made from any observer to the other
– there is no preferred observer.

Our functions must therefore be bijective. As we have assumed that the transformations
are linear, they will have the form

t′ = − 1

c2
(L00t+

∑
i

L0ixi),

x′i = Li0t+
∑
j

Lijxj . (1.1.17)

The reason for this peculiar definition of the coefficents will become clear later. For now
let us only note that the L’s are some constants that we would like to evaluate. In matrix
form the transformations could be written as[

dt′

dx′i

]
=

[
−L00

c2
−L0j

c2

Li0 Lij

] [
dt
dxj

]
. (1.1.18)

The matrix on the r.h.s. is really a 4×4 matrix and Lij represents a 3×3 matrix of purely
spatial transformations. It must be invertible because the transformation is required to
be bijective. For example, if L00 = −c2 and L0i = 0 = Li0, the resulting transformations
are purely spatial, transforming xi → x′i =

∑
j Lijxj and leaving t → t′ = t unchanged.

Clearly, therefore, the wave-operator,

□x → □′
x = ∂2t′ − ∇⃗′2 = ∂2t − ∇⃗′2, (1.1.19)

is a scalar if and only if Lij is a spatial rotation, because only then will ∇⃗′2 = ∇⃗2.
More interesting are the “boosts”, which involve inertial observers with relative ve-

locities. Now Li0 ̸= 0 ̸= L0i. Consider relative velocities along the x direction and the
transformation 

dt′

dx′1
dx′2
dx′3

 =


α β 0 0
γ δ 0 0
0 0 1 0
0 0 0 1



dt
dx1
dx2
dx3

 . (1.1.20)



1.1. THE PRINCIPLE OF COVARIANCE 7

Notice that we have set x′2 = x2 and x′3 = x3. This is because we assumed that space
is homogeneous and isotropic so that a boost in the x1 direction has no effect on the
orthogonal coordinates x2 and x3. We can consider then only the effective two dimensional
matrix [

dt′

dx′

]
=

[
α β
γ δ

] [
dt
dx

]
(1.1.21)

(where x1 := x). Thus we find the inverse transformation[
dt
dx

]
=

1

∥∥

[
δ −β
−γ α

] [
dt′

dx′

]
, (1.1.22)

where ∥∥ represents the determinant of the transformation, ∥∥ = αδ − βγ and we have

∂

∂t′
=

∂t

∂t′
∂

∂t
+
∂x

∂t′
∂

∂x
=

1

∥∥

(
+δ

∂

∂t
− γ ∂

∂x

)
∂

∂x′
=

∂t

∂x′
∂

∂t
+
∂x

∂x′
∂

∂x
=

1

∥∥

(
−β ∂

∂t
+ α

∂

∂x

)
, (1.1.23)

turning our wave-operator into

1

c2
∂2

∂t′2
− ∇⃗′2 =

1

∥∥2

(
1

c2

(
+δ

∂

∂t
− γ ∂

∂x

)2

−
(
−β ∂

∂t
+ α

∂

∂x

)2
)

=
1

∥∥2

(
(δ2/c2 − β2) ∂

2

∂t2
− (α2 − γ2/c2) ∂

2

∂x2

−2(αβ − γδ/c2) ∂2

∂t∂x

)
. (1.1.24)

If it is to remain form invariant, the right hand side above has to look the same in the
frame S and we need to set

δ2

c2
− β2 =

∥∥2

c2
,

α2 − γ2

c2
= ∥∥2,

αβ − γδ

c2
= 0. (1.1.25)

We have four unknowns and three constraints, so there is really just one parameter that
determines all the unknowns. It is easy to find. Note that setting

δ = ∥∥ cosh η, β =
∥∥
c
sinh η (1.1.26)
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solves the first of these equations, as

α = ∥∥ coshω, γ = c∥∥ sinhω (1.1.27)

solves the second. The last equation is then a relationship between η and ω. It implies
that

sinh η coshω − sinhω coshω = sinh(η − ω) = 0→ η = ω. (1.1.28)

Our boost in the x direction therefore looks like[
dt′

dx′

]
= ∥∥

[
cosh η 1

c sinh η
c sinh η cosh η

] [
dt
dx

]
. (1.1.29)

We notice that ∥∥ is not determined. We will henceforth take it to be unity.
What is the meaning of the parameter η? Consider a test body having a velocity u as

observed in the S frame. Its velocity as measured in the S′ frame would be (the velocity
does not transform as a vector)

u′ =
dx′

dt′
=

(cosh η)dx+ c(sinh η)dt

(cosh η)dt+ 1
c (sinh η)dx

. (1.1.30)

Dividing by (cosh η)dt we find

u′ =
u+ c tanh η

1 + u
c tanh η

. (1.1.31)

Now suppose that the body is at rest in the frame S. This would mean that u = 0. But,
if S′ moves with a velocity v relative to S, we can say that S should move with velocity
−v relative to S′. Therefore, because the test body is at rest in S, its velocity relative to
S′ should be u′ = −v. Our formula gives

u′ = −v = c tanh η → tanh η = −v
c
. (1.1.32)

This in turn implies that

cosh η =
1√

1− v2/c2
, sinh η = − v/c√

1− v2/c2
, (1.1.33)

so we can write the transformations in a recognizable form

t′ =
t− vx/c2√
1− v2/c2

,

x′ =
x− vt√
1− v2/c2

,
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y′ = y,

z′ = z. (1.1.34)

Notes:

• These are the Lorentz transformations of the special theory of relativity.2 They
reduce to Galilean transformations when v/c≪ 1.

• Because tanh η ∈ (−1, 1) it follows that the transformations are valid only for v < c.
The velocity of light is the limiting velocity of material bodies and observers. There
exists no transformation from the rest frame of light to the rest frame of a material
body.

• In general the matrix L̂ is made up of boosts and rotations. Rotations do not, in
general, commute with boosts and two boosts can lead to an overall rotation.

• Lorentz transformations keep the interval

ds2 = c2dt2 − dx2 − dy2 − dz2 (1.1.35)

invariant3 i.e., the same for all observers. The interval ds is known as the proper
distance and ds/c is known as the proper time (it’s not difficult to see that when dr⃗ =
0, ds/c = dt i.e., it is the time measured on a clock that is stationary in the frame).
Like the proper distance, the proper time is an invariant. The transformations that
keep an interval like (1.1.35) invariant form the Lie group SO(3, 1).

1.2 Elementary consequences of Lorentz transformations

Our transformations mix up space and time, so there is no way for it but to consider
both time and space as part of a single entity: “space-time”. This is a four dimensional
manifold. A point in space-time is called an event and involves not just its spatial location
but also the time at which the event occurred.

2For the very curious: Lorentz transformations can be put in four categories:

– Proper orthochronous: L↑
+ with ∥∥ = +1, L00/c

2 ≤ −1

– Proper non-orthochronous: L↓
+ with ∥∥ = +1, L00/c

2 ≥ +1

– Improper orthochronous: L↑
− with ∥∥ = −1, L00/c

2 ≤ −1

– Improper non-orthochronous: L↓
− with ∥∥ = −1, L00/c

2 ≥ +1

What we have are therefore proper orthochronous transformations.
3Problem: Prove this by direct substitution.
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1.2.1 Simultaneity

The single most important consequence of the Lorentz transformations is that the concept
of “simultaneity” is no longer absolute. Consider two events that are spatially separated,
but occur at the same time as measured in the frame of an observer, S. Thus dx ̸= 0 but
dt = 0. According to (1.1.34),

dt′ =
−vdx/c2√
1− v2/c2

̸= 0 (1.2.1)

Thus events that are regarded as simultaneous in one frame are not so regarded in another
frame, which is moving relative to the first.4

1.2.2 Length Contraction

Another interesting consequence is that length measurements of objects that are moving
relative to an observer are smaller than measurements performed in the frame in which the
objects are at rest. (The rest frame of a body is called the “proper” frame of the body).
To understand how this comes about, one must recognize that to correctly measure the
spatial distance between two points, their positions must be ascertained simultaneously.
Let S be the frame in which the body is at rest and let S′ be an observer moving at
velocity v relative to S. Since a measurement of the body’s length involves a simultaneous
measurement of its endpoints, we should have dt′ = 0. By the Lorentz transformations,
this means that dt = vdx/c2 and therefore

dx′ =
dx− vdt√
1− v2/c2

= dx
√

1− v2/c2. (1.2.2)

But dx represents the length of the body as measured in its proper frame, so its length as
measured by S′ i.e., dx′, is “contracted” by a factor of

√
1− v2/c2.

1.2.3 Time Dilation

Measurements of time intervals are also naturally observer dependent. Let S be the
proper frame of a clock, which is moving relative to an observer S′ with a velocity v.
Being stationary in S, we might say that dx = 0 and dt = ds/c represents the proper time
intervals of the clock. The Lorentz transformation then tells us that time intervals read
off by S′ are related to proper time intervals according to

dt′ =
dt√

1− v2/c2
(1.2.3)

4Problem: Show that “future” and “past” are absolute; i.e., show that if event “1” occurs in the past
of event “2” in any inertial frame then “1” will occur in the past of “2” in every reference frame.
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past

t

x

future

forbidden forbidden

t=
x/

ct=
-x/c

Figure 1.2: The light cone

This is known as “time dilation”. Physically, this may be understood by noticing that
while the time interval is measured in S colocally (at the same place), it is not so in
S′. The clock in S appears to be “running slow” to the observer S′. This was in fact
predicted in 1897 (long before Einstein’s theory) by Louis Larmor who noticed the effect
for electrons orbiting the nucleus of atoms.

It is often valuable to understand these phenomena in terms of world (space-time)
diagrams. Thus, in figure 1.2 we show a two dimensional universe with the y−axis repre-
senting time from the point of view of some inertial observer, S. The red lines represent
the path of light rays emanating from the origin in the upper half plane and terminating
at the origin in the lower half plane. Consider a particle whose path, represented by the
black curve, passes through the origin. (This can be arranged by resetting the origin of
space and time). At no instant on this path may its slope, dt/dx, be less than or even
equal to 1/c, otherwise our particle would be traveling faster than or at the speed of light
at that instant. Therefore the path lies wholly between the boundaries provided by the
lines t = ±x/c. This is the light cone. The region within the light cone and to the future
is called the future light cone, the region within the light cone and in the past is called
the past light cone and the regions on the left and right sides of the light cone are forever
forbidden to the particle in the sense that it can never physically reach them. At any
moment in time, the particle may only receive information from (and thus be influenced
by) events within its own past light cone. Thus a fundamental role of Relativity is to
restrict the domain of causal influence on any event. However, notice that as our particle
travels along its world line, regions that were previously inaccessible begin to fall within
its past light cone and become accessible as shown until, after an infinite time, its past



12 CHAPTER 1. SPECIAL RELATIVITY

t

t’

x

x’

t=
x/

c

t=
x
/v

t=vx/c
2

t=
-x/c

Figure 1.3: Two frames compared to each other

light cone encompasses the whole of the universe.
Figure 1.3 shows two inertial frames drawn in the same diagram. Let the (t, x) coordi-

nate system represent an observer S and consider what the reference frame of an observer
moving at velocity v relative to S might look like. The t′ axis is the axis for which x′ = 0,
i.e., in the (t, x) frame it is given by the straight line t = x/v as shown in green. On
the other hand, the x′ axis is the one for which t′ = 0, i.e., it is given by t = vx/c2, also
shown in green in the figure. Consider two events that are spatially separated but occur
simultaneously in S. These are represented by small circles on a horizontal (t = const.)
line. We see immediately that they do not fall on the same t′ = const. line. This graph-
ically encapsulates the relativity of simultaneity. One can similarly visualize both length
contraction and time dilation by projecting respectively on the x and t directions.5

1.2.4 Velocity Addition

Let us also recall the so-called law of “composition of velocities”. Consider a particle
whose velocity is being measured in two frames S and S′. Suppose that frame S′ has a
speed v in the positive x−direction relative to S then how do the particle velocities, as
measured by S and S′ relate, to one another? By definition, the velocity measured by S′

will be

u′x =
dx′

dt′
=

dx− vdt
dt− vdx/c2

=
ux − v

1− uxv/c2

u′y =
dy′

dt′
=
dy
√

1− v2/c2
dt− vdx/c2

=
uy
√
1− v2/c2

1− uxv/c2

5Problem: Do this!
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u′z =
dz′

dt′
=
dz
√

1− v2/c2
dt− vdx/c2

=
uz
√

1− v2/c2
1− uxv/c2

(1.2.4)

and they all reproduce the Galilean result when c→∞.

1.2.5 Relativistic (Velocity) Aberration

Finally, we can compare directions in space, as measured by two different observers. For
example, if the particle is moving in the x−y plane (uz = 0), let us see how two observers
may describe its direction of motion. According to observer S′ the (tangent of the) angle
made with the positive x−axis will be

tan θ′ =
u′y
u′x

=
uy
√

1− v2/c2
ux − v

=
u sin θ

√
1− v2/c2

u cos θ − v
(1.2.5)

where θ is measured in S and u is the particle speed as measured in S. Notice that it
depends on the speed of the particle as well as the relative speed of the frames. If the
“particle” were a photon, i.e., in the case of light propagation, u = c and

tan θ′ =
sin θ

√
1− v2/c2

cos θ − v/c
(1.2.6)

This is the formula for light aberration.6,7

1.3 Tensors on the fly

One lesson that we learn is that we must work with the position vectors of events and
these are “four-vectors”, i.e., vectors having one time and three space components. It is
no longer useful or even correct to think of space and time as separate entities because
the Lorentz transformations mix the two. Continuing with a Cartesian system, label the
coordinates as follows:

xµ = (x0, xi) : µ ∈ {0, 1, 2, 3}, x0 = t, xi = xi. (1.3.1)

6Problem: Show that the formula can be simplified to

tan
θ′

2
= tan

θ

2

√
1− v/c
1 + v/c

7Problem: Show that for small angles, in the limit v/c→ 0 and up to first order in v/c, the aberration
angle ∆θ = θ − θ′ is given by

∆θ ≈ v

c
sin θ
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Let us be particular about the position of the indices as superscripts, distinguishing be-
tween superscripts and subscripts (soon we will see that this is important) and consider a
displacement, dxµ, in frame S letting the corresponding displacement in frame S′ be dx′µ.
By our transformations we know that

dxµ → dx′µ =
∑
ν

Lµνdx
µ, (1.3.2)

where Lµν is precisely the matrix we derived earlier for the special case of boosts in the x
direction. In that case

L0
0 = −L00/c

2 = cosh η,
L0

1 = −L01/c
2 = sinh η/c, L0

i = 0 ∀ i ∈ {2, 3},
L1

0 = L10 = c sinh η, Li0 = 0 ∀ i ∈ {2, 3},
L1

1 = L11 = cosh η, Lij = δij ∀ i, j ∈ {2, 3}, (1.3.3)

where

δij =

{
1 i = j
0 i ̸= j

(1.3.4)

is the usual Kronecker δ̂ (unit matrix).
In space-time, we may set up a vector space V at each point, P , by defining a set of

four vectors, {û(µ)}, called a tetrad frame, spanning V . Suppose we choose the basis
vectors in such a way that u(µ) points in the direction of increasing xµ at P , then an
arbitrary proper displacement in space-time can be expressed as ds⃗ =

∑
µ dx

µû(µ). Since
the displacement itself should not depend on the observer, but dxµ transforms according
to (1.3.2), it follows that under a Lorentz transformation

û(µ) → û′(µ) =
∑
α

û(α)(L
−1)αµ (1.3.5)

A vector is any object of the form A⃗ =
∑

µA
µû(µ), with four “contravariant” components,

Aµ, each of which transforms as dxµ (so that A⃗ is also observer independent), i.e.,

Aµ → A′µ =
∑
ν

LµνA
ν . (1.3.6)

The set of all of all vectors forms the vector space, V , with addition defined by

A⃗+ B⃗ =
∑
µ

(Aµ +Bµ)û(µ) (1.3.7)

and scalar multiplication by

aA⃗ =
∑
µ

(aAµ)û(µ), (1.3.8)
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where a ∈ R. The additive identity is the zero vector (Aµ = 0 ∀ µ), the additive inverse
of A⃗ is the vector −A⃗ =

∑
µ(−Aµ)û(µ) and the number “1” is the identity of scalar

multilication. All the axioms of a vector space are satisfied by these definitions.
It is both customary and useful to think of a vector in terms of its components, but it

is somewhat inconvenient to explicitly write out the summation (Σ) every time we have
a sum over components. We notice, however, that only repeated indices get summed
over; therefore we will use Einstein’s convention and drop the symbol Σ, but now with
the understanding that repeated indices, occurring in pairs in which one member appears
“up” (as a superscript) and the other “down” (as a subscript), automatically implies a
sum. Thus, for example, we would write the above transformation of contravariant vectors
as

Aµ → A′µ = LµνA
ν . (1.3.9)

Notice that the derivative operator does not transform as dxµ, but according to the inverse
transformation. In other words:

∂

∂xµ
:= ∂µ →

∂

∂x′µ
:= ∂′µ =

∂xα

∂x′µ
∂α. (1.3.10)

But since ∂x′µ/∂xα = Lµα, and

∂xα

∂x′µ
∂x′µ

∂xβ
= δαβ = (L−1)αµL

µ
β, (1.3.11)

it follows that

∂′µ =
∂xα

∂x′µ
∂α = (L−1)αµ∂α, (1.3.12)

which is the same as the transformation of the basis vectors according to (6.2.6). Moreover,
if ϕ(x) is any scalar function, i.e., ϕ(x)→ ϕ′(x′) = ϕ(x), then

dx′µ∂′µϕ
′(x′) = (L−1)βµL

µ
αdx

α∂βϕ(x) = δβαdx
α∂βϕ(x) = dxµ∂µϕ(x) (1.3.13)

shows that dxµ∂µϕ is invariant.
Given any vector space, V , one can consider the space of all linear maps from V to

the real numbers, i.e., maps of the form ω⃗ : V → R, i.e., for any vector A⃗,

ω⃗(A⃗) ∈ R

and for any two vectors A⃗ and B⃗,

ω⃗(aA⃗+ bB⃗) = aω⃗(A⃗) + bω⃗(B⃗)

where a and b are real numbers. One may now define the sum of two linear maps by

(aω⃗ + bη⃗)(A⃗) = aω⃗(A⃗) + bη⃗(A⃗) (1.3.14)
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then one can show that these maps themselves form a vector space of the same dimension
as V , called the dual vector space, ∗V . Given the tetrad {û(µ)}, spanning V , we could

introduce a basis for the dual vector space, {θ̂(µ)}, by requiring that

θ̂(ν)(û(µ)) = δνµ (1.3.15)

For the definition above to remain invariant, it must hold that, under a Lorentz transfor-
mation,

θ̂(µ) → θ̂′(µ) = Lµαθ̂
(α). (1.3.16)

Any member of the dual vector space, ω⃗ can now be expressed as ω⃗ = ωµθ̂
(µ). ωµ are

called the “covariant” components of ω⃗. They will transform as

ωµ → ω′
µ = ωα(L

−1)αµ, (1.3.17)

so that, given any vector, A⃗, and any dual vector, ω⃗, one forms a scalar

ω⃗(A⃗) = ωµA
µ. (1.3.18)

This is the four dimensional dot product, the analogue of the three dimensional dot product
we are familiar with. The simplest example of a dual vector is the gradient of a scalar
function:

∇ϕ(x) = θ̂(µ)∂µϕ(x), (1.3.19)

as we saw earlier. Notice that

∇ϕ(ds⃗) = ∂µϕdx
µ = dϕ (1.3.20)

returns the change in the scalar function due to an infinitesimal displacement.
The form of (1.3.18) suggests that we could equivalently think of vectors as linear

maps on dual vector spaces, i.e.,
A⃗(ω⃗) ∈ R. (1.3.21)

Then, if we require
û(µ)(θ̂

(ν)) = δνµ, (1.3.22)

it follows that
A⃗(ω⃗) = ω⃗(A⃗) = ωµA

µ, (1.3.23)

that is, the dual of the dual vector space is the vector space itself.
The concept of vectors is generalized to tensors by simply defining a rank (0, n) tensor

to be a multilinear map8 from an ordered collection of vectors to R, i.e.,

T : V ⊗ V . . .⊗ V (n times)→ R. (1.3.24)

8A multilinear map acts linearly on all its arguments.
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A basis for T will be θ̂(µ1) ⊗ θ̂(µ2) . . .⊗ θ̂(µn) and we could express T as

T = Tµ1µ2...µn θ̂
(µ1) ⊗ θ̂(µ2) . . .⊗ θ̂(µn). (1.3.25)

Its covariant components will transform as n copies of a dual vector,

T ′
µνλ... = Tαβγ...(L

−1)αµ(L
−1)βν(L

−1)γλ . . . . (1.3.26)

Similarly, we could define a rank (m, 0) tensor to be a multilinear map from an ordered
collection of dual vectors to R, i.e.,

T : ∗V ⊗ ∗V . . .⊗ ∗V (m times)→ R. (1.3.27)

By the same reasoning, a basis for T will be û(µ1)⊗ û(µ2) . . .⊗ û(µm) and we could express
T as

T = Tµ1µ2...µm û(µ1) ⊗ û(µ2) . . .⊗ û(µm) (1.3.28)

so that its contravariant components will transform as m copies of a vector,

Tµνλ... = LµαL
ν
βL

λ
γT

αβγ... (1.3.29)

More generally, we define “mixed” tensors as multilinear maps from an ordered collection
of vectors and dual vectors, T : ∗V ⊗ ∗V . . .⊗ ∗V (m times)⊗V ⊗V . . .⊗V (n times)→ R
and express it as

T = Tµν...λκ...û(µ) ⊗ û(ν) . . .⊗ θ̂(λ) ⊗ θ̂(κ) . . . , (1.3.30)

with V and ∗V appearing in any order in the product (the above is simply one example). In
this case, the tensor is said to have rank (m,n). Thus scalars, vectors and dual vectors are
special cases of tensors: scalars are tensors of rank (0, 0), vectors are tensors of rank (1, 0)
and dual vectors are tensors of rank (0, 1). Just as we think of vectors and dual vectors in
terms of their components, we will also think of tensors in terms of their components. Thus
we will speak of contravariant, covariant and mixed tensors according to their components.

There is a one to one relationship between the covariant and contravariant tensors: for
every covariant tensor we can find a contravariant tensor and vice-versa. To see how this
comes about, let us rewrite the proper distance (1.1.35) in a slightly different way. Let η
be the rank (0, 2) tensor

η = ηµνθ
(µ) ⊗ θ(ν). (1.3.31)

and ds⃗ = dxαû(α) be an infinitesimal displacement vector, then

ds2 = −η(ds⃗⊗ ds⃗) = −ηµνdxµdxν . (1.3.32)
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The tensor η is called the Minkowski metric. According to (1.1.35), ηµν is the matrix

η̂ = ηµν =


−c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.3.33)

or, simply, “diag(−c2, 1, 1, 1)”. It is a covariant tensor of rank two. To double check its
transformation properties note that, given that ds2 is invariant, we must have

− ds2 = ηµνdx
µdxν → η′αβdx

′αdx′β = η′αβL
α
µL

β
νdx

µdxν = ηµνdx
µdxν , (1.3.34)

which implies that

ηµν = LαµL
β
µη

′
αβ, (1.3.35)

or, by taking inverses,

η′αβ = (L−1)µα(L
−1)νβηµν . (1.3.36)

However, ηµν is required to be an invariant tensor in Special Relativity, η′µν ≡ ηµν , and

this can be used in conjunction with (1.3.35) to derive expressions for the matrices L̂. It
is an alternative way of deriving the Lorentz transformations through the generators of
the transformation (see Appendix A). Now the metric is invertible (∥η̂∥ ≠ 0), with inverse

η̂−1 def
= ηµν =


− 1
c2

0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.3.37)

(It may be easily shown that the inverse metric ηµν transforms as

η′αβ = LαµL
β
νη
µν = ηαβ, (1.3.38)

i.e., according the rule for a contravariant tensor of rank two.)

But, according to (1.3.18), scalars also result from the action of a dual vector on a
vector. Thus we expect that ηµνdx

ν should transform as a covariant vector. In general,
consider a contravariant vector Aµ and construct the quantity

Aµ = ηµνA
ν . (1.3.39)

How does it transform? We see that

Aµ → A′
µ = ηµνL

ν
αA

α = ηµνL
ν
αη

αγηγλA
λ = (ηµνL

ν
αη

αγ)(ηγλA
λ), (1.3.40)
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where we have used ηαγηγλ = δαλ. But notice that (1.3.35) implies the identity

ηαβ = ηµνL
µ
αL

ν
β → ηγαηαβ = ηµνη

γαLµαL
ν
β

→ δγβ = (ηνµL
µ
αη

αγ)Lνβ = (L−1)γνL
ν
β

→ (L−1)γν = ηνµL
µ
αη

αγ . (1.3.41)

Therefore (1.3.40) reads

A′
µ = Aγ(L

−1)γµ, (1.3.42)

which is the transformation of a covariant vector. The Minkowski metric therefore maps
contravariant vectors to covariant vectors. In the same way it maps contravariant tensors
to covariant tensors:

Tα1,α2,...αn = ηα1β1ηα2β2 ...ηαnβnT
β1,β2,...βn . (1.3.43)

Likewise, the inverse metric ηµν maps covariant vectors to contravariant vectors, i.e., the
quantity Aµ defined by

Aµ = ηµνAν , (1.3.44)

transforms as a contravariant vector.9 Therefore, it maps covariant tensors to contravari-
ant tensors:

Tα1,α2,...αn = ηα1β1ηα2β2 ...ηαnβnTβ1,β2,...βn . (1.3.45)

This relationship between covariant tensors and contravariant tensors is why we originally
defined the boosts as in (1.1.18). Thus, Lµν = ηµαLαν which gives

L0
0 = η00L00 = −L00/c

2,

L0
i = η00L0i = −L0i/c

2,

Li0 = ηijLj0 = Li0,

Lij = ηikLkj = Lij . (1.3.46)

Moreover, there is a natural way to define the (invariant) magnitude of a four-vector, Aµ.
It is simply

A⃗2 = AµAµ = ηµνA
µAν = ηµνAµAν , (1.3.47)

9Problem: Show this.
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which is the equivalent of the familiar way of defining the magnitude of an ordinary three-
vector.10 For example, the familiar operator □x can be written as

□x = −ηµν∂µ∂ν = −∂2, (1.3.48)

in which form it is manifestly a scalar. More generally, the action of the metric on any
two vectors will result in a scalar,

η(A⃗⊗ B⃗) = ηµνA
µBν (1.3.49)

called the inner product, or dot product, A⃗ · B⃗, of the vectors A⃗ and B⃗.
Finally, just as in three dimensions, the four dimensional permutation symbol, [µναβ],

[µναβ] =


+1 if µναβ is an even permutation of 0123,

0 if µναβ is not permutation of 0123, and

−1 if µναβ is an odd permutation of 0123,

(1.3.50)

transforms as a tensor called the Levi-Civita tensor, ϵµναβ . (Recall that a permutation of
any set, say 0123, is an exchange of two of the members of the set. An even permutation
is the ordering one gets after an even number of exchanges. For example, 1032 is an even
permutation of 0123. An odd permutation is the ordering obtained after an odd number
of exchanges, for example 1302 is an odd permutation of 0123.)11

We see once again that the basic difference between Newtonian space and Lorentzian
space-time is that, in the case of the former, space and time do not mix and both are
absolute. In Newtonian mechanics there is no concept of an invariant distance between
events and it is sufficient to consider only spatial distances. Because spatial distances are
absolute, Pythagoras’ theorem ensures that the metric is just the Kronecker δ (with three
positive eigenvalues), so there is no need to distinguish between covariant and contravariant
indices. In the case of a Lorentzian space-time an observer’s measurements of space and
time are not independent, neither is each absolute by itself and so one is forced to consider
the “distance” between events in space-time. The metric, ηµν , for space-time has signature
(−1, 3) i.e., it has one negative eigenvalue and three positive eigenvalues.

For an arbitrary boost specified by a velocity v⃗ = (v1, v2, v3) = (v1, v2, v3), we find the
following Lorentz transformations:

L0
0 =

1√
1− v⃗2/c2

def
= γ,

10When A2 < 0 the vector points within the light cone and is said to be “time-like”. When A2 > 0 it
points outside the light cone and is called “space-like” and when A2 = 0 the vector A is “light-like” or
“null”, pointing along the light cone.

11Problem: Show that the four dimensional Levi-Civita symbol is a rank (0, 4) tensor by verifying its
transformation properties.
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Li0 = −γvi,

L0
i = −γvi

c2
,

Lij = δij + (γ − 1)
vivj
v⃗2

. (1.3.51)

These are most easily derived using (1.3.35) and the fact that η′µν = ηµν . A more compact
way to write (1.3.51) is

t′ = γ

[
t− (v⃗ · r⃗)

c2

]
r⃗′ = r⃗ − γv⃗t+ (γ − 1)

v⃗

v2
(v⃗ · r⃗) (1.3.52)

for a general v⃗.
Spatial volume elements are not invariant under Lorentz transformations. We can

make a rough argument for this as follows: suppose that the volume measured by the
proper observer is dV then the observer moving relative to this observer with a velocity
v⃗ will observe the length dimension in the direction of motion contracted according to
(1.2.2) and all perpendicular length dimensions will remain unchanged, so we expect dV ′ =
dV/γ. A more precise treatment follows by mimicking the argument for length contraction.
Consider the transformation form (t, x)→ (t′x′)

dt′ = L0
0dt+ L0

jdx
j , dx′i = Li0dt+ Lijdx

j (1.3.53)

with dt′ = 0 because length measurements must be made subject to a simultaneous mea-
surement of the endpoints in every frame. Therefore dt = −L0

jdx
j/γ and

dx′i =

(
−1

γ
Li0L

0
j + Lij

)
dxj =

(
δij +

(1− γ)
γ

vivj
v2

)
dxj , (1.3.54)

so taking the Jacobian of the transformation gives

d3r⃗ → d3r⃗′ = d3r⃗

∣∣∣∣∂x′i∂xj

∣∣∣∣ = d3r⃗/γ. (1.3.55)

The four dimensional volume element, d4x, is invariant for proper Lorentz transformations.
A consequence of the Lorentz transformation of volume is that the three dimensional

δ function, δ(3)(r⃗ − r⃗0), which is defined according to∫
d3r⃗δ(3)(r⃗ − r⃗0) = 1 (1.3.56)
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cannot be invariant either. If we require the defining integral to remain invariant then

δ(3)(r⃗ − r⃗0)→ δ′(3)(r⃗′ − r⃗′0) = γδ(3)(r⃗ − r⃗0). (1.3.57)

The four dimensional delta function, δ(4)(x− x0), will, however, be invariant.

1.4 Waves and the Relativistic Doppler Effect

Maxwell’s equations for the electromagnetic field, Aµ, in Lorentz gauge read

□xAµ = jµ. (1.4.1)

In the absence of sources, this is just the wave equation with c being the speed of propa-
gation; in one spatial dimension[

∂2

∂t2
− c2 ∂

2

∂x2

]
Aµ(t, x) = 0 (1.4.2)

and a typical solution will look like a linear combination of plane waves of varying ampli-
tudes and frequencies,

A(k)
µ (t, x) = A(0)

µ (k, ω)ei(kx−ωt), (1.4.3)

subject to k2−ω2/c2 = 0. Because Aµ transforms as a vector, the exponent must transform
as a scalar, i.e., kx − ωt must be an invariant. This is only possible if kµ = (−ω, k)
transforms as a covariant vector,

ω′ = γ(ω − vk), k′ = γ(k − vω/c2) (1.4.4)

i.e., kµ = (ω/c2, k) transforms as xµ = (t, x). In particular, the first relation tells us that

f ′ = f

√
1− v/c
1 + v/c

, (1.4.5)

which is the expression for the Doppler shifting of light in the frame of an observer moving
with a velocity v, taken as positive when the observer is traveling in the direction of the
propagating light wave. Thus an observer moving “away from” the source sees a red-
shifting of the light, i.e., a shifting toward lower frequencies, and an observer moving
toward the source sees a blue-shifting, i.e., a shifting toward higher frequencies. If the
observer’s speed is small compared to the speed of light, the linear approximation of (1.4.5)
gives

f ′ ≈
(
1− v

c

)
f, (1.4.6)
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which should be compared with the Doppler shifting for ordinary mechanical waves that
propagate in a medium. We get the observed wavelengths either directly, by requiring
λf = c = λ′f ′, or by using the second relation in (1.4.4),

λ′ = λ

√
1 + v/c

1− v/c
. (1.4.7)

The “redshift” factor is defined as

z =
λ′ − λ
λ

=

√
1 + v/c

1− v/c
− 1. (1.4.8)

and z ≈ v
c when v ≪ c. Because all inertial observers are equivalent in special relativity

there is no separate effect for “moving sources” as there is in the case of mechanical waves.
Yet, one may wonder why there is an effect at all, considering that light requires no medium
in which to travel and its speed in all reference frames is the same. The Doppler effect for
light originates in time dilation.

1.5 Dynamics in Special Relativity

The relativistic point particle extremizes its “proper time” (this can be thought of as a
generalization of Fermat’s principle, which was originally enunciated for the motion of
Newton’s “light corpuscles”),

Sp = −mc2
∫
dτ = −mc

∫ 2

1

√
−ηµνdxµdxν = −mc2

∫ 2

1
dt

√
1− v⃗2

c2
(1.5.1)

where dτ = ds/c = 1
c

√
−ηµνdxµdxν is the proper time and the constant “mc2” is chosen

so that Sp has the dimension of action (or angular momentum: J·s). One sees quite easily
that this action principle reduces to Hamilton’s principle (with zero potential energy,
V = 0) when the velocity of the particle relative to the observer is small compared with
the velocity light, for then √

1− v⃗2

c2
≈ 1− 1

2

v⃗2

c2
(1.5.2)

which, when inserted into (1.5.1), gives

Sp ≈
∫ 2

1
dt

[
1

2
mv⃗2 −mc2

]
. (1.5.3)

The second term is, of course, just a constant (later to be identified with the rest mass
energy of the particle) and can be dropped without affecting either the equations of motion
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or the conservation laws. The first term is the non-relativistic kinetic energy of the particle
and the action is therefore just that of a free non-relativistic point particle.

The momentum conjugate to xi is

pi =
∂L
∂ẋi

=
mvi√

1− v⃗2/c2
= γmvi, (1.5.4)

where L is the Lagrangian of (1.5.1). The momentum of (1.5.4) reduces to its non-
relativistic version, pi = mvi, when |v⃗| << c. Euler’s equations give

dp⃗

dt
=

d

dt
(γmv⃗) =

d

dt

mv⃗√
1− v⃗2/c2

= 0, (1.5.5)

which are the relativistic equations of motion of the particle. The Lagrangian does not
depend explicitly on time, so we expect that the Hamiltonian is the total energy and is
conserved,

E = H = piẋ
i − L =

mv⃗2√
1− v⃗2/c2

+mc2
√

1− v⃗2/c2 = mc2√
1− v⃗2/c2

(1.5.6)

The quantity

mR =
m√

1− v⃗2/c2
(1.5.7)

is generally called the “relativistic mass” or simply “mass” of the particle, whereas the
parameter m we used initially is called the “rest mass” of the particle and can be thought
of as its mass when measured in its proper frame (v⃗ = 0). We have just obtained the
famous Einstein relation,

E = mRc
2. (1.5.8)

Notice that the energy of the particle is not zero in the rest frame. In this frame the
particle possesses an energy, E = mc2, which is exclusively associated with its proper
(rest) mass. Furthermore, expanding E in powers of v⃗ we find

E = mc2 +
1

2
mv⃗2 +

3

8
m
v⃗4

c2
+ . . . (1.5.9)

The second term is the Newtonian kinetic energy and the higher order terms are all
corrections to the Newtonian expression. The kinetic energy, K, in special relativity is
defined via the relation

E = K +mc2, (1.5.10)

so it is what remains after its rest mass energy is subtracted from its total energy.
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The Hamiltonian is obtained by a Legendre transformation of the Lagrangian and is
expressed in terms of the momenta and coordinates but not the velocities. This is easily
accomplished by noting that (1.5.4) gives

p⃗2 =
m2v⃗2

1− v⃗2/c2
→ v⃗

c
=

p⃗√
p⃗2 +m2c2

(1.5.11)

Thus we get

1− v⃗2

c2
=

m2c2

p⃗2 +m2c2
, (1.5.12)

which, when inserted into (1.5.6), gives another well known result,

H = E =
√
p⃗2c2 +m2c4. (1.5.13)

Again we recover the rest mass energy, E = mc2 when we set p⃗ = 0.
Let us note that the momentum

pi = mγvi = m
dt

dτ

dxi
dt

= m
dxi
dτ

(1.5.14)

is quite manifestly the spatial component of the four-vector

pµ = m
dxµ
dτ
≡ mUµ, (1.5.15)

where Uµ = dxµ/dτ is the “four velocity” of the particle and transforms as a vector.12

The quantity pµ is called its “four momentum”. Its time component is

p0 = −mc2
dt

dτ
= − mc2√

1− v⃗2/c2
= −E (1.5.16)

so the spatial momentum and the energy are components of one four-vector momentum,

pµ = m
dxµ

dτ
, p0 =

E

c2
, pi =

mvi√
1− v⃗2/c2

(1.5.17)

Formula (1.5.13) for the energy is now seen to result from a purely kinematic relation,
because

p2 = ηµνp
µpµ = m2ηµν

dxµ

dτ

dxν

dτ
= −m2

[
ds

dτ

]2
= −m2c2 (1.5.18)

12Problem: Convince yourself that pµ = mdxµ/dτ is indeed a four-vector under Lorentz transformations.
Remember that the proper time, τ , is a scalar. Notice that the four momentum can be written as

pµ = mUµ = m
dxµ

dτ
= m

dt

dτ

dxµ

dt
= mγvµ

where vµ = dxµ/dt = vµ = (1, v⃗). vµ does not transform as a vector. Why?
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(the kinematic relation being, of course UµU
µ = −c2, remember it). Therefore, expanding

the l.h.s.,

p2 = −E
2

c2
+ p⃗2 = −m2c2, ⇒ E2 = p⃗2c2 +m2c4 (1.5.19)

Interestingly, taking the square root allows for both positive and negative energies but we
have chosen the positive sign, thereby excluding negative energy free particles by fiat.13

Euler’s equations as given in (1.5.5) are not in a manifestly covariant form. They can,
however, be put in such a form if we multiply by γ, expressing them as

γ
dp⃗

dt
=
dt

dτ

dp⃗

dt
=
dp⃗

dτ
= 0 (1.5.20)

This is the equation of motion for a free particle, so the r.h.s. is zero. The l.h.s. transforms
as the spatial components of a four-vector and we need not worry about the transforma-
tion properties of the r.h.s., since it vanishes. In the presence of an external force the
r.h.s. should not vanish and the principle of covariance requires that both sides of the
equations of motion should transform in the same way under Lorentz transformations.
Let us tentatively write a covariant equation of motion as

dpµ

dτ
= fµ (1.5.21)

where fµ is a four-vector. It must be interpreted as the relativistic equivalent of Newton’s
force. If m is constant then

fµ = m
dUµ

dτ

and, because U2 = −c2, the “four force” must satisfy one constraint, i.e.,

f · U = fµUµ = 0, (1.5.22)

which means that not all its components are independent. But what is the connection
between fµ and the familiar concept of the Newtonian force, which we will call F⃗N? To
find it consider the proper frame, S, of the particle (quantities in this instantaneous rest
frame will be represented by an over-bar). In this frame τ = t, p0 = m and pi = 0. It
follows that the time component of the l.h.s of (1.5.21) is zero (assuming m is constant)

and therefore so is f
0
. The spatial part of the force equation then reads

dpi

dt
= mai = f

i
, (1.5.23)

13While this works well in the classical theory, it fails to be consistent in the quantum theory. When
quantizing classical, Lorentz invariant theories, both positive and negative energies must be included on
an equal footing.
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where ai is the particle’s acceleration relative to S, generally referred to as its proper ac-

celeration. Naturally, we identify F iN with f
i
or, equivalently, with mai. We will discuss

the connection between the proper acceleration, ai, and the acceleration as measured in
S,

ai =
d2xi

dt2

in a later section. For the present take

f
µ
= (0, F⃗N ). (1.5.24)

To determine fµ in an arbitrary frame we only need to perform a boost because fµ is
a genuine four-vector. Therefore, in a frame in which the instantaneous velocity of the
particle is v⃗, we find in particular that

f0 = γ
v⃗ · F⃗N
c2

(1.5.25)

i.e.,
dE

dt
= v⃗ · F⃗N (1.5.26)

The equation says that the rate of energy gain (loss) of the particle is simply the power
transferred to (or from) the system by the external Newtonian forces. The same boost
also gives the spatial components of the relativistic force in an arbitrary frame as

f⃗ = F⃗N + (γ − 1)
v⃗

v2
(v⃗ · F⃗N ) (1.5.27)

and we notice that the component of f⃗ perpendicular to the velocity is equal to the
corresponding component of the Newtonian force, f⃗⊥ = F⃗N⊥. However the component of
the force in the direction of motion is enhanced over the same component of the Newtonian
force by the factor of γ, i.e., f⃗∥ = γF⃗N∥. Our expression also has the non-relativistic limit

(γ ≈ 1) f⃗ ≈ F⃗N , as it should.
We have given two forms of the action for the massive point particle in (1.5.1) although

we have concentrated so far on the last of these. The first form,

Sp = −mc
∫ 2

1

√
−ηµνdxµdxν , (1.5.28)

is actually quite interesting. If λ is any parameter describing the particle trajectories then
we could write this as

Sp = −mc
∫ 2

1
dλ
√
−ηµνUµ(λ)U

ν
(λ) (1.5.29)
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where

Uµ(λ) =
dxµ(λ)

dλ
(1.5.30)

is tangent to the trajectories xµ(λ) and λ is an arbitrary parameter. The action is therefore
reparameterization invariant and all that we have said earlier corresponds to a particular
choice of λ (= t). This is like fixing a “gauge”, to borrow a term from electrodynamics.14,15

The relativistic Hamilton-Jacobi equation is obtained by replacing the momenta, pµ,
by ∂S/∂xµ in (1.5.19),

ηµν
(
∂S

∂xµ

)(
∂S

∂xν

)
= −m2c2 (1.5.31)

We could define S = S′ −mc2t and write the equation in terms of S′,

1

2m
(∇⃗S′)2 −

(
∂S′

∂t

)
− 1

2mc2

(
∂S′

∂t

)2

= 0 (1.5.32)

In this form the limit c → ∞ compares directly with the expected Hamiltonian-Jacobi
equation for the free non-relativistic particle.

1.6 Conservation Laws

We will now consider a system of relativistic particles and define the total particle mo-
mentum as

pµ =
∑
n

pµn =
∑
n

mn
dxµn
dτn

=
∑
n

mnγnv
µ
n (1.6.1)

14Problem: Starting from (1.5.28), treat all the coordinates of an event, xµ, on the same footing (instead
of singling out one of them – time – as a parameter) and define

p(λ)µ =
∂L
∂Uµ

(λ)

.

Show that
H = p(λ)µ Uµ

(λ) − L = 0.

This is a consequence of reparameterization invariance.
15Problem: The square-root Lagrangian in (1.5.28) is inconvenient for a host of applications such as,

for example, the quantization of a collection of free particle or working out the statistical mechanics of
free, relativistic particles. A quadratic form, similar to the non-relativistic one, is preferable. This can be
achieved by introducing an auxiliary function, χ, together with the action,

S = −
∫
dλ
[
χηµνU

µ
(λ)U

ν
(λ) + χ−1m2

]
and treating xµ and χ as independent functions with respect to which the action is to be extremized. Show
that one obtains the expected equations of motion.
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The rate at which each particle’s four-momentum changes will depend on the net force
acting upon it, according to

dpµn
dτn

= fµn , (1.6.2)

but this is an inconvenient form of the equation of motion, particularly when dealing with
many particles, because it describes the rate of change with respect to the proper time of
the particle, which itself depends on its motion. Making use of the fact that γn = dt/dτn,
let’s rewrite this equation in the form

dpµn
dt

= γ−1
n fµn (1.6.3)

and therefore also
dpµ

dt
=
∑
n

dpµn
dt

=
∑
n

γ−1
n fµn . (1.6.4)

Concentrate, for the moment, on the spatial components only and, as before, let f⃗n be
made up of two parts, viz., (i) an “external” force, f⃗ extn , acting on the particle and (ii) an
“internal” force, f⃗ intn acting on it due to its interactions with all the other particles within
the system. Then

f⃗ intn =
∑
m ̸=n

f⃗m→n (1.6.5)

and it follows that

dp⃗

dt
=

d

dt

∑
n

p⃗n =
∑
n,m ̸=n

γ−1
n f⃗m→n +

∑
n

γ−1
n f⃗ extn (1.6.6)

For low particle velocities γn ≈ 1 for all n and f⃗n ≈ F⃗Nn , where F⃗N is the Newtonian
force. In this limit, conservation of particle momentum in the absence of external forces
follows by Newton’s third law.

What about the internal forces in a fully relativistic scenario? In principle, no effect
experienced at any world point x can have originated at a world point x′ outside its past
light cone, i.e., at a time earlier than t−|r⃗− r⃗′|/c16 because the speed of light is assumed to
be the maximal speed at which information or influence can travel. Instantaneous particle
interactions, in particular forces that depend only on the spatial distances between the
particles (which are typically employed in Newtonian physics), cannot have the desired
Lorentz transformation properties and therefore are impossible in the context of special
relativity. This, of course, becomes relevant only for very high particle velocities because
the change in position of one particle can influence another particle only after the infor-
mation has had the time to propagate through the distance that separates the particles,

16This is called retardation.
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which itself changes appreciably during this time if the relative velocities are high, making
the interactions of particles depend in a complicated way on their motions. This is already
evident from the expression

∑
n,m ̸=n γ

−1
n f⃗m→n describing the effects of the internal forces.

One gets around this difficulty by imagining that the particles are immersed in a set of
dynamical fields whose disturbances propagate in space-time with a speed not exceeding
the speed of light.

A “field” should be thought of as a potential (or set of potentials) associated with each
point of space-time. Disturbances in these potentials transfer energy and momentum from
one event to another. Every field is realized by a function (or set of functions) with definite
Lorentz transformation properties and one can have many kinds of fields, eg. scalar fields,
vector fields, etc., depending on how the field transforms. Particle-particle interactions
are then described in terms of local interactions of the particles with the fields, which
involve an exchange of energy and momentum between the two at the world point of the
particle. This exchange causes disturbances in the fields, which then propagate through
space-time and, at a later time, exchange energy and momentum (locally) with other
particles in the system. In this way fields act as mediators of inter-particle forces. A
familiar example of this would be electrically charged particles in an electromagnetic field.
The electromagnetic field is responsible for energy and momentum transfer between the
particles via their electromagnetic interaction.

This picture is only consistent if the field that is responsible for mediating the in-
teraction carries energy and momentum in its own right. We then define the total four
momentum of the system by

Pµ = pµ + πµf (1.6.7)

where πµf represents the field momentum and assert the following:

• In the absence of external forces the total four momentum of the system, which
consists of the momentum of the particles and the field, is conserved.

This is a natural generalization of the non-relativistic statement about momentum conser-
vation and, in fact, follows from Noether’s theorem by space-time translation invariance,
as we will see later. It is worth understanding why any generalization of the conservation
law for momentum must involve the entire four-vector momentum if it is to be a covariant
statement. It can be argued as follows: let ∆E and ∆P⃗ represent the change in energy
and momentum respectively of the system in some inertial frame S. In some other frame,
S′, we represent these quantities by ∆E′ and ∆P⃗ ′ respectively. Being components of a
four vector, they are connected by the Lorentz transformation,

∆P ′i =
γvi

c2
∆E +

(
δij + (γ − 1)

vivj
v2

)
∆P j

∆E′ = γ
(
∆E + v⃗ ·∆P⃗

)
. (1.6.8)
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It follows that if ∆P⃗ vanishes (the spatial momentum is conserved) in S then it will vanish
in S′ if and only if ∆E vanishes as well and if ∆E vanishes (the total energy is conserved)
in S then it will vanish in S′ if and only if ∆P⃗ also vanishes. Therefore energy and
momentum conservation go hand in hand in Einstein’s theory of relativity and one cannot
be had without the other. This is a most remarkable fact. In Newtonian mechanics the
two conservation laws are distinct: momentum conservation requires the absence external
forces and a sufficient condition for the conservation of energy is that all forces acting on
the system are conservative. No such condition appears in the relativistic version of the
conservation law, which must therefore always hold provided that the momentum of the
particles and fields are consistently taken into account.

Note that neither the total field momentum nor the total particle momentum is sepa-
rately conserved since momentum may be exchanged between the two. This implies that
the interaction forces between the particles do not satisfy Newton’s third law i.e., action
is not equal and opposite to reaction.

It is often convenient to define the center of momentum frame in complete analogy
with the non-relativistic case by setting the spatial components of the total momentum in
that frame to zero, i.e.,

Pµcm =

(
Ecm

c2
, 0⃗

)
= (Mcm, 0⃗), (1.6.9)

which also defines the total rest mass, Mcm, of the system. The rest mass energy, Mcmc
2,

contains all the rest energies of the particles that make up the system. It also contains their
kinetic energy relative to the center of mass as well as the energies of their interactions
with one another and of the fields involved in these interactions. In other words, the rest
mass of the system contains the entire internal energy of the system and it is conserved.
We know of four kinds of elementary fields, each with its characteristic interactions. From
weakest to strongest they are the gravitational field, the fields associated with the weak
interaction, the electromagnetic field and the fields associated with the strong interaction
or chromodynamics. The gravitational field is associated with space-time itself and its
description is unique. All the other fields are special cases of a single family of theories
called “gauge theories”. These will be discussed in the following chapters. The momentum
in a generic frame, S, can be obtained by a Lorentz transformation and will involve only
Mcm and the velocity of the center of mass relative to the Laboratory, v⃗cm,

P 0 =Mcmγcm, P⃗ =Mcmγv⃗cm. (1.6.10)

Thus in every physical system consisting of interacting particles, the center of mass will
behave as a single particle with an effective mass (equal to Mcm).
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1.7 Relativistic Collisions

The preceding discussion leads directly to the topic of collisions between relativistic par-
ticles. In this section we will briefly examine such collisions, assuming that whatever
fields are present diminish rapidly enough to zero that the field contribution to the total
momentum can be ignored when the particles are sufficiently far apart. We will then con-
sider “free” incoming particles and “free” outgoing particles as we did earlier and conserve
momentum according to

∑
n p

µ
ni =

∑
n p

µ
nf as before, but this time taking care with the

relativistic factors.

First consider a collision in which two incoming bodies with momenta

p1i =

(
m1 +

K1

c2
, p⃗1

)
, p2i =

(
m2 +

K2

c2
, p⃗2

)
(1.7.1)

stick together to form a body of mass mf , with momentum

pf =

(
mf +

Kf

c2
, p⃗f

)
, (1.7.2)

where we used the definition of the Kinetic energy, E = mc2 + K. Conservation of
momentum means that

m1 +m2 +
K1

c2
+
K2

c2
= mf +

Kf

c2

p⃗1 + p⃗2 = p⃗f , (1.7.3)

which three equations (the collision is planar) are sufficient to determine mf and p⃗f in
terms of the initial data. Such a collision is best viewed in the center of momentum frame
in which p⃗f = 0 and mf =Mcm. Then, in this frame pµcm = (Mcm, 0⃗)

m1 +m2 +
K ′

1

c2
+
K ′

2

c2
=Mcm, p⃗′1 = −p⃗′2 (1.7.4)

where we used primes to denote quantities measured in the center of momentum frame or
system (c.m.s.). The first equation gives the effective mass, i.e., the mass-energy in the
center of momentum frame. The second simply defines the center of momentum frame. If
the velocity of the center of momentum frame as measured in the the Laboratory frame
is vcm, then

v⃗cm =
p⃗cmc√

p⃗2cm +M2
cmc

2
=

(p⃗1 + p⃗2)c√
(p⃗1 + p⃗2)2 +M2

cmc
2

(1.7.5)

and an appropriate boost recovers the solutions in that frame.
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Figure 1.4: Two dimensional collision

Consider a collision in which two incident particles, “1” and “2”, give rise to two
outgoing particles, “3” and “4” (we label the particles differently because, in relativis-
tic collisions, particle physics processes may cause one set of incoming particles to be
transformed into a wholly different set of outgoing particles and we wish to allow for this
possibility) and suppose particle “2” is at rest in the Laboratory frame. Let the x− axis
lie along the motion of “1” and let θ and ϕ be the angles made by “3” and “4” respectively
with the x−axis, as in figure 1.4. Conserving the four momentum gives

m1 +m2 +
K1

c2
= m3 +m4 +

K3

c2
+
K4

c2

p1 = p3 cos θ + p4 cosϕ

p3 sin θ − p4 sinϕ = 0 (1.7.6)

Note that in general

p2c2 +m2c4 = E2 = (mc2 +K)2 ⇒ p2 = 2mK +
K2

c2
(1.7.7)

so these equations are to be solved for p3, p4 and one of the angles. As before, the other
angle must be specified. Our strategy will be similar to the one we followed for non-
relativistic collisions. Multiply the third equation in (1.7.6) by cosϕ and use the second
to find

p3 sin θ cosϕ = p4 sinϕ cosϕ = p1 sinϕ− p3 cos θ sinϕ. (1.7.8)

This gives

p3 sin(θ + ϕ) = p1 sinϕ⇒ p3 =
p1 sinϕ

sin(θ + ϕ)
(1.7.9)
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and inserting the result into the second equation of (1.7.6)

p4 =
p1 sin θ

sin(θ + ϕ)
. (1.7.10)

Finally, to determine θ, we must insert the above two formulae into the energy equation,
but the energy equation is much more complicated than its non-relativistic counterpart! A
welcome algebraic simplification occurs if the outgoing two particles fly off symmetrically,
i.e., with θ = ϕ in the laboratory frame. If, moreover, the incident and outgoing particles
have the same mass, m, then

p3 =
p1

2 cos θ
= p4 (1.7.11)

and

E1 +mc2 = 2mc2 + 2K, K =

√
p21c

2

4 cos2 θ
+m2c4 (1.7.12)

yields, after a little bit of algebra,

cos2 θ =
E2

1 −m2c4

c2[(E1 −mc2)2 − 4m2c4]
. (1.7.13)

It is interesting to notice that in the extreme relativistic case, i.e., when E1 ≫ mc2,
cos θ → 1 and the separation angle approaches zero whereas, in the limit that the rest
mass energy is much greater than the incident kinetic energy, cos θ → 0 and the separation
angle approaches π/2 radians. This, as we know, is the non-relativistic case.

The view from the center of momentum frame is different. Now the two particles
scatter as shown in figure 1.5 because both the initial and final total spatial momentum
must vanish,

E′
1 + E′

2 = E′
3 + E′

4 =Mcmc
2

p⃗′1 + p⃗′2 = 0 = p⃗′3 + p⃗′4 ⇒ p⃗′1 = −p⃗′2, p⃗′3 = −p⃗′4. (1.7.14)

Let the initial momenta lie along the x−axis and let the masses (initial and final) all be
the same, say m as before. Then, because of the second equation above, E′

1 = E′
2 = E′

i

and E′
3 = E′

4 = E′
f and because of energy conservation 2E′

i = 2E′
f = Mcmc

2. Therefore
all momenta have the same magnitude. Since the final velocities are anti-parallel, there
is only one final angle, ξ, between the outgoing particles and the x−axis, but there is
not enough information to determine it. However, we can relate ξ to the angle θ in the
Laboratory frame discussed earlier by performing a Lorentz transformation.17

17Problem: Determine the relationship between the angle of scattering, ξ, in the center of momentum
frame and the angle θ in the Laboratory frame, assuming that particle “2” is initially at rest in this frame
and that particles “3” and “4” leave the collision center symmetrically, as discussed.
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Figure 1.5: Two dimensional collision from the center of momentum frame

In general, a good amount of information about any collision in any frame is obtained
directly from the Lorentz invariants. For example, if, in the Laboratory frame, our incom-
ing particles had momenta p1i and p2i then, because p

2 is a Lorentz invariant, p2 = p2cm
or

(p1i + p2i)
2 = p21i + p22i + 2p1i · p2i = p2cm (1.7.15)

and therefore

(m2
1 +m2

2)c
4 + 2(E1iE2i − c2p⃗1i · p⃗2i) =M2

cmc
4. (1.7.16)

Using Ei = mic
2 +Ki in each case, we arrive at

(m1 +m2)
2c4 + 2(m1c

2K2i +m2c
2K1i +K1iK2i − c2p⃗1i · p⃗2i) =M2

cmc
4, (1.7.17)

so if particle “2” (say) is initially at rest in the Laboratory frame, then p⃗2i = 0, E2i = m2c
2,

E1i = m1c
2 +K1i where K1i is the initial kinetic energy of particle “1” and

M2
cmc

4 = (m1 +m2)
2c4 + 2m2c

2K1i. (1.7.18)

Thus the available center of momentum energy increases as the square root of the incident
kinetic energy. Equation (1.7.16) holds whenever two particles collide whether or not the
collision is inelastic and no matter how many the end products of the collision.
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1.8 Accelerated Observers

A question of interest is how to relate an accelerated frame to an inertial one in the context
of the special theory of relativity. Naturally this cannot be done directly because the
Lorentz transformations only relate inertial frames. However, it can be done by considering
a special one parameter family of inertial frames each of which is at rest relative to and
coincident with the accelerated frame at one particular instant of time. Geometrically,
this is equivalent to replacing the accelerated observer’s curved world line in Minkowski
space by a set of infinitesimal straight line segments along her world line. Each of the
infinitisimal segments corresponds to an inertial frame over an infinitesimal path length.
In this section we consider this problem in general and then specialize to one particular
case: the “Rindler observer”. Rindler observers, named after Wolfgang Rindler who first
considered this problem, undergo a constant proper acceleration (recall that the proper
acceleration is the acceleration of the detector w.r.t. a frame that is instantaneously at
rest relative to it).

First we analyze the problem in two dimensions. Let S be an inertial frame and let S̃
be the frame of the Rindler observer. S̃ is not an inertial frame and cannot be directly
connected to S within the context of the special theory, so introduce a one parameter
family of inertial frames, {S(s)}, each of which is instantaneously at rest relative to S̃ and
coincides with it at proper time s/c. If S̃ possesses an acceleration, α(s), at s/c relative
to the frame S(s) then α(s) is the proper acceleration of the Rindler observer,

α(s) =
d2x

dt
2 . (1.8.1)

To begin with, we’ll let α(s) be arbitrary. Now S and every member of the family S(s)
are inertial frames and therefore they are related by Lorentz transformations. For a fixed
s, we have

t = γ(t− vx/c2)
x = γ(x− vt). (1.8.2)

where v = v(s) is the velocity of frame S(s) relative to S. Defining the velocity u = dx/dt,
we find

u =
dx

dt
=

(u− v)
1− uv/c2

(1.8.3)

and therefore (remember that we must keep v(s) fixed because it represents the velocity
of S(s) relative to S and S(s) is inertial)

du =
du

1− uv/c2
− (u− v)(−v/c2du)

(1− uv/c2)2
=

du

γ2(1− uv/c2)2
. (1.8.4)
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This gives

a =
du

dt
=

a

γ3(1− uv/c2)3
(1.8.5)

Now, because the frame S(s) is instantaneously at rest relative to the the Rindler observer
S̃ at proper time s/c, it follows that u(s) = 0 and a(s) = α(s). Therefore u = v(s) and18,19

a(
1− u2

c2

) 3
2

= a = α(s). (1.8.6)

But

a =
du

ds

ds

dt
=
c

γ

du

ds
(1.8.7)

Therefore, integrating we find that∫ u

u0

du(
1− u2

c2

) = c tanh−1(
u

c
)
∣∣∣u
u0

=
1

c

∫ s

0
dsα(s) (1.8.8)

where u0 = u(0) and u = u(s), so

u = c tanh

(
1

c2

∫ s

0
dsα(s) + tanh−1 u0

c

)
= c tanh η (1.8.9)

where we’ve called the argument of the hyperolic tangent on the right η. Again

u =
dx

dt
=
dx

ds

ds

dt
=
c

γ

dx

ds
=

c

cosh η

dx

ds
⇒ dx

ds
= sinh η (1.8.10)

therefore

x− x0 =
∫ s

0
ds sinh η

t− t0 =
1

c

∫ s

0
ds cosh η (1.8.11)

18Problem: Consider the same problem in four dimensions. We have seen that the relationship between
the longitudinal component (i.e., in the direction of the motion) of the acceleration in S and the cor-
responding component of the proper acceleration, is a∥ = γ3a∥. What is the relationship between the
transverse component of the acceleration in S and the transverse component of the proper acceleration?
Show that a⊥ = γ2a⊥.

19Problem: Using the result of the last problem together with equation (1.5.27), show that

dp⃗

dt
= γ3ma⃗∥ + γma⃗⊥

Then obtain this result directly by differentiating p⃗ = mγv⃗ w.r.t. t.
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Figure 1.6: Trajectory of the Rindler observer

Without loss of generality choose u0 = 0. Further, specialize to the case of a constant
proper acceleration and let α(s) = a, where a = const., then η = as/c2 and

x− x0 =
c2

a

[
cosh

as

c2
− 1
]
, t− t0 =

c

a
sinh

as

c2
. (1.8.12)

This gives the trajectory of the accelerated observer as viewed by the inertial observer, S.
Convenient initial conditions would be x0 = c2/a at t0 = 0 and we find that the trajectory
may be expressed in the form

x2 − c2t2 = c4

a2
. (1.8.13)

It is a hyperbola, shown in figure 1.6. Notice that the path of the accelerated observer
may never cross the lines x = ±ct. These lines represent “horizons” (past and future)
that mark the boundaries of that portion of Minkowski space that is accessible to the
accelerating observer. Not all of Minkowski space will be accessible to her, as is evident
from the diagram in figure 1.6, where one sees that she can never receive information from
events A and B and, while she will receive information from C, she will be unable to
ascribe a time to it! The lines x = ±ct are called “Rindler horizons” because they apply
only to accelerating observers. They divide Minkowski space into four causal wedges,
called “Rindler wedges”, defined by x > c|t| (right), x < c|t| (left), ct > |x| (future) and
ct < |x| (past).

Let us consider one of these wedges. Define the coordinates

ξ =
c2

2a
ln

[
a2

c4
(x2 − c2t2)

]
, η̃ =

c

a
tanh−1 ct

x
(1.8.14)
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then, because a is an acceleration it follows that ξ has dimension of length and η̃ has di-
mension of time. Both ξ and η range over the entire real line even though these coordinates
do not cover all of Minkowski space. The inverse transformations are

x =
c2

a
eaξ/c

2
cosh

aη̃

c
, t =

c

a
eaξ/c

2
sinh

aη̃

c
(1.8.15)

If a > 0, the new coordinates (η̃, ξ) cover only the right wedge in the (t, x) plane, i.e.,
x > c|t|. They are called “Rindler” coordinates and define the “Rindler frame”. In this
frame, lines of constant ξ are hyperbolæ in the Minkowski frame and represent curves
of constant proper acceleration equal to ae−aξ/c

2
. The hyperbola ξ = 0 describes the

trajectory of our particular accelerating observer and lines of constant η̃ (time) are straight
lines through the origin as shown in figure 1.6. The metric is

ds2 = e2aξ(c2dη̃2 − dξ2), η̃ ∈ (−∞,∞), ξ ∈ (−∞,∞) (1.8.16)

and the horizons are located at ξ → −∞. Another coordinatization that is often used is
obtained by defining y = c2eaξ/c

2
/a (or, in terms of the original Minkowski coordinates:

y =
√
x2 − c2t2) then

ds2 =
a2

c2
y2dη̃2 − dy2, η̃ ∈ (−∞,∞), y ∈ (0,∞) (1.8.17)

gives another parametrization of Rindler space. In these coordinates, the Rindler observer
is located on the (vertical) line y = c2/a and the horizons are located at y = 0. Notice that
in both coordinatizations the horizons get defined by setting the time-time component of
the metric to zero. This is a generic feature of time independent metrics.

But what exactly is a Rindler horizon and why does the coordinate system break
down there? Notice that the definition of y is quite independent of a, but the definition
of η̃ depends on it therefore the proper time intervals of the observer will scale with her
acceleration although proper distance does not. Thus consider Rindler observers with
different proper accelerations living on vertical lines given by y′ = c2/a′. Notice that the
greater the proper acceleration the smaller the value of y and, vice versa, the smaller the
proper acceleration the greater the value of y. Now it should be clear that the proper
distance between our observer and some other observer with y = c2/a will be fixed at
c2|a′−a|/(aa′). Think of this distance as the length of a rod connecting the two observers.
If a′ > a then the observer with a′ lies on the trailing end of the rod and, vice-versa,
if a′ < a then the observer with a′ is on the leading edge. Whereas in Galilean physics
the two ends of a rod must have equal acceleration to keep the same length, in special
relativity the trailing end must accelerate a little bit faster to keep up! This is because of
length contraction: as the speed increases along the rod’s length, its length also shrinks
a little and the trailing end has to increase its velocity a little bit more in the same time
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interval to account for the shrinkage. Therefore observers on the “trailing end” i.e., toward
the horizon must accelerate more to “keep up”. The horizon marks the stage at which the
observer would need an infinite acceleration to keep up with the others.



Chapter 2

Scalar and Vector Fields

In theoretical mechanics, we developed a fairly sophisticated formalism to work with a
system of point like particles. Such a system is described by a finite number of degrees of
freedom, f , and its configuration space can be fully specified by a collection of variables,
{q1, . . . , qf}. The time evolution of the system is recovered by determining the “trajecto-
ries”, qi(t), of these degrees of freedom and the equations that govern these trajectories
are obtained from Hamilton’s principle. The state of the system at any time is specified
by giving the values of qi(t) and their velocities q̇i(t) or momenta pi(t).

Then, when we started talking about fluid dynamics, we argued that there are situa-
tions in which it is more fruitful to think of the system of particles as “continuous”. The
system of particles is characterized by its Knudsen number, K, and if K ≪ 1 then it may
be deemed continuous. The natural way to think about such systems is via the concept
of a “field”, which is essentially a function or set of functions over space and time. For
example, the description of fluids requires several “fields”, viz., the velocity vector field,
v⃗(r⃗, t), which represents the average velocity of a fluid molecule at any given point r⃗ in
space at time t, the mass density field, ρ(r⃗, t), and the pressure field, p(r⃗, t).

The fundamental difference between a “field” and a system of point particles is that
a field has an uncountably infinite number of degrees of freedom, a countable number
at each event in space-time, yet all these degrees of freedom are captured by a finite
set of functions. These functions are the fields that will be our concern in the rest of
these notes. While fluid dynamics provides an example of a set of “material” fields,
we are familiar with non-material fields as well, eg., the electromagnetic field. When
examining the conservation laws for a relativistic system of particles, we argued for the
need for such non-material fields: they act as intermediaries, allowing us to describe
particle-particle interactions as local interactions (of the particles with the fields), which
in their turn generate disturbances that propagate information about these interactions
to other particles also interacting locally with the field.

41
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There are also the field theories that describe elementary particles. In non-relativistic
wave mechanics, a single particle is described by its Schroedinger wave function, ψ(r⃗, t).
Owing to the Born interpretation, which asserts that it is an amplitude for determining
the probability of finding the particle in a given volume at any instant of time, the wave
function itself cannot be regarded as describing a field. However, the Born interpretation
fails when quantizing relativistic particles for two reasons: (a) the Born probability density
is not positive definite if the wave equation is second order in time derivatives and (b)
negative energy states arise generically in relativistic quantum mechanics (they are in
fact required for completeness) and the energy spectrum is unbounded from below. The
presence of these negative energy states implies that quantum mechanical transitions to
an infinite set of lower energy states could occur, allowing, in principle, for the extraction
of an unlimited amount of energy from a single particle. Moreover, Einstein’s relation,
E = mc2, and the uncertainty principle, ∆E∆t ≳ ℏ, together indicate that the number of
particles within a system cannot be conserved because an arbitrary number of particles
may be spontaneously produced out of the vacuum, provided that the resulting mass-
energy exists for a short enough interval of time. Thus the relativistic wave function and
wave equation, obtained via the usual Dirac procedure, cannot be understood within the
Born framework and must be reinterpreted. We interpret the wave function as describing
a classical field and the wave equation as the equation of motion for this field. In this
view, the superposition principle is no longer required because the wave function, or what
is now the classical field, is not endowed with the Born interpretation. Therefore the
field equation need not be linear and non-linearities in the form of terms involving higher
powers of the field may be added to the equation of motion. In this book we will discuss
the classical dynamics of fields for which the equation of motion is derivable by Hamilton’s
principle from an action functional. 1

Symmetries (such as Lorentz invariance) place strict restrictions on the possible self-
consistent degrees of freedom of a physical field, but many possibilities still exist. There-
fore, a theory of fields will not be a single theory but a general framework, containing tools
for the description of experiments in which the concept of a field is useful. In this chapter,
we will attempt to set up such a framework and we will do this in a way that mirrors our
treatment of particles so that the powerful tools of mechanics can also be applied to great
effect. However, because any field will have a finite number of degrees of freedom at every
point, the Lagrangian, L, of a field theory will be a functional, i.e., an integral over space
of some function (the Lagrange density function, L) of the fields and their derivatives.

The physical interpretation of the degrees of freedom being described by a classical field
theory will vary from theory to theory. As mentioned, familiar examples are the vector

1Quantization of all classical fields occurs by following the standard Dirac procedure on the classical
phase space of the field; the field and its conjugate momentum become quantum operators acting on a
Hilbert space of states of particle number. In the quantum theory, the non-linearities get interpreted as
interactions between the particles.
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field representing the velocity and two scalar fields representing the density and pressure
in fluid dynamics, and the four vector potential of electrodynamics. Fields representing
other degrees of freedom may be constructed as well, as seen by the following example. An
infinitely long elastic rod, laid along the x−axis, is able to sustain oscillatory displacements
of its particles in a direction parallel to the rod. We “discretize” the rod by imagining
that it is made up of a very large number of point like particles that are spaced a distance
“a” apart and connected by massless springs (which simulate the interaction between
neighboring atoms in the rod). Consider the nth particle and denote it’s displacement
from equilibrium by ηn. Its kinetic energy is

Tn =
1

2
mnη̇

2
n (2.0.1)

giving, for all the particles together, the total kinetic energy

T =
1

2

∑
n

mnη̇
2
n (2.0.2)

The total potential energy could be be written as the sum of the potential energies of the
springs which are stretched (or compressed) according to the displacements of neighboring
particles:

V =
1

2

∑
n

kn(ηn+1 − ηn)2 (2.0.3)

The Lagrangian for the entire system follows from Hamilton’s prescription:

L = T − V =
1

2

∑
n

mn

[
η̇2n − ω2

n(ηn+1 − ηn)2
]

(2.0.4)

which will be convenient to write in the following form

L =
1

2

∑
n

a
(mn

a

)[
η̇2n − (aωn)

2

(
ηn+1 − ηn

a

)2
]

(2.0.5)

Now consider taking the limit as a→ 0 of the above. The quantitymn/a can be interpreted
as the mass per unit length or the linear mass density of the rod, which we take to be
some constant, µ (independent of position). It is clear that in the same limit,

lim
a→0

ηn+1 − ηn
a

= lim
a→0

η(t, x+ a)− η(t, x)
a

=
∂

∂x
η(t, x) (2.0.6)

and that

η̇n →
∂

∂t
η(t, x), (2.0.7)
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but what about aω2
n? A little thought will show that this is related to the Young’s modulus,

Y , of the rod by

amnω
2
n =

Y

2
(2.0.8)

which we’ll take to be independent of position as well. Finally, we let∑
n

a (. . .)n →
∫
dx (. . .) (t, x) (2.0.9)

and thus, in the continuum limit, the Lagrangian functional can be written as

L(η̇, η′, x) =
∫ ∞

−∞
dx

[
µ

2

(
∂η(t, x)

∂t

)2

− Y

2

(
∂η(t, x)

∂x

)2
]

(2.0.10)

The quantity within square brackets is a density function (in this case a linear density)
called the Lagrange density, L, and

S =

∫
dt

∫ ∞

−∞
dx L(η̇(t, x), η′(t, x), x, t). (2.0.11)

is the action. η(t, x) is a “field”, which may be thought of as the field of displacements from
equilibrium of the rod’s constituents, the elementary excitations of the rod, or “phonons”
in one dimension.

2.1 Hamilton’s Principle

We will take a general field theory to be one that is described by a Lagrangian functional,

L[ϕA, ∂µϕA, t] =
∫
d3r⃗ L(ϕA(t, r⃗), ∂µϕ

A(t, r⃗), t, r⃗) (2.1.1)

where ϕA(t, r⃗) denotes a field, which, we assume, exhibits definite space-time transforma-
tion properties and carries indices both related and possibly unrelated to space-time, all of
which we collectively denote by A. If the field theory is Lorentz invariant then the action

S =

∫
dt L[ϕA, ∂µϕA, t] =

∫
d4x L(ϕA(x), ∂µϕ

A(x), x) (2.1.2)

must be a Lorentz scalar. Moreover, because actions must always have the mechanical
dimension ml2/t, it follows that the Lagrange functional, L, will have the dimension of
energy and the Lagrange density will have the dimension of energy density, [L] ∼ m/lt2.

The fields may transform under any finite dimensional representation of the Lorentz
group, i.e., as scalars (eg. the Higgs field), as vectors (eg. the electromagnetic field and
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other gauge fields of the standard model), as spinors (eg. Dirac/Weyl/Majorana fields for
fermions) or as tensors (eg. gravitational field). In the case of a vector or tensor field, the
index “A” would be one or more space-time indices. For example, for the electromagnetic
field, Aµ, the superscript “A” represents the covariant space-time index µ and for the
gravitational field, gµν , “A” would represent the pair of covariant space-time indices (µν).
Likewise “A” could be a spinor index if ϕA is a spinor field, or it could even represent
an internal index or a combination of space-time indices and internal indices if the field
transforms according to some representation of an internal group in addition to the Lorentz
group as, for example, “A” is the pair (aµ) if ϕ

A represents the non-abelian gauge field Aaµ,
which we will describe in some detail shortly. We will assume that the equations of motion
are to be derived from the action (2.1.2) using Hamilton’s variational principle.

Following the standard arguments for point particles, we realize at the onset that field
variations must also come in two types: (a) variations in the functional form of ϕA(x),

ϕA(x)→ ϕ′A(x) = ϕA(x) + δ0ϕ
A(x) (2.1.3)

and (b) variations that arise because of a change in the arguments,

xµ → x′
µ
= xµ + ϵµ(x) (2.1.4)

where ϵµ represents an infinitesimal change in xµ. This induces a change in the field
according to

ϕA(x) → ϕA(x′) = ϕA(x+ ϵ) = ϕA(x) + ϵ · ∂ϕA(x),

δ1ϕ
A(x) = ϕA(x′)− ϕA(x) = ϵ · ∂ϕA (2.1.5)

In general, a change is made up of both components, i.e.,

ϕA(x) → ϕ′A(x′) = ϕ′A(x+ ϵ) = ϕ(x) + ϵ · ∂ϕA + δ0ϕ
A

δϕA(x) = ϕ′A(x′)− ϕA(x) = δ0ϕ
A(x) + δ1ϕ

A(x) (2.1.6)

up to first order in the variations, of course. To apply Hamilton’s principle to the action
we first consider only functional variations that vanish at the boundary (usually taken to
be at infinity). Then, using Einstein’s summation convention for all indices,

δ0S =

∫
d4xδL =

∫
d4x

[
∂L

∂ϕA
δ0ϕ

A +
∂L

∂(∂µϕA)
δ0∂µϕ

A

]
=

∫
d4x

[
∂L

∂ϕA
δ0ϕ

A + ∂µ

(
∂L

∂(∂µϕA)
δ0ϕ

A

)
− ∂µ

(
∂L

∂(∂µϕA)

)
δ0ϕ

A

]
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=

∫
d4x

[
∂L

∂ϕA
− ∂µ

(
∂L

∂(∂µϕA)

)]
δ0ϕ

A (2.1.7)

where we have interchanged ∂µ and δ0, because [∂µ, δ0]ϕ
A = 0, and used the fact that the

integral of the total derivative is a surface term that vanishes exactly,∫
M
d4x ∂µ

(
∂L

∂(∂µϕA)
δ0ϕ

A

)
=

∫
∂M

dσµ

(
∂L

∂(∂µϕA)
δ0ϕ

A

)
≡ 0 (2.1.8)

by our condition that the variation δ0ϕ vanishes there. But, as δ0ϕ is otherwise arbitrary,
and the action is stationary (δS = 0), we necessarily arrive at Euler’s equations

∂L

∂ϕA
− ∂µ

(
∂L

∂(∂µϕA)

)
= 0 (2.1.9)

for a field theory governed by the Lagrange density L. Of course, Lagrange multipliers
and the Euler-Lagrange equations may be used when constraints are involved. The left
hand side of (2.1.9) is called the Euler derivative of L.

For example, if we apply these equations to the action we wrote down earlier for the
elastic rod. The field is η(t, x) and the Lagrange density does not depend on η(t, x) but
only on its derivatives. Therefore we have

∂t

(
∂L

∂η̇

)
+ ∂x

(
∂L

∂η′

)
= 0 = µ

∂2η

∂t2
− Y ∂

2η

∂x2
(2.1.10)

which is a wave equation for perturbations that travel at the speed of sound, vs =
√

Y
µ ,

in the rod.

2.2 Noether’s Theorems

A symmetry of the action is a set of transformations of the fields and (or) the coordinates
that leave the action invariant. Symmetries that arise because of the way in which the ac-
tion is formulated (eg. reparametrization invariance of the free relativistic particle action)
are called non-dynamical and symmetries that result from a specific feature or property
of the matter or its evolution (eg. gauge invariance or general coordinate invariance) are
called dynamical.

Noether’s theorems explore the consequences of dynamical symmetries. The approach
follows the general lines of reasoning that were introduced when the number of degrees of
freedom was finite (i.e., for point particles), but they are considerably more powerful for
fields. Let the fields ϕA(x) and coordinates xµ undergo the following variations

δϕA = GAa δω
a + TAµa ∂µδω

a + . . . , δxµ = ϵµ = Gµaδω
a + . . . (2.2.1)
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under a set of symmetry transformations with differentiable parameters δωa(x). One
can, of course, conceive of fields whose transformations involve even higher derivatives of
δωa(x), but we will not have occasion to do so in these notes so we restrict our attention
to cases for which only GAa (x), G

µ
a(x) and T

Aµ
a (x) are non-vanishing. The transformations

will lead to a variation of the action according to

δS =

∫
[(δd4x)L+ d4xδL]. (2.2.2)

We evaluate each term above separately. The first results exclusively from the change in
coordinates

x′µ = xµ + ϵµ(x) → ∂x′µ

∂xν
= δµν + ∂νϵ

µ(x) (2.2.3)

so the change in measure, δd4x is determined via the Jacobian

d4x→ d4x′ = d4x det

∣∣∣∣∂x′µ∂xν

∣∣∣∣ = d4x det(δµν + ∂νϵ
µ) = d4x det Ĵ (2.2.4)

where the “hat” is used to denote a matrix when its component indices are suppressed,

i.e., the components of Ĵ = 1̂ + ∂ϵ are Jµν = δµν + ∂νϵ
µ. But the determinant of a matrix

Ĵ is related to its trace according to2

ln det Ĵ = tr ln Ĵ (2.2.5)

so that
det Ĵ = etr ln Ĵ = etr ln(1̂+∂ϵ) ≈ etr∂̂ϵ ≈ 1 + ∂µϵ

µ (2.2.6)

and it follows that
δd4x = d4x′ − d4x = d4x(∂ · ϵ) (2.2.7)

and therefore

δS =

∫
d4x[(∂ · ϵ)L+ δL] =

∫
d4x[(∂ · ϵ)L+ ϵ · ∂L+ δ0L]

=

∫
d4x

[
∂µ(Lϵ

µ) +
∂L

∂ϕA
δ0ϕ

A +
∂L

∂(∂µϕA)
δ0∂µϕ

A

]
(2.2.8)

Interchanging δ0 and ∂µ ([δ0, ∂µ]ϕ = 0), we find

δS =

∫
d4x

[
∂µ(Lϵ

µ) +
∂L

∂ϕA
δ0ϕ

A + ∂µ

(
∂L

∂(∂µϕA)
δ0ϕ

A

)
− ∂µ

(
∂L

∂(∂µϕA)

)
δ0ϕ

A

]
(2.2.9)

2This is easy to prove: let λn be the eigenvalues of Ĵ , so

det Ĵ =
∏
n

λn → ln det Ĵ = ln(
∏
n

λn) =
∑
n

lnλn = tr ln Ĵ
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which simplifies to

δS =

∫
d4x

{
EAδ0ϕA + ∂µ

[
Lϵµ +

∂L

∂(∂µϕA)
δ0ϕ

A

]}
(2.2.10)

where EA are the Euler derivatives of L as given by the left hand side of (2.1.9). Exchange
the functional variation of ϕA(x) for a total variation and write the variation of the action
as

δS =

∫
d4x

{
EA(δϕA − ϵ · ∂ϕA) + ∂µ

[(
Lδµν −

∂L

∂(∂µϕA)
∂νϕ

A

)
ϵν +

∂L

∂(∂µϕA)
δϕA

]}
(2.2.11)

Using (2.2.1), the first term above may be rewitten as∫
d4x EA

{
(GAa −Gµa∂µϕA)δωa + TAµa ∂µδω

a
}

=

∫
d4x

{
[EA(GAa −Gµa∂µϕA)− ∂µ(EATAµa )]δωa + ∂µ(EATAµa δωa)

}
(2.2.12)

after an integration by parts. Therefore

δS =

∫
d4x [EA(GAa −Gµa∂µϕA)− ∂µ(EATAµa )]δωa

+

∫
d4x ∂µ

[(
Lδµν −

∂L

∂(∂µϕA)
∂νϕ

A

)
ϵν +

∂L

∂(∂µϕA)
δϕA + EATAµa δωa

]
(2.2.13)

Because these are symmetry transformations, δS = 0. This is only possible if the current

jµ =

[(
Lδµν −

∂L

∂(∂µϕA)
∂νϕ

A

)
Gνa +

∂L

∂(∂µϕA)
GAa + EATAµa

]
δωa +

∂L

∂(∂µϕA)
TAνa ∂νδω

a

(2.2.14)
(called the Noether current) is conserved and, because the parameters are arbitrary,
the identities

EA(GAa −Gµa∂µϕA)− ∂µ(EATAµa ) = 0 (2.2.15)

(called the Noether identities) are satisfied. Both must hold true regardless of whether
or not the equations of motion are satisfied. Thus we have two (Noether) theorems:

• To every differentiable symmetry of an action there exists a conserved current, an
example of which is given in (2.2.14), and

• To every differentiable symmetry of an action there exists a set of differential iden-
tities, an example of which is given in (2.2.15).
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The existence of a conserved Noether current implies the existence of a conserved
Noether charge; we see this by integrating the conservation equation for jµ over a
volume, V ,

d

dt

∫
V
d3r⃗ j0 = −

∫
V
d3r⃗ ∇⃗ · j⃗ = −

∫
S
dS n̂ · j⃗ (2.2.16)

by Gauss’ theorem, where S is the surface bounding the volume V . If the fields and their
first derivatives vanish on S, or, if S is taken to infinity and they decrease rapidly enough
as infinity is approached, then the right hand side is zero and we find that the charge

Q =

∫
V
d3r⃗ j0 (2.2.17)

is conserved,
dQ

dt
= 0. (2.2.18)

The Noether current can be modified by the addition of any divergence free set of vectors
Θµ constructed out of the fields and their derivatives, so it is not unique and, as a con-
sequence, the Noether charge is also not unique. The differential identities of Noether’s
second theorem are trivial “on-shell” i.e., on classical solutions of the field equations
(EA = 0), so Euler’s equations can be viewed as a particular solution of the Noether
identities. What is important is that the identities are required to hold “off-shell” as well.

2.3 Lorentz Transformations and Translations

As all actions are required to be Lorentz scalars, one of the most basic applications of
Noether’s first theorem is to global Lorentz transformations and space-time translations
(the group of transformations ISO(3, 1)). These we take to be of the form xµ → x′µ =
xµ + ϵµ, where

δxµ = ϵµ = δωµνx
ν + δaµ. (2.3.1)

The first component of the transformations are the Lorentz transformations3 and the
second component are constant translations. Suppose that under these transformations

δϕA = GAαβδω
αβ (2.3.2)

3Problem: Consider an infinitesimal Lorentz transformation

xµ → x′µ = (δµν + δωµ
ν)x

ν

and expand x′2 = x′µx′ν to first order in δωµ
ν . Because x2 is a scalar we must have x′2 = x2. Show that

this implies that ωµν = −ωνµ.
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(since fields are Lorentz scalars, vectors or tensors, they must be invariant under constant
translations), then if we define

Θµ
ν = Lδµν −

∂L

∂(∂µϕA)
∂νϕ

A (2.3.3)

and also

Sµαβ =
∂L

∂(∂µϕA)
GAαβ, (2.3.4)

the conserved Noether current in (2.2.14) can be expressed as

jµ = Θµ
νδa

ν +

(
1

2
[Θµ

αxβ −Θµ
βxα] + Sµαβ

)
δωαβ (2.3.5)

where we have antisymmetrized the second term because δωαβ is antisymmetric; Ŝ is
already antisymmetric in the pair (α, β), by definition. Evidently, by considering pure
translations (δω̂ = 0) it follows that Θ̂ is conserved. Likewise, the antisymmetric tensor

Mµ
αβ =

1

2
(Θµ

αxβ −Θµ
βxα) + Sµαβ, (2.3.6)

is also a conserved current by invariance under pure boosts and rotations (δaµ = 0).

We have obtained two important conserved quantities. The (mixed) second rank ten-
sor, Θµ

ν is called the canonical energy momentum or canonical stress energy tensor
of the field.4 The rank three tensorMµ

αβ is called the total angular momentum tensor
density of the field and it is made up of two parts, viz., the orbital angular momentum
tensor density,

Lµαβ =
1

2
(Θµ

αxβ −Θµ
βxα) (2.3.7)

and the intrinsic angular momentum tensor density, Sµαβ. From the conservation of
Mµ

αβ follows

∂µS
µ
αβ =

1

2
(Θαβ −Θβα) (2.3.8)

and so Sµαβ is separately conserved if Θ̂ is a symmetric tensor. Otherwise the intrinsic
angular momentum of the field is not separately conserved and may be exchanged in favor
of orbital angular momentum and vice-versa. The extent to which this occurs is measured
by the antisymmetric part of the canonical energy momentum tensor.

4Problem: Compute the stress-energy tensor of the field η(t, x), representing the excitations of an elastic
rod.
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We may define a 4-vector that is identified with the energy and momentum of the
field,5 when Θµν is a symmetric tensor,

Pµ =

∫
d3r⃗ Θ0µ (2.3.9)

(℘µ = Θ0µ is the momentum density of the field). Conservation of the Noether charge
means that the four quantities associated with space-time translations, Pµ, are conserved,

dPµ

dt
= 0, (2.3.10)

if the fields fall off rapidly enough at infinity or if they (together with their derivatives)
vanish at the boundaries. Likewise, we define

Mαβ =

∫
d3r⃗ M0

αβ (2.3.11)

whose spatial components are associated with the total angular momentum of the field.
Again, conservation of charge means that the six quantities associated with boosts and
rotations, M0

αβ, are conserved,
d

dt
Mαβ = 0, (2.3.12)

under the same conditions.
It turns out that Θµν is not always symmetric in its indices. If it is not symmetric

it would not make a lot of sense to define the momentum four vector as above. How-
ever, we can exploit the fact that it is also not uniquely defined as a conserved quantity
because we could add to it any divergence free, second rank tensor. In particular, the
divergence, ∂λk

λµν = ∆µν , of a third rank tensor, kλµν , which is antisymmetric in the two
indices (λ, µ) would satisfy this condition because partial derivatives commute whereas k̂
is antisymmetric by construction,

∂µ∆
µν = ∂µ∂λk

λµν = 0. (2.3.13)

Therefore, if
tµν = Θµν +∆µν = Θµν + ∂λk

λµν (2.3.14)

then tµν is still conserved.
Suppose that by doing this we could find a tensor, tµν , that is symmetric and conserved.

Then, notice that∫
d3r⃗ t0µ = Pµ =

∫
d3r⃗ Θ0µ +

∫
d3r⃗ ∂ik

i0µ =

∫
d3r⃗ Θ0µ +

∮
Σ
d2Σ n̂i k

i0µ, (2.3.15)

5Problem: Show that Pµ transforms as a 4-vector
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where Σ is a two dimensional boundary of the spatial region over which we are integrating
and n̂i is its unit normal. If the ki0µ vanishes on this boundary or falls off sufficiently fast
at infinity to make the second integral vanish then there is no difference between the total
momentum defined using Θ0µ and the one defined using t0µ; the momentum 4-vector could
be defined in terms of either energy momentum tensor. However, the energy momentum
densities would differ.

Exploiting (2.3.8), one can construct a candidate for kλµν from the intrinsic angular
momentum tensor density as6

kλµν = −
(
Sλµν + Sµνλ + Sνµλ

)
, (2.3.16)

and the resulting tensor tµν = Θµν+∆µν will be both symmetric and conserved.7 Modified
in this way, the tensor, tµν , is called the Belinfante-Rosenfeld stress-energy tensor.
Given tµν , define the modified orbital angular momentum tensor density

L̃µαβ =
1

2
(tµαxβ − tµβxα). (2.3.17)

and the modified spin angular momentum tensor density

S̃µαβ = Sµαβ −
1

2
(∆µ

αxβ −∆µ
βxα), (2.3.18)

so that the conserved total angular momentum tensor density can be written in terms of
these modified tensor densities,

Mµ
αβ = L̃µαβ + S̃µαβ. (2.3.19)

It is straightforward that L̃µαβ is separately conserved (∂µL̃
µ
αβ = 0) because tµα is con-

served and symmetric. Therefore S̃µαβ is also separately conserved (∂µS̃
µ
αβ = 0). More-

over, we notice that S̃µαβ is itself a divergence,

S̃µαβ = ∂λZ
λµαβ (2.3.20)

where Zλµ{αβ} = 0 = Z{λµ}αβ.8

We can now define the modified orbital angular momentum tensor,

L̃µν =

∫
d3r⃗ L̃0

µν =

∫
d3r⃗ (xµ℘ν − xν℘µ), (2.3.21)

6Problem: Show that kλµν is antisymmetric in (λµ): k{λµ}ν = kλµν + kµλν = 0.
7Problem: Show that tµν is a symmetric tensor: t[µν] = tµν − tνµ = 0
8Problem: Determine Zλµαβ and prove that it satisfies the given symmetry properties.
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where ℘µ = t0µ is the momentum density. Then the orbital angular momentum is con-
served

d

dt
L̃µν = 0, (2.3.22)

if the fields fall off fast enough at infinity or vanish on the boundary. Equation (2.3.21)
is reminiscent of the way in which ordinary orbital angular momentum is defined in point
particle mechanics. Likewise, defining

S̃µν =

∫
d3r⃗ S̃0

µν (2.3.23)

we find that
d

dt
S̃µν = 0, (2.3.24)

provided the same conditions hold. We will now apply these concepts to some field theories
of elementary particles.

2.4 The Klein-Gordon Equation

The earliest attempt at a relativistic quantum mechanics was made by Oskar Klein and
Walter Gordon, who proposed a relativistic version of the Schroedinger equation in order
to describe relativistic electrons. They went about determining the wave equation by
applying the quantization procedure used in non-relativistic quantum mechanics, pi →
−iℏ∂i, H = E → iℏ∂t directly to the relativistic constraint, p2 +m2c2 = 0. The resulting
operator was taken to annihilate the wave function and they proposed9(

□x +
m2c2

ℏ2

)
ϕ(x) = 0 (2.4.1)

where □x is the four dimensional Laplacian. The equation is manifestly Lorentz invariant
when ϕ(x) is taken to be a scalar function, i.e., ϕ(x) → ϕ′(x′) = ϕ(x) (note that this
means that δ0ϕ = −δ1ϕ = −ϵ · ∂ϕ). The wave function is complex, and if we multiply this
equation from the left by its complex conjugate, ϕ∗(x), we find

ϕ∗□xϕ− ϕ□xϕ
∗ = 0 ⇒ ∂µ(ϕ

∗∂µϕ− ϕ∂µϕ∗) def
= ∂µ(ϕ

∗←→∂µϕ) = 0, (2.4.2)

which has the form of a continuity equation with jµ = αϕ∗
←→
∂µϕ serving as a four vector

current density (α is any constant). Separating the space and time derivatives in the last
equation above,

∂µj
µ =

∂ρ

∂t
+ ∇⃗ · j⃗ = 0 (2.4.3)

9Problem: Starting from the relation p2 = −m2c2 and the replacement rule pµ → −iℏ∂µ, of ordinary
non-relativistic quantum mechanics, derive the Klein-Gordon equation.
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where ρ = j0 should represent the Born probability density associated with the wave
function.

As we will see shortly, the mechanical dimension of the wave function must be [ϕ] =√
ml/t. If ρ is to represent a probability density, [ρ] = l−3, then [α] = t/ml2 and we take

take α = −i/ℏ,
ρ =

i

ℏc2
ϕ∗
←→
∂t ϕ, j⃗ = − i

ℏ
ϕ∗
←→
∇ ϕ, (2.4.4)

so as to recover the correct non-relativistic limit for the probability current. Recalling
from ordinary quantum mechanics that the inner product must be commensurate with
the probability density, j0, we define it according to (2.4.4),

⟨ϕ, ϕ′⟩ = i

ℏc2

∫
d3r⃗

(
ϕ∗(x)

←→
∂t ϕ

′(x)
)
, (2.4.5)

but there are two problems with this interpretation, both related to the fact that the
equation is second order in time:

• The probability density ρ is not positive definite, a feature that is necessary for the
Born interpretation. This reflects the fact that the equation is second order in the
time derivative. (It also means that we must specify both ϕ and ϕ̇ everywhere at
some initial time, say t = 0.)

• There are positive and negative energy solutions and both are required for complete-
ness, but negative energy states can lead to an energy spectrum that is not bounded
from below. In a classical theory, this is not a problem because there is a mass
gap, i.e., an energy region, between −mc2 and +mc2, that is forbidden. As energy
can only change continuously in a classical theory, if we simply assume that the
universe began with all particles in states with E > +mc2 then it will be impossible
for particles to transition to negative energy states. Even in the quantum theory,
it is not a problem so long as the scalar particles are free. However, if the particle
interacts with, say, an electromagnetic field, this can cause problems. In quantum
mechanics, changes in observables (in particular energy) can be discontinuous, so
even if the universe began with all particles in positive energy states, transitions
from positive to negative energy states can occur. In this way we could, in principle,
indefinitely extract energy from a system and use the extracted energy to do work,
but observations suggest that is impossible.

These problems are circumvented if we think of ϕ(x) as a classical scalar field described
by the Klein-Gordon equation, instead of as the wave function of a relativistic particle.
On the classical level, we avoid the appearance of negative energies as the energy and
momentum densities of the field are given by the energy momentum tensor and the energy
density of the field is not negative. When the field is quantized multi-particle states
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appear. As we mentioned in the introduction to this chapter, this is to be expected in a
relativistic theory because the Einstein relation E = mc2 together with the uncertainty
principle, ∆E∆t ≳ ℏ, permits multi-particle states to be created out of the vacuum, so
long as they exist for short enough times. Thus particle quantum mechanics gets replaced
by multi-particle relativistic quantum field theory.

2.4.1 Mode Expansion

A general solution to the free Klein-Gordon equation with no boundary surfaces can be
given as

ϕ(x) =

∫
d4k a(k)eik·xδ(k2 +m2c2/ℏ2), (2.4.6)

where kµ = (−ω, k⃗) = pµ/ℏ. Expanding, absorbing constants into a(k) and separating the
space and time components,

ϕ(t, r⃗) =

∫ ∞

−∞
dω

∫
d3k⃗

2ωk
a(ω, k⃗)ei(k⃗·x−ωt) [δ(ω − ωk) + δ(ω + ωk)] (2.4.7)

where ωk = +

√
k⃗2c2 +m2c4/ℏ2. The second δ−function in brackets shows that including

both positive and negative energy states is necessary for completeness. Integrating,

ϕ(t, r⃗) =

∫
d3k⃗

2ωk

[
a(ωk, k⃗)e

i(k⃗·x−ωt) + a(−ωk, k⃗)ei(k⃗·x+ωt)
]

(2.4.8)

and making the change of variables k⃗ → −k⃗ in the second integral,

ϕ(t, r⃗) =

∫
d3k⃗

2ωk

[
a(ωk, k⃗)e

i(k⃗·x−ωt) − a(−ωk,−k⃗)e−i(k⃗·x−ωt)
]

(2.4.9)

or, calling −a(−Ek,−k⃗) = b∗(Ek, k⃗), we have

ϕ(x) =

∫
d3k⃗

2ωk

[
a(k)eik·x + b∗(k)e−ik·x

]
(2.4.10)

where it is now understood that kµ = (−ωk, k⃗). If the field is real then b(k) = a(k).

Let u
(±)
k (x) = e±ik·x. As plane waves, u

(±)
k (x) are not normalizable in infinite space,

but they form a complete, orthogonal basis. Applying (2.4.5), we find

⟨u(+)
k′ , u

(+)
k ⟩ =

(2π)3(2ωk)

ℏc2
δ(k⃗ − k⃗′)
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Figure 2.1: Contour for the static Green’s function.

⟨u(−)
k′ , u

(−)
k ⟩ = −

(2π)3(2ωk)

ℏc2
δ(k⃗ − k⃗′)

⟨u(−)
k′ , u

(+)
k ⟩ = ⟨u

(+)
k′ , u

(−)
k ⟩ = 0. (2.4.11)

The energy and momentum carried by the mode functions, u
(±)
k (x), are respectively

Ĥu
(±)
k (x) = iℏ

∂

∂t
u
(±)
k (x) = ±Eku

(±)
k (x) (2.4.12)

and
p̂ u

(±)
k (x) = −iℏ∇⃗u(±)

k (x) = ±p⃗u(±)
k (x), (2.4.13)

where Ek = ℏωk and p⃗ = ℏk⃗, as expected.

2.4.2 Green’s Functions

If j(x) is a source for the field so that ϕ satisfies the inhomogeneous wave equation,(
□x +

m2c2

ℏ2

)
ϕ(x) = j(x) (2.4.14)

then ϕ(x) is readily determined by quadratures via the Green’s function approach.

Static Green’s Function

Let us first consider the static case, for which j = j(r⃗) and ϕ = ϕ(r⃗), then(
−∇⃗2 +

m2c2

ℏ2

)
ϕ(r⃗) = j(r⃗) (2.4.15)
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and ϕ(r⃗) can be determined from

ϕ(r⃗) =

∫
d3r⃗′G(r⃗, r⃗′)j(r⃗′) (2.4.16)

where (
−∇⃗2 +

m2c2

ℏ2

)
G(r⃗, r⃗′) = δ3(r⃗ − r⃗′) (2.4.17)

is the Green’s function associated with the operator, −∇⃗2+m2c2/ℏ2. Assuming no bound-
ing surfaces (for simplicity) and noting that translation invariance of the Laplacian requires
G(r⃗, r⃗′) = G(r⃗ − r⃗′), we Fourier expand,

G(r⃗, r⃗′) =

∫
d3k⃗

(2πℏ)3
G(k⃗)e

i
ℏ k⃗·(r⃗−r⃗

′) (2.4.18)

It follows that G(k⃗) = ℏ2(k⃗2 +m2c2)−1 and therefore,

G(r⃗, r⃗′) =
1

(2π)3ℏ

∫
d3k⃗

e
i
ℏ k⃗·(r⃗−r⃗

′)

k⃗2 +m2c2
(2.4.19)

Performing the angular integrations,

G(r⃗, r⃗′) = − i

(2π)2∆r

∫ ∞

−∞
kdk

(
e

i
ℏk∆r

k⃗2 +m2c2

)
(2.4.20)

where ∆r = |r⃗− r⃗′| and k = |⃗k|. The integral may be performed in the complex plane (see
figure 2.1) by closing the contour in the upper half plane to ensure that the semi-circle at
infinity does not contribute (Jordan’s lemma). The contour encloses only the simple pole
at k = +imc and therefore

G(r⃗ − r⃗′) = 1

4π

e−
mc
ℏ ∆r

∆r
. (2.4.21)

Thus the “Yukawa potential” due to a point source at the origin, j(r⃗) = j0δ(r⃗), from
(2.4.16), is

ϕ(r) =
j0
4πr

e−
mc
ℏ r. (2.4.22)

As m→ 0, it approaches the expected potential due to a massless field.
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Figure 2.2: Contour for the “retarded”
Green’s function.

Figure 2.3: Contour for the “advanced”
Green’s function.

Causal Green’s Function

If j(x) is time dependent, then ϕ(x) can be determined from

ϕ(x) = c

∫
d4x′G(x, x′)j(x′) (2.4.23)

where (
□x +

m2c2

ℏ2

)
G(x, x′) =

1

c
δ4(x− x′) (2.4.24)

is the Green’s function associated with the Klein-Gordon operator, □x+m2c2/ℏ2. As be-
fore, assuming no bounding surfaces and noting that translation invariance of the Laplacian
requires G(x, x′) = G(x− x′), we Fourier expand,

G(x, x′) =

∫
cd4k

(2πℏ)4
G(k)e

i
ℏk·(x−x

′) (2.4.25)

It follows that G(k) = ℏ2(k2 +m2c2)−1 and therefore,

G(x, x′) =

∫
d3k⃗

(2π)3ℏ
e

i
ℏ k⃗·(r⃗−r⃗

′)

∫ ∞

−∞

cdE

2πℏ
e−

i
ℏE(t−t′)

−E2 + k⃗2c2 +m2c4

= −
∫

d3k⃗

(2π)3ℏ
e

i
ℏ k⃗·∆r⃗

∫ ∞

−∞

cdE

2πℏ
e−

i
ℏE∆t

(E − Ek)(E + Ek)
(2.4.26)

where ∆t = t− t′ and ∆r⃗ = r⃗− r⃗′ and we have assumed spherical symmetry for simplicity.
The integral has two simple poles, located at E = ±Ek, so we regulate it by evaluating
the energy integral by contour integration in the complex E plane (see figures 2.2 and
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2.3). How one chooses to go around the poles will determine (or, is determined by) the
boundary conditions on the field and the particular Green’s function obtained.

To ensure that the integrals over the semi-circles at infinity do not contribute to the
integral, we must close the contour in the lower half plane when ∆t > 0 and in the upper
half plane when ∆t < 0, according to Jordan’s lemma. Next, we must determine which
of the poles to include in the contour, i.e., how to go around the poles. Suppose we insist
that any effect of changes in the source at t′ may be felt at a distant point only in the
future of t′ and no effect may be felt at a distant point in the past of t′. This is tantamount
to requiring that G(x, x′) vanishes when ∆t < 0, so none of the poles should be contained
within the contour that closes in the upper half plane. We are left with the causal or
retarded Green’s function, GR(x, x

′), (which should be familiar from electrodynamics)
shown in figure 2.2. Because both poles are included within the contour of integration,
both positive and negative frequencies are propagated forwards in time. Figure 2.3, on
the contrary represents precisely the opposite situation: here the effects of a change in the
source are felt at a distant point only in the past of the change. It leads to the acausal
or advanced Green’s function, GA(x, x

′) for which positive and negative frequencies are
propagated backwards in time. In a classical theory we require causality, so choose the
causal Green’s function,

GR(x, x
′) = − cΘ(∆t)

(2π)3ℏ2

∫
d3k⃗

Ek
e

i
ℏ k⃗·∆r⃗ sin

(
Ek∆t

ℏ

)
(2.4.27)

where Θ(∆t) is the Heaviside function, guaranteeing that GR(x−x′) vanishes if t < t′. As-
suming spherical symmetry, for convenience, and integrating over the angular coordinates,
the k− integrals can be written as

GR(x, x
′) = − cΘ(∆t)

2π2ℏ∆r

∫ ∞

−∞

kdk

Ek
e

i
ℏk∆r sin

(
Ek∆t

ℏ

)
(2.4.28)

where we used k = |⃗k| and ∆r = |∆r⃗|. The integral may be performed in the complex
plane over a contour that closes in the upper half plane (Jordan’s lemma) and avoids the
cut due to the branch point on the positive imaginary axis, at k = +imc, as shown in
figure 2.4; one finds

GR(x, x
′) =

Θ(∆t)

4π

[
1

∆r
δ(∆r − c∆t)− mc

ℏ
J1(

mc
ℏ
√
c2∆t2 −∆r2)

√
c2∆t2 −∆r2

]
, (2.4.29)

provided that ∆s2 = c2∆t2−∆r2 > 0, and zero otherwise. Above, J1 is the Bessel function
of the first kind and the Heaviside function ensures that the event x′ preceeds the event
x (t > t′). If the Klein-Gordon field is massless then the retarded Green’s function is just
the familiar one from the theory of electromagnetism.
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Figure 2.4: Contour for evaluating GR(x, x
′) in (2.4.28).

2.5 Scalar Fields

Let us now turn the Klein-Gordon equation into a Lagrangian field theory. We begin with
the “real” scalar field.

2.5.1 Action and Symmetries

The “free, linear field” is described by the Klein-Gordon equation, which is derivable by
Hamilton’s principle from the action

S = −1

2

∫
d4x

[
ηµν∂µϕ∂νϕ+

m2c2

ℏ2
ϕ2
]

=
1

2

∫
d4x

[
1

c2
ϕ̇2(t, r⃗)− ∇⃗ϕ(t, r⃗) · ∇⃗ϕ(t, r⃗)− m2c2

ℏ2
ϕ2(t, r⃗)

]
, (2.5.1)

where m is associated with the mass of the field, c is the speed of light and ℏ is Planck’s
constant. S will have the mechanical dimension of “action”, i.e., [S] = ml2/t, if [ϕ] =√
ml/t.

The Lagrangian can be thought of as having the traditional form T−V , if the derivative
terms can be associated with the field momentum and the non-derivative term with a field
“potential”. One can imagine generalizing the action to

S = −1

2

∫
d4x [ηµν∂µϕ∂νϕ+ 2V (ϕ)] (2.5.2)

where V (ϕ) is an arbitrary scalar field potential, one possibility for which would be

V (ϕ) =
∑
n=2

gnϕ
n(x) (2.5.3)
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so that g2 = m2c2/2ℏ2 would represent the “mass term” of the Klein-Gordon equation. If
g2 = 0 we say that the field is “massless”. The equation of motion

□ϕ(x) + V ′(ϕ) = 0, (2.5.4)

where V ′(ϕ) = dV/dϕ, is not linear if gn ̸= 0 for n > 2 showing that all the higher order
terms represent interactions of the field with itself. For example, the anharmonic potential

V (ϕ) = g2ϕ
2 + g4ϕ

4 (2.5.5)

is useful in particle phenomenology and condensed matter physics.10

If all the gn vanish, with the possible exception of g4, the action has an interesting
global scaling symmetry: it is invariant under the transformation x → x′ = λx and
ϕ(x)→ ϕ′(x′) = λ−1ϕ(x). As in the case of fluid dynamics, position and time are required
to scale in the same way for any relativistic field theory, otherwise Lorentz invariance
would be violated. As an example of scaling in a theory that is not Lorentz invariant,
consider the action whose extremization would lead to the Schroedinger equation,

SSch =

∫
dt

∫
d3r⃗

[
iℏ
2
ψ∗←→∂ tψ −

ℏ2

2m
(∇⃗ψ∗) · (∇⃗ψ)− V (t, r⃗)ψ∗ψ

]
. (2.5.6)

One can check that it is invariant under the scaling transformation

r⃗ → r⃗′ = λr⃗, t→ t′ = λ2t, V (t, r⃗)→ V ′(t′r⃗′) = λ−2V (t, r), (2.5.7)

and
ψ(t, r⃗)→ ψ′(t′, r⃗′) = λ−3/2ψ(t, r⃗) (2.5.8)

In fact, because space and time decouple in Galilean relativity, there is no required à
priori relationship between the scaling of space and the scaling of time. When space
and time scale in the same way the scaling is said to be isotropic and only isotropic
scaling is compatible with Lorentz invariance. Anisotropic scaling is allowed only in
non-relativistic models.

Other choices of V (ϕ) are often of interest: for example, taking V (ϕ) = α[1−cos(ϕ/β)],
we get the Sine-Gordon equation11

□ϕ(x) +
α

β
sin(ϕ/β) = 0, (2.5.9)

where the constants α and β have mechanical dimensions [α] = m/lt2 and [β] =
√
ml/t

respectively. Here all powers of ϕ occur in the potential via the cosine funtion.12

10Potentials with gn ̸= 0 for n > 4 do not satisfy the “perturbative renormalizability” criterion and are
not considered to yield self-consistent quantum field theories. However, they are perfectly good classical
field theories.

11The Sine-Gordon theory is “renormalizable”.
12Problem: Find an exact traveling solution to the Sine-Gordon equation in two dimensions as follows:
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The real scalar field may be generalized to the complex scalar field, described by the
action

S = −
∫
d4x [ηµν∂µϕ

∗∂νϕ+ V (|ϕ|)] , (2.5.10)

where ϕ∗(x) is the complex conjugate of ϕ(x) and |ϕ(x)| is its magnitude. The equation
of motion, obtained by varying the action independently with respect to the field and its
conjugate, is the same as before:

□ϕ(x) + V ′(|ϕ|)ϕ(x) = 0 (2.5.11)

(and likewise for the conjugate field), where V ′(|ϕ|) = dV (|ϕ|)/d|ϕ|2. Furthermore, be-
cause the action is real, we have the additional global “gauge” symmetry: x → x′ = x,
ϕ(x)→ ϕ′(x′) = eiαϕ(x) for any real constant, α.

2.5.2 Non-Relativistic Limit

Before proceeding with an analysis of the scalar field, let us see how the Schroedinger
equation emerges from the Klen-Gordon equation as its non-relativistic limit. The me-
chanical energy of a particle, E = E −mc2, is much less than its rest mass energy in this
limit, so define the Schoredinger wave function by

ϕ(t, r⃗) =
ℏ√
2m

e−
imc2t

ℏ ψ(t, r⃗) (2.5.12)

• Assume that the scalar field is of the form ϕ(t, x) = ϕ(u) where u = x− vt.

• Show that the Sine-Gordon equation turns into

d2ϕ

du2
= ϕ′ dϕ

′

dϕ
= σV ′(ϕ),

where ϕ′ = dϕ/du and determine the constant σ.

• Integrate once to get ϕ′2(u) = 2σV (ϕ) + C, where C is a constant.

• Ask for a “localized” solution, i.e., one for which the energy density vanishes at infinity, or
lim|u|→∞ ϕ′(u) = lim|u|→∞ V (ϕ) = C = 0. This says that ϕ(∞) = 2nπβ for integer n.

• Integrate this equation for ϕ′(u) and find the solution

ϕ±(u) = 4β tan−1

{
exp

[
±
√
σα

β
(u− u0)

]}
This is the Sine-Gordon soliton, with ϕ(u0) = πβ; describe the solutions. The solution with the
positive sign, which approaches 4mπβ as u → −∞ and 2(2m + 1)πβ as u → +∞, where m is
an integer, is called a “kink”. The one with a negative sign approaches 4mπβ as u → +∞ and
2(2m+ 1)πβ as u→ −∞, and is called an “anti-kink”.
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(the pre-factor ensures that the dimension ψ is l−3/2) and take the potential to be of the
form

V (ϕ) =
m2c2

ℏ2
|ϕ|2 + 2m

ℏ2
Ṽ1(|ϕ|) =

mc2

2
|ψ|2 + Ṽ (|ψ|). (2.5.13)

We have

ϕ̇ =
ℏ√
2m

e−
imc2t

ℏ

[
ψ̇ − imc2

ℏ
ψ

]
, (2.5.14)

and therefore the kinetic term in the action for ϕ(x) turns to

− ηµν∂µϕ∗∂νϕ =
ℏ2

2mc2
|ψ̇|2 + iℏ

2

(
ψ∗ψ̇ − ψ̇∗ψ

)
− ℏ2

2m
|∇⃗ψ|2 + mc2

2
|ψ|2. (2.5.15)

We ignore the term |ψ̇|2/mc2 and write13

− ηµν∂µϕ∗∂νϕ ≈
iℏ
2

(
ψ∗ψ̇ − ψ̇∗ψ

)
− ℏ2

2m
|∇⃗ψ|2 + mc2

2
|ψ|2, (2.5.16)

so the non-relativistic action can now be written as

S =

∫
dt

∫
d3r⃗

[
iℏ
2
ψ∗←→∂ tψ −

ℏ2

2m
|∇⃗ψ|2 − Ṽ (|ψ|)

]
. (2.5.17)

The action yielding the Schroedinger equation in (2.5.6) is obtained by taking Ṽ (|ψ|) =
V (t, r⃗)|ψ|2.

2.5.3 Conservation Laws for the Free Scalar Field

Provided the scalar potential satisfies the required scaling properties, the action will be
invariant under the global scale transformation,

x→ x′ = λx, ϕ(x)→ ϕ′(x′) = λ−1ϕ(x). (2.5.18)

This gives
δxν = xνδλ, δϕ = −ϕ(x)δλ (2.5.19)

13The dispersion relation that leads to the Klein Gordon equation is −E2 + p⃗2c2 +m2c4 = 0 (a). Now
consider the same equation, written in terms of ψ, i.e.,

1

c2

[
ψ̈ − 2imc2

ℏ
ψ̇

]
− ∇⃗2ψ = 0

which follows from the dispersion relation −E2/c2 − 2mE + p⃗2 = 0 (b). The energies are related by
E = E −mc2, i.e., substituting for E in (b) returns the original dispersion relation in (a). Thus E is the
mechanical energy, which is required to be much less than mc2 in the non-relativistic limit and it follows
that the first term in (2.5.15) is much smaller than the second.
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(i.e., Gν = xν , G(ϕ) = −ϕ) and therefore Noether’s first theorem assures us that the
dilatation current

jµ =

(
Lδµν −

∂L

∂(∂µϕ)
∂νϕ

)
xν − ∂L

∂(∂µϕ)
ϕ(x)

= ϕ∂µϕ+Θµ
νx

ν (2.5.20)

is conserved, where
Θµ

ν = ∂µϕ∂νϕ+ δµνL. (2.5.21)

Translational invariance will soon be seen to yield the conserved energy momentum tensor
for the scalar field,

Θµ
ν = Lδµν −

∂L

∂(∂µϕ)
∂νϕ = ∂µϕ∂νϕ+ δµνL (2.5.22)

according to (2.3.3).14

The energy momentum tensor, Θµν , is symmetric. From it we can construct the
momentum density ℘µ = Θ0µ and the total momentum carried by the field,

Pµ =

∫
d3r⃗ ℘µ. (2.5.23)

Again, because ϕ(x) transforms as a scalar under Lorentz transformations, GAαβ vanishes
identically and with it so does the intrinsic angular momentum, Sµαβ. The orbital angular
momentum tensor density,

Lµαβ =
1

2
(Θµ

αxβ −Θµ
βxα) (2.5.24)

is conserved and it gives the field angular momentum tensor

Lνλ =

∫
d3r⃗ L0νλ =

∫
d3r⃗ (xν℘λ − xλ℘ν) (2.5.25)

as before.
In the case of the free, complex scalar field, we should find once again that the energy

momentum tensor is symmetric,

Θµν = (∂µϕ
∗∂νϕ+ ∂νϕ

∗∂µϕ) + ηµνL (2.5.26)

and that the field carries no intrinsic angular momentum (spin). This means that the total
momentum and the orbital angular momentum can be defined in precisely the same way

14Problem: Show that the simultaneous conservation of the energy momentum tensor and the dilatation
current on shell implies that V (ϕ) = λϕ4, where λ is a constant.
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as they were for the real scalar field. However, there is the additional gauge symmetry.
Global gauge transformations do not involve any transformation of the coordinates (i.e.,
x→ x′ = x) but only a transformation of the fields according to

ϕ(x)→ ϕ′(x′) = eigδαϕ(x) = (1 + igδα)ϕ(x)⇒ δϕ = igδαϕ (2.5.27)

where δα is constant (similarly for the conjugate field). Thus there is a conserved current
given by

jµ = i
∂L

∂(∂µϕ)
ϕ− iϕ∗ ∂L

∂(∂µϕ∗)
= iϕ∗

←→
∂µϕ. (2.5.28)

2.6 Local Gauge Invariance

Global symmetries can often be turned into a local symmetries by introducing a new field.
The action for the complex scalar field is not invariant under a local gauge transformation,
i.e., when α depends on x, because of the derivative term, which picks up derivatives of
α(x) as well. This can be remedied as follows:

• Introduce a new real, vector field Aµ(x), called a gauge field, which simultaneously
transforms under the local gauge transformation,

x→ x′ = x, ϕ(x)→ ϕ′(x′) = eigα(x)ϕ(x), (2.6.1)

where g is a constant, according to

Aµ(x)→ A′
µ(x

′) = Aµ(x) + ∂µα(x) (2.6.2)

• Define the new action

S = −
∫
d4x [ηµν(Dµϕ)

∗Dνϕ+ V (|ϕ|)] , (2.6.3)

where Dµ is a new derivative operator,

Dµ = ∂µ − igAµ. (2.6.4)

With this definition,
Dµϕ(x)→ D′

µϕ
′(x′) = eigα(x)Dµϕ(x) (2.6.5)

and
(Dµϕ(x))

∗ → (D′
µϕ

′(x′))∗ = e−igα(x)(Dµϕ(x))
∗ (2.6.6)

and therefore the new action remains invariant under the local gauge transformation. The
operator Dµ is called a “(gauge) covariant” derivative. It satisfies the Leibnitz rule, but
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this is not immediately obvious. It follows from the fact that the precise form of the co-
variant derivative depends on the transformation property of the quantity on which it acts
(characterized by g). Thus, consider the product of two functions with transformations

ϕ(x)→ ϕ′(x′) = eig1α(x)ϕ(x),
ψ(x)→ ψ′(x′) = eig2α(x)ϕ(x),

then it is straightforward that

Dµ(ψϕ) = {∂µ − i(g1 + g2)Aµ}(ψϕ) = ψ(Dµϕ) + (Dµψ)ϕ.

Aµ is called the “gauge connection”.
The covariant derivative does not commute with itself as the ordinary derivative does.

In fact
[Dµ, Dν ]ϕ = −igFµνϕ, (2.6.7)

where
Fµν = ∂µAν − ∂νAµ, (2.6.8)

which is called the field strength tensor and which you may recognize as the Maxwell
tensor of Electrodynamics. It can be checked directly that Fµν is invariant under the gauge
transformations in (2.6.2). This is indeed quite remarkable, saying that the electromag-
netic interaction can be understood as being a direct consequence of the gauge invariance
of the action describing matter. To include a gauge invariant “kinetic” term for the gauge
field, turning it into a dynamical field in its own right, we write the total action as

S = −
∫
d4x

[
ηµν(Dµϕ)

∗Dνϕ+ V (|ϕ|) + gc

4
FµνF

µν
]
, (2.6.9)

and vary with respect to both ϕ(x) and Aµ(x).
15,16 What we have obtained is the action

describing scalar electrodynamics. Varying with respect to ϕ∗(x) gives us the equation of

15Problem: Show that the mechanical dimension of Ai must be ml/t and of A0 is ml2/t2. Then show
that the mechanical dimension of g is t/ml2. For this reason we may set g = e2/4παℏ, where both e
and α are dimensionless, e is taken to be the electric charge and α is the fine structure constant. Indeed,
comparing with the action for the electromagnetic field, we see that gc = 1/µ0, where µ0 = 4π×10−7 kg·m
is the permeability of the vacuum. This gives g = 2.6526× 10−3 J−1·s−1 and α = 7.2783× 10−3 ≈ 1/137.
In units in which c = 1 = ℏ (in these units the mechanical dimensions of l and t are the same and m ∼ l−1),
the coupling constant g is dimensionless and the gauge field has the dimension of mass.

16Problem: It is sometimes convenient to rescale the gauge fields according to A′
µ(x) =

√
gcℏAµ(x) and

redefine the coupling constant as g′ =
√
g/ℏc. show that, in terms of the rescaled fields and coupling

constant, we may write

S = −
∫
d4x

[
ηµν(Dµϕ)

∗Dνϕ+ V (|ϕ|) + 1

4ℏ
F ′
µνF

′µν

]
,

where F ′
µν = ∂µA

′
ν − ∂νA′

µ and Dµ = ∂µ − ig′A′
µ. Veryfy the mechanical dimensions: [A′

i] =
√
m2l3/t3,

[A′
0] =

√
m2l5/t5 and [g′] =

√
t3/m2l5.
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motion for the scalar field,

−DµDµϕ(x) + V ′(|ϕ|)ϕ(x) = 0 (2.6.10)

and varying with respect to Aµ(x) gives Maxwell’s equations with the scalar field as the
source17

∂αF
αµ =

i

c
[ϕ∗Dµϕ− (Dµϕ)∗ϕ] =

i

c
ϕ∗
←→
Dµϕ =

1

c

(
jµ + 2g|ϕ|2Aµ

)
. (2.6.11)

The first term in the source for the electromagnetic field, on the right hand side of the
above equation, is the Noether current associated with global gauge invariance. The
second term is characteristic of what one sees for a massive vector field (imagine |ϕ|2
is constant), for example in (2.7.4). We will exploit this fact in a later chapter, when
we examine spontaneous symmetry breaking. Local invariance is stronger than global
invariance since an action that is invariant under local transformations is invariant under
global transformations but not vice-versa.

2.7 Vector Fields

The electromagnetic field discussed above is a real vector field with an interesting sym-
metry: gauge invariance, as captured in (2.6.2). The price we pay for gauge invariance is
that the field is massless.

2.7.1 Action and Symmetries

If we add a “mass term” to the action for a gauge field in analogy with the scalar field,

S = −c
∫
d4x

(
g

4
FµνF

µν +
m2c2

2ℏ3
AµA

µ

)
, (2.7.1)

then the action ceases to be gauge invariant. Gauge invariance is not an essential symmetry
for an arbitrary vector field (as is, for example, Lorentz invariance) and we may take (2.7.1)
to be the action describing a massive vector field. This is the Wentzel-Pauli action and
the equation of motion,

− ∂µFµν +
m2c2

gℏ3
Aν = 0 (2.7.2)

is the Proca equation for massive vector fields. Now if we expand the Maxwell tensor, we
find that the equations of motion read

□xA
ν + ∂ν(∂ ·A) + m2c2

gℏ3
Aν = 0 (2.7.3)

17Problem: Demonstrate the consistency of (2.6.11) by showing that that on shell i.e., subject to the

equations of motion, ∂µ(ϕ
∗←→D µϕ) = Dµ(ϕ

∗←→D µϕ) = 0.
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and if we take the divergence of the above equation we find m2(∂ ·A) = 0, so that, as long
as m ̸= 0, the condition ∂ ·A = 0 holds and the vector field equations of motion

□xA
ν +

m2c2

gℏ3
Aν = 0 (2.7.4)

look exactly like those of four massive, real scalar fields (or D real scalar fields, where D
is the dimension of space-time).18

Gauge invariance of the massless vector field tells us that any solution of the field
equations is physically equivalent to another solution differing from the first by the gradient
of a scalar function. We are free to choose any one of the infinite possible solutions that
differ from each other in this way. Another way to think about this is to realize that we
are free to impose one additional condition on the field. This condition is called “a gauge
choice”. The argument goes as follows: for any solution, Aµ, of the field equations that
does not obey the gauge condition, a scalar function, α(x), always exists such that the
gauge transformed field,

A′
µ(x) = Aµ(x) + ∂µα(x) (2.7.5)

does obey the gauge condition. Now the transformed field is also a solution of Maxwell’s
equations because the latter are invariant under gauge transformations, so the gauge
condition could be imposed from the start. How the gauge condition is chosen is irrelevant,
so long as it is not gauge invariant. It is generally chosen in such a way as to simplify
one’s computations. A popular gauge choice is

∂ ·A = 0 (2.7.6)

because it is linear in the vector field and Lorentz invariant but not gauge invariant. This
is called the Lorenz gauge. In this gauge, Maxwell’s equations for the massless vector
field are just □xAµ = 0. Suppose, for example, that we have found a solution, Aµ(x),
of the field equations that does not satisfy the Lorentz condition. Consider the gauge
transformation of Aµ(x) as given in (2.7.5) and take the divergence of both sides,

∂ ·A′ = ∂ ·A−□α. (2.7.7)

We could choose α to be a solution of the Poisson equation, □α = ∂ · A and work with
A′
µ(x) from the start.

18Theories with massive vector fields are not perturbatively renormalizable unless the mass is generated
by interactions with another field. The way to generate renormalizable massive gauge theories was first
described by P.W. Anderson in 1962 and a relativistic generalization was developed a couple of years later
by various authors. It has come to be known as the Higgs mechanism (after P. Higgs) in relativistic field
theory.
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One might have supposed that the natural action for a vector field would take a similar
form as the action for four scalar fields (or D of them, in D dimensions),

S = − c
2

∫
d4x

[
g(∂µAν)(∂

µAν) +
m2c2

2ℏ3
AµA

µ

]
. (2.7.8)

What is wrong with this action is that it leads to an indefinite energy density, Θ00, which
occurs via the indefinite metric signature. This is a serious problem for any field theory
as it signals the presence of tachyons (particles moving faster than light). It is corrected
by adding the term

Lcorr =
gc

2
(∂µAν)(∂

νAµ) (2.7.9)

to the Lagrangian of (2.7.8), which then ends up becoming the Wentzel-Pauli Lagrangian.

2.7.2 Plane Waves

If the sources are very far away or in the absence of sources, we could expand the vector
field in Fourier modes that look like plane waves

Aµ(k, x) = Aµ(k⃗)e
ik·x (2.7.10)

where kµ = (−ωk, k⃗) and ωk = ±c
√
k⃗2 +m2c2/gℏ3. The Lorentz condition implies that

k · A = 0, and therefore Aµ(k⃗) has three independent components, or three independent

polarization states, which we categorize as two transverse states with AT
0 = 0 and A⃗T ⊥ k⃗,

and one longitudinal state with AL
0 ̸= 0 and A⃗L ∥ k⃗. Letting A⃗L = Ak̂, the longitudinal

state must satisfy the condition

AL
0 = −c

2 |⃗k|A
ωk

(2.7.11)

All three polarization states are spacelike, but the longitudinal state has norm

− ηµνAL
µA

L
ν = −A

2

ω2
k

m2c2

gℏ3
, (2.7.12)

which means that it becomes null in the massless limit.

If the field is massless, there is a residual gauge invariance even after the Lorentz
condition is imposed. To see how this comes about, recall that any solution of the field
equations can be transformed to a field satisfying the Lorentz gauge condition if we choose
α(x) to be the solution of a particular Poisson equation, specifically (2.7.7). Solutions of
Poisson’s equation are not unique because one can add to them any solution of Laplace’s
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equation to get a new solution. Thus, suppose we have two solutions of the field equations,
Aµ(x) and A

′
µ(x), both satisfying the Lorentz gauge condition, and related by

A′
µ(x) = Aµ(x) + ∂µβ(x), □β(x) = 0 (2.7.13)

The function β(x) = b(k⃗)eik·x automatically satisfies Laplace’s equation because ωk =
±|⃗k|c. Therefore,

A′
µ(k⃗) = Aµ(k⃗) + ib(k⃗)kµ (2.7.14)

We could use this equation to eliminate one more component of A′
µ(k⃗), leaving it with

just two independent polarization states. For example, we could set A′
0(k⃗) = 0 by taking

b(k⃗) = −iA0(k⃗)/ωk. In that case, the Lorentz condition reads k⃗ · A⃗′(k⃗) = 0, showing that
only the two transverse polarization states survive.

2.7.3 Conservation Laws and the Bianchi Identities

It is easy to see that the massless vector field Lagrangian is also invariant under isotropic
scaling provided that Aµ(x) → A′

µ(x
′) = λ−1Aµ(x). This is identical to the scaling

symmetry of the massless scalar field treated above and we can expect the conserved
dilatation current

jµ =

(
Lδµν −

∂L

∂(∂µAα)
∂νAα

)
xν − ∂L

∂(∂µAα)
Aα(x)

= gc

[
Fµα∂νAα −

1

4
F 2
αβδ

µ
ν

]
xν +

gc

2
FµαAα

= gcFµαAα + xνΘ
µν , (2.7.15)

where

Θµν = gc

[
Fµα∂νAα −

1

4
ηµνFαβF

αβ

]
(2.7.16)

is the canonical energy momentum tensor, which is neither symmetric nor gauge invariant.
From here one can construct the orbital angular momentum tensor density,

Lµαβ =
1

2

(
Θµαxβ −Θµβxα

)
(2.7.17)

and the orbital angular momentum tensor,

Lαβ =

∫
d3r⃗ L0

αβ. (2.7.18)
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This tensor has six independent components, three of which are spatial. The spatial
components of the tensor can be viewed as components of the angular momentum vector.
Defining the electric and magnetic fields in the usual way by

Ei = −F0i, Bi =
1

2
ϵijkF

jk, (2.7.19)

we find

Li = −ϵijk
∫
d3r⃗ L0

jk =
g

c

∫
d3r⃗ E⃗k(r⃗ × ∇⃗)iAk. (2.7.20)

The falure of the orbital angular momentum to be gauge invariant follows from the failure
of the canonical energy momentum tensor to be gauge invariant. To determine the intrinsic
angular momentum of the vector field we must evaluate the change in Aµ under a Lorentz
transformation,

Aµ(x)→ A′µ(x′) =
∂x′µ

∂xα
Aα(x)⇒ δAµ =

1

2
(δµαηβλ − δ

µ
βηαλ)A

λδωαβ (2.7.21)

(upon antisymmetrizing) which says that

Gµαβ =
1

2
(ηµαηβλ − ηµβηαλ)Aλ (2.7.22)

and gives the intrinsic spin tensor density

Sµαβ = −gcFµνGναβ = −gc
2
[FµαAβ − FµβAα] . (2.7.23)

As we did with the orbital angular momentum, we now define the spin tensor as

Sαβ =

∫
d3r⃗ S0

αβ = −gc
2

∫
d3r⃗

[
F 0

αAβ − F 0
βAα

]
. (2.7.24)

which also as six independent components, three of which are spatial,

Sjk = −
g

2c

∫
d3r⃗ [EjAk − EkAj ] , (2.7.25)

and can equivalently define a spin density vector by contraction with the Levi-Civita
tensor,

Si = −ϵijkSjk =
g

c

∫
d3r⃗ E⃗ × A⃗. (2.7.26)

Si is also not gauge invariant.
Translational invariance yields the weak conservation of Θµν , but it is not a symmetric

tensor and therefore one cannot directly construct the momentum density of the field,
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as we did earlier. To symmetrize the stress tensor we follow the prescription laid out
in section 3, i.e., we look for a third rank tensor, kλµν which is antisymmetric in (λ, µ).
An obvious choice is to apply the Belinfante-Rosenfeld prescription in (2.3.16) with the
intrinsic spin given in (2.7.23). We find kλµν = gcF λµAν and

∆µν = gc∂λ(F
λµAν) = gc{(∂λF λµ)Aν + F λµ∂λA

ν}. (2.7.27)

The first term vanishes by the vacuum Maxwell equations, so ∆µν = gcF λµ∂λA
ν . Adding

this term to Θµν gives the Belinfante-Rosenfeld tensor,

tµν = gc

[
FµαF να −

1

4
ηµνFαβF

αβ

]
, (2.7.28)

which is both symmetric in its indices and gauge invariant. We can use tµν to define the
momentum density, ℘µ = t0µ, so that

℘0 = t00 = gcF 0iF 0
i +

g

4c
FαβF

αβ =
g

2c

(
E⃗2

c2
+ B⃗2

)
=
E
c2

(2.7.29)

where F0i = −Ei is the electric field, Fij is given in terms of the magnetic field, Bi as
Fij = ϵijkB

k and E represents the energy density of the electromagnetic field.19

The field momentum density is

℘i = t0i = gcF 0jF ij =
g

c
ϵijkE

jBk =
g

c
E⃗ × B⃗, (2.7.30)

which will be recognized as the Poynting vector and determines the energy flux of the
vector field.

Consider, also, the modified angular momentum tensor density,

L̃αµν =
1

2
(tαµxν − tανxµ) (2.7.31)

and the angular momentum tensor

L̃
µν

=

∫
d3r⃗ L̃0µν =

1

2

∫
d3r⃗ (℘µxν − ℘νxµ), (2.7.32)

whose three spatial components,

L̃
ij
=

1

2

∫
d3r⃗ (℘ixj − ℘jxi) (2.7.33)

19Problem: Show that the energy density of the vector field given by the action (2.7.8) is indefinite.
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represent the orbital angular momentum carried by the field. Using the three dimensional
Levi-Civita tensor we can now define the modified orbital angular momentum vector as

L̃
i
= −

∫
d3r⃗ εijkL̃0

jk =

∫
d3r⃗ (r⃗ × ℘⃗) = g

c

∫
d3r⃗

[
r⃗ × (E⃗ × B⃗)

]i
, (2.7.34)

which is gauge invariant.20

We may also ask what Noether’s theorems say about local gauge transformations of
the massless vector field. If the transformations are taken to be arbitrary, parameterized
by the infinitesimal function δα(x) then

δxµ = 0, δAµ = ∂µδα(x) (2.7.35)

determine Gµ = 0 = G(A)
µ and T (A)µ

ν = δµν . Insert these into (2.2.14) to find

jµ = gc
[
∂λF

µλδα(x) + Fµλ∂λδα(x)
]
= gc∂λ(F

µλδα(x)). (2.7.36)

This is a conserved current, which is guaranteed by the antisymmetry of Fµν .
The Bianchi identities are a set of algebraic relations obeyed by the first derivatives

of the field strength tensor. These algebraic identities follow directly from the Jacobi
identity,

{[[Dµ, Dν ], Dα] + [[Dα, Dµ], Dν ] + [[Dν , Dα], Dµ]}ϕ = 0, (2.7.37)

and from the definition of the tensor; specifically we find that

∂αFµν + ∂νFαµ + ∂µFνα ≡ 0. (2.7.38)

In four dimensions there are four independent identities and we can contract the left hand
side with the four dimensional Levi-Civita tensor, writing the relation as

ϵσαµν∂αFµν = ∂α
∗F σα = 0 (2.7.39)

where ∗F σα = ϵσαµνFµν is the dual of the field strength tensor. Expanding the above
into time and space components one sees that they are simply the “sourceless” Maxwell
equations, viz., Faraday’s law and the absence of magnetic monopoles.21

20Problem: Show that the modified spin angular momentum is

S̃i =
g

c

∫
d3r⃗

[
E⃗ × A⃗+ r⃗ × (E⃗ · ∇⃗)A⃗

]i
=
g

c

∫
d3r⃗ ∇⃗ ·

[
E⃗ (r⃗ × A⃗)i

]
,

in the absence of sources. Therefore the spin vector associated with the Belinfante-Rosenfeld tensor vanishes
for fields that decay fast enough.

21Problem: Show that (2.7.38) and (2.7.39) are identical. Then show that they reduce to

∇⃗ × E⃗ +
∂B⃗

∂t
= 0, ∇⃗ · B⃗ = 0
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2.8 Conservation Laws for Interacting Fields

Interactions are described by adding terms to the Lagrangian for the free fields. Collec-
tively, these terms are generally referred to as the interaction Lagrangian. The Noether
currents get modified by the interaction Lagrangian but, because the currents are linear in
L, these modifications are always additive. If we think of the Lagrangian as made up of a
“free” or non-interacting part plus an interacting part it is necessary only to compute the
modifications arising from the interaction Lagrangian and add them to the free currents.
For example, for the complex scalar field interacting with the gauge field in (2.6.9) write

L = Lϕ + LA + L(int) (2.8.1)

where Lϕ is found in (2.5.10), LA in (2.7.1) (with m = 0) and

L(int) = −igϕ∗
←→
∂µϕA

µ − g2A2|ϕ|2 = −g(j ·A)− g2A2|ϕ|2, (2.8.2)

where jµ is the free scalar field current density given in (2.5.28). To compute the modifi-
cations to the stress-energy tensor arising from the interactions, one would determine

Θµ
ν(int) = L(int)δ

µ
ν − ∂νϕ∗

∂L(int)

∂(∂µϕ∗)
−
∂L(int)

∂(∂µϕ)
∂νϕ−

∂L(int)

∂(∂µAα)
∂νAα

=
{
−g(j ·A)− g2A2|ϕ|2

}
δµν + gAµjν (2.8.3)

and find

Θµ
ν = Θµ

ν(ϕ) +Θµ
ν(A) +Θµ

ν(int). (2.8.4)

A similar approach determines the contributions of the interaction to the spin and angular
momentum tensors painlessly.

According to (2.2.14), the Noether current corresponding to local gauge invariance,
with non-vanishing variations at the boundaries,

δϕ(x) = igδα(x)ϕ(x), δϕ∗(x) = −igδα(x)ϕ(x), δAλ(x) = ∂λ(δα(x)), (2.8.5)

will be

Jµ = c
[
∂λF

λµδα(x) + F λµ∂λδα(x)
]

= c∂λ

(
F λµδα(x)

)
. (2.8.6)

The terms involving the scalar field cancel, so this is identical to (2.7.36) even though the
matter fields have been taken into account in applying (2.2.14)! Since δα(x) is arbitrary
we could take it to be constant (say, unity), in which case, using the equations of motion,

Jµ = c∂λF
λµ = (iϕ∗

←→
Dµϕ) = jµ. (2.8.7)
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where jµ is the source current for the electromagnetic field. Thus the conserved charge is
exclusively due to the source currents

Q = −g
∫
d3r⃗ J0 ∼ −g

∫
d3r⃗ j0 = −gc

∫
d3r⃗ ∂iF

i0 = +
g

c

∮
S
E⃗ · dS⃗ (2.8.8)

so that for fields that are generated by localized charges and currents the source charge
can be converted to a surface integral at infinity, which is finite and non-zero in general.
This is Gauss’ law. It is a remarkable property of the minimal coupling that the Noether
current associated with gauge symmetry can be expressed in terms of the field strengths
with no explicit reference to the source (scalar) field. The infinite family of conserved
charges generated by (2.8.6) is redundant.

2.9 Hamiltonian Description of Fields

The Hamiltonian dynamics of fields parallels the Hamiltonian dynamics of point particles
with obvious differences that owe to the functional nature of the field Lagrangian. Suppose
that we are given a Lagrangian density function

L = L(ϕA(x), ∂µϕ
A(x), x), (2.9.1)

and a Lagrangian functional

L[ϕA, ∂µϕA, t] =
∫
d3r⃗ L(ϕA(r⃗, t), ∂µϕ

A(r⃗, t), r⃗, t). (2.9.2)

We define the momentum conjugate to the field ϕA as

πA(x) =
∂

∂ϕ̇A(x)
L(ϕA(x), ∂µϕ

A(x), x) (2.9.3)

and the Hamiltonian density by the Legendre transformation

H(πA(x), ϕ
A(x), ∂iϕ

A(x), x) = πA(r⃗, t)ϕ̇
A(r⃗, t)− L. (2.9.4)

The Hamiltonian of the system is constructed from the Hamiltonian density in the same
way as the Lagrangian is constructed from the Lagrangian density,

H[πA, ϕA, ∂iϕA, t] =
∫
d3x H =

∫
d3r⃗

[
πA(r⃗, t)ϕ̇

A(r⃗, t)− L
]
. (2.9.5)

and it is not difficult to see that H and likewise H are independent of ϕ̇A; for instance
taking a derivative of H w.r.t. ϕ̇A yields

∂H

∂ϕ̇A(x)
= πA(x)−

∂L

∂ϕ̇A(x)
≡ 0. (2.9.6)
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As was the case for point particles, the equations of motion are recovered by requiring
that the action,

S =

∫ 2

1
d4x

[
πA(x)ϕ̇

A(x)− H(πA(x), ϕ
A(x), ∂iϕ

A(x), x)
]

(2.9.7)

be stationary under independent variations of the field variables (πA(x), ϕ
A(x)), keeping

both fixed at the boundaries “1” and “2”. This gives the canonical equations

ϕ̇A(x) =
δH

δπA(x)
=

∂H

∂πA
, π̇A(x) = −

δH
δϕA(x)

= − ∂H

∂ϕA
+ ∂i

(
∂H

∂(∂iϕA)

)
(2.9.8)

For example, for the Lagrangian density (2.0.10) describing the elementary excitations of
the rod, we have (suppressing the x dependence)

π = µη̇, H = πη̇ − L =
π2

2µ
+
Y

2
η′2 (2.9.9)

giving the equations of motion

η̇ =
∂H

∂π
=
π

µ
, π̇ = −∂H

∂η
+

(
∂H

∂η′

)′
= Y η′′ (2.9.10)

To obtain the Lagrangian equation of motion from the above canonical ones, use the first
to replace π with µη̇ in the second and get

µη̈ − Y η′′ = 0 (2.9.11)

as we had before.
As in the case of point particles, the canonical equations can also be given in terms of

Poisson brackets. Let A[π, ϕ, t] and B[π, ϕ, t] be two functionals of the phase space, {ϕ, π},
then define the Poisson brackets between them as

{A,B}t=t′P.B =

∫
d3r⃗

[
δA

δϕA(r⃗, t)

δB
δπA(r⃗, t)

− δA
δπA(r⃗, t)

δB
δϕA(r⃗, t)

]
(2.9.12)

If we compare the above expression with the definition we used for point particles, we will
notice that only two things have changed, viz., (a) there is an additional integration over
space and (b) the ordinary derivatives have been replaced by functional derivatives. Both
changes are dictated by the fact that we are now dealing with Lagrangian functionals.
Note, finally, that the Poisson brackets are defined at equal times.

Consider the functional

FA[ϕ] =
∫
d3r⃗ ϕA(r⃗, t) (2.9.13)
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then

{FA,H}t=t′P.B. =

∫
d3r⃗

δH
δπA(r⃗, t)

=

∫
d3r⃗ ϕ̇A(r⃗, t) (2.9.14)

and likewise,

FA[π] =
∫
d3r⃗ πA(r⃗, t) (2.9.15)

leads to

{FA,H}t=t
′

P.B. = −
∫
d3r⃗

δH
δϕA(r⃗, t)

=

∫
d3r⃗ π̇A(r⃗, t) (2.9.16)

From these equations it will be clear that we could also define the fundamental Poisson
bracket relations

{ϕA(r⃗, t), ϕB(r⃗′, t′)}t′=tP.B. = 0 = {πA(r⃗, t), πB(r⃗′, t′)}t
′=t
P.B.

{ϕA(r⃗, t), πB(r⃗′, t′)}t
′=t
P.B. = δABδ

3(r⃗ − r⃗′) (2.9.17)

and write

ϕ̇A(r⃗, t) = {ϕA(r⃗, t),H(t′)}t′=tP.B.

π̇A(r⃗, t) = {πA(r⃗, t),H(t′)}t
′=t
P.B. (2.9.18)

They would yield the canonical equations of (2.9.8).22

2.9.1 Scalar Fields

The algorithm to construct the Hamiltonian is straightforward for the complex scalar field.
Using the Lagrangian functional in (2.5.10),

L = −
∫
d3r⃗ [ηµν∂µϕ

∗∂νϕ+ V (|ϕ|)] (2.9.19)

we compute the field momentum densities, one conjugate to each of ϕ and ϕ∗,

π∗ =
∂L

∂ϕ̇∗
=

1

c2
ϕ̇, π =

∂L

∂ϕ̇
=

1

c2
ϕ̇∗ (2.9.20)

and construct the Hamiltonian density

H = π∗ϕ̇∗ + πϕ̇− L = c2π∗π + {∇⃗ϕ∗ · ∇⃗ϕ+ V (|ϕ|)} (2.9.21)

22Problem: Show this!
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and Hamiltonian

H[ϕ, ϕ∗, π, π∗] =
∫
d3r⃗H =

∫
d3r⃗

[
c2π∗π + {∇⃗ϕ∗ · ∇⃗ϕ+ V (|ϕ|)}

]
. (2.9.22)

Notice that the Hamiltonian density is simply the time-time component of the canonical
energy momentum tensor, Θ00.23

The canonical (Hamilton) equations of motion become

ϕ̇(x) = {ϕ(x),H}P.B =
δH
δπ(x)

= c2π∗(x),

π̇(x) = {π(x),H}P.B. = −
δH
δϕ(x)

= {∇⃗2ϕ∗(x)− V ′(|ϕ|)ϕ∗(x)}, (2.9.23)

together with their hermitean conjugates, and the second order (Lagrangian) equations
are recovered in the usual way, for example

π̇∗ =
1

c2
ϕ̈ = {∇⃗2ϕ− V ′(|ϕ|)ϕ} ⇒ □xϕ(x) + V ′(|ϕ|)ϕ(x) = 0 (2.9.24)

and its hermitean conjugate.

2.9.2 Massless Vector Fields

Straightforward though it is for an ordinary scalar field, there are some subtleties to keep
in mind when dealing with massless vector fields. Let us begin with the Lagrangian in
(2.7.1), taking m = 0, and see that

πα =
∂L

∂(∂tAα)
= gcFα0 (2.9.25)

so π0 = 0 (the momentum conjugate to A0 vanishes!) is a primary constraint and πi =
−gEi/c. We want the “velocities”, Ȧi, in terms of the momenta, so we write

πi = gFi
0 = −g

c
Fi0 = −

g

c
(∂iA0 − ∂0Ai) (2.9.26)

and solve to get

∂0Ai = Ȧi =
c

g
πi + ∂iA0. (2.9.27)

The Lagrangian density can now be expressed as

L = −gc
4
FµνF

µν = −gc
4

[
2Fi0F

i0 + FijF
ij
]
=

c

2g
πiπ

i − gc

4
FijF

ij , (2.9.28)

23Problem: Verify the energy localization conditions we used to find the kink/anti-kink solutions for the
Sine-Gordon equation and compute the energy density for each solution.
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so that we define the primary Hamiltonian density as

Hp = πiȦi + π0µ− L =
c

2g
πiπ

i + π0µ+ πi∂iA0 +
gc

4
FijF

ij , (2.9.29)

where we have introduced the Lagrange multiplier µ to enforce the single primary con-
straint Φ = π0 ≈ 0. Integrating the above over space, we get Hamiltonian

Hp =
∫
d3r⃗

[
c

2g
πiπ

i + π0µ+
gc

4
FijF

ij + πi∂iA0

]
(2.9.30)

and, again, integrating the last term by parts,

Hp =
∫
d3r⃗

[
c

2g
πiπ

i +
gc

4
FijF

ij + π0µ−A0∂iπ
i

]
, (2.9.31)

where we have assumed that the fields fall off rapidly enough at infinity or vanish at the
boundaries so that the surface terms disappear.

The first two terms in the Hamiltonian density will be recognized as the energy density
of the vector field,

c

2g
πiπ

i +
gc

4
FijF

ij =
gc

2

[
E⃗2

c2
+ B⃗2

]
, (2.9.32)

and may be compared with E in (2.7.29). We may also define the Poisson brackets of the
fundamental fields,

{Aµ(r⃗, t), πν(r⃗′, t)}P.B. = δνµδ
3(r⃗ − r⃗′) (2.9.33)

and derive the canonical equations of motion from these relations via

Ȧi(t, r⃗) = {Ai(t, r⃗),Hp}P.B. =
c

g
πi + ∂iA0, (2.9.34)

which is just the relation we had before for the “velocities”, and

π̇i(t, r⃗) = {πi(t, r⃗),Hp}P.B. = −gc∂jF ji. (2.9.35)

We also have

Ȧ0 = {A0(t, r⃗),Hp}P.B. = µ

π̇0 = {π0(t, r⃗),Hp}P.B. = ∂iπ
i ≈ 0 (2.9.36)

(Gauss’ law is a secondary constraint). There are no further constraints, so we end up
with one primary constraint (π0 ≈ 0) and one secondary constraint (∂iπ

i ≈ 0), both
of which are first class. Thus the Dirac brackets between observables coincide with the
Poisson brackets, the massless vector field has two (local) degrees of freedom and µ is not
determined. The constraints generate gauge transformations.
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2.10 Some Classical Solutions

Let us take a look at some useful, non-perturbative solutions of the theories we have
studied so far. We will be interested in localized solutions of the classical (Euler-Lagrange)
equations of motion. By “localized” we mean that the energy density vanishes fast enough
at infinity so that the total energy of the system is finite. As we will see, there is a conserved
charge, derivable from a locally defined current, associated with these solutions. However,
this current does not arise out of a symmetry of the action and is therefore not a Noether
current. It is topological current, constructed so that its conservation is guaranteed by
the dimensionality of space-time.

2.10.1 Scalar Solitons in 1+1 dimensions

To warm up we return to the 1+1 dimensional sine-Gordon soliton (“solitary wave”) of
footnote 12, Chapter 2. Upon integrating once we had found

ϕ′2 − 2σV (ϕ) = C (2.10.1)

where C is an integration constant. To get a feeling for what the interesting solutions
might look like, we interpret C as the “energy” of a “particle” moving in the inverted
potential U(ϕ) = −2σα(1 − cosϕ/β) and u as a “time”. For periodic motion we must
require that this “energy” lies between the minima and maxima of U(ϕ), i.e.,

− 4σα ≤ C ≤ 0. (2.10.2)

The case C > 0 would correspond to unbounded motion. It is convenient to parametrize
C as C = −4σα(1− k2) where k ∈ [0, 1]. Then (2.10.1) turns into

ϕ′2 = 4ασ(k2 − cos2 ϕ/2β)

and, when k = 1 (C = 0), we obtain the solutions we had earlier,

ϕ±(u) = 4β tan−1

{
exp

[
±
√
α

β

u− u0√
1− v2/c2

]}
(2.10.3)
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where u = x− vt.24 The energy density of these solutions,

H =
1

2

[
c2π2 + ϕ′2 + 2V (ϕ)

]
=

4α

1− v2/c2
sech2

(√
α

β

(u− u0)√
1− v2/c2

)
, (2.10.4)

vanishes exponentially at ±∞. Integrating the energy density, we verify that their total
energy is finite as required,

E =

∫ ∞

−∞
dx H =

8β
√
α√

1− v2/c2
, (2.10.5)

and can be used to define the kink/anti-kink mass, M , according to

E
def
=

Mc2√
1− v2/c2

. (2.10.6)

At the other extreme, when k = 0, the only solutions are the constants ϕ = (2n+1)πβ for
integer n. Their energy density is constant, at the maximum of the sine-Gordon potential,
so they are not localized. All the solutions in between, with k ∈ (0, 1), will be periodic
but not localized, and described by the Jacobi elliptic functions.

Let us concentrate on the k = 1 solutions. One can think of these solutions as taking us
from one minimum of the potential (equivalently a maximum of the inverted potential) at
u→ −∞ to another minimum (maximum of the inverted potential) at u→∞. However,
at the minima, the velocity of the field is zero and so are all of its higher derivatives! We
can see that this is true for any potential satisfying the required condition at infinity as
follows:

ϕ′ =
√

2V (ϕ), ϕ′′ = V ′(ϕ), ϕ′′′ = V ′′(ϕ)ϕ′, . . . (2.10.7)

Therefore if ϕ(u) starts out in one of the minima, say, ϕ = 4nπβ, the kink solution
transitions the field to the neighboring minimum at ϕ = 2(2n+1)πβ, but cannot get past
it.

Although they possess the same energy density, the kink and anti-kink solutions are
inequivalent. We say that two solutions are topologically inequivalent if one of them

24ϕ(u) is also obtained by Lorentz boosting the static solution (v = 0)

ϕ(x) = 4β tan−1

{
exp

[
±
√
α

β
(x− x0)

]}
,

which can be obtained by extremizing the energy functional

E[ϕ] =
1

2

∫
dx
[
ϕ′2 + 2V (ϕ)

]
.
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ϕ u) = 2πβ

ϕ u) = 0
u

ϕ(u)

Figure 2.5: Kink and anti-kink solutions
in the sine-Gordon theory.

ϕ(u) = 4α

u

E(u)

Figure 2.6: Energy density.

cannot be continuously deformed into the other without passing through a barrier of infinite
action. To see that the kink and anti-kink solutions are inequivalent, consider only the
static solutions and a deformation

Φ(η, x) = g(η)ϕ+(x) + h(η)ϕ−(x) (2.10.8)

where g(η) and h(η) are smooth functions of η ∈ [0, 1], satisfying g(0) = 1, g(1) = 0,
h(0) = 0, h(1) = 1. These conditions ensure that Φ(0, x) = ϕ+ and Φ(1, x) = ϕ−.
Consider the static action,

S(η) = −1

2

∫
dx
[
Φ′2 + 2α (1− cosΦ/β)

]
. (2.10.9)

Using

ϕ′+ = +2
√
α sin

ϕ+
β
, ϕ′− = −2

√
α sin

ϕ−
β

it is then easy to show that

Φ′2 =
4α(g − h)2

cosh2
√
α
β (x− x0)

, (2.10.10)

which ensures that the integral of the first term in (2.10.9) is finite. However, the integral
of the second term,

2α

∫ ∞

−∞
dx sin2

[
2g tan−1 e

√
α
β

(x−x0) + 2h tan−1 e
−
√
α

β
(x−x0)

]
,

diverges unless g = 0, 1 and h = 0, 1, which conditions cannot be met by the deforming
functions. Thus the two solutions are inequivalent.
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ϕ(u) = +
2

λ

mc

h

ϕ(u) = -
2

λ

mc

h

u

ϕ(u)

Figure 2.7: Kink and anti-kink solutions
in the λϕ4 theory.

ϕ(u) =
1

λ

mc

h

4

u

E(u)

Figure 2.8: Energy density.

In two dimensions, a simpler way to see that the kink and anti-kink solutions are
inequivalent is to define the conserved current,

Jµ = ϵµν∂νϕ, (2.10.11)

where ϵµν is the two dimensional Levi-Civita symbol. Conservation of Jµ is due to the
antisymmetry of the Levi-Civita tensor and is independent of the particular model being
considered. Jµ is therefore a topological current not a Noether current, because it does
not arise out of any continuous symmetry. It defines a (topological) charge,

Q =

∫ ∞

−∞
dx J0 = −

∫ ∞

−∞
dx ϕ′(u) = ϕ|∞−∞ = 0,±2πβ, (2.10.12)

where we have included the charge, Q = 0, associated with the trivial solution ϕ(u) =
2nπβ. The positive charge is associated with the kink solution and the negative charge
with the anti-kink. The sine-Gordon equation admits more solutions of the form

ϕ(t, x) = 4β tan−1

(
f(x)

g(t)

)
, (2.10.13)

but we leave the development of such solutions and their interpretation for a more spe-
cialized study.

Kink and anti-kink solutions are also found in the “λϕ4” theory with negative m2, for
which the equation of motion may be written as

□ϕ− m2c2

ℏ2
ϕ+ λϕ3 = 0 (2.10.14)

and the potential has two neighboring global minima at ϕmin = ±
√

2
λ
mc
ℏ , separated by a

local maximum at ϕmax = 0. It can be viewed as a small field expansion about ϕ = 0 of
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the Sine-Gordon equation, with the appropriate identifications of the constants (α < 0),
or as the Euler equation for the field action

S = −1

2

∫
d2x

[
ηµν∂µϕ∂νϕ−

m2c2

ℏ2
ϕ2 +

λ

4
ϕ4
]

(2.10.15)

By adding a suitable constant to the action, the potential may be redefined as

2V (ϕ) =
λ

4

(
ϕ2 − 2m2c2

λℏ2

)2

(2.10.16)

and localized solutions obtained from∫
dϕ√
2V (ϕ)

= ±
√
σ(u− u0), (2.10.17)

will be of the form

ϕ±(u) = ±
√

2

λ

mc

ℏ
tanh

mc√
2ℏ

(u− u0)√
1− v2/c2

. (2.10.18)

Therefore the kink, ϕ+, takes one from the left vacuum, ϕ = −
√

2
λ
mc
ℏ , at u→ −∞ to the

right vacuum, ϕ = +
√

2
λ
mc
ℏ , at u→ +∞ and the anti-kink, ϕ−, does precisely the reverse.

Both solutions possess a localized energy density,

H =
1

λ

(mc
ℏ

)4 sech4
[
mc√
2ℏ

(u−u0)√
1−v2/c2

]
1− v2/c2

(2.10.19)

and a finite total energy,

E =

∫ ∞

−∞
dx H =

4

3λ
√

1− v2/c2
(mc

ℏ

)3 def
=

M ′c2√
1− v2/c2

, (2.10.20)

but they are not equivalent, as seen from the topological charge,

Q =

∫ ∞

−∞
dx J0 = ϕ|∞−∞ = 0, ± 2

√
2

λ

mc

ℏ
. (2.10.21)

As before, the zero charge is associated with the trivial solution ϕ = 0, the positive charge
with the kink, ϕ+, and the negative charge with the anti-kink, ϕ−.

Can the above two dimensional solutions be extended to higher dimensions? The
answer is “no”, according to Derrick’s theorem. The reason is that the finite total
energy condition cannot be met in more than two spatial dimensions. To see that this
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is so, note that, in D spatial dimensions, the total energy corresponding to the field
configuration ϕ(r⃗) is

E[ϕ] =

∫
dDr⃗ H =

1

2

∫
dDr⃗

[
δij∂iϕ(r⃗)∂jϕ(r⃗) + 2V (ϕ)

] def
= E1[∂ϕ] + E2[ϕ], (2.10.22)

Suppose that ϕ1(r⃗) is a localized solution of δE[ϕ] = 0. A necessary condition for the solu-
tion to be stable is that the second variation of the energy function should be greater than
or equal to zero, δ2E[ϕ] ≥ 0. To find out if δ2E[ϕ1] ≥ 0, consider the field configurations

ϕλ(r⃗) = ϕ1(λr⃗) (2.10.23)

where λ > 0 is a scale factor. ϕλ(r⃗) is not, in general, a solution of the field equations,
except when λ = 1. The energy functional for ϕλ is

E[ϕλ] = Eλ =
1

2

∫
dDr⃗

[
δij∂iϕλ(r⃗)∂jϕλ(r⃗) + 2V (ϕλ)

]
(2.10.24)

With r⃗′ = λr⃗, yi = λxi we write it as

Eλ =
1

2

∫
dDr⃗′λ−D

[
λ2δij

∂ϕ1(r⃗
′)

∂yi
∂ϕ1(r⃗

′)

∂yj
+ 2V (ϕ1(r⃗

′))

]
= λ−D+2E1[∂ϕ1] + λ−DE2[ϕ1] (2.10.25)

Eλ is extreme when

dEλ
dλ

∣∣∣∣
λ=1

= (2−D)E1[∂ϕ1]−DE2[ϕ1] = 0 ⇒ E2[ϕ1] =
2−D
D

E1[∂ϕ1]

and stability requires that

d2Eλ
dλ2

∣∣∣∣
λ=1

= (2−D)(1−D)E1[∂ϕ1] +D(D + 1)E2[ϕ1] ≥ 0 (2.10.26)

Now E1[ϕ1] is certainly non-negative and, if V (ϕ1) is non-negative as well, so is E2[ϕ1].
The first condition implies that D ≤ 2, in which case the stability requirement also holds.
Moreover,

• if D = 1 (the case we have been examining) then E1 = E2 and

• if D = 2 then E2 = 0 (V (ϕ) = 0).
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There are no solutions when D > 2.

It is interesting to ask what is the significance of the potential with m2 < 0. If the
coefficient of the quadratic term in the potential were positive then it has the interpretation
of a mass term and the potential energy would admit just one lowest energy configuration,
i.e., at ϕ = 0. However, a negative quadratic term cannot be interpreted as a mass
term and now the potential energy admits two non trivial lowest energy configurations
corresponding to the values of ϕ given above. In the case of a complex scalar field, it
gives an infinite number of lowest energy configurations, each differing from the other by
a phase. When coupled to a gauge field, the complex scalar field may be expanded about
one of its lowest energy configurations,

ϕ = ϕmin +H

and the Lagrangian, written in terms of perturbations, H, about the lowest energy con-
figuration, now exhibits a mass term for the gauge fields. Any particular choice of field
configuration (amounting to a particular choice of the “vacuum” as indicated above) is
not gauge invariant. Therefore, in expanding the scalar field about one of its lowest energy
configurations, one of the scalar field degrees of freedom gets donated to the gauge field
which, upon acquiring the additional degree of freedom, becomes massive. This is called
spontaneous symmetry breaking (the U(1) gauge symmetry is spontaneously broken
by the choice of vacuum) and the process by which the gauge field acquires a mass is the
Higgs mechanism. We will examine this in greater detail in a forthcoming chapter.

2.10.2 The Abelian Higgs Model

Here we want to consider some non-perturbative solutions of the “Abelian-Higgs” model
which is described by the Lagrange density (in D dimensions)

L = −ηµν(Dµϕ)
∗Dνϕ− V (|ϕ|)− gc

4
FµνFµν (2.10.27)

We are looking for static configurations, so let us begin by noting that it is always possible
to pick a gauge in which A0 = 0 (the “temporal” gauge). If we begin with any gauge
configuration, Aµ(r⃗, t), and apply a gauge transformation, U = eigα(r⃗,t), then A0(r⃗, t) →
A′

0(r⃗, t) = A0(r⃗, t) + ∂tα(r⃗, t). Setting A
′
0(r⃗, t) = 0 we find that

∂tα(t) = −A0(x), ⇒ U = e−ig
∫ t A0(x,t′)dt′ .

So we will work in the gauge in which Dtϕ = 0 and, for static solutions, the energy density
will be

H = ηij(Diϕ)
∗(Djϕ) + V (|ϕ|) + gc

4
F ijFij . (2.10.28)
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The total energy can therefore be written as the sum of three terms

E[ϕ,A] = E1[Dϕ] + E2[ϕ] + E3[A] (2.10.29)

Let us repeat Derrick’s scaling argument and assume that we already know a solution pair
{ϕ1(r⃗), A(1)µ(r⃗)} of the equations of motion. If we consider the family of functions (not
solutions except when λ = 1)

ϕλ(r⃗) = ϕ(λr⃗), A(λ)µ(r⃗) = λAµ(λr⃗) (2.10.30)

then, following the same argument we had for the scalar field, we should find that the
energy functional scales as

Eλ = λ−D
[
λ2E1[Dϕ] + E2[ϕ] + λ4E3[A]

]
(2.10.31)

and therefore that for stable solutions the following conditions must hold:

dEλ
dλ

∣∣∣∣
λ=1

= (2−D)E1[Dϕ]−DE2[ϕ] + (4−D)E3[A] = 0

d2Eλ
dλ2

∣∣∣∣
λ=1

= (2−D)(1−D)E1[Dϕ] +D(D + 1)E2[ϕ] + (4−D)(3−D)E3[A] ≥ 0.

(2.10.32)

• In D = 1 we find E1 − E2 + 3E3 = 0 but there are no propagating gauge fields in
one dimension, so E3 = 0, in which case we recover the D = 1 result for the scalar
field alone: E1 = E2 ≥ 0.

• In D = 2 we find E2 = E3 ≥ 0. This is known as a “vortex”.

• In D = 3 the conditions read E1 + 3E2 = E3, E1 + 6E2 ≥ 0. This is a “monopole”
solution.

• In D = 4, E1 + 2E2 = 0 and E2 ≥ 0, but since E1 ≥ 0 these conditions can only
hold if E1 = 0 = E2. The solution consists of the gauge field alone.

We will examine some of these solutions below.

A U(1) Vortex in 2+1 dimensions

We are interested in static solutions of the Euler equations. For an arbitrary potential
and in the temporal gauge, we must then solve the equations

−DiDiϕ+ V ′(|ϕ|)ϕ = 0
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∇jF ij +
i

c
ϕ∗
←→
D iϕ = 0 (2.10.33)

where Di = ∇i − igAi. It will be convenient to work in polar coordinates in which
Ai = Ai(r) is required for cylindrical symmetry and, for the scalar field, we make the
ansatz ϕ(r, θ) = f(r)eiσ(θ), where σ(θ+ 2π) = σ(θ) + 2kπ for integer k is required so that
ϕ(r, θ) is single valued.25

Begin with the simplest choice (obeying the single valuedness condition) for the phase
function, σ(θ) = −kθ (integer k); Maxwell’s tensor has just one independent spatial
component in two spatial dimensions

Frθ = ∂rAθ − ∂θAr = ∂rAθ = −Fθr = rB (2.10.34)

where B is the “magnetic” field. The vector field equations then read

Ar = 0

A′′
θ −

A′
θ

r
+

2

c
(k + gAθ) f

2 = 0 (2.10.35)

(assuming f(r) ̸= 0) and, for the scalar field,

f ′′ +
f ′

r
− 1

r2
(k + gAθ)

2f + V ′(f) = 0 (2.10.36)

The energy density of the system is

H = f ′2 +
gc

2

A′2
θ

r2
+

(k + gAθ)
2

r2
f2 + V (f), (2.10.37)

therefore, to ensure that the total energy,

E = 2π

∫
dr r

[
f ′2 +

gc

2

A′2
θ

r2
+

(k + gAθ)
2

r2
f2 + V (f)

]
, (2.10.38)

25In all that follows we define the components of a vector as its coordinate components, so that the line
integral is ∫

C

A⃗ · dr⃗ =
∫
C

Aidy
i

where yi are the spatial coordinates. For example, if the spatial coordinate system is spherical, with
coordinates (r, θ, ϕ), we define the components by∫

C

A⃗ · dr⃗ =
∫
C

Ardr +Aθdθ +Aϕdϕ

and so on (see Chapter 6).
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is finite we adopt the following boundary conditions on the fields:26

lim
r→∞

f = const., lim
r→∞

V (f) = 0, lim
r→∞

Aθ = −
k

g

lim
r→0

f = 0, lim
r→0

V (f) = const., lim
r→0

Aθ
r

= 0. (2.10.39)

We can define a topological current in much the same way as we did for the scalar field in
1+1 dimensions,

Jµ = −ϵµνλ∂νAλ. (2.10.40)

As before, its conservation is a result of the antisymmetry of the Levi-Civita symbol. The
current leads to a (conserved) topological charge

Q =

∫
d2r⃗ J0 = −

∫
d2r⃗ ϵ0ij∂iAj = −2π

∫ ∞

0
dr∂rAθ = −2π Aθ|∞0 , (2.10.41)

where we used the fact that the Levi-Civita symbol is a density of weight −1.27 The
boundary conditions in (2.10.39) therefore determine this charge and we find

Q =
2πk

g
. (2.10.42)

The integral determining Q is the magnetic flux through the disk bounded by the circle
at infinity and therefore, for k ̸= 0, it represents a quantized magnetic charge.

For definiteness, we will now concentrate on the |ϕ|4 model, taking

V (|ϕ|) = λ

8
(ϕ∗ϕ− v2)2 = λ

8
(f2 − v2)2 (2.10.43)

so that, requiring V (f) → 0 as r → ∞ implies that f → ±v in that limit. Also, V (f) →
λv4/8 as r → 0.

To get a better feeling for the asymptotic behavior of the solutions, take f(r) = v+h(r),
Aθ(r) = −k/g +A(r) as r →∞ and linearize the Euler equations to get

h′′ +
h′

r
+ λv2h = 0

26The boundary conditions at infinity ensure that limr→∞Diϕ = 0 so that the scalar kinetic term
vanishes on the boundary.

27Problem: In Cartesian coordinates, xα, the Levi-Civita tensor is just the permutation symbol, i.e.,
ϵαβγ = [α, β, γ], with the convention ϵ012 = [0, 1, 2] = +1. In a general coordinate system, yµ, one must
transform according to the general rules for tensors,

ϵµνλ =
∂yµ

∂xα
∂yν

∂xβ
∂yλ

∂xγ
[α, β, γ].

Show that in polar coordinates, ϵ0rθ ≡ ϵrθ = 1
r
and that ϵ0rθ ≡ ϵrθ = r.
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A′′ − A′

r
+

2gv2

c
A = 0. (2.10.44)

Solutions obeying the required boundary conditions are

f(r) = v + C1J0(
√
λvr)

Aθ = −
k

g
+ C2rJ1

(√
2g

c
vr

)
(2.10.45)

It is very difficult to obtain exact solutions to the coupled, second order equations above.
We get some insight into the behavior of solutions by examining particular cases. Let us

discuss an interesting limit in which the energy of the system is minimum and determined
only by the topological charge; in this limit, the system will reduce to a set of (coupled)
first order equations, but we will still not be able to get exact, analytical solutions. First,
we apply Derrick’s argument, by which E2[ϕ] = E3[A]. Thus∫

d2x

[
gc

4
FijF

ij − λ

8
(|ϕ|2 − v2)2

]
= 0, (2.10.46)

or

gc

4

∫
d2x

[
Fij +

ϵij
2

√
λ

gc
(|ϕ|2 − v2)

][
F ij − ϵij

2

√
λ

gc
(|ϕ|2 − v2)

]
= 0 (2.10.47)

so, if we ask for solutions satisfying

Fij +
ϵij
2

√
λ

gc
(|ϕ|2 − v2) = 0, (2.10.48)

we guarantee that Derrick’s condition is satisfied. Consider then the total energy, written
as

E =

∫
d2x

gc
4

(
Fij +

ϵij
2

√
λ

gc
(|ϕ|2 − v2)

)2

−
√
λgc

4
ϵijFij(|ϕ|2 − v2) + ηij(Diϕ)

∗(Djϕ)

]
=

∫
d2x

[
−
√
λgc

4
ϵijFij(|ϕ|2 − v2) + ηij(Diϕ)

∗(Djϕ)

]
=

∫
d2x

[
−
√
λgc

4
ϵijFij |ϕ|2 + ηij(Diϕ)

∗(Djϕ)

]
−
√
λgc

8
Qv2 (2.10.49)
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where Q is the topological charge in (2.10.42).
Turning to the kinetic term for the scalar field, we write

ηij(Diϕ)
∗(Djϕ) =

1

2
ηij({ηil + iϵil}Dlϕ)∗({ηjm + iϵjm}Dmϕ)− iϵij(Diϕ)

∗(Djϕ) (2.10.50)

which can be checked directly by expanding the right hand side. Moreover,

− i
∫
d2xϵij(Diϕ)

∗(Djϕ) = +
i

2

∫
d2xϵijϕ∗[Di, Dj ]ϕ = +

g

2

∫
d2xϵijFij |ϕ|2 (2.10.51)

follows from an integration by parts, therefore∫
d2xηij(Diϕ)

∗(Djϕ) =
1

2

∫
d2x

[
ηij({ηil + iϵil}Dlϕ)∗({ηjm + iϵjm}Dmϕ) +

g

2
ϵijFij |ϕ|2

]
.

(2.10.52)
We may now rewrite what’s left of the energy function as

E =

∫
d2x

[(
g

2
−
√
λgc

4

)
ϵijFij |ϕ|2

+
1

2
ηij({ηil + iϵil}Dlϕ)∗({ηjm + iϵjm}Dmϕ)

]
−
√
λgc

8
Qv2 (2.10.53)

The second term in the integrand is non-negative, but the first term can go either way
depending on the relative sizes of g and λ. If we consider the special case in which

g =
λc

4
(2.10.54)

then this term vanishes and we are left with a non-negative integral plus a topological
term. The lowest energy solution will then satisfy

(ηil + iϵil)D
lϕ = 0. (2.10.55)

Equations (2.10.48) and (2.10.55) are the Bogomol’nyi-Prasad-Sommerfield (BPS) equa-
tions. The energy of this solution is E = −1

2πkv
2 for the ansatz we have been using.

One must now verify that these first order equations are solutions of the second order
equations of motion. In polar coordinates, (2.10.48) reads

A′
θ

r
= −1

c
(f2 − v2) (2.10.56)

and (2.10.55)

f ′ +
(k + gAθ)

r
f = 0. (2.10.57)

Indeed, the Euler (field) equations (2.10.35) and (2.10.36) are verified directly by taking
a derivative of each of the above.
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2.10.3 The 3+1 dimensional Dirac Monopole

Let us briefly review Dirac’s treatment of the magnetic monopole. Suppose that a point-
like particle is endowed with a magnetic charge, qm. The magnetic flux due to the magnetic
charge would be

ΦB =

∮
S
B⃗ · dS⃗ =

qm
4π
⇒ Br =

qm
4πr2

(2.10.58)

and all other components would vanish. Br is defined everywhere except at the origin
and is isotropic, as is to be expected. If we insist that the vector potential exists as a
description of the theory, then Bi = 1

2ϵ
ijkFjk gives

Frθ = Frϕ = 0

Fθϕ =
qm
4π

sin θ (2.10.59)

The well-known solution that vanishes at the north pole is

Aϕ =
qm
4π

(1− cos θ) , (2.10.60)

which is, however, singular on the half line, θ = π,28 so the magnetic field obtained by
taking the curl of A⃗ coincides with the magnetic field in (2.10.58) everwhere except on
the half line itself. That is because, physically, this is precisely the vector potential of a
semi-infinite and infinitesimally thin solenoid from infinity to the origin. This solenoid is
the Dirac “string”.

Now, at the classical level, the vector potential itself is not given any intrinsic meaning.
One can think of it as a convenient device with which to write the field equations in such
a way as to make the symmetries of the theory manifest. Thus one could consider two
gauge fields, both of which are solutions of the field equations (Wu and Yang)

Aϕ =

{ qm
4π (1− cos θ) 0 ≤ θ < π − ϵ
− qm

4π (1 + cos θ) ϵ < θ ≤ π (2.10.62)

28This becomes clear if we consider the components of the vector potential in the traditional basis,
{r̂, θ̂, φ̂},

A⃗ = ar r̂ + aθ θ̂ + aϕφ̂ (2.10.61)

Then by comparing the expression for the line integral,∫
C

A⃗ · dr⃗ =
∫
C

(ardr + raθdθ + r sin θaϕdϕ) =

∫
C

Ardr +Aθdθ +Aϕdϕ

we arrive at ar = Ar, aθ = Aθ/r and

aϕ =
Aϕ

r sin θ
=

qm
4πr

(1− cos θ)

sin θ
=

qm
4πr

tan

(
θ

2

)
.
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or, in the {r̂, θ̂, φ̂} basis,

aϕ =

{ qm
4πr tan (θ/2) 0 ≤ θ < π − ϵ
− qm

4πr cot (θ/2) ϵ < θ ≤ π (2.10.63)

The first (we call it A⃗up) covers the upper hemisphere and a portion of the lower hemi-
sphere, and the second (which we call A⃗down) covers the lower hemisphere, but only a
portion of the upper. Where they overlap, they are required to agree up to a gauge trans-
formation and it is easy to see that Aup

ϕ −A
down
ϕ = qm

2π so that α(x) = qmϕ
2π does the trick.

The gauge transformation is therefore

U = eigα(x) = ei
gqm
2π

ϕ, (2.10.64)

which, being single valued, implies that

gqm = 2nπ ⇒ qm =
2nπ

g
, n ∈ Z (2.10.65)

Thus we arrive at Dirac’s conclusion that the magnetic charge on a monopole is quantized
in integer units of 2π/g.

We can take an alternative, more physical approach by asking if this quantization of
magnetic charge is actually required for consistency by any measurement. After all, if the
gauge potential is really just an artifact of our description, should it not be impossible
to detect the Dirac string in the first place? Not in the quantum theory. Consider the
Schroedinger equation for an electron moving in the neighborhood of the string: we have

Eψ(r⃗) = − ℏ2

2m

(
∇⃗ − igA⃗(r⃗)

)2
ψ(r⃗) + V (r⃗)ψ(r⃗) (2.10.66)

where g is effectively the electric charge on the electron. The solution can be given as

ψ(r⃗) = exp

[
ig

∫ r⃗

r⃗0

A⃗ · dr⃗

]
ψ0(r⃗) (2.10.67)

where ψ0(r⃗) satisfies the free Schroedinger equation! Therefore, the electron will pick up
a phase as it moves around the Dirac string. If we consider two paths passing the string
on opposite sides of it (see figure 2.9), there will be a difference in phase acquired along
the paths and this phase difference can lead to intereference fringes. The phase difference
will be

g

∮
A⃗ · dr⃗ = gqm (2.10.68)

taking the integral over an infinitesimal circle around the string (θ → π). For the string
to be unobservable,

gqm = 2nπ ⇒ qm =
2nπ

g
n ∈ Z (2.10.69)

as before, and the monopole cannot have an arbitrary charge: only quanta of 2π/g.
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Figure 2.9: A violation of the magnetic charge quantization condition would lead to a
detectable interference pattern on the screen due to the magnetic flux.



Chapter 3

Spinor Fields

Dirac, still thinking in terms of single particle relativistic quantum mechanics, attempted
to find an equation that was first order in time so as to overcome the problems associated
with an indefinite probability density. While he succeeded with a most remarkable first
order equation, negative energy states were still present, so we will interpret Dirac’s equa-
tion as the equation of a classical field, the Dirac field, in keeping with our general view.
The Dirac field turns out to describe Fermions. Together with the scalar field and the
non-abelian gauge fields, which generalize the abelian gauge field and will be introduced
in the next chapter, this will give us the ingredients necessary to construct a Lagrangian
description of the Standard Model of particle physics.

3.1 The Dirac Equation

Recall the problems associated with the scalar field of the previous chapter if the function
ϕ(x) were to be interpreted as a wave function. In (2.4.4), we found the conserved current,

jµ = − i
ℏ
(ϕ∗∂µϕ− ϕ∂µϕ∗), (3.1.1)

whose conservation law ∂µj
µ = 0 should then be interpreted as a continuity equation,

∂tρ+ ∇⃗ · j⃗ = 0, (3.1.2)

with ρ(t, r⃗)d3r⃗ = j0(t, r)d3r⃗ representing the probability of finding the Klein-Gordon par-
ticle in the volume d3r⃗, according to the Born interpretation. However,

ρ(t, r⃗) = j0(t, r⃗) =
i

ℏc2
(ϕ∗ϕ̇− ϕϕ̇∗) (3.1.3)

is not positive definite, as is required for the Born interpretation. The problem can be
traced to the fact that the Klein Gordon equation is second order in the time derivative,

95



96 CHAPTER 3. SPINOR FIELDS

which also means that two initial data, i.e., the value of ϕ and its first derivative at one
instant must be specified for a unique solution of the equation.

To avoid the problems associated with the second order (in time) equation, Dirac
proposed that the Hamiltonian of the free relativistic particle should instead be treated as

H = ±
√
p⃗2c2 +m2c4

def
=

(
α̂ · p⃗ c+ β̂mc2

)
. (3.1.4)

If we agree to go with this view then α̂ and β̂ are evidently no longer real numbers but
matrices. This becomes clear if we square both sides of the above equation,

p⃗2c2 +m2c4 =
c2

2
{α̂i, α̂j}pipj +m2c4β̂2 +

c3

2
{α̂i, β̂}mpi (3.1.5)

where the braces, in eg., {α̂i, α̂j}, represent the anticommutator α̂iα̂j+ α̂jα̂i. Because the
Hamiltonian operator is required to be Hermitean (to ensure real eigenvalues), we should
take α̂i and β̂ to be Hermitean as well. Furthermore, comparing the left and right hand
sides, consistency requires

{α̂i, α̂j} = 2ηij , {α̂i, β̂} = 0, β̂2 = 1 (3.1.6)

Assuming that this algebra is self-consistent, we can then apply the Dirac quantization
rule, letting pi → −iℏ∂i and H → iℏ∂t to get

iℏ∂tψ =
(
−icℏα̂ · ∂ +mc2β̂

)
ψ, (3.1.7)

which is theDirac equation. It is convenient, however, to multiply this equation through-
out by β̂ on the left and to define cγ0 = β̂, γi = β̂α̂i.1 This implies then that γ0 is
Hermitean but γi is anti-Hermitean because γi† = α̂i†β† = α̂iβ = −βα̂i = −γi. In terms
of the “γ matrices”, the equation above can be written as

(icℏγµ∂µ −mc2)ψ = 0. (3.1.8)

This is the most commonly used form of the Dirac equation.
The γµ satisfy the anticommutation relations

{γµ, γν} = −2ηµν1, (3.1.9)

where 1 is the identity matrix. This is a particular example of aClifford Algebra. Notice
that if we multiply the Dirac equation on the left by the operator −(icℏγ · ∂ +mc2), then
we will recover the Klein Gordon equation,

−(icℏγ · ∂ +mc2)(icℏγ · ∂ −mc2)ψ = −
(
−ℏ2c2

2
{γµ, γν}∂µ∂ν −m2c4

)
ψ = 0

1Although each γ is not a number we drop the “hats” for ease of notation.
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⇒
(
□x +

m2c2

ℏ2

)
ψ = 0, (3.1.10)

as in (2.4.1).

Being first order in the time derivative, one could construct a (positive definite) prob-
ability density out of the Dirac equation in the usual way as ρ = ψ†ψ. This fixes the
mechanical dimension of ψ to be l−3/2. Furthermore, we expect that this probability den-
sity will be the “time” component of a four vector current density and this in turn leads
us to suspect that the current density should have the form

jµ = c2ψ†γ0γµψ. (3.1.11)

The combination “c2γ0γµ” is necessary for the desired expression, ρ = j0 = ψ†ψ and it
makes jµ Hermitean.2 We must show that it is conserved so, calling ψ = c2ψ†γ0, we must
evaluate ∂µ(ψγ

µψ). To do this we have to determine the equation of motion for ψ, which
is obtained from the Hermitean conjugate of the Dirac equation,

cℏ(i∂µψ)†γµ† = mc2ψ†. (3.1.12)

Note that (i∂µψ)
† = −i∂µψ† and so the above equation becomes

− icℏ∂µψ†γµ† = mc2ψ†. (3.1.13)

Now multiply on the right by γ0 and introduce unity in the form c2γ0
2
as follows:

− icℏ∂µψ† c2γ0γ0︸ ︷︷ ︸ γµ†γ0 = mc2ψ†γ0 (3.1.14)

then, because

γ0γµ†γ0 = γµ/c2, (3.1.15)

(see the footnote below), one gets the following equation of motion for ψ

− icℏ∂µψγµ = mc2ψ (3.1.16)

and it follows immediately that ∂µj
µ = 0. The conservation equation can once again be

interpreted as a continuity equation for the probability current density, but this time the
probability density is positive definite, satisfying the requirements of the Born interpreta-
tion.

2Problem: Show explicitly that γµ† = c2γ0γµγ0. Then show that jµ is hermitean.
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3.2 The Clifford Algebra

A realization of the Clifford Algebra in (3.1.9) can be given in terms of the unit 2 × 2
matrix and the Pauli sigma matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(3.2.1)

which are Hermitean and satisfy two very interesting properties, viz.,

{σi, σj} = 2ηij and [σi, σj ] = 2iϵijkσk (3.2.2)

as can be checked explicitly. If we now define the 4× 4 Dirac matrices as

γ0 =
1

c

(
1 0
0 −1

)
def
=

1

c
σ3 ⊗ 1, γi =

(
0 σi

−σi 0

)
def
= iσ2 ⊗ σi, (3.2.3)

where we used the Kronecker product of matrices, then (3.1.9) can be verified by direct
computation.3

The matrix representations above, which we use in these notes, form the “Dirac” basis.
Other common realizations of the Clifford algebra are (a) the “Weyl” (or chiral) basis,

γ0 =
1

c

(
0 1
1 0

)
=

1

c
σ1 ⊗ 1, γi =

(
0 σi

−σi 0

)
= iσ2 ⊗ σi (3.2.4)

and the (b) “Majorana” basis

γ0 =
1

c

(
0 σ2

σ2 0

)
=

1

c
σ1 ⊗ σ2, γ1 = i

(
σ3 0
0 σ3

)
= i1⊗ σ3,

γ2 =

(
0 −σ2
σ2 0

)
= −iσ2 ⊗ σ2, γ3 = −i

(
σ1 0
0 σ1

)
= −i1⊗ σ1. (3.2.5)

3In (3.2.3) we used the “Kronecker” or “tensor” product of two matrices, which is defined in such a

way as to make the block structure of the result manifest in a compact way: if â is n ×m and b̂ is p × q
then,

â⊗ b̂ =


a11 . . . a1m
a21 . . . a2m
. . .
an1 . . . anm

⊗

b11 . . . b1q
b21 . . . b2q
. . .
bp1 . . . bpq

 =


a11b̂ . . . a1mb̂

a21b̂ . . . a2mb̂
. . .

an1b̂ . . . anmb̂


is an np×mq matrix. So, for example, the Kronecker product of the two 2× 2 Pauli matrices,

iσ2 ⊗ σi =

(
0 1
−1 0

)
⊗ σi =

(
0 σi

−σi 0

)
is a four dimensional (Dirac γ) matrix.
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Each basis satisfies the defining relation in (3.1.9). However, the Majorana basis is special
in that it is purely imaginary, i.e., it also satisfies the condition

γµ⋆ = −γµ (3.2.6)

and so the Dirac operator, like the Klein Gordon operator, becomes real. Therefore it is
possible to find real (carrying no charge) solutions for ψ, which is not possible with the
Dirac and the Weyl representations.

What then is the relationship between different solutions of the Dirac equation, ob-
tained from different representations of the γ matrices? Indeed, in even dimensions, the
representations of our Clifford Algebra are unique up to a similarity transformation: if γµ

and γ̃µ are two representations of (3.1.9) then

γµ = Uγ̃µU † (3.2.7)

and
ψ = Uψ̃ (3.2.8)

where U is a unitary matrix.4 Therefore, if ψ̃ is a solution of the Dirac equation in
the Majorana representation then in any other representation the reality condition for
Majorana spinors would read

(U †ψ)⋆ = U †ψ, ⇒ U tψ⋆ = U †ψ ⇒ ψ = (UU t)ψ⋆ (3.2.9)

where U transforms from the Majorana representation.
Let us now determine sixteen linearly independent 4 × 4 matrices that can be built

with the γ matrices so that we will have a complete basis in which to expand any 4 × 4
matrix. In addition to the four γ matrices, we can build six matrices in terms of the
antisymmetric combination

σµν =
1

2!
ϵµναβγ

αγβ (3.2.10)

then σ0i is anti Hermitean but σij is Hermitean. In the same spirit, define the four
additional matrices

χµ =
1

3!
ϵµναβγ

νγαγβ (3.2.11)

4Problem: Show that the unitary matrix

UD→W =
1√
2

(
1⊗ 1− iσ2 ⊗ 1

)
transforms the Dirac basis to the Weyl basis. Show also that

UD→M =
1√
2

(
σ3 ⊗ 1+ σ1 ⊗ σ2)

transforms the Dirac basis to the Majorana basis. Find the matrix that transforms the Weyl basis to the
Majorana.
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of which χ0 is Hermitean but χi is anti Hermitean, and finally define the Hermitean matrix

γ5 =
i

4!
ϵµναβγ

µγνγαγβ = iγ0γ1γ2γ3 =
1

c

(
0 1
1 0

)
=

1

c
σ1 ⊗ 1. (3.2.12)

in the Dirac basis. In the Weyl basis,

γ5 =
1

c

(
−1 0
0 1

)
= −1

c
σ3 ⊗ 1 (3.2.13)

and in the Majorana basis

γ5 =
1

c

(
σ2 0
0 −σ2

)
=

1

c
σ3 ⊗ σ2. (3.2.14)

It is easy to see that χµ = iηµνγ
νγ5 and, in this way, we have constructed sixteen matrices,

ΓI =
{
1, γµ, σµν , iηµνγ

νγ5, γ5
}
. (3.2.15)

We will now argue that they are linearly independent, i.e., cI = 0⇔
∑

I cIΓI = 0, ∀ I so
that any (complex) 4 × 4 matrix may be written as a linear combination of them. That
cI = 0 is sufficient for the sum to vanish is obvious; to prove that it is necessary as well,
let us first consider some “trace identities” that the ΓI satisfy. Using the following three
trace relations,

Tr(A+B) = Tr(A) + Tr(B)

Tr(rA) = rTr(A), r ∈ R

Tr(ABC) = Tr(CAB) = Tr(BCA)

which hold for any matrices, A, B and C and any real number r, together with (3.1.9),
one can establish the following:

• Tr(1) = 4,

• Tr(γµ) = 0 = Tr(γ5),

• Tr(γµγν) = −4ηµν ,

• Tr(γµγνγαγβ) = 4(ηµνηαβ − ηµαηνβ + ηµβηνα),

• Tr(γµ1γµ2 . . . γµ2n) =

• Tr(γµγνγαγβγ5) = −4i
c ϵ

µναβ ,
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• Tr(σµν) = 0,

• Tr(χµ) = 0,

• Tr(γµ1γµ2 . . . γµ2n+1) = 0,

• Tr(γµ1γµ2 . . . γµ2n+1γ5) = 0.

Now we see that Tr(ΓI) = 0 for all I and Tr(ΓIΓJ) ∼ δIJ , so consider∑
I

cIΓI = 0 (3.2.16)

and multiply by ΓK , for some fixed K. We get∑
I

cI(ΓIΓK) = 0 =
∑
I ̸=K

cIΓIΓK + cKΓ2
K . (3.2.17)

Taking the trace we conclude that cK = 0 and, since K was arbitrarily chosen, we have
shown that cK = 0 for all K is necessary for the sum to vanish.

3.3 Properties of the Dirac Particle

3.3.1 Spin

Recall that the Hamiltonian of the Dirac particle can be written as

H = α · p⃗c+ βmc2 = c2γ0(γ⃗ · p⃗+mc) (3.3.1)

so it is quite clear that [p⃗,H] = 0 and therefore that momentum is conserved. However if
we consider the orbital angular momentum, L = r⃗× p⃗, we discover that it is not conserved
because

[Li,H] = ϵijk[xjpk,H] = ϵijk[xj ,H]pk = iℏϵijkc2γ0γlδjlpk = iℏc2γ0[γ⃗ × p⃗]i ̸= 0, (3.3.2)

so the question that arises is this: is it possible to find some vector, other than the orbital
angular momentum, whose commutator with the Hamiltonian exactly cancels the above
commutator of the orbital angular momentum with H? If this were possible then the
sum of the angular momentum and this vector would represent a conserved “total angular
momentum”. Such a vector does indeed exist and is constructed exclusively out of the γ
matrices as

S⃗ =
iℏ
4
γ⃗ × γ⃗ (3.3.3)
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(we will derive it later, as a consequence of Noether’s first theorem).5 Therefore

J⃗ = L⃗+ S⃗ = r⃗ × p⃗+ iℏ
4
γ⃗ × γ⃗ (3.3.4)

can be thought of as the conserved, total angular momentum of the particle. It includes an
“intrinsic” part, S⃗, which is interpreted as the “spin” of the Dirac particle. Its components
can be written as

Si =
iℏ
2
σ0i =

ℏ
2

(
σi 0
0 σi

)
=
c2ℏ
2
γ0γiγ5. (3.3.5)

The spin obeys commutation relations typical of the angular momentum operator in quan-
tum mechanics,

[Si, Sj ] = −
ℏ2

4
[γi, γj ] = −iℏϵijmSm (3.3.6)

and, moreover,

S⃗ · S⃗ = S⃗2 =
ℏ2

4

[
(γ0γiγ5)(γ0γiγ5)

]
=

3ℏ2

4
1 (3.3.7)

so, putting this together with (3.3.6), we can conclude that S⃗ represents an intrinsic spin of
1/2. The “helicity operator” measures the component of the spin vector in the direction
of the momentum, H = 1

ℏ S⃗ · p̂ ; it commutes with the Hamiltonian, so the helicity is also
a conserved quantity.

3.3.2 Continuous Symmetries

We now seek the action of a Lorentz transformation on the wave function using only the
principle of covariance. Suppose that under the transformation xµ → x′µ = Lµνx

ν , the
wave function transforms as

ψ(x)→ ψ′(x′) = Ŝψ(x) (3.3.8)

where Ŝ is a 4 × 4 matrix to be determined. By the principle of covariance, the Dirac
equation must have the same form in the primed frame, so

(icℏγµ∂′µ −mc2)ψ′(x′) = 0 = (icℏγµ(L−1)αµ∂α −mc
2)Ŝψ (3.3.9)

(where L is a boost or a rotation) or

icℏŜ−1γµŜ(L−1)αµ
∂ψ

∂xα
−mc2ψ = 0 (3.3.10)

and it follows that

(L−1)αµŜ
−1γµŜ = γα ⇒ Ŝ−1γµŜ = Lµαγ

α. (3.3.11)

5Problem: Show that [Li + Si,H] = 0.
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This is the equation we want to solve for Ŝ(L). Any function that transforms as (3.3.8),
with Ŝ given by (3.3.11) is a Dirac Spinor.

To determine Ŝ, consider infinitesimal transformations,

Lµα = δµα + δωµα

Ŝ = 1+ δŜ (3.3.12)

then, by expanding both sides of (3.3.11) one has

[γµ, δŜ] = δωµαγ
α. (3.3.13)

The solution is

δŜ = −1

8
δωαβ[γ

α, γβ], (3.3.14)

which can be verified using the anti-commutation relations satisfied by the γ matrices.
Defining

Σαβ =
1

2
[γα, γβ],

the infinitesimal form of Ŝ is

Ŝ = 1− 1

4
δωαβΣ

αβ (3.3.15)

and from this infinitesimal form one can construct a finite transformation in the usual
way, by exponentiation,

Ŝ = lim
N→∞

(
1−

ωαβ
4N

Σαβ
)N

= exp

[
−1

4
ωαβΣ

αβ

]
(3.3.16)

where we think of the finite transformation as an infinite series of infinitesimal transfor-
mations applied successively, each with parameter δωαβ = ωαβ/N .

As an example, consider a boost determined by an infinitesimal velocity parameter,
δv⃗, then taking into account only terms that are linear in δv⃗, we have δωi0 = −δω0i = δvi
and thus

δωαβΣ
αβ = δvi[γ

i, γ0] = −2δvi
c

(
0 σi

σi 0

)
(3.3.17)

giving

Ŝ = exp

[
vi
2c

(
0 σi

σi 0

)]
. (3.3.18)

Expanding the exponential according to the usual definition,

eÂ =

∞∑
n=0

Ân

n!
(3.3.19)
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we find that

Ŝ = cosh

(
|v⃗|
2c

)
+
vi
|v⃗|

(
0 σi

σi 0

)
sinh

(
|v⃗|
2c

)
(3.3.20)

where we made repeated use of the properties of the Pauli spin matrices in (3.2.1).

Again, consider a rotation for which δωij = δθk[ϵ
k]ij and which gives

δωαβΣ
αβ = δθkϵ

k
ijγ

iγj . (3.3.21)

Now it is not difficult to see that

ϵkijγ
iγj = −ϵkij

(
σiσj 0
0 σiσj

)
= −1

2
ϵkij

(
[σi, σj ] 0

0 [σi, σj ]

)
= −2i

(
σk 0
0 σk

)
, (3.3.22)

once again exploiting the properties of the Pauli matrices. Therefore

Ŝ = exp

[
+
iθk
2

(
σk 0
0 σk

)]
= cos

(
|θ⃗|
2

)
+
iθk

|θ⃗|

(
σk 0
0 σk

)
sin

(
|θ⃗|
2

)
, (3.3.23)

where we set |θ⃗| =
√
θkθk. If, for example, we consider a rotation about the z axis by an

angle φ,

Ŝ = cos
(φ
2

)
+ i

(
σ3 0
0 σ3

)
sin
(φ
2

)
(3.3.24)

and a rotation through and angle φ = 2π is seen to lead to Ŝ = −1, i.e., the wave function
suffers a phase change of π. A rotation through 4π is required to return the wavefunction
to its original value.

The matrices Σµν provide a finite dimensional reprsentation of the Lorentz algebra.
The block diagonal matrices, Σij , generate rotations. and provide a unitary representation
of the rotation group. On the other hand, the boost generators, Σ0i do not provide a
unitary representation of the boosts. This is expected as the Lorentz group is not compact
and therefore has no unitary, finite dimensional representation.

3.3.3 Discrete Symmetries

There are three discrete transformations, viz., Parity (P), or space inversion, Time Reversal
(T) and Charge Conjugation (C). Each one of them is an improper transformation i.e.,
the determinant of the transformation matrix is −1 and cannot, therefore, be reduced to
a combination of rotations and/or boosts. In considering their action on fields, it is useful
to begin by appealing to our basic intuitions in mechanics.
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Parity (P )

Parity is the transformation that reflects the spatial coordinates, as if in a mirror, so that

r⃗ → r⃗′ = −r⃗, t→ t′ = t (3.3.25)

The transformation may be represented by xµ → x′µ = Pµνx
ν , where

Pµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (3.3.26)

If we assume that the fundamental laws of mechanics are invariant under these transfor-
mations, then since p⃗ → p⃗′ = −p⃗, we expect F⃗ → F⃗ ′ = −F⃗ . From the Lorentz force
law,

F⃗ = e[E⃗ + v⃗ × B⃗] (3.3.27)

it then follows that the electric and magnetic fields behave respectively as E⃗ → −E⃗ and
B⃗ → B⃗, or in terms of the vector potential, Aµ, that

A⃗(t, r⃗)→ A⃗′(t′, r⃗′) = −A⃗(t, r⃗), A0(t, r⃗)→ A′0(t′, r⃗′) = A0(t, r⃗) (3.3.28)

Now consider the effect of parity on the complex Klein-Gordon field, by considering its
equation of motion when coupled to an electromagnetic field:[

− (∂µ − igAµ) (∂µ − igAµ) +
m2c2

ℏ2

]
ϕ(t, r⃗) = 0. (3.3.29)

Because Aµ transforms just as xµ, the relative sign between the derivative and the electro-
magnetic potential remains the same and the operator is unchanged by the transformation.
Requiring covariance of the equation of motion, we conclude that

ϕ(t, r⃗)→ ϕ′(t,−r⃗) = P̂ϕ(t, r⃗) = λPϕ(t, r⃗) (3.3.30)

where λP is some internal phase associated with the parity transformation. If λP = 1 then
the field is a scalar, if λP = −1 it is a pseudo-scalar.

The transformation is expected to be linear, so we can use the relation (3.3.11) to
discuss the effects of a parity transformation on the Dirac spinor,

P̂−1γµP̂ = Pµαγ
α. (3.3.31)

Finding P̂ for this transformation is trivial, since cγ0 is easily seen to satisfy the equation:

c2γ0γµγ0 = Pµαγ
α

Thus P̂ = cλPγ
0 is the “parity operator” and we determine that

ψ(t, r⃗)→ ψ′(t,−r⃗) = P̂ψ(t, r⃗) = cλPγ
0ψ(t, r⃗), (3.3.32)

where λP is an internal phase associated with the transformation as before.
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Time Reversal (T )

Time reversal is more subtle because it is not a linear transformation, as we will now
see. As the name suggests, time reversal reflects only the time coordinate according to
xµ → x′µ = Tµνx

ν , where

Tµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.3.33)

Under this transformation it should be clear that p⃗ → p⃗′ = −p⃗ and therefore that F⃗ →
F⃗ ′ = F⃗ . Now returning to the Lorentz force this would imply by arguments similar
to the ones used earlier that E⃗ → E⃗′ = E⃗ and B⃗ → B⃗′ = −B⃗. Therefore, we get
the result in (3.3.28) for the electromagnetic potential. Consider what happens to the
Klein-Gordon equation under this transformation: because the space-time derivative and
the electromagnetic potential transform in an opposite way, the equation of motion for
ϕ′(−t, r⃗) will now read[

− (∂µ + igAµ) (∂µ + igAµ) +
m2c2

ℏ2

]
ϕ′(−t, r⃗) = 0. (3.3.34)

But this is precisely the equation of motion for the conjugate field, ϕ∗(t, r⃗) and covariance
requires that

ϕ(t, r⃗)→ ϕ′(−t, r⃗) = T̂ ϕ∗(t, r) = λTϕ
∗(t, r), (3.3.35)

where λT is an internal phase associated with time reversal.

Time reversal is therefore an anti-linear transformation and, for this reason, one should
not expect to use (3.3.11) to determine the operator that induces a time reversal on the
Dirac spinor. Instead we ask for

ψ(t, r⃗)→ ψ′(−t, r⃗) = T̂ ψ∗(t, r⃗). (3.3.36)

Going through the arguments of the previous section, we find the condition

T̂ −1γµT̂ = −Tµαγα∗ (3.3.37)

which is solved by T̂ = λTγ
1γ3. Thus

ψ(t, r⃗)→ ψ′(−t, r⃗) = T̂ ψ(t, r⃗) = λTγ
1γ3ψ∗(t, r⃗) (3.3.38)

is the transformation of the Dirac spinor under time reversal.
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Charge Conjugation (C)

Charge conjugation, unlike the previous two discrete transformations, is not a space-time
symmetry but instead changes the sign of the electromagnetic charge. The electromagnetic
force will not change only if E⃗ → E⃗′ = −E⃗ and B⃗ → B⃗′ = −B⃗ (according to the Lorentz
force law), i.e., Aµ(x)→ A′µ(x) = −Aµ(x). It is then clear that the Klein Gordon equation
turns into [

− (∂µ + igAµ) (∂µ + igAµ) +
m2c2

ℏ2

]
ϕ′(t, r⃗) = 0, (3.3.39)

just as it did in the case of time reversal. This transformation is therefore also antilinear
and we have

ϕ(t, r⃗)→ ϕ′(t, r⃗) = Ĉϕ∗(t, r⃗) = λCϕ
∗(t, r⃗). (3.3.40)

For the Dirac spinor we ask for

ψ(t, r⃗)→ ψ′(t, r⃗) = Ĉψ∗(t, r⃗) (3.3.41)

which gives the condition analogous to (3.3.37), with Lµα = δµα,

Ĉ−1γµĈ = −γµ∗ (3.3.42)

and is solved by Ĉ = λCγ
2, where λC is the arbitrary phase associated with charge conju-

gation.

The CPT theorem

The importance of the discrete symmetries discussed above is captured by the CPT
theorem, which states that:

• Every local, Lorentz invariant quantum field theory (QFT) with a hermitean hamil-
tonian is CPT invariant.

Therefore, Lorentz invariance may be preserved while the discrete symmetries are broken
but the combined transformation,

Θ = CPT

is always a symmetry of a local, Lorentz invariant QFT with a Hermitean Hamiltonian.6

6While Quantum Electrodynamics (QED) respects each of C, P and T separately, certain interaction
terms in Quantum Chromodynamics (QCD) break both T and P . Electroweak (EW) interactions violate
P maximally and also T weakly (in Kaon oscillations).
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3.4 Solutions of the Dirac Equation

The problem of negative energies lingers in Dirac’s theory and we have seen that this
leads to serious problems applying the Born interpretation to the wave function. The
arguments given for interpreting the Klein-Gordon equation as describing a field theory
may be applied here. To get a better feeling for the physics of the Dirac equation, we now
look for solutions. With the Dirac representation, this means solving equation (3.1.8) for
ψ(x) in the representation given by (3.2.3). We will exploit the block diagonal form of the
γ matrices in what follows.

As with the Klein-Gordon equation, a general solution of the Dirac equation may be
given as

ψ(x) =

∫
d3p⃗

2Ek

[
c(p)u(+)

p (x) + d∗(p)u(−)
p (x)

]
(3.4.1)

where pµ = (−Ep, p⃗), u(−)
p (x) = u

(+)
−p (x) and d∗(p) = −c(−p). The mode functions must

satisfy the Dirac equation, so we take them to be of the form

u(±)
p (x) = u(±)(Ep, p⃗)e

± i
ℏ (p⃗·r⃗−Ept), (3.4.2)

It is easy to verify that v
(±)
p (x) represent positive and negative energy waves respectively

because

Ĥ u(±)
p (x) = iℏ

∂u
(±)
p (x)

∂t
= ±Epu(±)

p (x). (3.4.3)

Applying the Dirac operator to the wave function v
(±)
p (x), we find that

− (±cγ · p+mc2)u(±)(Ep, p⃗) =

(
±Ep −mc2 ∓cσ⃗ · p⃗
±cσ⃗ · p⃗ ∓Ep −mc2)

)
u(±)(Ep, p⃗) = 0. (3.4.4)

Evidently u(+)(Ep, p⃗) has four components, which we write in terms of two component
(Pauli) spinors explicitly as

u(±)(Ep, p⃗) = N

(
u
(±)
L (Ep, p⃗)

u
(±)
S (Ep, p⃗)

)
. (3.4.5)

where N is some normalization factor. The superscripts “L” and “S” stand for “long”
and “short”. Then we have

(±Ep −mc2)u(±)
L ∓ (cσ⃗ · p⃗)u(±)

S = 0

±(cσ⃗ · p⃗)u(±)
L − (±Ep +mc2)u

(±)
S = 0, (3.4.6)
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Two non-trivial conditions arise when p⃗ = 0, viz.,

(±Ep −mc2)u(±)
L = 0

(±Ep +mc2)u
(±)
S = 0. (3.4.7)

Thus u
(+)
S = 0 and u

(−)
L = 0, because Ep > 0 by definition, and the solutions will be linear

combinations of

u(+)(Ep, 0) =


1
0
0
0

 and u(+)(Ep, 0) =


0
1
0
0

 . (3.4.8)

For negative energy solutions, we must take u
(−)
L = 0 and they would be linear combina-

tions of

u(−)(Ep, 0) =


0
0
1
0

 and u(−)(Ep, 0) =


0
0
0
1

 . (3.4.9)

In fact, (3.4.6) says that u
(+)
S → 0 even if the particle is not at rest but moving slowly

compared to the speed of light, so in the non-relativistic approximation we will have

u(+)
p (x) = N

(
u
(+)
L

0

)
e

i
ℏp·x. (3.4.10)

Likewise, u
(−)
L → 0 for negative energy solutions in the non-relativistic limit and it also

follows that

u(−)
p (x) = N

(
0

u
(−)
S

)
e−

i
ℏp·x. (3.4.11)

In each case the wave function is completely determined by a single Pauli spinor, uL or
uS , which corresponds with our expectation that the non-relativistic Dirac particle has
two spin states.

Beyond the non-relativistic approximation, a suitable eigenbasis for a general spinor
would be the normalized eigenstates of the helicity operator, σ⃗ · p̂. This is called the
helicity basis. Let us express p̂ in polar coordinates,

p̂ = (sin θ cosφ, sin θ sinφ, cos θ),

where θ is the polar angle and φ the azimuthal angle. The eigenvalues of σ⃗·p̂ are determined
to be ±1 and we easily find expressions for the normalized eigenstates of this operator,

χ+1 =

(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
, χ−1 =

(
− sin(θ/2)e−iφ/2

cos(θ/2)eiφ/2

)
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with eigenvalues +1 and −1 respectively. For example, when θ = 0 = φ, p̂ is directed
along the z− axis and

χ+1 =

(
1
0

)
, χ−1 =

(
0
1

)
, (3.4.12)

are just the eigenstates of σ3. For the positive energy solutions, take u
(+)
L = a+χ+1+a−χ−1

with |a+|2 + |a−|2 = 1, and u
(+)
S will then be

u
(+)
S =

cσ⃗ · p⃗
Ep +mc2

(a+χ+1 + a−χ−1). (3.4.13)

The positive energy modes are then of the form

u(+)
p (x) = N+

(
u
(+)
L

u
(+)
S

)
eip·x = N

(
1
cσ⃗·p⃗

E+mc2

)
⊗ (a+χ+1 + a−χ−1)e

i
ℏp·x (3.4.14)

Once again, we can normalize the wave function in a large box of volume V , using the
inner product determined by j0(x), which requires that

|N |2V
(
u
(+)
L

†
u
(+)
L + u

(+)
S

†
u
(+)
S

)
= 1 (3.4.15)

and, because uL is already normalized,

uS†uS =
|p⃗|2c2

(E +mc2)2
, (3.4.16)

therefore, according to (3.4.15),

|N |2V
(
1 +

Ep −mc2

Ep +mc2

)
= 1 ⇒ |N| =

√
Ep +mc2

2EpV
(3.4.17)

As was the case for the Klein-Gordon modes, this is not a Lorentz invariant normalization
because u†u is the time component of the current vector and the volume is not a Lorentz
scalar. An alternative normalization uses the bilinear u u = u†γ0u, which is a Lorentz
invariant as we show shortly. The normalization condition (still not Lorentz invariant
because of the volume) then reads

|N |2V
(
u
(+)
L

†
u
(+)
L − u(+)

S

†
u
(+)
S

)
= 1 (3.4.18)

and we have

|N |2V
(
1− Ep −mc2

Ep +mc2

)
= 1 ⇒ |N| =

√
Ep +mc2

2mc2V
(3.4.19)
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which, of course, is not applicable to massless particles. Therefore,

u(+)
p (x) =

√
Ep +mc2

2mc2V

(
u
(+)
L

u
(+)
S

)
e

i
ℏp·x (3.4.20)

and, by an identical treatment,

u(−)
p (x) =

√
Ep +mc2

2mc2V

(
u
(−)
L

u
(−)
S

)
e−

i
ℏp·x, (3.4.21)

where

u
(−)
S = b+χ+1 + b−χ−1

u
(−)
L =

cσ⃗ · p⃗
E2
p +mc2

u
(−)
S . (3.4.22)

To summarize, a basis of positive energy solutions can be given as

u
(+)
±1 (x) =

√
Ep +mc2

2mc2V

(
1
cσ⃗·p⃗

Ep+mc2

)
⊗ χ±1e

i
ℏp·x (3.4.23)

and a basis of negative energy solutions as

u
(−)
±1 (x) =

√
Ep +mc2

2mc2V

(
cσ⃗·p⃗

Ep+mc2

1

)
⊗ χ∓1e

− i
ℏp·x. (3.4.24)

It is not difficult to establish the following orthonormality conditions:

⟨ψ(+)
sp⃗ |ψ

(+)
s′p⃗ ′⟩ =

(2πℏ)3

V
δss′δ(p⃗− p⃗′) = −⟨ψ

(−)
sp⃗ |ψ

(−)
s′p⃗ ′⟩

⟨ψ(+)
sp⃗ |ψ

(−)
s′p⃗ ′⟩ = 0 = ⟨ψ(−)

sp⃗ |ψ
(+)
s′p⃗ ′⟩ (3.4.25)

where s = ±1. Each eigenstate is defined by its energy, Ep, momentum, p⃗, and helicity,
s.7

3.5 Particles and Antiparticles

Dirac sought to exploit the Pauli exclusion principle for fermions and proposed that the
vacuum is a multiparticle state in which all the negative energy eigenstates are filled (the so-
called Dirac sea). Since each state can be occupied by at most one particle no transitions

7Problem: Write out the general solutions in the basis:

uL(S) =

{(
1
0

)
,

(
0
1

)}
for positive (negative) energy solutions.
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+mc
2

-mc
2
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0
Forbidden
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Negative Energy

g

Figure 3.1: The Dirac Sea

to negative energy states can occur. This interpretation also gets rid of the single particle
interpretation of the Dirac equation, for a photon with sufficient energy can excite one of
the fermions in a negative energy state leaving behind a “hole” in the Dirac sea. This
hole behaves as a particle with a positive mass and the opposite charge, so interactions
will produce particle-hole pairs out of the vacuum. This led Dirac to posit the existence of
oppositely charged partners of all fermions, called “antiparticles”. The positively charged
partner of the electron, for example, is the positron, which was discovered by Anderson
(1932) soon after Dirac posited its existence.

This interpretation is not entirely satisfactory because (a) it is restricted to fermions
and (b) it results in an infinite negative energy contribution to the vacuum energy. One
could argue that this is not a problem since absolute energy is unobservable, but this is no
longer true in Einstein’s theory of general relativity. This infinite negative energy therefore
must be canceled by an infinite positive contribution from somewhere. The infinite charge
and current densities from the sea must likewise be canceled by an infinite contribution of
the opposite sign.

A more general interpretation of the negative energy states, that does not rely on
the Pauli exclusion principle to bring stability to the energy spectrum, emerges when we
realize that the transformation pµ → −pµ takes us from positive to negative energy states.
Causality requires that positive energy states, with time dependence e−iEt, propagate
forwards in time, but the fact that

e−iEt = e−i(−E)(−t)

suggests that causality is retained if we require negative energy states to propagate only
backwards in time. In this picture the emission of a negative energy particle with mo-
mentum pµ at time t is equivalent to the absorption of a positive energy particle with
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time

E<0

E>0

Figure 3.2: Stückelberg-Feynman picture
of antiparticles.

xx

C

C'

Figure 3.3: Contour for the Feynman
Green’s function.

momentum −pµ at an earlier time, t′, and vice-versa. Again, the electric current density
of a positive energy scalar particle carrying a charge +e,

j(+)
µ (+e) = (−ie/ℏ)ϕ∗

←→
∂µϕ =

epµc
2

EpV

is identical to the current density, j
(−)
µ (−e), for a negative energy scalar particle carrying

the opposite charge, −e. The Stückelberg-Feynman interpretation of an antiparticle
is as a negative energy particle propagating backwards in time. The antiparticle has the
same mass as the particle and the opposite charge. This interpretation necessitates a new
choice contour when defining the Green’s function. The new contour is shown in figure
3.3.

3.6 Projection Operators

Let us now construct a few projection operators that will become useful later These are
operators that project wave functions onto (a) the positive energy and negative energy
states respectively, (b) states of definite helicity and (c) states of definite chirality.

3.6.1 Energy

We can use the orthonormality and completeness of the eigenfunctions in (3.4.23) and
(3.4.24) to construct the projectors onto positive and negative energy states as follows

Λ±(p) =
∑
s

ψ(±)
s (p)⊗ ψ(±)

s (p) =
∓γ · p+mc

2mc
. (3.6.1)
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from which it follows that

Λ+ψ
(+)
s (p) = ψ(+)

s (p)
Λ+ψ

(−)
s (p) = 0

Λ−ψ
(+)
s (p) = 0

Λ−ψ
(−)
s (p) = ψ(−)

s (p). (3.6.2)

They satisfy the relations

Λ2
±(p) = Λ±(p)
TrΛ±(p) = 2
Λ±Λ∓ = 0

Λ+(p) + Λ−(p) = 1 (3.6.3)

so Λ+(p) projects onto particle states and Λ−(p) projects onto antiparticle states.

3.6.2 Spin

To construct the projectors onto states of definite helicity is straightforward because they
will be eigenstates of the helicity operator,

H =
1

ℏ
S⃗ · p̂ = c2

2
γ0(γ⃗ · p̂)γ5 = 1

2

(
σ⃗ · p̂ 0
0 σ⃗ · p̂

)
, (3.6.4)

which commutes with the Hamiltonian. In fact, it is clear that

Hψ
(+)
±1 = ±1

2
ψ
(+)
±1

Hψ
(−)
±1 = ∓1

2
ψ
(−)
±1 . (3.6.5)

A positive eigenvalue is to be interpreted as denoting the state for which the spin is parallel
to the direction of propagation (“right handed”) and a negative eigenvalue denotes the
state for which the spin is antiparallel to the direction of propagation (“left handed”).

Notice that for antiparticles it is ψ
(−)
−1 that is of positive helicity; we can understand why

this is so if we remember that, for a particle momentum p⃗ the antiparticle momentum is
−p⃗ , so for right handed antiparticles both the momentum and spin are antiparallel with
the particle momentum (and therefore themselves parallel).

We can now define the spin projection operator as follows

Σ± =
1

2
(1± 2H) (3.6.6)
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from which its action on the helicity eigenstates

Σ+ψ
(+)
+1 = ψ

(+)
+1 , Σ+ψ

(+)
−1 = 0

Σ+ψ
(−)
+1 = 0, Σ+ψ

(−)
−1 = ψ

(−)
−1

Σ−ψ
(+)
+1 = 0, Σ−ψ

(+)
−1 = ψ

(+)
−1

Σ−ψ
(−)
+1 = ψ

(−)
+1 , Σ−ψ

(−)
−1 = 0 (3.6.7)

and the identities

Σ2
± = Σ±

Tr(Σ±) = 2
Σ±Σ∓ = 0
Σ+ +Σ− = 1 (3.6.8)

are straightforward.

3.6.3 Chirality

Because γ5 anticommutes with γµ, the solutions of the massless Dirac equation,

icℏγµ∂µψ = 0 (3.6.9)

will also be eigentstates of γ5. Now because γ5
2
= 1/c2, it has two eigenvalues, viz.,

±1/c, which will therefore characterize the independent solutions of the massless Dirac
equation. The eigenfunctions of γ5 form the chirality basis. But what are the solutions
of the massless Dirac equation? Notice that one could not simply take the limit as m→ 0
of our solutions in (3.4.23) and (3.4.24) as the normalization would not make much sense
in this limit. For massless particles, we use a different normalization condition (which
could also be used for massive particles if desired) that reads∫

d3r⃗

(2πℏ)3
ψ
(+)†
p⃗ (t, r⃗)ψ

(+)
p⃗ ′ (t, r⃗) = 2|E|δ(p⃗− p⃗ ′) =

∫
d3r⃗

(2πℏ)3
ψ
(−)†
p⃗ (t, r⃗)ψ

(−)
p⃗ ′ (t, r⃗) (3.6.10)

(here we do not use ψp(x)ψp′(x) because this would be undefined; we use 2|E| in the

normalization because ψ†ψ transforms as the time component of a vector density). The
massless eigenstates are then

ψ
(+)
±1 (x) =

√
|E|
(
χ±1

±χ±1

)
eip·x

ψ
(−)
±1 (x) =

√
|E|
(
χ∓1

∓χ∓1

)
eip·x (3.6.11)
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and we see that

cγ5ψ
(+)
±1 (x) = ±ψ

(+)
±1 (x)

cγ5ψ
(−)
±1 (x) = ∓ψ

(−)
±1 (x) (3.6.12)

so for massless particles (only!) the helicity and chirality bases coincide. Define the chiral
projector

P± =
1

2

(
1± cγ5

)
(3.6.13)

then

P+ψ
(+)
+1 = ψ

(+)
+1 , P+ψ

(+)
−1 = 0

P+ψ
(−)
+1 = 0, P+ψ

(−)
−1 = ψ

(−)
−1

P−ψ
(+)
+1 = 0, P−ψ

(+)
−1 = ψ

(−)
−1

P−ψ
(−)
+1 = ψ

(−)
+1 , P−ψ

(−)
−1 = 0 (3.6.14)

and, moreover,

P 2
± = P±

Tr(P±) =
1

2
P±P∓ = 0
P+ + P− = 1 (3.6.15)

are straightforward.
The chirality operator does not commute with the Hamiltonian of a massive particle

and so chiral eigenstates will not be solutions of Dirac’s equation if m ̸= 0. However,
because of the fourth identity in (3.6.15), we could decompose any solution of the Dirac
equation for massive fermions into chiral components,

ψ = P+ψ + P−ψ = ψ+ + ψ− (3.6.16)

(but neither ψ+ nor ψ− would be solutions of the massive Dirac equation). One can show
that

jµ = ψγµψ = ψ+γ
µψ+ + ψ−γ

µψ− = jµ+ + jµ− (3.6.17)

becomes the sum of chiral currents, but the term

ψψ = ψ+ψ− + ψ−ψ+ (3.6.18)

is necessarily mixed. Thus the mass term can be viewed as arising from an interaction
that transforms the chiral components of the spinor into one another. Indeed one can
define the axial current vector as

jµA = jµ+ − j
µ
− = ψγµγ5ψ, (3.6.19)
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which satisfies the conservation equation

∂µj
µ
A = 2imψγ5ψ (3.6.20)

on shell, and so is conserved only if the field is massless. The current, jµ, however, is
always conserved.

3.7 Lagrangian Description

We now want to make our way to a Lagrangian description of the Dirac field. We will
begin by asking ourselves about all possible bilinear covariants that can be constructed
from the wave function ψ(x), its hermitean conjugate and the gamma matrices. Then
we will propose a Lagrangian density from which the Dirac equation can be derived by
Euler’s equations.

3.7.1 Bilinear Covariants

Starting with the linear transformation of ψ(x) in (3.3.8) and the equation for Ŝ in (3.3.11),
we have

ψ(x)→ ψ′(x′) = Ŝψ(x)

ψ(x)→ ψ
′
(x′) = ψ†(γ0γ0︸︷︷︸)Ŝ†γ0 = ψ(c2γ0Ŝ†γ0) (3.7.1)

Now a very useful property of γ0 is that

c2γ0γµγ0 = γµ† (3.7.2)

as can be checked explicitly. This property obviously translates to arbitrary products of
the gamma matrices

c2γ0(γµ1 . . . γµn)γ0 = c2n(γ0γµ1γ0)(γ0γµ2 . . . γµnγ0) = γµ1† . . . γµn† (3.7.3)

and, by extension, to Σαβ. We could then could use either (3.3.15) or (3.3.16) to show
that8

c2γ0Ŝ†γ0 = Ŝ−1 (3.7.4)

and so conclude that
ψ(x)→ ψ

′
(x′) = ψ(x)Ŝ−1. (3.7.5)

In this way we obtain the following bilinear covariants:

8Problem: Prove this.
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• ψ(x)ψ(x) is an invariant, or scalar.

• ψ
′
(x′)γµψ′(x′) = ψ(x)Ŝ−1γµŜψ(x) = Lµαψ(x)γ

αψ(x) and therefore ψγµψ is a vec-
tor.

• ψ
′
(x′)σµνψ′(x′) = LµαL

ν
βψ(x)σ

αβψ(x) is an antisymmetric tensor.

• Consider ψ
′
(x′)γ5ψ′(x′) = ψ(x)(Ŝ−1γ5Ŝ)ψ(x); now

Ŝ−1γ5Ŝ =
i

4!
ϵµναβŜ

−1γµγνγαγβŜ

=
i

4!
ϵµναβ(Ŝ

−1γµŜ) . . . (Ŝ−1γβŜ)

=
i

4!
ϵµναβL

µ
λ . . . L

β
κ(γ

λ . . . γκ) = ∥|L∥|γ5 (3.7.6)

so its sign depends on whether L̂ is a proper or an improper Lorentz transformation.
Under a proper transformation, ψγ5ψ transforms as a scalar. However, under a
parity transformation ψ

′
(x′)γ5ψ′(x′) → −ψ(x)γ5ψ(x), i.e., ψγ5ψ transforms as a

pseudoscalar.

• An identical argument will show that ψγµγ5ψ transforms as a pseudovector.

3.7.2 Action

It is now easy to see that the Dirac equation may be derived from an action principle by
Hamilton’s principle, exactly as were the equations describing the scalar and electromag-
netic fields. The required action is

S = −ℏc2
∫
d4x ψ

(
i

2

←→
∂/ − mc

ℏ

)
ψ (3.7.7)

where we have introduced a new (and commonly used) notation, which we henceforth

follow: ∂/
def
= γ · ∂. From here it follows that the mechanical dimension of ψ is [ψ] = l−3/2.

The action is invariant under Lorentz transformations, Parity and Time Reversal.
It is also invariant under global gauge transformations, x → x′ = x, ψ(x) → ψ′(x′) =

eiαψ(x), where α is constant and can be made invariant under local gauge transformations
(α depends on x) by the same procedure we employed for the scalar field. If we introduce
the gauge field, Aµ(x), which transforms as (2.6.2), and the covariant derivative as in
(2.6.4) then it is straightforward to show that

S = −ℏc2
∫
d4x ψ

(
i

2

←→
D/ − mc

ℏ

)
ψ, (3.7.8)
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where
ψ
←→
D/ ψ = ψ(

−→
∂/ − igA/ )ψ − ψ(

←−
∂/ + igA/ )ψ (3.7.9)

is indeed invariant. The combined action of the spinor field and the interacting electro-
magnetic field would then be

S = −ℏc2
∫
d4x

[
ψ

(
i

2

←→
D/ − mc

ℏ

)
ψ +

g

4ℏc
FµνF

µν

]
, (3.7.10)

where Fµν is, of course, the Maxwell tensor of the electromagnetic field. The equations of
motion follow by Hamilton’s principle,

(iℏ
−→
D/ −mc)ψ = 0

ψ(iℏ
←−
D/ +mc) = 0

∂µF
µν = ℏcψγνψ (3.7.11)

where the first two equations follow respectively by varying with respect to ψ and ψ,
whereas the last follows by varying with respect to Aµ. The first pair of equations are the
Dirac equation for ψ and ψ respectively in the presence of an interacting electromagnetic
field. The last equation is familiar from electrodynamics, when

jµ = ℏc2ψγµψ

is interpreted as the matter current four vector density. This term arises as a consequence
of the global gauge invariance of the free field action as we will see in the following section.

3.7.3 Non-Relativistic limit

Let us take a closer look at the first equation (drop the arrow indicating the direction of
the derivative’s action). First, we rewrite it as

− i

ℏ
D/ (iℏD/ −mc)ψ = 0 = γµγνDµDν +

m2c2

ℏ2
ψ, (3.7.12)

where we use iℏD/ ψ = mcψ. Moreover, because

γµγν =
1

2
({γµ, γν}+ [γµ, γν ]) = −ηµν +Σµν (3.7.13)

it follows that (3.7.12) becomes

−D2 +ΣµνDµDνψ +
m2c2

ℏ2
ψ = 0. (3.7.14)
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Again, Σµν is antisymmetric so

ΣµνDµDν =
1

2
Σµν [Dµ, Dν ] = −

ig

2
ΣµνFµν (3.7.15)

and the Dirac equation can be rewritten as(
−D2 − ig

2
ΣµνFµν +

m2c2

ℏ2

)
ψ = 0. (3.7.16)

We could go back to expressing this in terms of the momentum and energy operators; if
we set ℏg = e (the “electric charge”) and

Dµ →
i

ℏ
(pµ − eAµ), (3.7.17)

then (3.7.16) turns into[
(pµ − eAµ)2 −

ieℏ
2

ΣµνFµν +m2c2
]
ψ = 0. (3.7.18)

This is not the Klein-Gordon equation in the presence of an electromagnetic field. The
difference lies in the second term, which is an entirely new feature introduced by the Dirac
equation.

We get a feeling for its meaning when we look at the non-relativistic limit of this
equation. Noting that

(pµ − eAµ)2 = −
1

c2
(E − eϕ)2 + (p⃗− eA⃗)2, (3.7.19)

where ϕ is the electric potential and A⃗ the vector potential, let us set E = mc2 + En.r.,
where En.r. is the non-relativistic energy of the Dirac particle which we take to be much
larger than eϕ. Then

(E − eϕ)2 = (mc2 + En.r. − eϕ)2 ≈ m2c4 + 2mc2(En.r. − eϕ) (3.7.20)

and therefore [
−2m(En.r. − eϕ) + (p⃗− eA⃗)2 − ieℏ

2
ΣµνFµν

]
ψ = 0 (3.7.21)

or

En.r.ψ =

[
(p⃗− eA⃗)2

2m
+ eϕ− ieℏ

4m
ΣµνFµν

]
ψ. (3.7.22)

The first two terms on the right can be identified with the Hamiltonian of a scalar particle
and would lead to a Schroedinger equation of the form we are familiar with. The last
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term on the right represents a coupling of the spin of a Dirac particle to the external
electromagnetic field. In the non-relativistic limit it is sufficient to consider only the
spatial components in the sum,

iℏ
2
ΣµνFµν ≈

iℏ
2
ΣijFij =

iℏ
2
ϵijkΣ

ijBk = 2S⃗ · B⃗ (3.7.23)

where S⃗ is the particle’s spin. Thus we have ended up with

En.r.ψ = [H0 +Hint]ψ =

[(
(p⃗− eA⃗)2

2m
+ eϕ

)
+
(
− e

m
S⃗ · B⃗

)]
ψ (3.7.24)

and if we recall that in this limit the four dimensional Dirac spinor effectively reduces to
the two dimensional uL, we find the Schroedinger equation

iℏ
∂uL

∂t
=

[
1

2m

(
ℏ
i
∇⃗ − eA⃗

)2

+ eϕ− eℏ
2m

σ⃗ · B⃗

]
uL, (3.7.25)

which will be recognized as the Pauli equation! The interactions with the electromagnetic
field are more complicated in the relativistic case and we would then use the full Dirac
equation (first in (3.7.11)). Continuing with the non-relativistic limit, we see that the
interaction with the magnetic field takes the form Hint = −µ⃗ · B⃗, where

µ⃗ =
egS⃗

2m
(3.7.26)

is the “magnetic moment”. Above, we introduced the quantity “g”, called the g−factor.
While, according to the classical theory, g = 2, there are small corrections due to quantum
electrodynamic effects. Experimentally g = 2 × (1 + 0.00115965241 ± 0.0000030020) for
the electron. For the proton, on the other hand, g = 2 × (1 + 1.79328 . . .). This large
discrepancy from the expected value is due to (and indeed an indication of) the fact that
the proton has structure.

3.8 Conservation Laws

Let us begin with the action for a free Dirac particle in (3.7.7). In the massless case there
is the obvious scaling symmetry,

x→ x′ = λx, ψ(x)→ ψ′(x′) = λ−3/2ψ(x). (3.8.1)

Therefore, applying Noether’s theorem with

Gν =
δxν

δλ
= xν , G(ψ) =

δψ

δλ
= −3

2
ψ, G(ψ) = −3

2
ψ (3.8.2)
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gives the (conserved) dilation current density, jµ = Θµνxν , where

Θµν =
iℏc2

2
ψγµ
←→
∂νψ + Lηµν , (3.8.3)

as in the case of the Klein-Gordon field, is the conserved energy momentum tensor for
the Dirac field and can be explicitly obtained by demanding translation invariance (when
the equations of motion are satisfied (on-shell), the Lagrangian of the Dirac field vanishes
identically). We could write the orbital angular momentum tensor density as

Lµαβ =
1

2

(
Θµαxβ −Θµβxα

)
(3.8.4)

but it is not conserved. The orbital angular momentum vector is determined from Lµαβ

to have its usual form,

Li = −ϵijk
∫
d3r⃗ L0

jk =
iℏ
2

∫
d3r⃗ ψ†(r⃗ ×

←→
∇ )ψ. (3.8.5)

We can also determine the intrinsic spin of the Dirac particle. Using the change in ψ by
a Lorentz transformation as given in (3.3.15),

δψ

δωαβ
= −1

4
Σαβψ (3.8.6)

the spin density turns out to be just

Sµαβ =
∂L

∂(∂µψ)

δψ

δωαβ
+

δψ

δωαβ

∂L

∂(∂µψ)
=
iℏc
8
ψ
{
γµ,Σαβ

}
ψ. (3.8.7)

Therefore the spin vector will be

Si = −ϵijk
∫
d3r⃗ S0

jk =
iℏ
4

∫
d3r⃗ ψ†(γ⃗ × γ⃗)iψ (3.8.8)

and in this way we have recovered, by an application of Noether’s theorem, the spin
operator that we had derived in (3.3.3). The spin is not separately conserved because Θµν

is not symmetric but the sum of the orbital angular momentum and the intrinsic spin

Mµαβ = Lµαβ + Sµαβ (3.8.9)

will be conserved.
To construct an orbital angular momentum tensor and a spin tensor that are separately

conserved, we must first determine the Belinfante tensor. The energy momentum tensor



3.8. CONSERVATION LAWS 123

is made symmetric by applying the prescription laid out in the previous chapter, i.e., by
the addition of ∂λk

λµν to Θµν in (3.8.3), with9

kλµν = − iℏc
2

16
ψ
{
γλ, [γµ, γν ]

}
ψ. (3.8.10)

Using the Clifford algebra one can show without too much difficulty that

kλµν = − iℏc
2

4
ψ
[
γλγµγν + ηµνγλ − ηνλγµ + ηµλγν

]
ψ, (3.8.11)

is antisymmetric in (λ, µ). Then, using the equations of motion one has

∂λk
λµν = − iℏc

4

[
−ψ
←−
∂νγµψ + ψ

←−
∂µγνψ + ψγµ

−→
∂νψ − ψγν

−→
∂µψ

]
(3.8.12)

and, adding this tensor ∆µν = ∂λk
λµν to (3.8.3) we end up with the symmetric tensor

tµν =
iℏc2

4

[
ψγµ
←→
∂νψ + ψγν

←→
∂µψ

]
(3.8.13)

because the Lagrangian density also vanishes on-shell. With this symmetric tensor we
might identify

℘0 = t00 =
iℏ
2

[
ψ†←→∂t ψ

]
(3.8.14)

as the energy density carried by the Dirac field and

℘i = t0i =
iℏc2

4

[
ψγ0
←→
∂i ψ + ψγi

←→
∂t ψ

]
(3.8.15)

as its momentum density.

Having the symmetric energy momentum tensor, we could define the angular momen-
tum density and the angular momentum tensor in the same way as we have done for the
electromagnetic field. In this way, we arrive at the modified orbital angular momentum
tensor density,

L̃µαβ =
1

2

(
tµαxβ − tµβxα

)
, (3.8.16)

which is conserved and, from L̃µαβ, the modified orbital angular momentum

L̃i =

∫
d3r⃗ (r⃗ × ℘⃗), (3.8.17)

9Problem: Prove this.
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which is also conserved. Similarly, the modified spin density tensor,

S̃µαβ = Sµαβ − 1

2

(
∆µαxβ −∆µβxα

)
(3.8.18)

is separately conserved.

Infinitesimal global gauge transformations of the spinor field,

ψ(x)→ ψ′(x′) = (1 + igδα)ψ(x) ⇒ G =
δψ

gδα
= iψ (3.8.19)

and analogously for ψ, leads to the existence of the conserved current

jµ = −iψ ∂L

∂(∂µψ)
+ i

∂L

∂(∂µψ)
ψ = ℏc2ψγµψ. (3.8.20)

The Lagrangian density for spinors interacting with the electromagnetic field therefore
takes the form

L = Lfree + Lint (3.8.21)

where

Lint = −g(j ·A). (3.8.22)

The interaction Lagrangian density does not contain terms quadratic in the gauge fields
as did the scalar field.

Local gauge invariance of the action in (3.7.10) leads to the strongly conserved current

Jµ = c∂λ(F
λµδα(x)), (3.8.23)

which should be compared with (2.8.6). Again, since α(x) is arbitrary, we take it to be a
constant and discover that

Jµ = cδα∂λF
λµ = (ℏc2ψγµψ)δα def

= jµδα, (3.8.24)

where jµ = ℏc2ψγµψ is the source current for the electromagnetic field in the equations of
motion. One sees a generic feature of minimal coupling once again: the Noether currents
associated with gauge symmetry can be expressed in terms of the field strengths with no
explicit reference to the source. Defining the Noether charge,

Q = −g
∫
d3r⃗ j0 = −gc

∫
d3r⃗ ∂iF

i0 =
g

c

∮
S
E⃗ · dS⃗, (3.8.25)

we recover Gauss’ law. (As before the infinite family of currents generated via local gauge
invariance is redundant.)
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3.9 Hamiltonian

If we begin with the Lagrangian for the Dirac field and determine the momenta in the
usual way, we find that the momenta do not involve the field “velocities”,10

π =
∂L

∂ψ̇
= − iℏc

2

2
ψγ0, π =

∂L

∂ψ̇
=
iℏc2

2
γ0ψ. (3.9.1)

This was to be expected because the equation of motion is first order in time and not
second order, but it means that the field “velocities” cannot be determined in terms of
the momenta and therefore that the above should be viewed as primary constraints,

Φ = π − iℏc2

2
γ0ψ, Φ = π +

iℏc2

2
ψγ0. (3.9.2)

We must apply the Dirac-Bergman algorithm. Begin with the canonical Hamiltonian
density11

Hc = ψ̇π + πψ̇ − L = ℏc2ψ
(
i

2
γi
←→
∂i −

mc

ℏ

)
ψ, (3.9.3)

and write the primary Hamiltonian by introducing two multipliers, µ and µ,

Hp =
∫
d3r⃗ (µΦ+ Φµ+ Hc) =

∫
d3x

[
µΦ+ Φµ+ ℏc2ψ

(
i

2
γi
←→
∂i −

mc

ℏ

)
ψ

]
. (3.9.4)

This gives the canonical equations

ψ̇ = µ,

ψ̇ = µ,

π̇ = ℏc2
[
i

2
µγ0 + iψγi

←−
∂ i +

mc

ℏ
ψ

]
,

π̇ = ℏc2
[
− i
2
γ0µ− iγi

−→
∂ iψ +

mc

ℏ
ψ

]
(3.9.5)

Consistency requires that Φ̇ = 0 = Φ̇, which give the conditions that fix µ and µ (they do
not lead to secondary constraints). Straightforwardly, one finds

χ = iγ0µ+ iγi
−→
∂ iψ −

mc

ℏ
ψ ≈ 0 ⇒ µ

c2
≈ −γ0γi

−→
∂ iψ −

imc

ℏ
γ0ψ

10Observe that π = c2γ0π†.
11Problem: Show by using the equation of motion that Hc is the energy density, ℘0, obtained in (3.8.14)
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χ = iµγ0 + iψγi
←−
∂ i +

mc

ℏ
ψ ≈ 0 ⇒ µ

c2
= −ψγiγ0

←−
∂ i +

imc

ℏ
ψγ0 (3.9.6)

Inserting these expressions for µ and µ into Hp, we get

Hp =

∫
d3r⃗

[
c2
(
−ψγiγ0

←−
∂ i +

imc

ℏ
ψγ0

)(
π − iℏc2

2
γ0ψ

)
+c2

(
π +

iℏc2

2
ψγ0

)(
−γ0γi

−→
∂ iψ −

imc

ℏ
γ0ψ

)
+ℏc2ψ

(
i

2
γi
←→
∂i −

mc

ℏ

)
ψ

]
= c2

∫
d3r⃗

[
−ψγiγ0

←−
∂ iπ − πγ0γi

−→
∂ iψ +

imc

ℏ
(
ψγ0π − πγ0ψ

)]
(3.9.7)

The canonical equations of motion now coincide with the Euler-Lagrange equations.
A simple calculation confirms that the Poisson Brackets between the constraints do

not vanish, so they are all second class. This means that if we want to quantize the field
then the Poisson brackets must be replaced by Dirac brackets.12 We can also determine
the number of local degrees of freedom carried by the Dirac field. The Dirac spinor has
4 complex components or 8 real ones, so n = 8. There are no first class constraints, but
there are 4 complex second class constraints, or 8 real ones, so we have 8− 8/2 = 4 real,
local degrees of freedom. Two of these are associated with the Dirac particle and two with
the antiparticle.

12Problem: Determine the 2× 2 complex valued matrix Cρλ of Poisson brackets between the constraints
and then evaluate the fundamental Dirac brackets for the Dirac field.



Chapter 4

Yang-Mills Fields

The need for locally interacting, dynamical fields that act as “carriers” of forces between
particles follows directly from the requirement of Lorentz invariance. The only question is
what properties the force carrying fields must have to best describe the kinds of interactions
found in nature.

We have seen in previous chapters that just as the need for force carrying fields follows
from Lorentz invariance, both the most salient properties as well as the dynamics of at
least one of these fields, the electromagnetic field, can be determined by requiring yet
another kind of symmetry: local gauge invariance. It is therefore natural to think of the
symmetry as fundamental and of the electromagnetic field as arising as a consequence of
the symmetry. Following this line of reasoning, we ask if the gauge symmetry used to
“derive” the existence and properties of the electromagnetic field can be generalized to
describe other fields that carry information about the other fundamental forces of nature.
The answer is affirmative; Yang-Mills fields are the generalization we seek for two more of
the four known fundamental forces of nature, viz., the “weak” and “strong” interactions.
Thus three of the fundamental forces are “gauge” theories and Gravitation, as we currently
understand it, must be dealt with separately.

4.1 Gauge Groups

The relevant generalization of the gauge symmetry of electrodynamics makes use of di-
rect products of compact, simple Lie groups and U(1) factors. In the simplest case of
electrodynamics, this is just U(1). In the standard model of particle physics (excluding
gravity) it is SU(3) × SU(2) × U(1) and describes the strong, weak and electromagnetic
interactions in that order. All compact, simple Lie groups can be represented by finite
dimensional matrices and fall into the following categories:

• SU(N), withN ≥ 2 can be minimally represented byN dimensional unitary matrices

127



128 CHAPTER 4. YANG-MILLS FIELDS

of determinant one (this is called the fundamental representation).

• O(N), with N ≥ 2 can be minimally represented by N dimensional, real orthogonal
matrices. Requiring the matrices to have unit determinant leads to the subgroup
SO(N).

• Sp(2N), with N ≥ 1 can be minimally represented by 2N dimensional real, sym-
plectic matrices, i.e., matrices, Ô satisfying the property

ÔT ω̂Ô = ω̂, ω̂ =

(
0 1N×N

−1N×N 0

)
Any group element, g, that is connected to the identity can always be represented as

Û(g) = eigα
a t̂a (4.1.1)

where g is a constant, αa are the parameters of the group and t̂a are hermitean matrices
called the generators of the group. The number of parameters required determines
the dimension of the Lie group, dim(G). The number of generators must obviously be
the same as dim(G) and is not to be confused with the dimension, N , of the matrix
representation, Û(g) of g. The generators satisfy commutation relations

[t̂a, t̂b] = f cabt̂c, (4.1.2)

called the Lie Algebra of the group G. The constants f cab are called the structure
constants of the group and they are antisymmetric

f cab = −f cba (4.1.3)

as follows directly from their definition. There is another identity that the structure
constants must satisfy and this one follows from the Jacobi identity

[t̂a, [t̂b, t̂c]] + [t̂c, [t̂a, t̂b]] + [t̂b, [t̂c, t̂a]] = 0, (4.1.4)

which implies that
feadf

d
bc + fecdf

d
ab + febdf

d
ca = 0. (4.1.5)

It is now easy to see that any set of structure constants will determine one set of generators
of G by taking [T̂a]

b
c = f bac = [fa]

b
c.
1 The dimension of this representation is dim(G) and

it is called the adjoint representation of the group G.
In this chapter we will begin by discussing pure Yang-Mills fields. Then we will go on

to discuss the adjustments that must be made to describe the actual interactions observed

1Problem: Use the Jacobi identitity to prove that the generators T̂a satisfy the Lie algebra of G.
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in nature. We consider a set of N fields that transform locally as a vector under some
irreducible N ×N representation Û(g) of a compact Lie group G.2 For convenience, begin
with a set of scalar fields,

ϕ⃗(x) =



ϕ1(x)
ϕ2(x)
. . .
. . .
. . .

ϕN (x)

 (4.1.6)

and let

ϕ⃗(x)→ ϕ⃗′(x′) = Û(g)ϕ⃗(x) = eigα
a(x)t̂a ϕ⃗(x) (4.1.7)

(ϕ⃗ transforms as a vector under the action of G in the N × N representation of {t̂a}).
Infinitesimally,

δϕi(x) = igαa(x)tiajϕ
j(x) (4.1.8)

where t̂a are the generators of the group G. Our immediate purpose is to construct
Lagrangians that are invariant under local transformations of the type in (4.1.7).

4.2 Gauge Invariance

The electromagnetic field, discussed earlier, arose by requiring an invariant action for the
scalar field under transformations that are a special case of the transformations in (4.1.7).
There, the Lie group G is just the abelian group, U(1), of unitary transformations of the
field. Taking a cue from our construction for the electromagnetic field, we realize that we
should introduce a gauge field, Aaµ, that should transform simultaneously under a gauge

transformation of ϕ⃗. But how must it transform? To answer this, we must construct a
gauge covariant derivative, which we define to be

D̂µ = ∂µ1− igAaµt̂a
def
= ∂µ1− igÂµ (4.2.1)

where Âµ = Aaµt̂a, in components,

Dµϕ
i = ∂µϕ

i − igAaµtiajϕ
j = ∂µϕ

i − igAiµjϕj (4.2.2)

with the requirement that, under the gauge transformation of (4.1.7),

D̂µϕ⃗(x)→ D̂′
µϕ⃗

′(x′) = ÛDµϕ⃗(x). (4.2.3)

2An irreducible representation of a group has no nontrivial invariant subspaces. Any representation of
a semisimple Lie group can be decomposed into a direct sum of irreducible representations.
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Then under the general non-abelian gauge transformation of (4.1.7),

D̂µϕ⃗→ D̂′
µϕ⃗

′(x′) = [∂µ1− igÂ′
µ]Û ϕ⃗ = Û

[
∂µϕ⃗+ Û−1(∂µÛ)ϕ⃗− igÛ−1Â′

µÛ ϕ⃗
]

(4.2.4)

so covariance requires that

Û−1Â′
µÛ = Â− i

g
(Û−1∂µÛ) (4.2.5)

or

Â′
µ = Û ÂµÛ

−1 +
i

g
Û∂µÛ

−1, (4.2.6)

which reduces to the familiar gauge transformation of electromagnetism if Û = eigα(x).
For an infinitesimal transformation, i.e., retaining the parameter αa only up to first

order,
δAaµ = ∂µα

a − igfabcAbµαc. (4.2.7)

The first term is, of course, familiar from electrodynamics. The last term is new and
owes to the non-abelian character of the symmetry group G. Notice that the right hand
side of (4.2.7) has the same structure as (4.2.2) because the structure constants serve as
generators in the adjoint representation, i.e., fabc = [T̂b]

a
c and we could set Abµf

a
bc = Aaµc.

This means that αa transforms as a vector in the adjoint representation of the group.
Indeed, the covariant derivative acting on vectors V a in the adjoint representation of G
(disregarding any space-time indices that may be present) can be given as

D̂µ = ∂µ1− igAbµT̂b
def
= ∂µ1− igÂµ, (4.2.8)

where [Âµ]
a
c = Abµf

a
bc ≡ Aaµc. In components,

DµV a = (∂µV
a − igfabcAbµV c) (4.2.9)

and, in particular, (4.2.7) becomes

δAaµ = Dµαa. (4.2.10)

The covariant derivative of a vector in the adjoint representation can always be expressed
in matrix form as

D̂µV̂ = ∂µV̂ − ig[Âµ, V̂ ]. (4.2.11)

where V̂ is defined as V̂ = V bT̂b. This, of course, is equivalent to (4.2.9).
With the covariant derivative in (4.2.1), the following action for the complex scalar

field,

S = −
∫
d4x

[
ηµν(D̂µϕ⃗)

†(D̂ν ϕ⃗) + V (|ϕ⃗|)
]
, (4.2.12)
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is guaranteed to be gauge invariant provided that U †U = 1. Any group G that satisfies this
condition is a unitary group. The unitary groups that satisfy the additional condition
∥Û∥ = 1 are the special unitary groups, SU(N) (here the N refers to the smallest
dimension of the matrix representation of a group element). Henceforth we will confine
our attention to unitary and special unitary groups. We must now construct an action for
the gauge field. Following the prescription laid out by our treatment of the electromagnetic
field we determine the Maxwell tensor for this field,

[D̂µ, D̂ν ]ϕ⃗
def
= −igF̂µν ϕ⃗, (4.2.13)

which easily gives

F̂µν = ∂µÂν − ∂νÂµ − ig[Âµ, Âν ] (4.2.14)

or (F̂µν = F aµν t̂a)

F aµν = ∂µA
a
ν − ∂νAaµ − igfabcAbµAcν . (4.2.15)

Notice that, according to its definition, the Maxwell tensor must transform under a gauge
transformation as3

F̂µν(x)→ F̂ ′
µν(x

′) = Û F̂µν(x)Û
−1 (4.2.16)

i.e., as a mixed, second rank tensor. Therefore the quadratic form Tr(F̂µνF̂
µν) is a gauge

invariant Lorentz scalar. This is precisely what we need to complete the scalar field action,

S = −
∫
d4x

[
ηµν(D̂µϕ⃗)

†(D̂ν ϕ⃗) + V (|ϕ⃗|) + gc

4
Tr(F̂µνF̂

µν)
]
. (4.2.17)

The last term can be rewritten using

Tr(F̂µνF̂
µν) = F aµνF

bµνTr(t̂at̂b) = κabF
a
µνF

bµν (4.2.18)

showing that the symmetric matrix κab = Tr(t̂at̂b) and its inverse can be used to lower and
raise indices according to, for example, Fµνa = κabF

bµν . The matrix κab must be taken to
be real for the Lagrangian density to be real.

Using κab, consider the structure constants with all lowered indices, defined as

fabc
def
= κamf

m
bc (4.2.19)

It turns out that for all semi-simple Lie algebras the structure constants will satisfy the
cyclic property,

fabc = fcab = fbca. (4.2.20)

3Problem: While this transformation is obvious from the definition of F̂µν , it is instructive to show this
by starting with the definition in (4.2.14) and applying the gauge transformation of Âµ in (4.2.6).
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We can prove this as follows:

[t̂a, t̂b] = fmab t̂m ⇒ [t̂a, t̂b]t̂n = fmab t̂mt̂n (4.2.21)

and taking the trace of both sides gives

fnab = Tr(t̂at̂bt̂n − t̂bt̂at̂n) (4.2.22)

so (4.2.20) is merely a consequence of the cyclic property of the trace. Taken with the
antisymmetry of the second two indices, this guarantees that fabc is totally antisymmetric.4

The field equations that follow from the action in (4.2.17) are

−D̂µD̂µϕ⃗+ V ′(|ϕ⃗|)ϕ⃗ = 0

DαFαµa
def
= ∂αF

αµ
a + igfmnaA

n
αF

αµ
m =

i

c

[
(t̂aϕ⃗)

†(D̂µϕ⃗)− (D̂µϕ⃗)†(t̂aϕ⃗)
]
. (4.2.23)

The left hand side will be recognized as the covariant derivative in the adjoint represen-
tation and the result generalizes (2.6.11) to the non-abelian case.5

That a similar construction can be developed for spinor fields should be quite obvious.
Starting with N spinors,

ψ⃗(x) =



ψ1(x)
ψ2(x)
. . .
. . .
. . .

ψN (x)

 (4.2.24)

and repeating all the steps performed with the scalar field, we would end up with the
Lagrangian

S = −ℏc2
∫
d4x

[
ψ⃗

(
i

2

←→
D̂/ − m̂c

ℏ

)
ψ⃗ +

g

4ℏc
Tr(F̂µνF̂

µν)

]
(4.2.25)

where m̂ = miδij is the “mass matrix” of the fermions. The equations of motion are
analogous to those we obtained before with abelian gauge invariance

(iℏ
−→
D̂/ − m̂c)ψ⃗ = 0

4Problem: Use the cycic property to show that

DµVa = (∂µVa + igfc
baA

b
µVc).

for any dual vector in the adjoint representation.
5A consequence of the result in the previous footnote is that the covariant derivative of the Maxwell

tensor can also be written in matrix form as

DαF
αµ
a = ∂αF

αµ
a + ig[Âα, F̂

αµ
a ].
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ψ⃗(iℏ
←−
D̂/ + m̂c) = 0

DαFαµa = ℏcψ⃗ t̂aγ
µψ⃗ (4.2.26)

thus generalizing (3.7.11).

4.3 Conservation Laws

The conserved Noether currents for the free scalar and spinor fields corresponding to trans-
lation and Lorentz invariance (stress energy and total angular momentum respectively)
are straightforward generalizations of their counterparts in the previous chapters.

The canonical energy momentum tensor, the total angular momentum tensor and the
orbital and spin angular momenta of the non-abelian gauge fields all have expressions
that are intimately connected to the corresponding expressions we have derived for the
electromagnetic field. Thus, for example, the canonical energy momentum tensor of the
gauge field,

Θµν = gc

[
Fµαa ∂νAaα −

1

4
ηµνFαβa F aαβ

]
, (4.3.1)

is neither gauge invariant nor symmetric. We may define the non-abelian electric and
magnetic fields as

Eai = −F a0i, Ba
i =

1

2
ϵijkF

ajk, (4.3.2)

or, in vector form,

E⃗a = −∇⃗ϕa − ∂tA⃗a − igfabcϕbA⃗c

B⃗a = ∇⃗ × A⃗a + ig

2
fabcA⃗

b × A⃗c, (4.3.3)

where ϕa = −Aa0 are the scalar potentials.6 They are not gauge invariant, as are their
abelian counterparts. In terms if them, however, we recover familiar expressions for the
orbital angular momentum

Li =
g

c

∫
d3r⃗ Eka(r⃗ × ∇⃗)iAak (4.3.4)

and the spin angular momentum

Si =
g

c

∫
d3r⃗ (E⃗a × A⃗a)i (4.3.5)

6Problem: Rewrite the sourced Maxwell equations in terms of the non-abelian fields, E⃗a and B⃗a, and
obtain their integral form.



134 CHAPTER 4. YANG-MILLS FIELDS

following the methods of the previous chapters. As before, neither is gauge invariant and
neither is separately conserved.

The symmetric, Belinfante tensor is also constructed in a similar way,

tµν = gc

[
Fµαa F aνα −

1

4
ηµνFαβa F aαβ

]
(4.3.6)

and from it one may obtain the energy density,

E =
gc

2

(
1

c2
E⃗a · E⃗a + B⃗a · B⃗a

)
, (4.3.7)

the momentum density,

℘⃗ =
g

c
(E⃗a × B⃗a) (4.3.8)

and the conserved angular momentum

Li =
g

c

∫
d3r⃗ [r⃗ × (E⃗a × B⃗a)]i (4.3.9)

of the gauge field.
Local gauge invariance will lead to a strongly conserved current. Consider, for example,

the action describing a scalar field coupled to a non-abelian gauge field in (4.2.17). For
the scalar field, we have

δϕi = igtiajδα
aϕj , δϕ∗i = −igtiajδαaϕ∗j (4.3.10)

and for the gauge fields,

δAaν = ∂να
a − igfabcAbνδαc. (4.3.11)

Carefully inserting these transformations into (2.2.14) we find

Jµ = c∂λ(F
λµ
a δαa), (4.3.12)

which, of course, obeys ∂ · J = 0 because of the antisymmetry of F λµa . Remarkably this
is no different from its abelian counterpart. It implies, however, that if we take δαa to be
constant and let jµa represent the source currents for the gauge fields then

Jµ = c(∂λF
λµ
a )δαa = (jµa − igcf cbaAbλF λµc )δαa (4.3.13)

on-shell. The conserved charge, which we define as

Qa = −g
∫
d3r⃗J0

a = −gc
∫
d3r⃗ ∂iF

i0
a = +

g

c

∮
S
E⃗a · dS⃗, (4.3.14)
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is now not exclusively from the matter fields, as it was in the abelian case, but receives a
contribution from the gauge potentials as well,

Qa = −g
∫
d3r⃗j0a +

ig2

c
f cba

∫
d3r⃗ A⃗b · E⃗c. (4.3.15)

The first term represents the contribution from the matter fields while the second is a
contribution from the gauge fields themselves. This is to be expected because the gauge
fields also carry non-abelian charge and therefore contribute to the total charge.

The Bianchi identities will follow (as usual) from the Jacobi identity,

[D̂µ, [D̂ν , D̂λ]]ϕ⃗+ [D̂λ, [D̂µ, D̂ν ]]ϕ⃗+ [D̂ν , [D̂λ, D̂µ]]ϕ⃗ = 0. (4.3.16)

Using the definition of the Maxwell tensor in (4.2.13), we find

DµF aνλ +DλF aµν +DνF aλµ = 0. (4.3.17)

Contracting the identity with the Levi-Civita tensor, as we did in the abelian case, we
recover the homogeneous equations,

Dα∗Fαµa = 0, (4.3.18)

for the non-abelian gauge field.

4.4 Examples

The first use of a non-abelian gauge theory was made by Shaw, Yang and Mills to describe
the proton and the neutron in the nuclei of atoms. It was based on the observation that
the proton and the neutron possess (almost) the same mass and play an identical role in
strong interaction processes. According to them, the proton and the neutron could be
regarded as a doublet,

ψ =

(
ψp
ψn

)
. (4.4.1)

This is analogous to the spin 1
2 doublet and is called an isospin doublet. Conservation of

isospin leads to invariance under isospin rotations,

ψ → ψ′ = U(g)ψ (4.4.2)

where g is an element of SU(2). If this invariance is required to be local we end up with
an SU(2) gauge field theory. The Pauli matrices provide a basis for the fundamental
representation of SU(2) transformations, which we take to be

t̂1 =
1

2

(
0 1
1 0

)
, t̂2 =

1

2

(
0 −i
i 0

)
, t̂3 =

1

2

(
1 0
0 −1

)
(4.4.3)
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satisfying

[t̂a, t̂b] = −iϵabct̂c, (4.4.4)

so f cab = −iϵabc. It is easy to see that the raising/lowering matrix κab is given by κab =
Tr(t̂a, t̂b) =

1
2δab and that the generators in the adjoint representation are [Ta]

c
b = −iϵabc,

or

T̂1 =

0 0 0
0 0 i
0 −i 0

 , T̂2 =

0 0 −i
0 0 0
i 0 0

 , T̂3 =

 0 i 0
−i 0 0
0 0 0

 , (4.4.5)

which are both antisymmetric and imaginary.

Today the proton and neutron are known not to be elementary, but isospin invariance
still plays a very big role in particle physics. The left handed electron, muon and tauon (or
tau lepton) form isospin doublets with their neutrino counterparts, the electron-neutrino,
the mu-neutrino and the tau-neutrino,(

νl
l

)
L

≡
{(

νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

}
(4.4.6)

but their corresponding right handed particles do not suffer these “weak interactions”.
Likwise, the six quark flavors (labeled up, down, charm, strange, top and bottom) form
isospin doublets according to(

qu
qd

)
L

≡
{(

u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

}
. (4.4.7)

Local SU(2) invariance requires three gauge bosons to mediate the “flavor” interaction.
Because we’re working with a non-abelian gauge theory, the gauge bosons will interact
among themselves.

Quarks possess an additional quantum number called color, causing them to undergo
“strong interactions”. “Chromodynamics”, the theory of the color or strong interactions, is
described by the symmetry group SU(3). Each quark comes in three colors (say red, green
and blue), which are arranged in a color triplet of fermionic fields, qi. The Lagrangian
density

L = −ℏc2qi
(
i

2

←→
∂/ 1− m̂c

ℏ

)
qj (4.4.8)

is clearly invariant under global SU(3) transformations. If this invariance is made local we
will obtain local color interactions mediated by SU(3) gauge bosons (called gluons) and
described by an action of the type in (4.2.25). SU(3) is eight dimensional, so there are
eight gluons and, because the gauge group is non-abelian, the gluons carry color charge
and interact among themselves.
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A basis for the fundamental representation of SU(3) can be given in terms of the 3×3
complex Gell-Mann matrices:

t̂i =
1

2

(
σi 0
0 0

)
, i ∈ {1, 2, 3},

t̂4 =
1

2

0 0 1
0 0 0
1 0 0

 , t̂5 =
1

2

0 0 −i
0 0 0
i 0 0

 ,

t̂6 =
1

2

0 0 0
0 0 1
0 1 0

 , t̂7 =
1

2

0 0 0
0 0 −i
0 i 0

 ,

t̂8 =
1

2
√
3

1 0 0
0 1 0
0 0 −2

 . (4.4.9)

It’s easy to see that Tr(t̂a, t̂b) =
1
2δab. The structure constants (equivalently, the adjoint

representation) can be determined by direct computation.

4.5 Hamiltonian

The Hamiltonian description of non-abelian gauge fields is a straightforward generalization
of its abelian counterpart and one gets very similar results. Beginning with the action for
a pure non Abelian gauge field,

S = −gc
4

∫
F aµνF

µν
a (4.5.1)

we compute the momenta conjugate to Aaµ and find

πµa =
∂L

∂(∂tAaµ)
= gcFµ0a (4.5.2)

showing that π0a = 0 is a primary constraint and relating the electric fields to the momenta,
πia = −gEia/c. The Lagrangian density can now be written as

L =
c

2g
πiaπ

a
i −

gc

4
F aijF

ij
a (4.5.3)
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and the “velocities” obtained as before:

Ȧai =
c

g
πai + ∂iA

a
0 − igfabcAbiAc0 (4.5.4)

We may now write down the primary Hamiltonian density as

Hp = πiaȦ
a
i + π0aµ

a − L =
c

2g
πiaπ

a
i + π0aµ

a + πia(∂iA
a
0 − igfabcAbiAc0) +

gc

4
F aijF

ij
a (4.5.5)

where the lagrange multipliers µa enforce the primary constraints, Φa = π0a ≈ 0. We
therefore get the primary Hamiltonian,

Hp =
∫
d3r⃗

[
c

2g
πiaπ

a
i +

gc

4
F aijF

ij
a + π0aµ

a −Aa0Diπia
]
, (4.5.6)

after an integration by parts, where Di is the covariant derivative acting on the dual vector
(in the adjoint representation), πia. It follows that Diπia ≈ 0 are secondary constraints and,
again as before, the first two terms in the primary Hamiltonian yield the energy density

c

2g
πiaπ

a
i +

gc

4
F aijF

ij
a =

gc

2

[
1

c2
Eai E

i
a +Ba

i B
i
a

]
. (4.5.7)

The fundamental Poisson brackets,

{Aaµ(r⃗, t), πbν(r⃗′, t)}P.B. = δµν δ
a
b δ

3(r⃗ − r⃗′) (4.5.8)

allow us to derive the canonical equations of motion,

Ȧai (r⃗, t) = {Aai (r⃗, t),Hp}P.B. =
c

g
πai + ∂iA

a
0 − igfabcAbiAc0

Ȧa0(r⃗, t) = {Aa0(r⃗, t),Hp}P.B. = µa

π̇ia(r⃗, t) = {πia(r⃗, t),Hp}P.B. = −gcDjF jia

π̇0a(r⃗, t) = {π0a(r⃗, t),Hp}P.B. = Djπja ≈ 0. (4.5.9)

Both the primary and secondary constraints are first class, as is easy to verify. The
Lagrange multipliers µa therefore cannot be determined. There are then 2× dim(G) first
class constraints, so the number of degrees of freedom is (4−2)×dim(G), i.e., two degrees
of freedom for each generator of the Lie group.
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4.6 The ’t Hooft-Polyakov Monopole

The Dirac monopole is a singular solution of an Abelian gauge theory (Maxwell’s equations
with magnetic sources). The ’t Hooft Polyakov monopole is a singularity free, topological
soliton that arises in spontaneously broken Yang-Mills theories. Before considering the
problem of solitonic solutions in non-Abelian gauge theories, however, let’s look at what
has occurred in the examples we have worked out through a slightly different lens.

In the “λϕ4” theory in one space dimension, both spatial infinity and the space of
solutions consist of two points, which we can identify with the zero dimensional sphere,
S0. Thus the boundary condition, lim|x|→∞ ϕ(x) = ±v can be thought of as a map from
the boundary of space to the space of boundary configurations: the kink maps the point
at −∞ to the solution ϕ = −v and point at +∞ to the solution ϕ = +v and the anti-kink
does the opposite. Then, of course, there is the trivial solution that maps both infinities to
a single point in the space of boundary configurations. As we have seen, the maps cannot
be deformed into one another, neither can they be deformed into the trivial map that
takes both spatial infinities to the same vacuum. This is guaranteed by the fact that each
of the solutions possesses a distinct conserved charge, Q. Likewise, in the vortex solution
of the Abelian Higgs model, the boundary of two dimensional space is the circle S1 and
so is the space of vacua, defined by |ϕ| = v. Thus the boundary condition, limr→∞ |ϕ| = v
can be thought of as a map from the spatial boundary, S1 at infinity, to the S1 of the
boundary configurations |ϕ| = v. Maps of this kind are characterized by their “homotopy”
which counts the number of topologically inequivalent maps possible. In the case of the
maps from S1 → S1 distinct maps are characterized by integers, as in ϕ→ veikθ for any
integer k. This map takes a single turn around the boundary S1 to k turns around the S1

of configurations |ϕ| = v and the dependence of Q on the integer k indicates that maps
with differing values of k are inequivalent.

In fact, inequivalent maps from the n sphere, Sn, to the n sphere, Sn, for any n ≥ 1,
are always characterized by a single integer. So, in 3+1 dimensions, where the spatial
boundary can be thought of as the two sphere, S2, scalar fields whose space of boundary
configurations is M , will be characterized by the homotopy of maps from S2 →M . If M
is also S2 then they will, once again, be characterized by integers. Thus, for the simplest
example, we are led to consider a gauge theory of real vector fields, ϕa, transforming under
SO(3) and governed by the Lagrangian in (4.2.17) with

V (|ϕ|) = λ

8

(
|ϕ⃗|2 − v2

)2
. (4.6.1)

As before, we will pick the temporal gauge, Aa0 = 0, and assume time independence, which
together lead to the equations of motion,

−D̂iD̂iϕ⃗+ V ′(|ϕ⃗|)ϕ⃗ = 0
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∇jF jia + igfmnaA
n
j F

ji
m =

i

c

[
(t̂aϕ⃗)

†(D̂iϕ⃗)− (D̂iϕ⃗)†(t̂aϕ⃗)
]
. (4.6.2)

The identity map from S2 to S2 indicates that we should choose an asymptotic behavior

lim
r→∞

ϕ⃗ = vr̂, (4.6.3)

and seek solutions of the form
ϕ⃗ = vf(r)r̂ (4.6.4)

with f(r) → 1 as r → ∞. The scalar field points raidially, so this ansatz is sometimes
referred to as the “hedgehog” configuration.

For the Higgs model, the scalar potential term in the expression for the energy of the
configuration

E =

∫
d3r⃗

[
ηij(D̂iϕ⃗)

†(D̂jϕ⃗) + V (|ϕ⃗|) + gc

4
Tr
(
F̂ ijF̂ij

)]
(4.6.5)

vanishes at infinity with our choice in (4.6.4). To have the scalar kinetic term also vanish (in
the interest of finiteness) at infinity, we must require that D̂iϕ⃗ = 0, or ∂iϕ

r−ig(Aat̂a)rsϕs =
0 as r →∞. We find:7

lim
r→∞

Aai = −
i

g
ϵaij

xj

r2
(4.6.6)

(is pure gauge) and therefore make the ansatz

Aai = −
i

g
ϵaijA(r)

xj

r2
(4.6.7)

where A(r)→ 1 as r →∞. The scalar and vector field equations then read,

f ′′ +
2

r
f ′ +

[
µ2 − 2

r2
(A− 1)2

]
f − µ2f2 = 0

A′′ − A

r2
(
2− 3A+A2

)
+

2gv2

c
(1−A)f2 = 0 (4.6.8)

where µ2 = λv2/4. As in the case of the vortex, these equations are second order and diffi-
cult to solve, but, as we have seen, essential properties of the solutions can be determined
without explicit solutions.

Let us now consider the BPS equations. According to Derrick’s conditions (2.10.32),
in D = 3 we must have E3 − (E1 + 3E2) = 0 and E1 + 6E2 ≥ 0. The first requires
E2 =

1
3(E3 − E1) so that

E =
2

3

(
E1[Dϕ⃗] + 2E3[A⃗]

)
=

2

3

∫
d3r⃗

[
ηij(Diϕ⃗)

† · (Djϕ⃗) +
gc

2
F⃗ ij · F⃗ij

]
(4.6.9)

7Problem: Prove this. Show that Aa
i is pure gauge and find the gauge transformation, Û .



4.6. THE ’T HOOFT-POLYAKOV MONOPOLE 141

which can be written as

E =
gc

3

∫
d3r⃗

[(
F⃗ ij ± 1

√
gc
ϵijkDkϕ⃗

)2

∓ 2
√
gc
ϵijkF⃗ij ·Dkϕ⃗

]
. (4.6.10)

As the first term is clearly non-negative, we have a lower bound on the energy of the
system,

E ≥ ∓
2
√
gc

3

∫
d3r⃗ ϵijkF⃗ij ·Dkϕ⃗, (4.6.11)

which is saturated by solutions satisfying

F⃗ ij ± 1
√
gc
ϵijkDkϕ⃗ = 0 (4.6.12)

These are the BPS states.
’t Hooft has argued that the antisymmetric field strength tensor

Fµν = F⃗µν · ϕ̂−
i

g
ϵabcϕ̂

aDµϕ̂
bDν ϕ̂

c (4.6.13)

may be identified as the field strength tensor of a U(1) gauge field, where ϕ̂a = ϕa/|ϕ⃗|.
The new field strength can be written as

Fµν =Mµν +Hµν (4.6.14)

where

Mµν = ∂µBν − ∂νBµ

Bµ = Aaµϕ̂
a

Hµν =
i

g
ϵabcϕ̂

a∂µϕ̂
b∂ν ϕ̂

c (4.6.15)

and we may define the magnetic current as

Jµ = − i
2
∂ν

∗Fµν =
1

2
∂ν

∗Hµν =
1

2g
ϵabcϵ

µναβ∂ν ϕ̂
a∂αϕ̂

b∂βϕ̂
c (4.6.16)

It is immediately obvious that Jµ is a topological current as its conservation is a conse-
quence of the antisymmetry of the Levi-Civita tensor. The conserved charge is

Q =

∫
d3r⃗ J0 =

1

2g
ϵijkϵabc

∫
d3r⃗ ∂iϕ̂

a∂jϕ̂
b∂kϕ̂

c =
1

2g

∫
d3r⃗ ϵijkϵabc∂i

(
ϕ̂a∂jϕ̂

b∂kϕ̂
c
)

(4.6.17)
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and, by Gauss’ law, the last is re-expressed and evaluated as the surface integral

Q =
1

2g

∫
S2
∞

dS n̂iϵ
ijkϵabcϕ̂

a∂jϕ̂
b∂kϕ̂

c =
4π

g
, (4.6.18)

using the asymptotic behavior of ϕ(x) in (4.6.3).8 This result is reminiscent of the vortex
solution in the two dimensional Abelian-Higgs model.

We learn that the magnetic charge in non-Abelian gauge theories also does not originate
in any local symmetry of the action but is rather (in the case of SO(3) gauge theory) an
invariant of a mapping between two spheres, viz., the spatial boundary at infinity and
the boundary configuration of the field. The mapping is provided by the scalar fields
and the result in (4.6.18) is for the identity map. In general, let ξα, α ∈ {1, 2}, be a
parametrization of S2

∞, then xi = xi(ξα) and

dS n̂i =
1

2
ϵijkϵ

αβ∂αx
i∂βx

jd2ξ, (4.6.19)

so we find that

Q =
1

2g

∫
S2
∞

d2ξϵαβϵabcϕ̂
a∂αϕ̂

b∂βϕ̂
c. (4.6.20)

It is now easy to see that the integrand is simply the solid angle subtended by the boundary
configuration. While the coordinates ξα cover the two sphere once, the field configuration
may cover it an integer number of times (so that the field may be single valued). Therefore,
for a general, single valued map,

Q =
4πk

g
. (4.6.21)

where k ∈ Z, in line with (2.10.42).
Finally, as r → ∞, Dµϕ̂ → 0 and Fµν = F⃗µν · ϕ̂. The lower bound of the energy in

(4.6.11) can be expressed as

E ≥ ∓
2
√
gc

3

∫
d3r⃗ ϵijk∂k(F⃗ij · ϕ⃗) = ∓

2v
√
gc

3

∫
S2
∞

dS n̂kϵ
ijkFij , (4.6.22)

If we identify the U(1) magnetic field, Bk, with 1
2ϵ
ijkFij then

E ≥ ∓
4v
√
gc

3
ΦB = ∓

Qv
√
gc

3π
=

4kv

3

√
c

g
(4.6.23)

where ΦB = Q/4π is the magnetic flux.

8Problem: Using (4.6.3) and (4.6.6) derive the charge Q.



Chapter 5

The Standard Model

Gauge invariance requires the gauge bosons that mediate the force field to be massless.
This is observed for electrodynamics (the photon) and chromodynamics (the gluons) but
it is not observed in the case of the flavor changing interactions. Experimentally, this
“weak” force is short range and mediated by three massive particles, two of which, the
W±, carry electric charge and the third, the Z0, is neutral. The problem is to build a
theory of particle interactions mediated by massive spin one bosons. One of the great
intellectual accomplishments of the twentieth century, among many, was the discovery
that the flavor changing interactions are in fact described by a gauge field theory even
though the gauge bosons are massive. The central idea is that “particles” of any field
theory are actually excitations of the field around some vacuum, which is generally chosen
to minimize an effective potential. If the minimum of the effective potential is non-trivial,
i.e., if the field acquires a non zero value in its minimum configuration then one may
ask for an effective description of the theory by perturbations of the field around this
vacuum. It turns out that although the Lagrangian of the system may be invariant under
a certain set of symmetries, the lowest order pertrubations about the non trivial vacuum
do not necessarily obey all those symmetries. An effective description of the field and its
interactions, built out of these lowest order perturbations, generates masses for those gauge
bosons that correspond to the “broken” symmetries. This is the underlying mechanism of
“spontaneous symmetry breaking”, which we now describe in some detail.

5.1 Spontaneous Symmetry Breaking: Toy Models

Consider first a single, real scalar field, ϕ(x), with potential V (ϕ(x)) and action

S = −1

2

∫
d4x[ηµν∂µϕ∂νϕ+ V (ϕ)]

143
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Φ

VHΦL

Figure 5.1: Potential for spontaneously broken symmetry (real scalar field)

The classical minimum energy configuration is given by the minimum of the potential,

∂V

∂ϕ
= 0,

∂2V

∂ϕ2
> 0. (5.1.1)

Take, for example, the ϕ4 theory, for which the action is invariant under the discrete
transformation ϕ→ −ϕ and

V (ϕ) = g2ϕ
2 + g4ϕ

4. (5.1.2)

For there to be a global minimum energy configuration we must require g4 to be positive.
If g2 is also positive there is a single global minimum at ϕ = 0. If, however, g2 is negative
(it can no longer be interpreted as related to the mass of the field), then there is a local
maximum at ϕ = 0 and two global minima located at

ϕ0 = v = ±

√
|g2|
2g4

(5.1.3)

The configuration ϕ(x) = ±v corresponds to the lowest energy and therefore most stable
configuration of the scalar field and the constant v is called the vacuum expectation
value or VEV of the scalar field. Taking v as the background value of ϕ(x), consider the
field of small perturbations of the scalar field around this value, setting

ϕ(x) = v +H(x) (5.1.4)

then, because v is constant, the Lagrangian density for the small perturbations, H(x),
reads

L = −1

2

[
ηµν∂µH∂νH + 2|g2|H2 +

√
8|g2|g4H3 + g4H

4
]
+ const. (5.1.5)
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Figure 5.2: Potential for spontaneously broken symmetry (complex scalar field)

which describes a scalar field, H, of positive mass and both H3 and H4 potential terms.
Notice that the action for H, although derived from the action for ϕ, is not invariant
under the transformation H → −H on account of the appearance of a cubic term in the
potential. The original reflection symmetry of the action (ϕ → −ϕ) does not survive
in the effective description but only in the relationship between the three coefficients
of the polynomial potential. Thus although the original Lagrangean theory is reflection
symmetric, the vacuum of the theory is not and one says that this symmetry has been
“spontaneously broken”.1

This gets interesting when we consider a complex scalar field with a continuous global
U(1) symmetry,

S = −
∫
d4x [ηµν(∂µϕ

∗)(∂νϕ) + V (|ϕ|)] (5.1.6)

where we will take
V (|ϕ|) = g2|ϕ|2 + g4|ϕ|4. (5.1.7)

An infinite number of global minima of the potential exist at

|ϕ| = v =

√
|g2|
2g4

, (5.1.8)

whenever g2 is negative and they are all connected by U(1) transformations, i.e., rotations
in the complex ϕ plane. Let us define the (two) real fields of small perturbations about

1This is what happens in Landau’s mean field description of ferromagnetism. For example, the zero field
Landau free energy of a one dimensional, ferromagnetic material would have a ϕ4 potential like the one we
have dealt with here, where ϕ represents the magnetization of the material (an “order” parameter) and the
coefficents g2 and g4 depend on the temperature. At high enough temperatures both g2 and g4 are positive
and the ground state is completely disordered (ϕ = 0). At temperatures below a critical temperature, Tc,
the coefficient g2 becomes negative and the system settles into one of two possible magnetized states.
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the vacuum as
ϕ(x) = [v +H(x)]eiθ(x) (5.1.9)

The VEV, v, represents is a fixed vector in the complex ϕ plane oriented along the real
axis and so it destroys the U(1) symmetry of the vacuum.

Rewriting the potential term in terms of H(x) and θ(x) we find that only the former
appears,

V (|ϕ|) = −[g2(v +H)2 + g4(v +H)4] (5.1.10)

and the potential looks precisely like (5.1.5). The scalar field θ(x) appears through the
kinetic term, which now reads

− ηµν
[
∂µH∂νH + (v +H)2∂µθ∂νθ

]
(5.1.11)

and involves derivative interactions between H(x) and θ(x). Notice that the field H(x),
which represents “radial” fluctuations, about the trough of the minimum, has the usual
mass term, whereas θ(x), which represents fluctuations along a direction in which the
potential is “flat” i.e., in the direction of neighboring vacua, is massless. θ(x) is called a
Nambu-Goldstone boson and this is an example of Goldstone’s theorem, which states:

• For every generator of a continuous global symmetry that is spontaneously broken,
there will appear one massless scalar particle.

This theorem was at first considered to be a serious problem with spontaneously broken
symmetries, but it was discovered, a few years later, that if the broken symmetries were
local instead of global then the degrees of freedom associated with the massless Nambu-
Goldstone bosons become associated with the zero helicity modes of the gauge bosons,
giving them a mass.

In light of this, consider the action for scalar electrodynamics,

S = −
∫
d4x

[
ηµν(Dµϕ

∗)(Dνϕ) + V (|ϕ|) + gc

4
FµνF

µν
]
. (5.1.12)

Take the scalar field potential to be the same as before,

V (|ϕ|) = g2|ϕ|2 + g4|ϕ|4 (5.1.13)

and, as before, assuming that g2 is negative, pick ϕ(x) = [v + H(x)]eiθ(x), with v =√
|g2|/2g4. This time, consider the kinetic term for the scalar field:

(Dµϕ
∗)(Dµϕ) = ∂µH∂

µH+(v+H)2∂µθ∂
µθ−2g(v+H)2Aµ∂µθ+ g

2A2(v+H)2 (5.1.14)

The first three are just the kinetic energy terms of the fields H(x) and θ(x) as well as
some derivative interactions between the two. The last term, apart from the interactions
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between Aµ(x) and H(x), contains a term that has the form of a canonical mass term for
the gauge fields. This is

Lgauge mass = −g2v2A2 (5.1.15)

corresponding to a gauge field mass

m2
A =

2g2ℏ4

c2
v2. (5.1.16)

that depends on the VEV of the scalar field. Notice that this is ultimately scalar elec-
trodynamics, which is known to be a consistent quantum field theory. By spontaneous
symmetry breaking and a simple field redefinition to fluctuations about the new global
minimum of the potential, we are able to have a description involving massive gauge fields.
The theory continues to be a consistent quantum field theory, but now with massive gauge
fields in its spectrum. We do not know of any other way in which a renormalizable theory
of massive gauge fields can be obtained. It comes at the cost of introducing the Goldstone
bosons and a range of unusual interactions between the fields.

Now a massive vector field has three, not two, degrees of freedom so it appears that an
extra degree of freedom has sneaked into our system. This would, of course, be inconsis-
tent, so let’s show that it is not the case. The action for the scalar field is invariant under
the gauge transformations

ϕ(x)→ ϕ′(x) = eiΛ(x)ϕ(x) = [v +H(x)]ei[Λ(x)+θ(x)].

We could pick a gauge, Λ(x) = −θ(x) and let Aµ − 1
g∂µθ(x) = Bµ(x). In this gauge the

action becomes

S = −
∫
d4x

[
ηµν∂µH∂νH + 2|g2|H2 +

g

4ℏ
FµνF

µν + g2v2B2+

+ g2(H2 + 2vH)B2 + g4(4vH
3 +H4)

]
+ const., (5.1.17)

where Fµν = ∂[µBν], and the Goldstone boson has been “gauged away”. In this way we
end up with only one massive scalar particle, i.e., H, a massive vector field, Bµ, and no
Goldstone boson. The total number of degrees of freedom have not changed: we began
with four degrees of freedom, two for the massless vector field, and two for the complex
scalar field. We end up with four degrees of freedom, one for the massive scalar field and
three for the massive gauge field: one of the original scalar degrees of freedom “turned
into” the longitudinal degree of freedom of the vector field! The gauge in which only
the real degrees of freedom survive in the Lagrangian of the effective theory is called the
unitary gauge.
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5.2 Goldstone’s Theorem

It is important to keep in mind that in choosing a vacuum and expanding about it we
have not in fact lost the symmetries of the Lagrangian. While the full theory remains
invariant under the the original symmetry group, it is the choice of vacuum that breaks the
symmetry. Different choices of vacua are related by transformations of the full symmetry
group. This distinction will become useful in generalizing the results above. We will be
interested in counting real degrees of freedom, so let us examine a set of N real scalar fields
transforming as a vector under a real representation of some Lie group, G, and described
by the action

S = −1

2

∫
d4x[ηµν∂µϕ

i∂νϕi + V (ϕi)], (5.2.1)

which is invariant under the global transformations

ϕ⃗→ ϕ⃗′ = eiα
a t̂a ϕ⃗, (5.2.2)

where t̂a are the generators of G. Because we are considering a real, N dimensional
representation of G, the generators are all imaginary. Moreover, if G is compact then we
can choose the representation to be unitary and therefore orthogonal so that t̂aij is both
imaginary and antisymmetric.

Before proceeding, it will be necessary to formalize what we mean by the mass of a
field excitation. Suppose that the vacuum state of the field is given by ϕi = vi, for some
constant vector v⃗. The matrix

Mij =
1

2!

∂2V

∂ϕi∂ϕj

∣∣∣∣
ϕ⃗=v⃗

(5.2.3)

is called the mass matrix of the theory. We do not expect M̂ to be diagonal in general
but, if it is diagonalizable, let λi be its eigenvalues. If the vacuum is chosen to be a mini-
mum of the potential we are guaranteed that M̂ will have only non-negative eigenvalues.
In this case, we set λi = m2

i c
2/ℏ2 for real mi. Now, because M̂ is a constant, symmetric

matrix, it can be diagonalized by a constant, orthogonal transformation, Ŝ. Therefore, let
M̂D = ŜM̂Ŝ−1 = (m2

i c
2/ℏ2)δij be the diagonal form of M̂. Expanding V (ϕi) about the

vacuum, i.e., letting ϕi = vi + φi, we would get

V (ϕi) = const. + φiMijφ
j + . . . (interactions) (5.2.4)

because the first derivative vanishes at the minimum of the potential. The term that is
quadratic in φ can be put in the form φ′iMD

ijφ
′j = m2

iφ
′iφ′i, where φ⃗′ = Ŝφ⃗ are called

mass eigenstates. Mass eigenstates have masses determined by the eigenvalues of the
mass matrix.
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The kinetic term in (5.2.1) is manifestly invariant under the action of the group. For
the potential also to be invariant,

δV = iαa
∂V

∂ϕi
tiajϕ

j = 0 (5.2.5)

must hold as well. A global minimum exists at ϕi = vi if and only if both

∂V

∂ϕi

∣∣∣∣
vi

= 0 (5.2.6)

and the mass matrix

Mij =
1

2!

∂2V

∂ϕi∂ϕj

∣∣∣∣
v⃗

(5.2.7)

has no negative eigenvalues. We will now show that to every symmetry of the Lagrangian
that is not a symmetry of the vacuum state ϕi = vi (a broken symmetry) there must

exist a zero eigenvalue of M̂. This is the mathematical statement of Goldstone’s theorem.
Taking the derivative of the invariance condition in (5.2.5) with respect to ϕk, we find

iαa
∂2V

∂ϕk∂ϕi
tiajϕ

j + iαa
∂V

∂ϕi
tiak = 0 (5.2.8)

so at the global minimum of the potential we would have the relation

iαa
∂2V

∂ϕk∂ϕi

∣∣∣∣
v⃗

tiajv
j = 0 = 2Mkiδv

i, (5.2.9)

where we set δvi = iαatiajv
j . If it happens that tiajv

j ̸= 0, for some a, then it follows that

tiajv
j is an eigenvector ofMij with zero eigenvalue. Therefore the mass matrix has a zero

eigenvalue for every broken symmetry, which proves Goldstone’s theorem.

5.2.1 Examples

As an example, take a set of three real scalar fields transforming under global SO(3)
transformations and let

ϕ⃗ =

ϕ1ϕ2
ϕ3

 . ϕ⃗→ ϕ⃗′ = e
i
2
αa t̂a ϕ⃗, (5.2.10)

where t̂a, a ∈ {1, 2, 3} are the generators of SO(3). Imagine that the potential is given as
before by

V (|ϕ⃗|) = g2ϕ⃗ · ϕ⃗+ g4(ϕ⃗ · ϕ⃗)2 (5.2.11)
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where g2 < 0. It will have a minimum at

|ϕ⃗| =

√
|g2|
2g4

= v (5.2.12)

as before and we can take the vacuum to be, for example,

ϕ⃗0 = v⃗ =

0
0
v

 . (5.2.13)

Only t̂3v⃗ = 0 (rotations in the “xy plane”), so the other two generators (which involve
rotations of the “z” axis) are broken symmetries of the theory and we expect two Goldstone
bosons. Indeed, if we compute the mass matrix we find that

Mij =

0 0 0
0 0 0
0 0 2|g2|

 . (5.2.14)

has two zero eigenvalues.2

Consider also a doublet of complex scalar fields transforming under global transforma-
tions belonging to the group SU(2),

ϕ =

(
ϕ1 + iϕ2
ϕ3 + iϕ4

)
, ϕ⃗→ ϕ⃗′ = e

i
2
αaσ̂a ϕ⃗. (5.2.15)

where σ̂a are the Pauli sigma matrices. We take

V (ϕ, ϕ†) = g2ϕ
†ϕ+ g4(ϕ

†ϕ)2, (5.2.16)

which has a minimum at

ϕ†ϕ =
|g2|
2g4

= v2 (5.2.17)

if g2 < 0, and the vacuum state can be taken to be

ϕ⃗0 = v⃗ =

(
0
v

)
. (5.2.18)

2Problem: Take

v⃗ =

ab
c

 , a2 + b2 + c2 = v2,

and determineMij . Find the matrix Ŝ that brings M̂ to diagonal form.
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Evidently, σ̂av⃗ ̸= 0 for all a, so by Goldstone’s theorem we expect the mass matrix to have
three zero eigenvalues (three Goldstone bosons), considering that SU(2) is three dimen-
sional. One could take the following “polar” parametrization of the small perturbations
about the vacuum,

ϕ =

(
Keiθ1

(v +H)eiθ2

)
, (5.2.19)

then expanding the scalar potential we find

V (ϕ, ϕ†) = g2(v +H)2 + g4(v +H)4 + 2g4K
2(H2 + 2vH) + g4K

4, (5.2.20)

which shows that H appears with a mass of mH = 2|g2| and K, θ1 and θ2 are all Goldstone
bosons.

5.3 Non-Abelian Gauge Groups

Let us now couple the real scalar fields to local gauge fields by requiring local gauge
invariance. The action we must consider is then

S = −
∫
d4x

[
1

2
ηµνDµϕ

TDνϕ+
1

2
V (ϕTϕ) +

gc

4
F aµνF

µν
a

]
, (5.3.1)

where “T” indicates the transpose, and we expand the kinetic term about some VEV, vi,
of ϕi(x), as we did in the U(1) case. We will find

− 1

2
[∂µφ

T∂µφ+ 2igAµij(v
i + φi)∂µφ

j + g2(vi + φi)AµikA
k
µj(v

j + φj)], (5.3.2)

which contains the canonical mass term for the gauge field,

Lgauge mass = −
1

4
g2vj{t̂a, t̂b}jkvkAµaAbµ (5.3.3)

along with several derivative interaction terms and defines the the mass matrix

(m2
A)ab =

g2ℏ4

2c2
vj{t̂a, t̂b}jkvk. (5.3.4)

This mass matrix makes it clear that gauge fields associated with unbroken symmetries,
i.e., with generators for which t̂av⃗ = 0, get no mass whereas those associated with broken
symmetries, t̂av⃗ ̸= 0, become massive. Had our two previous examples been local gauge
theories, two of the three SO(3) gauge fields would have acquired a mass and one remained
massless, whereas all three of the SU(2) gauge fields would become massive.
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The entire action can be rearranged as

S = −
∫
d4x

[
1

2
Dµφ

TDµφ+
1

2
V (v + φ) +

g

4ℏ
F aµνF

µν
a

+
c2

2ℏ4
(m2

A)abA
a
µA

bµ + igAµijv
i(Dµφ

j)

]
(5.3.5)

The last term contains interactions that vanish for the unbroken symmetries, since Aiµjv
j =

Aaµ t
i
ajv

j = 0 for those symmetries. They are therefore interactions that are peculiar to
the gauge bosons that have acquired a mass by spontaneous symmetry breaking.

A näıve count of the degrees of freedom makes it appear that we have increased the
number of degrees of freedom by precisely the number of newly massive gauge bosons
simply by the our choice of vacuum. This cannot be correct of course and we want to
argue, as we did before, that the Goldstone bosons are spurious degrees of freedom that
can be eliminated by a suitable choice of gauge. Suppose we represent by τ̂α the generators
of G that correspond to broken symmetries (i.e., τ̂αv⃗ ̸= 0, let there be p of these) and
by t̂A the generators that correspond to the unbroken ones (there will be dim(G) − p of
these). It is easy to see that the generators that preserve the symmetries of the vacuum
form a subalgebra of the algebra of G and generate a subgroup, H, of G, called the little
group of the vacuum, since

[t̂A, t̂B]v⃗ = fmAB t̂mv⃗ = 0, ⇒ t̂m ∈ H (5.3.6)

i.e., fαAB = 0. This means that all three of fαAB, fAαB and fABα vanish because of the
antisymmetry. Thus we also conclude that

[t̂A, t̂B] = fCAB t̂C

[t̂A, τ̂α] = fγAατ̂γ

[τ̂α, τ̂β] = fAαβ t̂A + fγαβ τ̂γ (5.3.7)

To generalize the “gauging away” of the Goldstone boson to the non-abelian case, we
begin by expressing ϕ⃗(x) as a G transformation of fields, φ⃗(x), that do not contain any
Goldstone bosons. In other words we express ϕ⃗(x) as

ϕi(x) = U ij(x)(v
j + φj(x)) (5.3.8)

where Û ∈ G. Now any element in G can always be parameterized as

Û(x) = eiθ
α(x)τ̂αeiθ

A(x)t̂A (5.3.9)



5.3. NON-ABELIAN GAUGE GROUPS 153

and the statement that φ⃗(x) should contain no Goldstone bosons is the statement that
φ⃗(x) is orthogonal to all the massless eigenvectors of the mass matrix. But, according to
Goldstone’s theorem, the massless eigenvectors of the mass matrix are just linear combi-
nations of ταijv

j , therefore we should have the condition

(vi + φi)ταijv
j = 0 = φiταijv

j (5.3.10)

(because ταij is antisymmetric).3 These are p conditions on the fields, so there will be N−p
independent fields contained in φ⃗(x). Furthermore, any φ⃗ ′(x) related to φ⃗(x) by an H
transformation will also satisfy this orthogonality condition and therefore

eiθ
A t̂A(v⃗ + φ⃗) = v⃗ + φ⃗ ′ (5.3.11)

simply amounts to a redefinition of φ(x). The only elements of G that yield new, inde-
pendent fields in (5.3.8) must belong to G/H, i.e., we can take

ϕ⃗(x) = eiθ
α(x)τ̂α(v⃗ + φ⃗(x)) (5.3.12)

In this form, it is easy to see that the fields θα(x) can be eliminated by a gauge transfor-
mation, as in the U(1) case. In fact, (5.3.1) is invariant under the transformation

ϕ(x)→ ϕ′(x) = Û ϕ⃗(x) = eiΛ
a t̂a ϕ⃗(x)

together with

Âµ → B̂µ = Û ÂµÛ
−1 +

i

g
Û∂µÛ

−1,

so with the choice Λα = −θα and ΛA = 0 (the unitary gauge), direct substitution into
(5.3.1) will give

S = −
∫
d4x

[
1

2
(Dµϕ)

T (Dµϕ) +
1

2
V (|ϕ|) + g

4ℏ
F aµνF

µν
a +

c2

2ℏ4
(m2

B)abB
a
µB

bµ

]
(5.3.13)

where

ϕ
i
(x) = vi + φi(x) (5.3.14)

and(m2
A)ab is the mass matrix

(m2
A)ab =

g2ℏ4

2c2
vj{t̂a, t̂b}jkvk (5.3.15)

3One solution is obviously φi(x) = H(x)vi. This solution is also left invariant by the action of t̂A ∈ H,
since they annihilate v⃗, so there will be at least one massive vector field.
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and F aµν = ∂[µB
a
ν] + igfAbcB

b
µB

c
ν . There is no longer any mixing term because φitaijv

j = 0

for all a. The spectrum consists of dim(G) − p massless gauge bosons corresponding to
the little group, H, and p massive gauge bosons corresponding to the p broken symmetries
interacting with N−p massive, real scalar fields generally referred to as the Higgs bosons.
All interactions are determined by the original gauge theory and the choice of VEV, vi, of
ϕ. The masses of the massive gauge bosons are determined by the eigenvalues of (m2)ab
and by the VEV. The masses of the Higgs fields are determined by the scalar potential
that fixes the vaccum state.

5.3.1 The Example of SU(2)× U(1)Y

Consider a local gauge theory of the four dimensional product group SU(2)×U(1)Y with
scalar fields and the usual ϕ4 potential we have been studying. The subscript “Y ” is used
to indicate that the U(1) factor is not directly connected with electromagnetic charge. It
is usually referred to as the “hypercharge” factor. Let the scalar fields form a vector of
the 2× 2 complex representation of the group. The group generators satisfy

[σ̂i, σ̂j ] = −iϵijkσ̂k

[Ŷ , σ̂i] = 0 (5.3.16)

and can be chosen as the three Pauli matrices in (4.4.3) together with

Ŷ =
1

2

(
1 0
0 1

)
(5.3.17)

for the hypercharge. We will represent ϕ(x) by the complex doublet of fields

ϕ(x) =

(
ϕ1
ϕ2

)
=

(
φ1 + iφ2

φ3 + iφ4

)
, ϕ† = (ϕ∗1, ϕ

∗
2), (5.3.18)

where φi, i ∈ {1, 2, 3, 4} are real fields, and take the vacuum of the theory (after sponta-
neous symmetry breaking) to be given by

ϕ0 =

(
0
v

)
(5.3.19)

with real v =
√
|g2|/2g4. All degenerate vacua will be obtained by acting on ϕ0 by

an SU(2) × U(1)Y transformation.4 The chosen vacuum state breaks the SU(2) × U(1)
symmetry leaving the little group H = U(1)Q; we readily verify that

eiα(σ̂3+Ŷ )

(
0
v

)
=

(
0
v

)
(5.3.20)

4The scalar potential of the ϕ4 theory has a symmetry group that is actually the group O(4) ∼ SU(2)×
SU(2) of rotations of the four real scalar fields φi.



5.3. NON-ABELIAN GAUGE GROUPS 155

is the only transformation that leaves the vacuum invariant, so

Q̂ = σ̂3 + Ŷ . (5.3.21)

generates U(1)Q.
Three of the four symmetries are broken, so we expect a gauge spectrum containing

three massive gauge bosons and one massless gauge boson. The scalar spectrum will
consist of one massive Higgs field, H(x), and three Goldstone bosons, θα(x); we take the
scalar field to have the form

ϕ(x) = ei(θ
1(x)σ̂1+θ2(x)σ̂2+θ−(x)σ̂−)

(
0

v +H(x)

)
(5.3.22)

where

σ̂− = σ̂3 − Ŷ =

(
0 0
0 −1

)
. (5.3.23)

To simplify the algebra, we will now used rescaled fields as discussed in the problem of
§2.6. In the unitary gauge, our Lagrangian density will read

L = −
∫
d4x

[
1

2
(Dµϕ)

†(Dµϕ) +
1

2
V (|ϕ|) + 1

4ℏ
W a
µνW

µν
a +

1

4ℏ
BµνB

µν

]
, (5.3.24)

where we have defined

ϕ(x) =

(
0

v +H(x)

)
, W a

µν = ∂[µW
a
ν] + igfabcW

b
µW

c
ν , σ̂a ∈ SU(2)

Bµν = ∂[µBν]

Dµϕ = (∂µ − igW a
µ σ̂a − ig′BµŶ )ϕ, Ŷ ∈ U(1)Y . (5.3.25)

The mass matrix for the gauge fields is found to be

(m2)rs =
ℏ3v2

4c2


g2 0 0 0
0 g2 0 0
0 0 g2 −gg′
0 0 −gg′ g′2

 , (5.3.26)

but we are interested in expressing our effective Lagrangian in terms the mass eigenstates
of the gauge bosons, since these are what we observe. To do so we should diagonalize the
mass matrix.
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This is easily accomplished by the orthogonal transformation

Srs =


1 0 0 0
0 1 0 0
0 0 cos θW sin θW
0 0 − sin θW cos θW

 (5.3.27)

with

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (5.3.28)

The angle θW is called the Weinberg or weak mixing angle (hence the subscript). It
depends in the coupling strengths of the SU(2) and U(1) factors according to

tan θW =
g′

g
.

and the diagonal form of m2 will be

(m2
D)rs =

ℏ3v2

4c2


g2 0 0 0
0 g2 0 0
0 0 g2 + g′2 0
0 0 0 0

 . (5.3.29)

This leads us to define the linear combinations

Zµ = cos θWW
3
µ − sin θWBµ

Aµ = sin θWW
3
µ + cos θWBµ (5.3.30)

so that Zµ will end up having a mass proportional to g2 + g′2 and Aµ will be massless.

Further, considering that W 1,2
µ have the same mass, we could also define

W±
µ =

1

2
(W 1

µ ± iW 2
µ) (5.3.31)

With these field definitions, let us rewrite our original Lagrangian density.
Beginning with the scalar field kinetic term, we have

Dµϕ =
(
∂µ1− ig(W 1

µ σ̂1 +W 2
µ σ̂2)− igW 3

µ σ̂3 − ig′BµŶ
)( 0

v +H

)

=

 −igW−
µ (v +H)

∂µH + i(gW 3
µ − g′Bµ)(v +H)


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=

 −igW−
µ (v +H)

∂µH + i
√
g2 + g′2Zµ(v +H)

 (5.3.32)

therefore

(Dµϕ)
†(Dµϕ) = (∂µH)†(∂µH) + g2W+

µ W
−µ(v+H)2 + (g2 + g′2)ZµZ

µ(H + v)2. (5.3.33)

In this term we see the expected masses of the W± and Z vector bosons

MW =
ℏ3/2vg
2c

MZ =
ℏ3/2v
2c

√
g2 + g′2 =

MW

cos θW
. (5.3.34)

The scalar potential expands to

V (v +H) = −|g2|(v +H)2 + g4(v +H)4, (5.3.35)

from where we also recover the scalar Higgs boson mass, MH = 2|g2|. The Higgs boson
does not interact with the massless gauge boson, Aµ. If we think of Aµ as mediating the
electromagnetic force, this is telling us that the Higgs boson carries no electric charge. It
does, however, interact with the massive gauge bosons of SU(2).

Finally, consider the gauge kinetic terms. While the algebra is tedious, it is in fact
quite straightforward to find that the two terms may be rewritten in terms of the fields
introduced so far as

−c
[
1

4
FµνF

µν +
1

4
ZµνZ

µν + ig{(cos θWZµ + sin θWA
µ)(W+

µνW
−ν −W−

µνW
+ν)

−(sin θWFµν + cos θWZµν)W
+µW−ν}

−g2{cos2 θW [Z2(W+ ·W−)− (Z ·W+)(Z ·W−)]

+ sin2 θW [A2(W+ ·W−)− (A ·W+)(A ·W−)]}]

− sin θW cos θW [2(Z ·A)(W+ ·W−)− (Z ·W+)(A ·W−)− (Z ·W−)(A ·W+)]

−1

2
[(W+ ·W−)−W+2W−2]}

]
, (5.3.36)

where Fµν = ∂[µAν], Zµν = ∂[µZν] and W±
µν = ∂[µW

±
ν] . The effective theory therefore

describes
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• One massless, neutral vector boson, Aµ(x), corresponding to the only unbroken
gauge symmetry we called U(1)Q,

• One massive, neutral vector boson, Zµ(x),

• One (conjugate) pair of massive, charged vector bosons, W±(x), and

• A neutral scalar boson, H(x), (the Higgs field).

The theory has three parameters, viz., g, θW and v, therefore if the masses of the W ,
Z and Higgs bosons are known, they should be sufficient to determine these parameters.
Experimentally, it has been found thatMW = 80.385±0.015 GeV,MZ = 91.1876±0.0021
GeV andMH ≈ 126.0±0.4 GeV so, directly from the ratio of theW and Z masses we find
θW ≈ 28.17◦. All interactions involving Zµ(x) have a strength of g cos θW and interactions
involving Aµ(x) have a strength of g sin θW . If we identify g sin θW with the strength of
the electromagnetic interactions then it follows that the strength of the weak interactions
is stronger than the electromagnetic interactions by a factor of csc θW ≈ 2.1182. Thus the
weak interactions are intrinsically stronger than the electromagnetic interactions, but they
are effectively weakened by the large masses of the gauge bosons that carry this “force”,
which shortens the range of the interactions.

This gauge fixed SU(2)×U(1)Y theory in fact describes the physical degrees of freedom
of the bosonic sector of the standard model of particles except for the gluons of the strong
interactions. To arrive at the Standard Model of particle physics, all that is left to add to
this model are the leptons, the quarks and the strong interactions.

5.4 The Glashow-Weinberg-Salam Model

The Standard Model refers to the field theory that describes matter and its interactions
as observed in nature, with the important exception of the gravitational interaction. In
our discussion of SU(2)×U(1)Y we discovered a portion of the bosonic degrees of freedom
consisting of three massive gauge bosons, one massless gauge boson and one scalar Higgs
boson. The W± carry isospins of ±1 (in electronic units) respectively, because they
transform in the adjoint representation of SU(2), but they carry no hypercharge. Therefore
they are electrically charged, with charges of ±1 according to (5.3.21). On the other
hand, the Z boson carries neither weak isospin nor hypercharge, therefore it is electrically
neutral. The Higgs boson carries a weak isospin of −1

2 and a hypercharge of +1
2 , so it is

also electrically neutral.

An essential feature of the electroweak interactions is that only left handed fermions
interact weakly. This was first established in an experiment at the National Bureau of
Standards by the low temperature experimentalist C.S Wu at the suggestion of theoretical
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particle physicists T.D. Lee and C.N. Yang. The experiment studied the β decay of
polarized Co nuclei,

27
60Co→ 28

60Ni + e− + νe

or
n→ p+ e− + νe,

which occurs by the transformation of one of the d quarks into an u quark according to

d→ u+W− → u+ e− + νe

The spins of the Cobalt nuclei were aligned by the application of an external magnetic
field. The original Cobalt nuclei carried J = 5 oriented along the positive z axis (say) by
the magnetic field, whereas the residual Ni nuclei carried J = 4 also oriented by the same
magnetic field. The difference of Jz = 1 was carried away together by the electron and
the anti-neutrino. Since the neutrino and the electron are both spin 1

2 particles, this is
explained by requiring both their spins to align with the magnetic field. It was discovered,
however, that the electrons preferred to be emitted opposite the direction of the nuclear
spins and the anti-neutrinos preferred the direction of the nuclear spins (this held true
even when the magnetic field was reversed). Thus left handed electrons and right handed
anti-neutrinos were the preferred decay mode. Many experiments have since confirmed
the conclusion that only left handed leptons (and right handed anti-leptons) participate
in weak interactions.

The fermions of the standard model come in two families, the leptons and the quarks,
each family consisting of six leptons or six quarks. Each family is further separated into
left handed and right handed fermions. The right handed fermions are subject only to a
local U(1) symmetry (there are no right handed neutrinos in the standard model, which is
why the neutrino is massless), but the left handed fermions are conveniently arranged in
three generations of isospin (SU(2)) doublets according to their masses (increasing from
left to right) as follows:

f =



(
νl
l

)
L

≡
(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L(

q⃗u
q⃗d

)
L

≡
(
u⃗

d⃗

)
L

,

(
c⃗
s⃗

)
L

,

(
t⃗

b⃗

)
L

(5.4.1)

Left handed leptons carry a hypercharge of −1
2 . Neutrinos carry a weak isospin of +1

2 ,
which makes them electrically neutral, whereas each of the “bottom” left handed leptons,
e, µ and τ carries a weak isospin of −1

2 , therefore all of them possess an electric charge of
−1. All left handed quarks quarks carry a hypercharge of +1

6 . Combining this with the
weak isospin of +1

2 for the “up” quarks (again, left handed quarks only) and of −1
2 for
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the “down” quarks, we conclude that the “up” quarks are positively charged at +2
3 and

the “down” quarks are negatively charged at −1
3 . Thus a neutron, for example, which is

made out of three quarks: two “downs” and an “up”, n ∼ (udd), has a weak isospin of
−1

2 , a hypercharge of +1
2 and is electrically neutral, whereas a proton, which is made out

of two “ups” and a “down”, p ∼ (uud), carries a weak isospin of +1
2 , a hypercharge of +1

2
and a positive charge of +1. Right handed quarks and leptons carry no isospin (they do
not form isospin doublets) and, in each case, their hypercharge is equal to their electric
charge. We may summarize this information in the tables below.

Particle σ̂3 Ŷ Q̂

W+ +1 0 +1

W− −1 0 −1
Z 0 0 0

H −1
2 +1

2 0

Particle σ̂3 Ŷ Q̂

uL +1
2 +1

6 +2
3

dL −1
2 +1

6 −1
3

uR 0 +2
3 +2

3

dR 0 −1
3 −1

3

Particle σ̂3 Ŷ Q̂

νl,L +1
2 −1

2 0

lL −1
2 −1

2 −1
νl,R 0 0 0

lR 0 −1 −1

Each of the fermions has its corresponding antiparticle and the quarks possess an additional
charge, called color, by which they interact strongly among themselves forming bound
states. These strong interactions between quarks are described by an unbroken gauge
theory of SU(3). There are therefore three colors (hence the vector over each quark
flavor) and, because the dimension of SU(3) is eight, the color force is mediated by eight
(themselves colored) gluons. There are, in all, Nq = 3× 6 = 18 quarks and consequently
eighteen antiquarks. Likewise, there are six leptons and six antileptons, therefore the total
number of fermions in the standard model is forty eight. In the bosonic sector, we have
one photon, three massive SU(2) gauge bosons and eight gluons together with one massive
scalar boson for a total of thirteen bosons. Thus the standard model describes the mutual
interactions of sixty one elementary particles. It has passed every experimental test to
which it has been subjected to date.

5.5 Fermions in the Standard Model

The gauge theory of SU(2)×U(1)Y is an example of a unification of the electromagnetic
and weak interactions. Later it was extended to include quark matter as well by pos-
tulating the existence of the charm quark in addition to the u, d and s quarks that we
already known at the time. But, because quarks interact via the strong interactions as
well, we must now consider the gauge group SU(3) × SU(2) × U(1)Y acting on quarks
and leptons subject to the experimental constraints described in the introduction to this
section. Because of the parity violation associated with SU(2) it will be necessary to
consider separately the left and right handed fermions, with the left handed ones forming
isospin doublets and the right handed ones as isospin singlets. Thus the “matter content”
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of the standard model will be

L− =

(
νl−
l−

)
, L+ = {νl+, l+}, Q− =

(
u⃗−
d⃗−

)
, Q+ = {u⃗+, d⃗+}, (5.5.1)

(we include right handed neutrinos here although they were not included in the original
Standard Model. We include them because more recent experimental evidence strongly
suggests that neutrinos do carry a small, but non-zero mass, which would be impossible
without the existence of right handed neutrinos). The fact that the right handed particles
are all singlets under SU(2) implies that they will not interact with theW± and Z bosons.
Now this separation into left and right handed particles only makes sense if they are
massless (the chiral projection operator does not commute with the Dirac Hamiltonian
for the massive case), so we will have to begin with massless particles and turn to the
problem of fermion masses afterwards.

5.5.1 Kinetic Terms

It is straightforward to write down the Lagrangian for massless fermions:

L = − iℏc
2

2

∑
fermions

ψ
←→
D̂/ ψ (5.5.2)

where, taking into account the isospin and hypercharge assignments,

D̂µ = ∂µ − igsGaµ(1⊗ t̂a)− igW a
µ (σ̂a ⊗ 1)− 1

3
ig′Bµ(Ŷ ⊗ 1), for Q−

D̂µ = ∂µ − igsGaµt̂a −
2

3
ig′Bµ1, for u+

D̂µ = ∂µ − igsGaµt̂a +
1

3
ig′Bµ1, for d+

D̂µ = ∂µ − igW a
µ σ̂a + ig′BµŶ , for L−

Dµ = ∂µ, for νl+

Dµ = ∂µ + ig′Bµ, for l+
(5.5.3)

The tensor product of generators in the first of the covariant derivatives arises because
each of the u and d in

Q− =

(
u⃗−
d⃗−

)
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represents a color triplet.
Let us now expand the covariant derivatives. To avoid the (purely algebraic) compli-

cations of the extra SU(3) gauge invariance carried by the quarks, begin with the leptons,

L = − iℏc
2

2

∑
leptons

ψ
←→
D̂/ ψ = − iℏc

2

2

∑
l

[
L−
←→
D̂/ L− + νl+

←→
∂/ νl+ + l+

←→
D/ l+

]
(5.5.4)

and fully expand the derivative terms in square brackets:

(νl−, l−)

(
∂/ − ig

2

(
W/ 3 − tan θWB/

)
−igW/ −

−igW/ + ∂/ + ig
2

(
W/ 3 + tan θWB/

))(νl−
l−

)

l+(∂/ + ig tan θWB/ )l+ + νl+∂/ νl+ (5.5.5)

or

νl−

{
∂/ − ig

2

(
W/ 3 − tan θWB/

)}
νl− + l−

{
∂/ +

ig

2

(
W/ 3 + tan θWB/

)}
l−

−igl−W/ +νl− − igνl−W/ −l− + l+(∂/ + ig tan θWB/ )l+ + νl+∂/ νl+
(5.5.6)

The kinetic terms clearly reduce to the expected

Llepton
kin =

∑
l

(
νl∂/ νl + l∂/ l

)
(5.5.7)

(modulo the constant prefactor −iℏc2/2) if one makes use of the fact that for any Dirac
spinor ψ∂/ ψ = ψ−∂/ ψ− + ψ+∂/ ψ+. Let us address the interactions. Replace the W 3 and
B fields with their mass eigenstates using

W 3
µ = cos θWZµ + sin θWAµ

Bµ = − sin θWZµ + cos θWAµ,

then we have

Llepton
int =

∑
l

(
− ig

2 cos θW
νl−Z/ νl− − igl−W/ +νl− − igνl−W/ −l−

+ig sin θW lA/ l +
ig cos 2θW
2 cos θW

l−Z/ l− −
ig sin2 θW
cos θW

l+Z/ l+

)
(5.5.8)

where we used l−A/ l− + l+A/ l+ = lA/ l. In fact, we can get rid of the left and right handed
spinors entirely by simply replacing

ψ± =
1

2
(1± cγ5)ψ
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and we find, after a bit of algebra, that

Llepton
int =

∑
l

(
− ig

4 cos θW

{
νlZ/ (1− cγ5)νl − lZ/ (1− 4 sin2 θW − cγ5)l

}
− ig

2

{
lW/ +(1− cγ5)νl + νlW/

−(1− cγ5)l
}
+ ig sin θW lA/ l

)
(5.5.9)

In the language of particle physics:

• The first term represents the coupling of left handed neutrinos to the weak, neutral
vector boson, Zµ.

• The second term represents the coupling of both left and right handed l to the weak,
neutral vector boson, Zµ. Note that both the first and second terms have the general
form

− ig

4 cos θW
fZ/ (2I(1− cγ5)− 4Q sin2 θW )f,

where Q is the fermion charge and I is its isospin.

• The next two terms permit transitions between left handed νl and l via the emission
of a weak, charged vector boson, W±

µ .

• The last term is the standard coupling of l with the electromagnetic field, Aµ.

(Almost) identical expressions for the kinetic and interaction terms of the quarks will
exist, with the added strong interaction. We could write

L = − iℏc
2

2

∑
i,quarks

[
Qi−

←→
D̂/ Qi− + ui+

←→
D/ ui+ + di+

←→
D/ di+

]
(5.5.10)

where the sum is over all colors, i, and over all generations of up and down quarks. Taking
into account the isospins and hypercharges and repeating the algebra above, we will arrive
at the kinetic term

Lquark
kin =

∑
i,u,d

(
ui∂/ ui + di∂/ di

)
(5.5.11)

and the interaction terms

Lquark
int = −igs

∑
i

qiG/ ij qj

+
∑
i,u,d

(
− ig

4 cos θW

{
uiZ/

(
1 +

8

3
sin2 θW − cγ5

)
ui
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−diZ/
(
1− 4

3
sin2 θW − cγ5

)
di

}
− ig

2

{
diW/

+(1− cγ5)ui + uiW/
−(1− cγ5)di

}
−2ig

3
sin θWuiA/ ui +

ig

3
sin θWdiA/ di

)
(5.5.12)

where the first sum (over i) is over the color index carried by each quark and the second
sum is over all colors and all generations of up and down quarks. Again, in the language
of particle physics:

• The first term represents the standard, unbroken gauge coupling with the gluon field
(strong interactions).

• The second and third terms represent the coupling of both left and right handed up
and, respectively, down quarks to the weak, neutral vector boson, Zµ.

• The fourth and fifth terms permit transitions between left handed up and down
quarks via the emission of the weak, charged vector boson, W±

µ .

• The last two terms are the standard coupling to the electromagnetic field, Aµ, with
strengths that depend on the fractional charges of the quarks.

5.5.2 Lepton Masses

In the original standard model right handed neutrinos were excluded because there was
no evidence at the time that neutrinos were massive. Today, however, there is mounting
evidence that neutrinos do indeed have a very small, even by particle physics standards.
Neutrino masses have never actually been measured directly, but a strong upper bound
of about 0.3 eV for the summed masses of the three neutrino generations comes from
cosmology by careful examinations of the Cosmic Microwave Background (CMB), Galaxy
surveys and the Lyman Alpha forrest. Results from the Super-Kamiokande detector have
shown that neutrinos can oscillate, i.e., transform from one type to another. This is only
possible if they carry a mass and results show that there should be at least one neutrino
type with a mass of at least 0.04 eV.

To begin, we will assume that neutrinos are massless and ask how it is possible, within
the standard model, to have massive electrons, muons and tauons. One cannot simply
introduce mass terms because they mix left and right handed particles, which have been
assigned to different multiplets of SU(2), so a term such as

m(l−l+ + l+l−)
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is not gauge invariant. On the other hand, gauge invariance permits an interaction term
involving a left handed lepton doublet, the scalar Higgs doublet and a right handed lepton,
such as ∑

l

GlL
i
−Φil+ + h.c. (5.5.13)

where “h.c.” refers to “hemitean conjugate”. Such an term added to the action (by hand)
is called a Yukawa interaction. Expanding, in the unitary gauge, we find∑

l

Gl[l−(v +H)l+ + l+(v +H)l−] (5.5.14)

and we see straightaway that the VEV of the scalar field gives the desired structure,∑
l

Glv[l−l+ + l+l−] =
∑
l

Glvll,

of a mass term for each l. Thus if ml is the mass of l, then

ml =
ℏGlv
c

⇒ Gl =
mlc

ℏv
=
gmlℏ
2MW

(5.5.15)

and the Yukawa interaction also implies the following interaction between the l and the
Higgs,

gmlℏ
2MW

l H l (5.5.16)

whose strength is proportional to the lepton mass, ml.
Now in principle nothing prevents us from generalizing this to∑

l,l′

Gll′L
i
−Φil

′
+ + h.c., (5.5.17)

where Gll′ is a general complex 3× 3 matrix mixing different generations of leptons. Such
a term would also be gauge invariant and it has the expanded form∑

l,l′

(v +H)l−Gll′ l
′
+ + h.c. (5.5.18)

Let us use the fact that any matrix, such as Gll′ , can be diagonalized by a pair of unitary
matrices and may be expressed as,

Ĝ = Û †
1 ĜD Û2 (5.5.19)

where ĜD is a diagonal matrix, so our Yukawa interaction term looks like∑
l,l′

(v +H)l− (Û †
1 ĜD Û2)ll′ l

′
+ + h.c. (5.5.20)
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One can now define the mixtures

l̃+ = (U2)ll′ l
′
+,

l̃− = (U1)ll′ l
′
−

ν̃l− = (U1)ll′νl′− (5.5.21)

(we have made use of our freedom to define ν̃l− as we please) and re-express the rest of
the lepton Lagrangian in (5.5.9) in terms of them as well. We see that this transformation
does not affect the other terms (this is easiest to see through (5.5.8)) but has the effect of
putting the Yukawa terms in the diagonal form∑

l,l′

(v +H)Gl l̃− l̃+ + h.c. (5.5.22)

where Gl are the eigenvalues of Gll′ . The mass eigenstates, l̃ and ν̃l, are the physical,
propagating states of the theory.

The situation is somewhat different for quarks. Both up and down quarks are known
to be massive, which brings in some added considerations that we will consider below.
We will have to deal with the same issues for standard model extensions with massive
neutrinos.

5.5.3 Quark Masses

As for leptons, we could write a gauge invariant Yukawa coupling of quarks as follows:∑
u,d

GdQ
α
i−Φαdi+ + h.c., (5.5.23)

where we have explicitly intoduced the flavor index “α”. This would give coupling terms
for the down quark ∑

d

Gddi−(v +H)di+ + h.c. (5.5.24)

but not for the up quarks. To get a coupling term for the up quarks we need∑
u,d

FuϵαβQ
α
i−Φ

βui+ + h.c., (5.5.25)

where (α, β) label the quark generations and ϵαβ is the Levi Civita tensor in two dimen-
sions. This term is also gauge invariant and expands to∑

u

Fuui−(v +H)ui+ + h.c. (5.5.26)



5.5. FERMIONS IN THE STANDARD MODEL 167

Both Yukawa couplings therefore give rise to couplings between the quarks and the Higgs
with strengths that are proportional to their masses, since

Fu =
gmuℏ
2MW

, Gd =
gmdℏ
2MW

(5.5.27)

as in the case of the leptons.

Generalizing as before, nothing prevents us from writing the two terms∑
u,u′

Fuu′ui−(v +H)u′i+ + h.c.,
∑
d,d′

Gdd′di−(v +H)d′i+ + h.c. (5.5.28)

for arbitrary complex matrices F̂ and Ĝ. Again, each could be diagonalized by two unitary
matrices

F̂ = ÛF †
1 F̂D ÛF2 , Ĝ = ÛG†

1 ĜD ÛG2 (5.5.29)

where F̂D and ĜD are diagonal. Therefore there are now four unitary matrices required
to diagonalize the mass matrices. Suppose we define

ũ− = (UF1 )uu′u
′
−

ũ+ = (UF2 )uu′u
′
+

d̃− = (UG1 )dd′d
′
−

d̃+ = (UG2 )dd′d
′
+ (5.5.30)

then we will end up with diagonal Yukawa terms∑
u

Fuũi−(v +H)ũi+ + h.c.∑
u

Gdd̃i−(v +H)d̃i+ + h.c. (5.5.31)

for the quarks. However, if we now go back to the quark kinetic and interaction terms in
(5.5.12) and replace all the up and down quarks, (ui±, di±), by (ũi±, d̃i±), then we find
that the terms permitting transitions between the (left handed) up and down quarks via
the emission of a charged, weak vector boson become

− ig
{
d̃−(Û

G
1 Û

F †
1 )W/ +ũ− + ũ−W/

−(ÛF1 Û
G†
1 )d̃−

}
(5.5.32)

while all the other terms remain form invariant. The unitary matrix

V̂CKM = ÛF1 Û
G†
1 (5.5.33)
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is called the Cabbibo-Kobayashi-Maskawa (or CKM) mixing matrix. Since the physi-
cal, propagating states are always mass eigenstates, it says that either (i) the weak eigen-
states of the down quarks should be considered as mixtures of the mass eigenstates; ex-
plicitly, ds

b

 = V̂CKM

d̃s̃
b̃

 (5.5.34)

taking the weak eigenstates of the up quarks to be identical to their mass eigenstates, or
(ii) the weak eigenstates of the up quarks should be considered as mixtures of the mass
eigenstates; explicitly, uc

t

 = V̂ †
CKM

ũc̃
t̃

 (5.5.35)

taking the weak eigenstates of the down quarks to be identical to their mass eigenstates.
Either choice (our’s will be the first) is merely a convention. This mixing will only play a
role in the terms

− ig

2

{
d̃ V̂ †

CKMW/
+(1− cγ5)ũ+ ũ W/ −(1− cγ5)V̂CKMd̃

}
(5.5.36)

but the effect is dramatic: up quarks of one generation can now have transitions with
down quarks of a different generation by emission or absorption of a charged vector boson,
whereas no such inter-generational transitions can occur via emission or absorption of
a neutral vector boson because the CKM matrix is unitary. In the case of leptons, of
course, neutrinos will always interact only with their partner (an electron neutrino with
an electron, etc.) so long as the neutrino is massless.

5.6 The CKM Matrix

Consider the general case of n quark generations, because it is somewhat instructive (the
standard model has n = 3). The CKM matrix is therefore an n×n unitary matrix and will
be completely characterized by n2 real numbers if we count the real and imaginary parts
of a complex element as two real numbers. How many of these real numbers are phases?
We know that a real unitary matrix would have n(n−1)/2 real parameters because this is
the number of parameters of SO(n) given that there are n(n−1)/2 independent rotations
in n dimensions. It follows that

n2 − n(n− 1)

2
=
n(n+ 1)

2

of them are phases. Not all these phases may be observable because there is always a
possibility of absorbing some of them by a field redefinition.
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Now with n generations there are 2n quarks, so suppose we re-phase the quarks by
letting

uα± → eiϕαuα±, dα → eiθαdα± (5.6.1)

where ϕα and θα are completely arbitrary. The mass terms are clearly invariant under this
transformation, since both left and right handed quarks are rotated by the same phase. All
the other terms, except the one in which the CKM mixing occurs, will also be invariant.
In (5.5.36), the net effect of this is to transform V̂CKM according to

V CKM
αβ → ei(θβ−ϕα)V CKM

αβ (5.6.2)

A judicious re-phasing of the quarks should therefore be capable of absorbing some of the
phases of the CKM matrix. The question is: how many phases of the CKM matrix can be
absorbed in this way? Now, although there are 2n possible angles, (ϕα, θα), corresponding
to 2n quarks, only 2n− 1 of the differences will be independent and can actually be used
to eliminate phases in the CKM matrix.5 This leaves

n(n+ 1)

2
− (2n− 1) =

(n− 1)(n− 2)

2

phases in V̂CKM that cannot be absorbed by a re-phasing. For three generations, the CKM
matrix will therefore have three real parameters and one phase. If there were just two
generations (as was originally believed) there would be one real parameter and all the
phases of the CKM matrix could have been absorbed by re-phasing the quarks. Complex
phases in the CKM matrix lead to processes that violate CP. Thus, if there were two quark
generations, the standard model would exhibit no CP violation.6

It remains to parameterize the CKM matrix. Naturally, there are many possibilities
but we will use the one recommended by the Particle Data Group:

V̂CKM = R̂1(θ1) · Û2(θ2, δ) · R̂3(θ3) (5.6.3)

where

R̂1(θ1) =

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1


5Problem: Given two sets of n unknown numbers, {xi} and {yj} form the differences xi−yj = aij where

the differences, aij , are assumed given. Show that only 2n− 1 of the difference equations are independent.
Then show that the other equations are consistency conditions on the differences aij .

6The third generation of quarks was in fact predicted by Kobayashi and Maskawa (in 1973) to explain

the observed CP violation as the neutral K meson (K0 = (d, s)) decays to its antiparticle, K
0
= (d, s). It

is currently being studied for neutral B mesons (B0 = (d, b)).
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Û2(θ2, δ) =

 cos θ2 0 sin θ2e
−iδ

0 1 0
− sin θ2e

iδ 0 cos θ2



R̂3(θ3) =

 cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

 (5.6.4)

This gives

V̂CKM =

 c2c3 c2s3 s2e
−iδ

−c1s3 − s1s2c3eiδ c1c3 − s1s2s3eiδ s1c2
s1s3 − s2c1c3eiδ −s1c3 − c1s2s3eiδ c1c2

 (5.6.5)

where si = sin θi and ci = cos θi.



Chapter 6

More general coordinate systems

6.1 Introduction

There are many examples of physical systems whose symmetries may sometimes make
their mathematical description much more difficult in Cartesian coordinates. Imagine, for
example, how difficult the problem of determining the gravitational field of a spherical
matter distribution would be in Cartesian coordinates. In such situations we search for
a different set of coordinates, selecting one that is best adapted to the symmetries (for
example it is much easier to find the gravitational field of a spherical mass distribution in
spherical coordinates). A judicious choice of coordinates can not only lead to a mathemat-
ically simpler description of the problem but also to a more transparent one. Similarly,
alternate coordinate systems may be advantageous if the physical system is constrained, or
if it turns out to be difficult to implement the appropriate boundary conditions in Carte-
sian coordinates. If the system is constrained we first attempt to solve the constraints in
parametric form and the parameters then turn into a new set of coordinates. The new
coordinates are not usually Cartesian (for example, think of the problem of determining
geodesics on a sphere). Yet again, if the boundary conditions are not rectangular, we turn
to coordinate systems that incorporate the symmetries of the boundary. A generic feature
of such systems – and one that is exploited in the physical problem – is that one or more
of the coordinate surfaces are curved. They are therefore called “curvilinear” systems.

The use of curvilinear coordinate systems becomes all the more relevant when the
effects of gravity cannot be ignored. According to Einstein’s theory of general relativity,
the gravitational field is properly described by the curvature of space-time. Space-time
becomes a “dynamical manifold”, whose curvature is determined by the matter distribu-
tion and determines, in turn, how matter moves.1 In contrast to the examples discussed

1Quote: “Space-time tells matter how to move; matter tells space-time how to curve”, in “Geons, Black
Holes, and Quantum Foam: A Life in Physics” by K.W. Ford and J.A. Wheeler.
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in the previous paragraph it is then impossible to introduce a single Cartesian system or,
often, even any single curvilinear system, in all of space-time.

If the space-time is everywhere Minkowski then it is possible to introduce a global sys-
tem of Cartesian coordinates, xa, a ∈ {0, 1, 2, 3}, and a corresponding set of four constant,
linearly independent vectors, or tetrad {u⃗(a)},2 such that an infinitesimal displacement is
given by

ds⃗ = u⃗(a)dx
a, ds2 = ds⃗ · ds⃗ = (u⃗(a) · u⃗(b))dxadxb = −ηabdxadxb. (6.1.1)

To get a handle on curved space-times, we assume that every curved space-time is “locally
flat”, resembling Minkowski space in small enough neighborhoods of each point. To be
more precise, by “locally flat” is meant that in some neighborhood of every point, P ,
it is possible to find local coordinates, xa, and a tetrad, {u⃗(a)}, so that an infinitesimal
displacement within that neighborhood can be represented by

ds⃗ = u⃗(a)dx
a, ds2 = ds⃗ · ds⃗ = (u⃗(a) · u⃗(b))dxadxb = −g

(0)
ab (P )dx

adxb, (6.1.2)

where

g
(0)
ab (P ) = ηab
∂

∂xc
g
(0)
ab (P ) = 0 (6.1.3)

and ηab is the ordinary Minkowski metric. Higher order derivatives of g
(0)
ab are not required

to vanish. Coordinates that satisfy the conditions above are called Riemann Normal
coordinates and the tetrad {u⃗(a)} is called a Local Lorentz frame (LLF). The normal
coordinates and the LLFs in two neighborhoods are not required to agree even in their
overlap, but the existence of a smooth (i.e., differentiable as many times as desired), local
Lorentz transformation from one to the other in the overlap is assumed. Physically, the
LLFs correspond to families of “freely falling” observers (therefore they are sometimes
called the Local Inertial frames, LIFs). The unit tangent vectors to the worldlines of these
freely falling observers provides a time-like vector for the LLF and at each point one may
define three orthogonal spacelike vectors to complete that frame.

Whether we are dealing with non-rectangular symmetries of a physical system, com-
plicated boundary conditions, constrained systems or curved space-times, the idea is to
introduce a new set of “curvilinear” coordinates, ξµ, that cover some finite region of space-
time.3 We may then define another tetrad {u⃗(µ)}, called the coordinate frame, so that

ds⃗ = u⃗(µ)dξ
µ, ds2 = ds⃗ · ds⃗ = (u⃗(µ) · u⃗(ν))dξµdξν

def
= − gµν(ξ)dξµdξν (6.1.4)

2We assume a four dimensional space-time, but all the results of this chapter can be easily generalized
to any dimension.

3Henceforth we’ll use the following notation: indices from the beginning of the alphabet, a, b, c, ..., will
represent a LLF and greek indices µ, ν, ... will represent a general (curvilinear) system.
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In general several coordinate systems may be necessary to cover the entire space-time;
we then require the coordinate functions to transform smoothly into one another in the
overlap.

What will be relevant in the following discussion is that it is always possible to find (at
least) one LLF in some neighborhood of every point. Here we will never actually need the
LLF itself, nor will we construct it explicitly, although this is sometimes useful. Our aim
will be to develop some general techniques to describe physics in curvilinear coordinate
systems. Later in this chapter we will address the problem of distinguishing quantities
that represent the actual dynamics of a “curved” space-time from quantities that appear
merely because we have chosen to use curvilinear coordinates.

6.2 “Flat” Space-time

By “flat” we will mean that it is possible to introduce a single Lorentz frame, with coor-
dinates xa and Lorentz metric ηab, everywhere in space-time, i.e., a global Lorentz frame.
Suppose we perform a coordinate transformation from the coordinates xa to a set of curvi-
linear coordinates, ξµ. We will take the new coordinates to be smooth, i.e., differentiable
as many times as we like, invertible functions of the xa, so that we are given ξµ = ξµ(x) and
xa = xa(ξ) (think of the transformations leading to spherical or cylindrical coordinates).
In the Minkowski system, the invariant distance between two infinitesimally separated
points is given by the Lorentz metric

ds2 = −ηabdxadxb, (6.2.1)

but, using the coordinate transformations, we can relate the differential of xa to the
differential of ξµ by the chain rule,

dxa =
∂xa

∂ξµ
dξµ, (6.2.2)

and express the distance in terms of the new coordinates, ξµ(x), as follows

ds2 = −ηabdxadxb = −
(
ηab

∂xa

∂ξµ
∂xb

∂ξν

)
dξµdξν = −gµνdξµdξν , (6.2.3)

where

gµν = ηab
∂xa

∂ξµ
∂xb

∂ξν
(6.2.4)

now gives the distance between infinitesimally separated points labeled by the new curvi-
linear coordinates and plays the role of a metric. In contrast with the metric ηab, the
symmetric matrix gµν is not constant. As a symmetric matrix it can be expected to have
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ten component functions. However, because our Minkowski system xa is global, gµν is de-
termined by just the four coordinate functions, ξµ(x), and so the ten components are not
all independent. This simplification comes about only because we started with a global
Lorentz frame.

If we define the matrix

eaµ(ξ) =
∂xa

∂ξµ
(6.2.5)

then we have

dxa = eaµdξ
µ,

∂

∂ξµ
= eaµ

∂

∂xa
(6.2.6)

by the chain rule. The mixed index object eaµ is called the vierbein (“four legs”) and,
like the metric, it is generally a function of position.

Let {u⃗(a)} be a tetrad representing the directions of a global Lorentz frame, say u(0) =
(1, 0, 0, 0), u(1) = (0, 1, 0, 0), u(2) = (0, 0, 1, 0), u(3) = (0, 0, 0, 1). Then

e⃗(µ) = u(a)e
a
µ (6.2.7)

will represent the coordinate frame since an infinitesimal displacement will have the form

ds⃗ = u⃗(a)dx
a = (u⃗(a)e

a
µ)dξ

µ = e⃗(µ)dξ
µ. (6.2.8)

The metric in (6.2.4) is then the matrix whose components are the inner products of the
e⃗(µ), i.e.,

4

gµν(ξ) = ηabe
a
µe
b
ν = (u⃗(a) · u⃗(b))eaµebν = e⃗(µ) · e⃗(ν) (6.2.9)

and it encodes the vierbein. It is manifestly a scalar under Lorentz transformations and is
invertible as a matrix if the transformation x↔ ξ is invertible. In this case we can define
the inverse metric, gµν , by the condition gµνgνκ = δµκ and find

gµν = ηab
∂ξµ

∂xa
∂ξν

∂xb
def
= ηabEµaE

ν
b (6.2.10)

where

Eµa =
∂ξµ

∂xa
. (6.2.11)

We will then have relations analogous to (6.2.6),

dξµ = Eµa dx
a,

∂

∂xa
= Eµa

∂

∂ξµ
, (6.2.12)

and so Eµa transforms the coordinate frame into the the Lorentz frame according to

u⃗(a) = Eµa e⃗(µ). (6.2.13)

4Problem: Check that the identity transformation leads to gµν = ηµν
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Eµa is called the inverse vierbein because of the orthonormality relations

eaµE
µ
b =

∂xa

∂ξµ
∂ξµ

∂xb
= δab , and eaµE

ν
a =

∂xa

∂ξµ
∂ξν

∂xa
= δνµ, (6.2.14)

which follow by repeatedly using the chain rule.
Transformations of {u⃗(a)} must preserve the Lorentz metric and are therefore Lorentz

transformations,

u⃗′(a) =
∂xb

∂x′a
u⃗(b) = u⃗(b)(L

−1)ba. (6.2.15)

On the other hand, if we consider a transformation from one set of curvilinear coordinates,
ξ, to another set, ξ′, which are invertible functions of ξ, then

e⃗′(µ) =
∂ξλ

∂ξ′µ
e⃗(λ) = e⃗(λ)(Λ

−1)λµ. (6.2.16)

The vierbein and its inverse have “mixed” indices, therefore:

• eaµ transforms as a contravariant vector under Lorentz transformations,

e′aµ = Labe
b
µ (6.2.17)

whereas Eµa will transform as a covariant vector

E′µ
a = Eµb (L

−1)ba (6.2.18)

under the same transformations and

• under general coordinate transformations, ξµ → ξ′µ, the vierbein will transform as

e′
a
µ = eaν(Λ

−1)νµ (6.2.19)

and the inverse as
E′µ

a = ΛµνE
ν
a . (6.2.20)

(Remember that Λ̂, unlike L̂, is not necessarily a constant matrix. These transformation
properties imply that the metric in (6.2.4) transforms (under coordinate transformations)
as

g′µν = gαβ(Λ
−1)αµ(Λ

−1)βν (6.2.21)

and
g′µν = ΛµαΛ

ν
βg

αβ (6.2.22)

but is a Lorentz scalar.
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6.3 “Curved” Space-time

When no global Lorentz frame exists, we take {u⃗(a)} to be the tetrad defined by a Local
Lorentz Frame at each point, p, on the space-time. We can no longer take it to be global, as
we did in the previous secition, but all that we have said before carries over in infinitesimal
neighborhoods of points if one simply defines the vierbein to be the (invertible) matrix that
transforms the LLF into the coordinate frame, {e⃗(µ)}, according to (6.2.7). Infinitesimal
displacements are still given by (6.2.8) and the metric in the LLF, which is

ds⃗ · ds⃗ = (u⃗(a) · u⃗(b))dxadxb = −ηabdxadxb, (6.3.1)

transforms, in our curvilinear system, to

ds⃗ · ds⃗ = (e⃗(µ) · e⃗(ν))dξµdξν = (−ηabeaµebν)dξµdξν = −gµνdξµdξν (6.3.2)

i.e., gµν = e⃗µ · e⃗ν as before. The metric continues to encode the vierbein. The difference in
this case is that, because a single tetrad frame is no longer defined throughout the space-
time, there are six degrees of freedom in choosing it at every point. These are, of course,
the three rotations and three boosts, all of which keep the Lorentz metric invariant. Add
this to the freedom to choose four coordinate functions and we find that all ten of the
metric components are now independent.

6.4 Vectors and Tensors

Whether or not a global Lorentz frame exists, we will always have two frames, viz., the
LLF and the coordinate frame at every point p. Any vector A⃗ could be expanded in the
tetrad frame

A⃗ = Aau⃗(a), (6.4.1)

where Aa are its contravariant components in this frame. We will refer to them as the
LLF components of A⃗. Of course, A⃗ itself is independent of the basis in which we choose
to express it and we could use the coordinate basis at each point instead. Then

A⃗ = Aµe⃗(µ), (6.4.2)

where Aµ are its contravariant components in the coordinate frame. We will call these its
coordinate components. Thus A⃗ can be given by specifying either the components Aa or
the components Aµ. Using the vierbein to transform from one frame to the other, we find
relations between the contravariant components,

Aa = eaµA
µ (6.4.3)



6.4. VECTORS AND TENSORS 177

One could also introduce the dual vector space and a dual basis in the usual way: θ⃗(a) and
E⃗(µ) = Eµa θ⃗(a) satisfying

θ(b)(u⃗(a)) = θ(b) · u⃗(a) = δba, E⃗(ν)(e⃗(µ)) = E⃗(ν) · e⃗(µ) = δνµ, (6.4.4)

and express any dual vector as

ω⃗ = ωµE⃗
(µ) = ωaθ⃗

(a). (6.4.5)

where ωµ are its covariant components. Then there are relations between the covariant
components of dual vectors as well,

ωa = ωµE
µ
a , (6.4.6)

in complete correspondence with the relations for contravariant vectors.
It should be clear that the LLF components, Aa (Aa), of any vector A⃗ transform

under Lorentz transformations according to the usual rules but they do not transform
under coordinate transformations. Likewise, the components Aµ (Aµ) will transform under
general coordinate transformations but not under Lorentz transformations. The latter
transform under the same rules as the LLF components, but with Λ̂ instead of L̂. As a
vector should not depend on the basis in which it is expanded,

A⃗ = A′µ e⃗′(µ) = A′µ(Λ−1)νµe⃗(ν) = Aν e⃗(ν) (6.4.7)

implying obviously that
A′µ = ΛµνA

ν . (6.4.8)

A completely analogous argument shows that

A′
µ = Aν(Λ

−1)νµ (6.4.9)

is the transformation property of the covariant components. The contravariant compo-
nents and the covariant components transform inversely to one another, so they must be
related by the metric

Aµ = gµνA
ν

Aµ = gµνAν (6.4.10)

because the metric and its inverse have precisely the required transformation properties.
Knowing how the components of a vector transform, we now wish to know now how

to construct scalars under general coordinate transformations. Given two vectors A⃗ and
B⃗, we know that

− A⃗ · B⃗ = −ηabAaBb (6.4.11)
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is a scalar. Rewrite the above using (6.4.6),

A⃗ · B⃗ = (Aµe⃗µ) · (Bν e⃗ν) = AµBν e⃗µ · e⃗ν = gµνA
µBν = AµBµ. (6.4.12)

That this is a scalar also follows directly from

A′µB′
µ = ΛµαA

αBβ(Λ
−1)βµ = δβαA

αBβ = AαBα. (6.4.13)

As usual we will define tensors as copies of vectors, their components in any basis being
given by

T = Tµνλ...e⃗(µ) ⊗ e⃗(ν) ⊗ e⃗(λ)... = Tµνλ...E⃗
(µ) ⊗ E⃗(ν) ⊗ E⃗(λ)... (6.4.14)

where Tµνλ... and Tµνλ... are the contravariant and covariant components of T respectively.
We could also consider “mixed” components,

T = Tµν...αβ... e⃗(µ) ⊗ e⃗(ν) . . .⊗ E⃗(α) ⊗ E⃗(β) . . . (6.4.15)

Components with m contravariant and n covariant indices are said to be of rank (m,n).
The transformation properties of contravariant and covariant tensor components are given
by

T ′µνλ... = ΛµαΛ
ν
βΛ

λ
γT

αβγ... (6.4.16)

and

T ′
µνλ... = Tαβγ...(Λ

−1)αµ(Λ
−1)βν(Λ

−1)γλ (6.4.17)

respectively. Just as for vectors, the covariant and contravariant components of a tensor
are related by the metric (tensor):

Tµνλ... = gµαgνβgλγ ... Tαβγ... (6.4.18)

and

Tµνλ... = gµαgνβgλγ ... T
αβγ... (6.4.19)

and one can interpolate between components in the LLF frame and in the coordinate
frame by simply applying the vierbein and its inverse, just as we did for vectors

T ab... = eaµe
b
ν ... T

µν..., Tµν... = EµaE
ν
b ... T

ab...

Tab... = EµaE
ν
b ... Tµν..., Tµν... = eaµe

b
ν ... Tab... (6.4.20)
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6.5 Differentiation

The derivative of a tensor is supposed to quantify its instantaneous rate of change as we
move from point to point on the manifold. In a global Cartesian basis, this is done by
measuring the difference between its components at infinitesimally close points, p and p′,
and then dividing the change by the separation of the points, finally taking the limit as
the separation approaches zero. This simple procedure will fail in a general coordinate
system because the basis vectors at the two different points, p and p′, differ from each
other. This means that there is no direct way to compare the components of a vector
or tensor at two points. A näıve application of the procedure employed in a Cartesian
basis will result in a rate of change that does not have definite transformation properties
under general coordinate transformations. This is unsuitable for applications in physics
because of the principle of general covariance. Below we will consider two ways to define
the “derivative” of a tensor so that the derivative is itself a tensor.

6.5.1 Lie Derivative and Lie Transport

The first derivative we address concerns the change in the components of a tensor field
along the flow defined by a vector field.

Consider a one parameter family of coordinate transformations ξ′µ(λ, ξ) which are
such that the λ = 0 transformation is just the identity, ξ′(0, ξ) = ξ. Let the coordinates
of point p be ξµp . Holding ξp fixed, ξ′µ(λ, ξp) represents a curve passing through p at
λ = 0. Suppose that we have chosen our one parameter family of transformations so
that the curve ξ′µ(λ, ξp) passes through p′ at δλ. Let Uµ(λ, ξp) be tangent to the curve,
Uµ(0, ξp) = Uµ(ξp) is tangent to the curve at p. The (infinitesimally separated) point p′

is therefore
ξ′µ = ξ′µ(δλ, ξp) = ξµp + δλUµ(ξp) (6.5.1)

This is the “active” view of coordinate transformations, where they are used to “push”
points along the integral curves of a vector field.

We will be interested in the functional change in the components of a tensor field, T,
induced by the coordinate transformation, i.e., we want to compare the original compo-
nents Tµ1µ2...ν1ν2...(ξ) of T with the transformed components, T ′µ1µ2...

ν1ν2...(ξ
′) at the same

point, i.e., at the same numerical value of the coordinates, when ξ = ξ′. Equivalently, we
could compare Tµ1µ2...ν1ν2...(ξ) with T

′µ1µ2...
ν1ν2...(ξ). Therefore, define the Lie derivative

of T along the vector field U in two equivalent ways:

[£UT]µ1µ2...ν1ν2... = lim
δλ→0

1

δλ

[
Tµ1µ2...ν1ν2...(ξ

′)− T ′µ1µ2...
ν1ν2...(ξ

′)
]
. (6.5.2)

or as

[£UT]µ1µ2...ν1ν2... = lim
δλ→0

1

δλ

[
Tµ1µ2...ν1ν2...(ξ)− T ′µ1µ2...

ν1ν2...(ξ)
]
, (6.5.3)
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It measures the rate of change of the functional form of the components of a tensor field
along the integral curves of U .

For scalar functions, we see immediately that this is just the directional derivative, for
if T is a scalar function, f(ξ), then

f(ξ′)− f ′(ξ′) = f(ξ′)− f(ξ) = δλUµ∂µf (6.5.4)

(to order δλ) because f ′(ξ′) = f(ξ), therefore

£Uf(x) = lim
δλ→0

1

δλ

[
f(ξ)− f ′(ξ)

]
= Uµ∂µf(ξ). (6.5.5)

If T is a vector field, V µ(ξ), then

[£UV ]µ = lim
δλ→0

1

δλ

[
V µ(ξ′)− V ′µ(ξ′)

]
= lim

δλ→0

1

δλ

[
V µ(ξ) + δλUκ∂κV

µ(ξ)− ∂ξ′µ

∂ξκ
V κ(ξ)

]
= lim

δλ→0

1

δλ
[V µ(ξ) + δλUκ∂κV

µ(ξ)− (δµκ + δλ∂κU
µ)V κ(ξ)]

= Uκ∂κV
µ − V κ∂κU

µ ≡ −[£V U ]µ (6.5.6)

and if T is a co-vector field, Wµ(ξ)

[£UW ]µ = lim
δλ→0

1

δλ

[
Wµ(ξ

′)−W ′
µ(ξ

′)
]

= lim
δλ→0

1

δλ

[
Wµ(ξ) + δλUκ∂κWµ −

∂ξκ

∂ξ′µ
Wκ(ξ)

]
= lim

δλ→0

1

δλ

[
Wµ(ξ) + δλUκ∂κWµ − (δκµ − δλ∂µUκ)Wκ(ξ)

]
= Uκ∂κWµ +Wκ∂µU

κ (6.5.7)

and so on for tensors of higher rank.5 If £UT = 0, then T does not change its functional
form as we move along the integral curves of U . In this case, the vector field U is called a

5Obtain the Lie derivative of second rank contravariant, covariant and mixed tensors. In general, the
Lie derivative of a mixed tensor takes the form

[£UT]µ1µ2...
ν1ν2...

= Uσ∂σT
µ1µ2...

ν1ν2... − T
σµ2...

ν1ν2...∂σU
µ1 − ...

+ Tµ1µ2...
σν2...∂ν1U

σ + ...

where the ellipsis means that we repeat the terms of each index of the same type.
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“symmetry” of T. 6 Note that the Lie derivative of a tensor field T is again a tensor field
and of the same rank as T.

The Lie derivative is linear and satisfies the Leibnitz rule. If a and b are real numbers:7

• £U (aA+ bB) = a£UA+ b£UB

• £aU+bV T = a£UT+ b£V T

• £U (A⊗ B) = (£UA)⊗ B+ A⊗ (£UB)

When £UT = 0, the tensor T is said to be “Lie transported” along the integral curves
of U . If the metric tensor is Lie transported along the integral curves of a vector field, U ,
then the vector field is called a “Killing” field after the mathematician Wilhelm Killing.8

6.5.2 Covariant Derivative

The Lie derivative can be thought of as an operator that acts upon a tensor to yield
another tensor of the same rank and tells us how the functional form of its components
changes along the flow of some vector field. However, when we think of a derivative, we
think of the operator (∂a, say), which has the effect of increasing the rank of the tensor
and specifies how it gets transported along a curve. In a global Cartesian basis, if T is a
rank (m,n) tensor (m contravariant indices and n covariant indices) then ∂T is a tensor
of rank (m,n + 1). But ∂T is not a tensor in a general coordinate system, as we will
see below, because it compares components in different bases. We would like to obtain
a derivative operator, ∇, in general curvilinear coordinates that plays the role of ∂ in
Cartesian coordinates, so let us begin with vectors. For this we will need to introduce
some additional structure.

Imagine transporting a vector, A⃗, from some point p to some other point p′. The basis
vectors are not necessarily constant during this transport – they would be constant only
if the coordinate system is Cartesian. Instead of asking about changes in the components

6More generally, a tensor T is called Lie-recurrent if there exists a non-vanishing scalar field λ(x)
such that

£UT = λT.

7Problem: Prove these.
8Problem: Find the Killing vectors of the sphere of radius r, with metric

ds2 = r2(dθ2 + sin2 θdϕ2)

How many of them are there? A maximally symmetric space is one that possesses the same number
of symmetries as Euclidean space. An n dimensional Euclidean space is rotationally and translationally
invariant and there are n(n − 1)/2 rotations and n translations. Therefore a maximally symmetric n
dimensional space will have n(n + 1)/2 symmetries and Killing vectors. Is the two sphere maximally
symmetric?
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of a vector A⃗, let’s ask instead how the vector as a whole changes as we move from p to
p′. To do so it is convenient to work with

A⃗ = Aµe⃗(µ) = Aau⃗(a) (6.5.8)

δA⃗ = (δAµ)e⃗(µ) +Aµ(δe⃗(µ)) = (δAa)u⃗(a) +Ab(δu⃗(b)) (6.5.9)

We see that the change in A is made up of two contributions, the first coming from a
change in its components and the second from a change in the basis as we move from
one point to another. This latter contribution is captured by the second term in both
expressions on the right above.

Now, since the basis is complete, the change in u⃗(µ) must be a linear combination of
the u⃗(µ) themselves and likewise the change in u⃗(a) a linear combination of the u⃗(a). Then
let

δe⃗(µ) = e⃗(ν)(δΓ
ν
µ), δu⃗(b) = u⃗(a)(δω

a
b) (6.5.10)

where δΓνµ(x) and δω
a
b(x) will in general be functions of position. Of course, if u⃗(a) refers

to a global orthogonal tetrad, δωab = 0, but, for the moment at least, let us be as general
as possible and agree to let the tetrad frame change from point to point (in doing so, we
are allowing for space-time to be curved). It should be possible to write the total change,
δA⃗, as δA⃗ = (dAµ)e⃗(µ) = (dAa)u⃗(a) as well, so we find

dAµ = δAµ + (δΓµν)A
ν (6.5.11)

and
dAa = δAa + (δωab)A

b (6.5.12)

The second term in each expression on the right represents the effect of the changing basis
vectors on the components. The derivative corresponding to the infinitesimal changes d
given above is called the “covariant derivative” of Aµ,

∇λAµ = ∂λA
µ + ΓµλνA

ν (6.5.13)

and the 3-index object Γµνλ is called a “Levi-Civita connection”. We also find from
(6.5.12)

∇λAa = ∂λA
a + ωaλbA

b (6.5.14)

and the 3-index object ωaλb is called the “spin connection” (how these expressions gen-
eralize to contravariant tensors should be clear).

Now we have to ensure that (6.5.11) and (6.5.12) are compatible, since both refer to
the same vector; this will relate the Levi-Civita connection to the spin connection. Thus,
starting from (6.5.12),

(∇λAµ)e⃗(µ) = (∇λAa)u⃗(a) = (∂λA
a + ωaλbA

b)u⃗(a)
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= Eµa [∂λ(e
a
νA

ν) + ωaλbe
b
νA

ν ]e⃗(µ)

= [∂λA
µ + (Eµa (∂λe

a
ν) + Eµaω

a
λbe

b
ν)A

ν ]e⃗(µ)

≡ (∂λA
µ + ΓµλνA

ν)e⃗(µ) (6.5.15)

and comparing the last two expressions above, we find

ωaλb = eaµE
ν
b Γ

µ
λν − E

ν
b (∂λe

a
ν). (6.5.16)

which shows that we can determine the spin connection via the the Levi-Civita connection
and vierbein. Conversely, if the spin connection and vierbein are known then the Levi-
Civita connection is determined. The relation between the two can be put in the more
instructive form

∂λe
a
ν − Γσλνe

a
σ + ωaλbe

b
ν = 0. (6.5.17)

We will call the left hand side the covariant derivative of the vierbein and say that the
vierbein is covariantly constant.9 We will assume that the the Lorentz metric, ηab, is also
covariantly constant, which is equivalent to the statement that ωabλ = ωaλcη

cb is antisym-
metric in the pair (a, b). Often the covariant derivative is represented by a semi-colon and
the ordinary derivative by a comma; for example, ∂νA

µ ≡ Aµ,ν and ∇νAµ ≡ Aµ;ν . This
compact notation can be quite useful in complicated expressions and will be used later.

The Levi-Civita connection measures the rate of change of the coordinate basis as we
move from point to point and, under certain conditions, is computed directly from the
metric gµν as we will now see. Consider the change in the metric as we move from x to
x+ dx,

δgµν = δe⃗(µ) · e⃗(ν) + e⃗(µ) · δe⃗(ν) = δΓκµe⃗(κ) · e⃗(ν) + e⃗(µ) · e⃗(κ)δΓκν

⇒ ∂γgµν = Γκγµgκν + Γκγνgµκ. (6.5.18)

If we take the combination

∂γgµν + ∂νgγµ − ∂µgνγ = Γκγµgκν + Γκγνgµκ + Γκνγgκµ + Γκνµgγκ − Γκµνgκγ − Γκµγgνκ

9Equation (6.5.17) is more directly obtained by considering the change in the coordinate basis vectors,

δe⃗(ν) = δ(eaν u⃗(a)) = δeaν u⃗(a) + ωa
be

b
ν u⃗(a) ≡ δΓλ

νe
a
λu⃗(a),

which implies that
∂λe

a
ν − Γσ

λνe
a
σ + ωa

λbe
b
ν = 0.
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= Γκ{γν}gµκ + Γκ[γµ]gκν + Γκ[νµ]gγκ, (6.5.19)

where we freely use the fact that gµν is symmetric, and further assume that the Levi-Civita
connection is symmetric in its lower two indices,

Γκ[γν] = 0, (6.5.20)

then
∂γgµν + ∂νgγµ − ∂µgνγ = 2Γκγνgµκ (6.5.21)

and it is easy to see that

Γκγνgµκg
µρ = Γκγνδ

ρ
κ = Γργν =

1

2
gρµ [∂νgµγ + ∂γgµν − ∂µgγν ] =

{
ρ
γν

}
. (6.5.22)

The expression in braces is also called the Christoffel symbol.
A Levi-Civita connection that satisfies (6.5.20) is said to be “torsion free” and every

torsion free connection can be uniquely related to derivatives of the metric. This is the
connection on which Einstein’s theory of general relativity is based. However, bear in
mind that this is an additional condition that is imposed on Levi-Civita connection. The
torsion tensor is defined by

[∇µ,∇ν ]φ(x) = T λµν∂λφ(x) = −Γλ[µν]∂λφ(x),

where φ(x) is any scalar function.10 If the torsion does not vanish, the connection is
decomposed into two pieces, one of which is the Christoffel symbol,

Γργν =

{
ρ
γν

}
+Kρ

γν (6.5.23)

and the other, Kρ
γν , is the contorsion tensor. It may be expressed in terms of T ργν , but we

will not pursue this here. We will consider only space-times for which the torsion vanishes.
The ordinary derivative, ∂νA

µ, of a contravariant vector does not transform as a
(mixed) tensor but the covariant derivative, ∇νAµ, does. The fact that the covariant
derivative transforms as a tensor is of great importance because the laws of physics should
not depend on one’s choice of coordinates. This means that they should “look the same”
in any system, which is possible only if the two sides of any dynamical equation trans-
form in the same manner, i.e., either as scalars, vectors or tensors under transformations

10Problem: Sometimes the Torsion is defined as

T a
µν

def
= ∂µe

a
ν − ∂νeaµ + ωa

µce
c
ν − ωa

νce
c
µ.

. Use (6.5.17) to show that this is equivalent to the definition given above.
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between coordinate systems. Thus, covariant derivatives and not ordinary derivatives are
more meaningful in physics.

First let’s see that ∂νA
µ is not a tensor. For the sake of simplicity consider a flat space-

time (for which a global Cartesian basis is available, therefore ωaλb = 0). Then (6.5.16)
gives

Γµνλ = (∂ν e⃗λ) · E⃗µ =
∂2xa

∂ξν∂ξλ
∂ξµ

∂xa
, (6.5.24)

so Γµλν is manifestly symmetric in (ν, λ). We have

∂A′µ

∂ξ′ν
=
∂ξλ

∂ξ′ν
∂

∂ξλ

(
∂ξ′µ

∂ξκ
Aκ
)

=
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξκ
∂Aκ

∂ξλ
+
∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξκ
Aκ (6.5.25)

The first term on the r.h.s. corresponds to the tensor transformation, but the second term
spoils the transformation properties of ∂νA

µ. Let us then examine the transformation
properties of ∇νAµ:

∇′
νA

′µ = ∂′νA
′µ + Γ′µ

νκA
′κ

=
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξγ
∂Aγ

∂ξλ
+
∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξγ
Aγ +

∂ξ′κ

∂ξγ
Γ′µ
νκA

γ (6.5.26)

If we can show that
∂ξ′κ

∂ξγ
Γ′µ
νκ =

∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
Γσλγ −

∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξγ
(6.5.27)

then we will have

∇′
νA

′µ =
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ

[
∂Aσ

∂ξλ
+ ΓσλγA

γ

]
=
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
∇λAσ = (Λ−1)λνΛ

µ
σ∇λAσ (6.5.28)

and we will have accomplished the task of showing that ∇νAµ is a tensor. It is not so
difficult to show (6.5.27). First put it in the form

Γ′µ
νκ =

∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
∂ξγ

∂ξ′κ
Γσλγ −

∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλξγ
∂ξγ

∂ξ′κ
(6.5.29)

and write
Γ′µ
νκ = ∂′νΓ

′µ
κ = (∂′ν e⃗

′
κ) · E⃗′µ = −e⃗′κ(∂′νE⃗′µ) (6.5.30)

where we have used Γµνκ = (∂ν e⃗κ) · E⃗µ as, according to (6.5.24), is appropriate when the
spin connection vanishes. Then

Γ′µ
νκ = − ∂ξ

γ

∂ξ′κ
∂ξλ

∂ξ′ν
e⃗γ ·

∂

∂ξλ

(
∂ξ′µ

∂ξσ
E⃗σ
)
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= − ∂ξ
γ

∂ξ′κ
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
e⃗γ · (∂λE⃗σ)−

∂ξγ

∂ξ′κ
∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλ∂ξσ
e⃗γ · E⃗σ

=
∂ξγ

∂ξ′κ
∂ξλ

∂ξ′ν
∂ξ′µ

∂ξσ
Γσλγ −

∂ξλ

∂ξ′ν
∂2ξ′µ

∂ξλ∂ξγ
∂ξγ

∂ξ′κ
(6.5.31)

which is the desired result. With a little more effort (left as an exercise) we can generalize
the discussion to the case with a non-vanishing spin connection.11 Again, notice that
without the second term the above would correspond to a tensor transformation, but the
second term spoils the transformation properties. In fact it is precisely because of the
presence of the second term that ∇νAµ transforms as a tensor. Note also that if the
unprimed coordinates were Cartesian, (σ, λ, γ) ≡ (a, b, c), then Γabc ≡ 0 and

Γµνκ = −∂x
b

∂ξν
∂2ξµ

∂xb∂xc
∂xc

∂ξκ
= −e⃗ν · (∂κE⃗µ) (6.5.32)

which is equivalent to our starting point (6.5.24) because e⃗ν · E⃗κ = δκν .
In the global Cartesian basis we are considering, the derivative of a vector is just ∂aA

b.
If we now transform to the curvilinear coordinates,

∂aA
b =

∂ξµ

∂xa
∂

∂ξµ
(Aνebν) = Eµa (∂µA

ν)ebν + EµaA
ν(∂µe

b
ν) (6.5.33)

so that

eaσE
λ
b ∂aA

b = eaσE
λ
b E

µ
a (∂µA

ν)ebν + eaσE
λ
b E

µ
aA

ν(∂µe
b
ν)

= ∂σA
λ + EλbA

ν(∂σe
b
ν) = ∂σA

λ + ΓλσνA
ν (6.5.34)

If we think of ∂aA
b as the components of a (mixed) tensor in the LLF then, in a general

coordinate system, its components should be given by eaσE
λ
b ∂aA

b. The above equation
shows that its components in the general coordinate basis are given by the components of
the covariant derivative.12 In other words, ordinary derivatives of the LLF components of
vectors must be replaced by covariant derivatives in general coordinate systems.

It should be clear that the covariant derivative of a tensor copies the covariant deriva-
tive of the vector. Setting,

T = Tµν...e⃗(µ) ⊗ e⃗(ν)... (6.5.35)

11Problem: Generalize this to the case when the spin connection does not vanish. Treat ω̂λ as a
coordinate vector i.e.,

ω′a
λb =

∂ξσ

∂ξ′λ
ωa
σb

and show that (6.5.31) is valid in this case as well.
12Problem: Modify this argument to include a non-vanishing spin connection. Employ (6.5.17).
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we get

δT = δTµν...e⃗(µ) ⊗ e⃗(ν)...+ Tµν...(δe⃗(µ))⊗ e⃗(ν)...+ Tµν...e⃗(µ) ⊗ (δe⃗(ν))...+ ... (6.5.36)

from which it follows that

∇γTµν... = ∂γT
µν... + ΓµγλT

λν... + ΓνγλT
µλ... + ... (6.5.37)

We have defined the covariant derivatives of a contravariant vector. How about the co-
variant derivative of a covariant vector? For a dual vector, ω, we should find

δω = (δωµ)E⃗
(µ) + ωµ(δE⃗

(µ)) (6.5.38)

and we want to know what δE⃗(µ) is. Use the fact that

e⃗(µ) · E⃗(ν) = δνµ ⇒ (δe⃗(µ)) · E⃗(ν) + e⃗(µ) · (δE⃗(ν)) = 0 (6.5.39)

or
e⃗(µ) · (δE⃗(ν)) = −(δe⃗(µ)) · E⃗(µ) = −(δΓκµ)e⃗(κ) · E⃗(ν) (6.5.40)

so that, writing it out in component form and multiplying the l.h.s. by E
(µ)
b gives

δE⃗(ν) = −(δΓνµ)E⃗(µ) (6.5.41)

which should be compared with (6.5.10) for the variation of e⃗(µ). Therefore

δω⃗ = (dωµ)E⃗
(µ) = (δωµ)E⃗

(µ) − ωµ(δΓµκ)E⃗(κ) (6.5.42)

and we could write the covariant derivative of the covector, Aµ

∇νωµ = ∂νωµ − Γκνµωκ (6.5.43)

and of a covariant tensor, Tµνκ...

∇γTµν... = ∂γTµν... − ΓλγµTλν... − ΓλγνTµλ... + ... (6.5.44)

in complete analogy with the covariant derivative of contravectors and tensors. In partic-
ular we see that

∇γgµν = ∂γgµν − Γκγµgκν − Γκγνgµκ ≡ ∇γgµν = 0 (6.5.45)

by (6.5.18). This is called the “metricity” property.13 The covariant derivative is linear
and satisfies the Leibnitz rule:14

• ∇(aA+ bB) = a∇A+ b∇B

• ∇(A⊗ B) = (∇A)⊗ B+ A⊗ (∇B)
13Using the Lie derivative of the metric (a rank two co-tensor) show that if U is a symmetry of the

metric then it must satisfy
∇(µUν) = ∇µUν +∇νUµ = 0

The symmetry vectors of the metric are called Killing vectors. In Minkowski space there are 10 of them
corresponding to the 10 generators of the Poincaré group: translations, spatial rotations and boosts.

14Problem: Prove these.
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6.5.3 Parallel Transport

Having defined the covariant derivative operator, in a general coordinate system, we may
now define the absolute derivative (or directional derivative, or total derivative, or intrinsic
derivative) of a tensor, T, along the integral curves of any vector field, U , as the projection
of its covariant derivative on U , i.e.,

DUT = (U · ∇)T. (6.5.46)

The absolute derivative measures the total rate of change of T along any integral curve of
U and is a tensor of the same rank as T itself. It is satisfies both linearity and the Leibnitz
rule.

A tensor T is said to be “parallel transported” along the integral curves of a vector
field U if and only if

DUT = f(λ)T (6.5.47)

along the curves. Let us consider what parallel transport means geometrically. Let ξµ(λ)
be an integral curve of U and let A⃗ be a vector defined at any point, P , on the curve, say
at λ = 0. To “parallel transport” A⃗ along the curve is to define a vector field along the
curve in such a way that at every point on the curve A⃗ remains parallel to itself. This
is only possible if A⃗, evaluated at neighboring points, changes by some multiple of itself
along the curve, i.e.,

δA⃗ = δg(λ)A⃗, (6.5.48)

where g(λ) is an arbitrary function of λ. If, in addition, we wish to keep the magnitude
of A⃗ unchanged as well then δg(λ) = 0. Bearing in mind that the changing basis vectors
must also be accounted for, we write this in component form as

dAµ = δξα∇αAµ = δg(λ)Aµ (6.5.49)

or
dξα

dλ
∇αAµ = (U · ∇)Aµ = g′(λ)Aµ (6.5.50)

which is (6.5.47) for vectors with f(λ) = g′(λ).

For any vector, A⃗, we have

(U · ∇)Aµ = Uσ(∂σA
µ + ΓµσκA

κ) =
dAµ

dλ
+ ΓµσκU

σAκ = f(λ)Aµ, (6.5.51)

so, in particular, if a tangent vector is parallel transported along its integral curves, then

dUµ

dλ
+ ΓµσκU

σUκ =
d2ξµ

dλ2
+ Γµσκ

dξσ

dλ

dξκ

dλ
= f(λ)

dξµ

dλ
(6.5.52)
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gives a very special second order equation for the integral curves. In the next chapter
we will see that this is the geodesic equation (geodesics are paths of shortest distance
between points) when g(λ) = ln(ds/dλ), where s represents the proper distance. For
example, if we identify λ with the proper distance, s, itself,15 then f(λ) = 0. In the LLF,
where the connections vanish, we would find simply that

d2xa

ds2
= 0, (6.5.53)

This will be recognized as the equation of a “straight line” in flat space. We can now give
a more general meaning to the notion of “straight”: a “straight path” is one along which
its tangent vector is parallel transported.

6.5.4 The Divergence and Laplacian

Consider divergence of a vector, which can be defined as

∇µAµ = ∂µA
µ + ΓµµλA

λ (6.5.54)

But

Γµµκ =
1

2
gµρ[∂κgρµ + ∂µgρκ − ∂ρgµκ] (6.5.55)

and interchanging (µρ) in the middle term shows that it cancels the last, so

Γµµκ =
1

2
gµρ∂κgρµ (6.5.56)

This expression may be further simplified: let g be the determinant of gµν , then

ln g = tr ln ĝ → δ ln g =
δg

g
= trĝ−1δĝ = gµρδgµρ (6.5.57)

and therefore
1

g
∂κg = gµρ∂κgµρ, Γµµκ = ∂κ ln

√
−g, (6.5.58)

which gives

∇µAµ = ∂µA
µ + ∂κ ln

√
−gAκ =

1√
−g

∂κ
√
−gAκ (6.5.59)

A similar result holds for any antisymmetric tensor (only!), Aµν ,

∇µAµν =
1√
−g

∂µ(
√
−gAµν) (6.5.60)

15More generally, if s is a linear function of λ; such parameters are called “affine”.



190 CHAPTER 6. MORE GENERAL COORDINATE SYSTEMS

and this can be shown in the same way as the previous result.16 These formulas can be
quite useful while computing divergences.

Another important operation on vectors and tensors in physics is the Laplacian. It
is an invariant under coordinate transformations, being defined in an arbitrary system of
coordinates as □x = ∇µ∇µ. Because it involves the covariant derivative its action will
depend on whether it operates on a scalar, a vector or a tensor. Consider its operation on
a scalar function, ϕ (remember that ∇µϕ = ∂µϕ is a vector)

□xϕ = ∇µ∇µϕ = ∂µ∇µϕ+ Γµµκ∇κϕ = ∂µg
µν∂νϕ+ Γµµκg

κν∂νϕ (6.5.61)

where we have used the fact that the covariant derivative operating on a scalar function
is just the partial derivative. Inserting (6.5.58) above shows that

□xϕ = ∂µ(g
µν∂νϕ) + gµν(∂µ ln

√
−g)∂νϕ =

1√
−g

∂µ
√
−ggµν∂νϕ (6.5.62)

This is a very compact formula. Life is not so easy if the Laplacian, □x, operates on a
vector (worse, on a tensor), instead of a scalar. Then we have

□xA
µ = ∇ν∇νAµ = gνκ∇ν∇κAµ = gνκ[∂ν∇κAµ − Γλνκ∇λAµ + Γµνλ∇κA

λ]

= gνκ[∂ν(∂κA
µ + ΓµκλA

λ)− Γλνκ(∂λA
µ + ΓµλγA

γ)

+ Γµνλ(∂κA
λ + ΓλκγA

γ)] (6.5.63)

which is certainly more complicated. Let’s see how this works through some common
examples. Only the results will be given, the details are left to the reader.

6.6 Flatland Examples

6.6.1 Orthogonal Coordinates

A coordinate system, ξµ(x) is considered to be “orthogonal” if all of the coordinate sur-
faces, defined by ξµ =const., intersect at right angles. Cartesian coordinates, for example,
form an orthogonal system. Mathematically, orthogonal systems are simpler to work with.
For example, differential equations of interest in physics often can be solved by the method
of separation of variables if the coordinate system respecting the symmetries of the phys-
ical system is orthogonal. In the following examples we will only consider coordinate
transformations that do not involve time, i.e., we consider transformations of the form

16Problem: Prove it.
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t→ t′ = t and ξi = ξi(x⃗) and suppose that the ξi(x⃗) are all invertible; for a complete set
of Cartesian basis vectors, u⃗(a), take

u⃗(t) = (1, 0, 0, 0), u⃗(x) = (0, 1, 0, 0), u⃗(y) = (0, 0, 1, 0), u⃗(z) = (0, 0, 0, 1), (6.6.1)

then the vierbein is

e⃗t = (
∂t

∂t
,
∂x

∂t
,
∂y

∂t
,
∂z

∂t
) = (1, 0, 0, 0)

e⃗i = (0,
∂x

∂ξi
,
∂y

∂ξi
,
∂z

∂ξi
) (6.6.2)

and orthogonality is defined by e⃗i ·e⃗j = h2i (ξ)δij . They serve as a complete set of coordinate
basis vectors, u⃗(µ) = e⃗µ. Alternatively, in terms of the inverse vierbein

E⃗t = (
∂t

∂t
,
∂t

∂x
,
∂t

∂y
,
∂t

∂z
) = (1, 0, 0, 0)

E⃗i = (0,
∂ξi

∂x
,
∂ξi

∂y
,
∂ξi

∂z
), (6.6.3)

the orthogonality condition will take the form E⃗i · E⃗j = h−2
i (ξ)δij . They serve as the dual

coordinate basis vectors, θ⃗(µ) = E⃗µ. The metric tensor is therefore diagonal

gµν =


−c2 0 0 0
0 h21 0 0
0 0 h22 0
0 0 0 h23

 (6.6.4)

and the distance function is given explicitly by

ds2 = c2dt2 − gijdξidξj = c2dt2 − (hidξ
i)2. (6.6.5)

Notice that it has no off-diagonal components. The functions hi(ξ) are called “scaling”
functions and they can be used directly to compute various differential operators once the
Christoffel symbols are determined from Γµνκ = (∂ν e⃗κ) · E⃗µ or

Γijk =
∂2xa

∂ξj∂ξk
∂ξi

∂xa
. (6.6.6)

(It should be clear that only the spatial components of the Christoffel symbols will be
non-vanishing because we have chosen a static (time-independent) frame and because the
time-time component of the metric is constant.) Let’s look at some common examples of
such coordinate systems.
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Figure 6.1: Spherical coordinates

Spherical Coordinates

Take the following coordinate functions: ξµ = (t, r, θ, ϕ) where

t = t
r =

√
x2 + y2 + z2

θ = cos−1

(
z√

x2 + y2 + z2

)
φ = tan−1

(y
x

)
(6.6.7)

and the inverse transformations: xa = xa(ξ)

t = t
x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ (6.6.8)

Let’s compute the vierbein

e⃗t = (
∂t

∂t
,
∂x

∂t
,
∂y

∂t
,
∂z

∂t
) = (1, 0, 0, 0) = t̂

e⃗r = (
∂t

∂r
,
∂x

∂r
,
∂y

∂r
,
∂z

∂r
) = (0, sin θ cosφ, sin θ sinφ, cos θ) = r̂
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e⃗θ = (
∂t

∂θ
,
∂x

∂θ
,
∂y

∂θ
,
∂z

∂θ
) = r(0, cos θ cosφ, cos θ sinφ,− sin θ) = r θ̂

e⃗φ = (
∂t

∂φ
,
∂x

∂φ
,
∂y

∂φ
,
∂z

∂φ
) = r(0,− sin θ sinφ, sin θ cosφ, 0) = r sin θ φ̂ (6.6.9)

and its inverse

E⃗t = (
∂t

∂t
,
∂t

∂x
,
∂t

∂y
,
∂t

∂z
) = (1, 0, 0, 0) = t̂

E⃗r = (
∂r

∂t
,
∂r

∂x
,
∂r

∂y
,
∂r

∂z
) = (0, sin θ cosφ, sin θ sinφ, cos θ) = r̂

E⃗θ = (
∂θ

∂t
,
∂θ

∂x
,
∂θ

∂y
,
∂θ

∂z
) =

1

r
(0, cos θ cosφ, cos θ sinφ,− sin θ) =

θ̂

r

E⃗φ = (
∂φ

∂t
,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
) =

1

r
(0,− sin θ sinφ, sin θ cosφ, 0) =

φ̂

r sin θ
(6.6.10)

It is easy to check that e⃗µ · E⃗ν = δνµ and that eaµE
µ
b = δab . Now compute the inner products

to get the metric function: gtt = −1, grr = 1, gθθ = r2 and gφφ = r2 sin2 θ (all other
components vanish). In matrix notation,

gµν =


−c2 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (6.6.11)

and the distance function is given explicitly by,

ds2 = c2dt2 − (dr2 + r2dθ2 + r2 sin2 θdφ2) (6.6.12)

Next compute the connections using either Γµνκ = (∂ν e⃗κ) · E⃗µ or (6.5.22) to get the non-
vanishing components

Γrθθ = −r, Γrφφ = −r sin2 θ

Γθrθ = Γθθr =
1

r
, Γφrφ = Γφφr =

1

r

Γθφφ = − sin θ cos θ, Γφφθ = Γφθφ = cot θ (6.6.13)

(all others vanish).17

17Problem: Show that the metric of the three dimensional line element:

ds2 = dr2 + r2(dθ2 + sin2 θdφ2)

admits three independent Killing vectors.
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Care must be taken in translating the results from working in the basis {e⃗µ} (or {E⃗µ})
and the basis {t̂, r̂, θ̂, φ̂} usually found in the literature. For example, the gradient of a
scalar function, f has components ∂µf in the basis given by {E⃗µ}. Therefore, written in
terms of the usual basis, this becomes

(∂µf)E⃗
µ = (∂tf)t̂+ (∂rf)r̂ +

1

r
(∂θf)θ̂ +

1

r sin θ
(∂φf)φ̂ (6.6.14)

Likewise, the divergence of a vector U = Uµe⃗µ is given as

∇ · U =
1√
−g

∂µ
√
−g Uµ = ∂tU

t +
1

r2
∂r(r

2U r) +
1

sin θ
∂θ(sin θU

θ) + ∂φU
φ. (6.6.15)

However, if we are given the vector U in the basis {t̂, r̂, θ̂, φ̂} as

U = utt̂+ urr̂ + uθθ̂ + uφφ̂ (6.6.16)

then

U t = ut, U r = ur, U θ =
uθ

r
, Uφ =

uφ

r sin θ
(6.6.17)

and

∇ · U = ∂tu
t +

1

r2
∂r(r

2ur) +
1

r sin θ
∂θ(sin θu

θ) +
1

r sin θ
∂φu

φ (6.6.18)

which is the standard expression found in the literature. Henceforth we will take for
granted that our components are always given in the vierbein basis.

What is the action of of the Laplacian, □x, on a scalar function? Directly applying
the expression in (6.5.62) we find

□xϕ =
1√
−g

∂µ(
√
−ggµν∂νϕ) = −

1

c2
∂2t ϕ+

1

r2
∂r(r

2∂rϕ)+
1

r2 sin θ
∂θ(sin θ∂θϕ)+

1

r2 sin2 θ
∂2φϕ

(6.6.19)
the spatial part of which will be recognized as the standard result from ordinary vector
analysis. Its action on vectors is quite a bit more complicated but can be written out,

□xA
0 =

[
− 1

c2
∂2tA

0 +
1

r2
∂r(r

2∂rA
0) +

1

r2 sin θ
∂θ(sin θ∂θA

0) +
1

r2 sin2 θ
∂2φA

0

]
□xA

r =

[
− 1

c2
∂2tA

r +
1

r2
∂r(r

2∂rA
r) +

1

r2 sin θ
∂θ(sin θ∂θA

r) +
1

r2 sin2 θ
∂2φA

r

− 2

r2
(Ar + r cot θAθ + r∂θA

θ + r∂φA
φ)

]
□xA

θ =

[
− 1

c2
∂2tA

θ +
1

r4
∂r(r

4∂rA
θ) +

1

r2 sin θ
∂θ(sin θ∂θA

θ) +
1

r2 sin2 θ
∂2φA

θ
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Figure 6.2: Cylindrical coordinates

+
2

r3
(∂θA

r − 1

2
r cos 2θAθ − r cot θ∂ϕAφ)

]
□xA

φ =

[
− 1

c2
∂2tA

φ +
1

r4
∂r(r

4∂rA
φ) +

1

r2 sin3 θ
∂θ(sin

3 θ∂θA
φ) +

1

r2 sin2 θ
∂2φA

φ

+
2

r3 sin3 θ
(sin θ∂φA

r + r cos θ∂φA
θ)

]
(6.6.20)

We see that the Laplacian acts on the time component, A0, of Aµ, just exactly as it does
on a scalar. This is because the coordinate transformation was purely spatial. On the
other hand, its action on the space components mixes them.

Cylindrical coordinates

Take the following coordinate functions: ξµ = (t, ρ, φ, z) where

t = t
ρ =

√
x2 + y2

φ = tan−1
(y
x

)
z = z (6.6.21)

and the inverse transformations: xa = xa(ξ)

t = t
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x = ρ cosφ
y = ρ sinφ
z = z (6.6.22)

Let’s compute the vierbein

e⃗t = (
∂t

∂t
,
∂x

∂t
,
∂y

∂t
,
∂z

∂t
) = (1, 0, 0, 0)

e⃗ρ = (
∂t

∂ρ
,
∂x

∂ρ
,
∂y

∂ρ
,
∂z

∂ρ
) = (0, cosφ, sinφ, 0)

e⃗φ = (
∂t

∂φ
,
∂x

∂φ
,
∂y

∂φ
,
∂z

∂φ
) = ρ(0,− sinφ, cosφ, 0)

e⃗z = (
∂t

∂z
,
∂x

∂z
,
∂y

∂z
,
∂z

∂z
) = (0, 0, 0, 1) (6.6.23)

and its inverse

E⃗t = (
∂t

∂t
,
∂t

∂x
,
∂t

∂y
,
∂t

∂z
) = (1, 0, 0, 0)

E⃗ρ = (
∂ρ

∂t
,
∂ρ

∂x
,
∂ρ

∂y
,
∂ρ

∂z
) = (0, cosφ, sinφ, 0)

E⃗φ = (
∂φ

∂t
,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
) =

1

ρ
(0,− sinφ, cosφ, 0)

E⃗z = (
∂z

∂t
,
∂z

∂x
,
∂z

∂y
,
∂z

∂z
) = (0, 0, 0, 1) (6.6.24)

Again, it’s easy to check that e⃗µ · E⃗ν = δνµ and that eaµE
µ
b = δab . Now compute the inner

products to get the metric function: gtt = −1, gρρ = 1, gφφ = ρ2 and gzz = 1 (all other
components vanish). In matrix notation,

gµν =


−c2 0 0 0
0 1 0 0
0 0 ρ2 0
0 0 0 1

 (6.6.25)

and the distance function is given explicitly by,

ds2 = c2dt2 − (dρ2 + ρ2dφ2 + dz2) (6.6.26)

The non-vanishing components of the connections, obtained by using either Γµνκ = (∂ν e⃗κ) ·
E⃗µ or (6.5.22) are just

Γρφφ = −ρ,
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Γφρφ = Γφφρ =
1

ρ
(6.6.27)

(all others vanish)18, while the action of the Laplacian, □x, on a scalar function is

□xϕ =
1√
−g

∂µ(
√
−ggµν∂νϕ) = −

1

c2
∂2t ϕ+

1

ρ
∂ρ(ρ∂ρϕ) +

1

ρ2
∂2φϕ+ ∂2zϕ (6.6.28)

the spatial part of which being, as before, the standard result from ordinary vector analysis.
Its action on vectors can be written out and we leave this as a straightforward exercise.19

6.6.2 Rindler Coordinates

The formalism we developed applies just as well when the transformations mix the space
and time coordinates. As an example, consider the two dimensional Rindler space of the
previous chapter. The coordinate functions we take will be ξµ = (η, ξ) where

η =
c

a
tanh−1 ct

x

ξ =
c2

2a
ln

[
a2

c4
(x2 − c2t2)

]
(6.6.29)

and the inverse transformations: xa = xa(ξ)

t =
c

a
eaξ/c

2
sinh

aη

c

x =
c2

a
eaξ/c

2
cosh

aη

c
(6.6.30)

Let’s compute the vierbein20

e⃗η = (
∂t

∂η
,
∂x

∂η
) = eaξ/c

2
(cosh

aη

c
, c sinh

aη

c
)

e⃗ξ = (
∂t

∂ξ
,
∂x

∂ξ
) = eaξ/c

2
(
1

c
sinh

aη

c
, cosh

aη

c
) (6.6.31)

and its inverse

E⃗η = (
∂η

∂t
,
∂η

∂x
) = e−aξ/c

2
(cosh

aη

c
,−1

c
sinh

aη

c
)

18Problem: How many Killing vectors does the three dimensional cylindrical metric admit? Determine
them.

19Problem: Write out □xA
µ for each component of Aµ in cylindrical coordinates.

20Problem: Is the Rindler system orthogonal?
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E⃗ξ = (
∂ξ

∂t
,
∂ξ

∂x
) = e−aξ/c

2
(−c sinh aη

c
, cosh

aη

c
) (6.6.32)

Again, it’s easy to check that e⃗µ · E⃗ν = δνµ and that eaµE
µ
b = δab . Now compute the inner

products to get the metric function: gtt = −c2e2aξ/c
2
, gξξ = e2aξ/c

2
, (all other components

vanish). In matrix notation,

gµν =

[
−c2e2aξ/c2 0

0 e2aξ/c
2

]
(6.6.33)

and the distance function is given explicitly by,21

ds2 = e2aξ/c
2
(c2dη2 − dξ2) (6.6.34)

The non-vanishing components of the connections are obtained by using either Γµνκ =
(∂ν e⃗κ) · E⃗µ or (6.5.22),

Γηηξ =
a

c2
,

Γξηη = a

Γξξξ =
a

c2
(6.6.35)

(all others vanish), while the action of the Laplacian, □x, on a scalar function is22

□xϕ = −e
−2aξ/c2

c2
(∂2ηφ− c2∂2ξφ) (6.6.36)

6.7 Integration

We have spent much time discussing differentiation. Let us now summarize some important
aspects of integration. We will focus on defining volume integrations, integrations over
hypersurfaces and general forms of the integral theorems.

6.7.1 The Levi-Civita tensor

It is useful to develop a generalization of the Levi-Civita tensor (density), which is adapted
to general coordinates in four dimensions. To do so, we will make use of the permutation

21Problem: Determine the single Killing vector of the Rindler metric.
22Problem: Write out □xA

µ for each component of Aµ in Rindler coordinates.
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symbol in (1.3.50) and recall that this is the object one uses in the definition of the

determinant, M , of a four dimensional matrix, M̂ ,

M = [αβµν]Mα0Mβ1Mµ2Mν3 (6.7.1)

The permutation symbol, by itself, is only a tensor if the coordinate system employed is
Cartesian. In a general coordinate system,

ϵαβµν =
√
−g [αβµν] (6.7.2)

is what transforms as a tensor called the Levi-Civita tensor. The proof goes as follows:
the quantity

[αβµν]
∂ξα

∂ξ′γ
∂ξβ

∂ξ′δ
∂ξµ

∂ξ′λ
∂ξν

∂ξ′σ
(6.7.3)

is completely antisymmetric in {γ, δ, λ, σ}, so it must be proportional to [γδλσ]. We say
that

[αβµν]
∂ξα

∂ξ′γ
∂ξβ

∂ξ′δ
∂ξµ

∂ξ′λ
∂ξν

∂ξ′σ
= λ(ξ) [γδλσ], (6.7.4)

where the proportionality factor, λ, could depend on ξ. Take [γδλσ] = [0123], then

[αβµν]
∂ξα

∂ξ′0
∂ξβ

∂ξ′1
∂ξµ

∂ξ′2
∂ξν

∂ξ′3
= λ =

∥∥∥∥ ∂ξ∂ξ′
∥∥∥∥ (6.7.5)

Now if xa represents a Cartesian system, in terms of which the coordinates ξµ and ξ′µ are
defined via invertible functions ξµ = ξµ(x) and ξ′µ = ξ′µ(x), the last determinant can be
written as ∥∥∥∥ ∂ξ∂ξ′

∥∥∥∥ =

∥∥∥∥∂ξ∂x ∂x∂ξ′
∥∥∥∥ =

∥∥∥∥∂ξ∂x
∥∥∥∥∥∥∥∥ ∂x∂ξ′

∥∥∥∥ . (6.7.6)

Notice that under the coordinate transformation that took xa → ξµ, the metric also
underwent a transformation

ηab → gµν = ηab
∂xa

∂ξµ
∂xa

∂ξµ
= ηabe

a
µe
b
µ (6.7.7)

It follows, upon taking determinants, that

g = −c2
∥∥∥∥∂x∂ξ

∥∥∥∥2 (6.7.8)

where we have used the fact that the determinant of the Lorentz metric is just −c2. It
follows that ∥∥∥∥∂x∂ξ

∥∥∥∥ =
1

c

√
−g (6.7.9)
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and from here we find

λ =

√
g′

g
. (6.7.10)

Therefore we see that ϵαβµν of (6.7.2) transforms as a (0, 4) tensor,

√
−g [αβµν]

∂ξα

∂ξ′γ
∂ξβ

∂ξ′δ
∂ξµ

∂ξ′λ
∂ξν

∂ξ′σ
=
√
−g′ [γδλσ]. (6.7.11)

It is straightforward now to argue in the same way that

ϵαβµν =
1√
−g

[αβµν] (6.7.12)

transforms as a (4, 0) tensor.23 Any object that can be written as

T = (−g)∆/2 T, (6.7.13)

where T is a rank (m,n) tensor, is called a tensor density of weight ∆. Hence, the
permutation symbol is revealed either as a covariant tensor density of weight −1 or a
contravariant tensor density of weight +1.

6.7.2 The four dimensional Volume element

The invariant volume integral is always written as∫
dV =

1

c

∫
(ϵabcde

a
1e
b
2e
c
3e
d
4)dξ

1dξ2dξ3dξ4 =
1

c

∫
d4ξ
√
−g (6.7.14)

To see that it is indeed invariant under coordinate transformations, let ξ → ξ′ and use
(6.7.10) to find

d4ξ = d4ξ′
∥∥∥∥ ∂ξ∂ξ′

∥∥∥∥ = d4ξ′

√
g′

g
, (6.7.15)

that is,

d4ξ
√
−g = d4ξ′

√
−g′. (6.7.16)

Simple examples are (i) spherical coordinates, in which

1

c

∫
d4ξ
√
−g =

∫
dt

∫
dr r2

∫ π

0
dθ sin θ

∫ 2π

0
dφ, (6.7.17)

23Problem: Follow the same proof to obtain this result.
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(ii) cylindrical coordinates:

1

c

∫
d4ξ
√
−g =

∫
dt

∫
dz

∫
dρ ρ2

∫ 2π

0
dφ (6.7.18)

and (iii) the Rindler frame,

1

c

∫
d2ξ
√
−g =

∫
dη

∫
dξ eaξ/c

2
. (6.7.19)

However, (6.7.14) has general applicability.

6.7.3 Three dimensional Hypersurfaces

Any hypersurface, Σ, of dimension one less than then dimension of space-time, (called a
hypersurface of codimension one) can be specified by a constraint of the form

Φ(ξ) = constant (6.7.20)

The normal to this hypersurface is given by the vector nµ ∼ ∂µΦ.

Spacelike or Timelike hypersurfaces

If nµ is not null, we will take it to be the unit normal, i.e., we let

nµ = ϵN∂µΦ, nµnµ = ϵ (6.7.21)

where N > 0 is a normalization and ϵ = ±1 is positive if the normal is spacelike and
negative if it is time-like. The unit normal has been defined so that n · ∂Φ > 0, i.e., nµ
always points in the direction of increasing Φ. Hypersurfaces with time-like normals will
be called spacelike and, vice-versa, hypersurfaces with spacelike normals will be called
time-like. Null surfaces are more subtle because ϵ vanishes. Confining our attention, for
the present, to hypersurfaces that are either spacelike or time-like, the normalization, N ,
will be given by

N−2 = ϵgµν∂µΦ∂νΦ, ϵ = ±1 (6.7.22)

and
hµν = gµν − ϵ nµnν (6.7.23)

projects any vector onto the hypsersurface because the component perpendicular to it is
annihilated by hµν . In principle, the constraint Φ(ξ) = const. could be solved (as we have
done in many examples before) by introducing parametric equations of the form

ξµ = ξµ(ya) (6.7.24)
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where ya are coordinates “on” (intrinsic to) the hypersurface.24 Consider, then, a trans-
formation from the original coordinates, ξµ, to {Φ, ya} (although Φ is placed in the first
slot here, we do not imply that Φ is a time-like coordinate, merely that we are singling
it out as being the coordinate orthogonal to our hypersurface). In the new coordinate
system,

n′Φ = ∂Φξ
αnα = ϵN

∂ξα

∂Φ

∂Φ

∂ξα
= ϵN

n′a = ∂aξ
αnα = ϵN

∂ξα

∂ya
∂Φ

∂ξα
= 0 (6.7.25)

where we have used the usual transformation properties of covariant vectors. Define
Qaα = ∂αy

a and qαa = ∂aξ
α, then Qaαq

α
b = δab is the completeness relation. The second

equation in (6.7.25) shows that qαanα = 0, so q⃗(a) = qαa u⃗(α) is a coordinate basis in Σ and

Q⃗(a) = Qaαθ⃗
(α) will be its dual basis. The distance between two points in Σ is

ds2Σ = −gµνdξµdξν = −gµνqµa qνb dyadyb
def
= −γabdyadyb. (6.7.26)

γab = gµνq
µ
a qνb = hµνq

µ
a qνb is called the induced metric on Σ. An explicit form for the

metric gµν in the system {Φ, ya} may be given as follows: under the coordinate transfor-
mation from ξµ → {Φ, ya}, the contravariant components of the metric transform as

g′ΦΦ = gµν∂µΦ∂νΦ =
ϵ

N2

g′Φa = gµν∂µΦ∂νy
a =

ϵ

N
n · ∂ya def

=
Na

N2

g′ab = gµν∂µy
a∂νy

b def
= Σab. (6.7.27)

In doing so we have introduced three new functions, viz., Na = ϵNnµQaµ in the second

line above; the metric has been decomposed into the six independent components of Σab,
the normalization function N and the three functions Na. In matrix form we may write

g′αβ =

 ϵ
N2

Nb

N2

Na

N2 Σab

 . (6.7.28)

Take the covariant components of the metric to be of the form

g′αβ =

 A Bb

Ba γab

 (6.7.29)

24Consider the sphere in three dimensions, defined by the constraint
∑

i x
2
i = r2 and parametrize it in

the usual way: x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ. The “latitude”, θ, and “longitude”, φ,
are intrinsic coordinates on the sphere.
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(its spatial components follow from the definition of the induced metric) and require that
g′αβg′βγ = δαγ . We find the conditions,

ϵA+N bBb = N2

ϵBc +Nc = 0
NaA+N2ΣabBb = 0
NaBc +N2Σabγbc = N2δac (6.7.30)

where we define Na = γabN
b. By the second equation, Ba = −ϵNa and therefore, by the

first, A = ϵN2 +N bNb. The last equation then yields

Σab = γab + ϵ
NaN b

N2
(6.7.31)

where γab is the inverse of the induced metric, defined in the usual way as γabγbc = δac .
Returning to (6.7.27),

Σab = gµνQaµQ
b
ν = γab + ϵ

NaN b

N2
⇒ γab = hµνQaµQ

b
ν (6.7.32)

gives a compact form for γab.

We define the directed hypersurface integration measure to be∫
dΣµ =

∫
ϵµαβγq

α
1 q

β
2 q

γ
3dy

1dy2dy3. (6.7.33)

The quantity χµ = ϵµαβγq
α
1 q

β
2 q

γ
3 must be proportional to nµ, because q

µ
b χµ = 0 by the

antisymmetry of the Levi-Civita tensor. Therefore, we set χµ = λnµ, which means that

ϵλ = χµn
µ =
√
−g[µαβγ]nµqα1 q

β
2 q

γ
3 . (6.7.34)

The inner product is simplest to evaluate in the {Φ, ya} system; here qα1 = δα1 etc., and
we find

ϵλ =
√
−gnΦ =

√
−ggΦΦϵN =

1

N

√
−g =

√
|γ|, (6.7.35)

from which it follows that ∫
dΣµ = ϵ

∫
d3y
√
|γ| nµ. (6.7.36)

The metric γab will be of indefinite signature if the hypersurface is time-like and of Eu-
clidean signature if the hypersurface is spacelike; that is why we have introduced the
absolute value of the determinant under the square root.
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Null Hypersurfaces

While one cannot define a unit normal for a null hypersurface, nµ = −Φ,µ is in fact the
normal vector. Because it is null, the vector is orthogonal to itself and also tangent to
the null hypersurface. First, let us show that nµ is parallel transported along its integral
curves on the hypersurface. Let λ represent the parameter along the integral curves of nµ,
i.e., ∂ξµ/∂λ = nµ and consider

Dnµ
Dλ

= (n · ∇)nµ. (6.7.37)

However,

(n · ∇)nµ = −nλΦ,µ;λ = −nλΦ,λ;µ = −nλ∇µnλ = −1

2
∇µn2 (6.7.38)

(assuming a torsion free connection). But, because n2 = 0 on the surface, we could set
n2 = −2κ(ξ)Φ(ξ) (assuming Φ(ξ) = 0 descibes the constraint surface) for some scalar
function, κ. Then (n · ∇)nµ must be proportional to nµ,

(n · ∇)nµ = κnµ (6.7.39)

on Φ(ξ) = 0. Thus nµ is parallel transported along its integral curves on the constraint
surface,

Dnµ
Dλ

= (n · ∇)nµ = κnµ. (6.7.40)

The parameter λ is not affine in general, if it is then κ(ξ) = 0. A convenient choice
of coordinates on the null hypersurface is to pick one of them, say y1, to be λ and the
remaining two to span the space transverse to nµ. In that case, qµ1 = ∂ξµ/∂λ = nµ. In
follows that γ11 = 0 = γ1A, A ∈ {2, 3}. The first is because nµ is null, the second because
γ1A = gµνn

µ(∂ξν/∂yA) and ∂ξν/∂yA is orthogonal to nµ. The induced metric,

ds2Σ = σABdy
AdyB, (6.7.41)

where

σAB = gµν

(
∂ξµ

∂yA

)(
∂ξν

∂yB

)
, (6.7.42)

is therefore two dimensional.25

As before, we define the directed hypersurface volume element by

dΣµ = ϵµναβq
ν
1q
α
2 q

β
3 (6.7.43)

25To project onto the hypersurface, one must introduce an auxilliary null vector field, nµ, such that
n · k = −1. This choice is not unique, but with its help we can define

hµν = gµν + nµkν + kµnν ,

which clearly projects transverse to both k and n, so it is a two dimensional projector, hα
α = 2.
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and evaluate it explicitly in the coordinate system {Φ, λ, y1, y2}. In this coordinate system,

g′ΦΦ = gµν∂µΦ∂νΦ = 0

g′Φλ = gµν∂µΦ∂νλ = −n · ∂λ = −1

g′ΦA = gµν∂µΦ∂νy
A = −n · ∂yA = 0

g′λλ = gµν∂µλ∂νλ
def
= Nλ

g′λA = gµν∂µλ∂νy
A def

= NA

g′AB = gµν∂µy
A∂νy

B def
= ΣAB. (6.7.44)

that is,

g′αβ =

 0 −1 0
−1 Nλ NB

0 NA ΣAB

 (6.7.45)

and it follows that the non-vanishing components of the normal in this system are

nΦ = −1, nλ = 1. (6.7.46)

Making the same arguments as before we write

fnµ = ϵµναβn
νqα1 q

β
2 (6.7.47)

but, because nµ is null, we cannot find f as we did before. Instead, introduce an auxilliary
null vector kµ, such that n · k = −1. Then

f = −ϵµναβkµnνqα1 q
β
2 = −

√
−g[µναβ]kµnνqα1 q

β
2 (6.7.48)

In our preferred coordinates, a suitable choice for the auxilliary vector would be to take the
only non-vanishing components of k to be kλ = −1. We see that f =

√
−g. From (6.7.45),

then −g = σ, where σAB is the induced metric on the null hypersurface. Therefore, we
have ∫

dΣµ =

∫
Σ
dλd2y

√
σnµ, (6.7.49)

which is similar to (6.7.36).
A simple example should serve to illustrate the above constructions. Consider the

following constraints surface on four dimensional Minkowski space,

Φ(t, x) = c2t2 −
∑
i

xi
2
=

{
−a2
+a2

(6.7.50)
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If a ̸= 0, the normal to the hypersurface described by this constraint is evidently

nµ = ϵN∂µΦ =
ϵ

|a|
(c2t,−x1,−x2,−x3) (6.7.51)

which is spacelike in the first case and timelike in the second. Let us consider the timelike
hypersurface, given by

Φ(t, x) = c2t2 −
∑
i

xi
2
= −a2 (6.7.52)

and choose, of many possible parametrizations, the following:

ct = a sinh cη/a, x⃗ = a cosh cη/a(sin θ cosφ, sin θ sinφ, cos θ), (6.7.53)

so that the hypersurface coordinates are {η, θ, φ}. Then

qµa =



cosh(cη/a) 0 0

c sinh(cη/a) sin θ cosφ a cosh(cη/a) cos θ cosφ −a cosh(cη/a) sin θ sinφ

c sinh(cη/a) sin θ sinφ a cosh(cη/a) cos θ sinφ a cosh(cη/a) sin θ cosφ

c sinh(cη/a) cos θ −a cosh(cη/a) sin θ 0


(6.7.54)

and we find the induced metric on the three dimensional hypersurface,

γab = ηµνq
µ
aq
µ
b =

−c2 0 0
0 a2 cosh2(cη/a) 0
0 0 a2 cosh2(cη/a) sin2 θ

 (6.7.55)

The hypersurface line element,

ds2Σ = c2dη2 − cosh2(cη/a)dΩ2 (6.7.56)

represents a three dimensional maximally symmetric space called “de Sitter space”, in
global (isotropic) coordinates. An alternative parametrization of the same constraint:

ct =
√
a2 − r2 sinh η/a, x1 =

√
a2 − r2 cosh η/a, x2 = r sin θ, x3 = r cos θ (6.7.57)

(r < a) uses the hypersurface coordinates {η, r, θ} and gives the line element

ds2Σ = c2
(
1− r2

a2

)
dη2 −

(
1− r2

a2

)−1

dr2 − r2dθ2, (6.7.58)

which is also de Sitter space, this time in static coordinates.
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If a = 0, we have a null surface. In this case, nµ = (−c2t, x1, x2, x3) is orthogonal to
the surface but cannot be normalized. Note that

∂xµ

∂λ
= nµ ⇒ t =

f(yA)

c
eλ, (6.7.59)

where f(yA) is any function of the transverse coordinates, which we may take to be a
constant (say a). This suggests the following global parametrization of the constraint:

t =
a

c
eλ, x⃗ = aeλ(sin θ cosφ, sin θ sinφ, cos θ), (6.7.60)

and gives

qµa = aeλ


1
c 0 0

sin θ sinφ cos θ cosφ − sin θ sinφ
sin θ sinφ cos θ sinφ sin θ cosφ

cos θ − sin θ 0

 , (6.7.61)

whence

σAB = ηµνq
µ
Aq

ν
B = a2e2λ

(
1 0
0 sin2 θ

)
. (6.7.62)

Other parametrizations are possible.26

6.7.4 Gauss’ Theorem

We may now state Gauss’ theorem.

• Let M be any region of space-time bounded by a closed hypersurface ∂M ; then for
any differentiable vector field V α defined in M ,∫

M
d4x
√
−gV α

;α =

∮
∂M

dΣαV
α (6.7.63)

where nα is the outward normal to the boundary, ∂M of M .

26Problem: For example, take

t =
a

c
eλ, x⃗ = eλ

(√
a2 − r2, r sin θ, r cos θ

)
(r < a) and show that

σAB = e2λ
((

1− r2

a2

)−1

0

0 r2

)
i.e.,

ds2Σ = e2λ
(

dr2

1− r2

a2

+ r2dθ2
)
.
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¶M

M

F=a < 1

Figure 6.3: The volume M is foliated by closed surfaces Φ = α < 1, with Φ = 1 being the
boundary, ∂M .

To prove this theorem, let’s consider the boundary of the region M to be given by the
constraint Φ = 1. Now Φ = α defines a hypersurface, Hα, of codimension one for every
α. Suppose Φ varies from zero to one (more generally, any closed interval in R) in such a
way that the union of the set of hypersurfaces, Hα, is M , i.e.,

M =
⋃

α∈[0,1]

Hα. (6.7.64)

We say that the hypersurfacesHα “foliate” our volumeM , with Φ = 1 being the outermost
layer of the foliation and coinciding with the boundary, ∂M , of M , as shown in figure 6.3.
The coordinates on the closed hypersurface, ya, will all be compact coordinates because
the hypersurfaces Φ = α are all closed. Consider the volume integral in the coordinates
ξ := {Φ, ya},∫

M
d4ξ
√
−g V α

;α =

∫
d4ξ∂α(

√
−gV α)

=

∫ 1

0
dΦ

∮
d3y∂Φ(

√
−gV Φ) +

∫ 1

0
dΦ

∮
d3y∂a(

√
−gV a)

=

∫ 1

0
dΦ

d

dΦ

∮
d3y
√
−gV Φ

=

∮
d3y
√
−gV Φ

∣∣∣∣1
0

=

∮
∂M

d3y
√
−gV Φ

=

∮
∂M

d3yN
√
|γ|V Φ = ϵ

∮
∂M

d3y
√
|γ| nαV α

=

∮
∂M

dΣαV
α. (6.7.65)



6.7. INTEGRATION 209

The second line in the proof follows simply by applying the divergence formula of (6.5.59).
The second integral in this line is vanishing because the coordinates ya are all compact.
The rest is a straightforward application of the fundamental theorem of calculus when the
hypersurface at Φ = 0 is taken to have zero volume.

6.7.5 Two dimensional Hypersurfaces

A two dimensional surface, S, (or, more generally, a hypersurface of codimension two) can
be defined in a similar manner, by imagining it to be embedded in a three dimensional
hypersurface. As before, let S be specified by a constraint of the form Ψ(ya) = constant
and let ra ∼ ∂aΨ be the unit normal to S. The projector onto S is hab = γab − ϵ′rarb,
where ϵ′ = ∓1, depending on whether ra is timelike or spacelike. Let ya = ya(θA) solve
the constraint so that θA are coordinates intrinsic to S and define PAa = ∂aθ

A, paA = ∂Ay
a

as before. Then
σAB = habp

a
Ap

b
B (6.7.66)

will be the induced metric on S with inverse σAB = habPAa P
B
b . Now S admits two mutually

perpendicular normals, because rµ = qµa ra = qµaγabrb satisfies rµnµ = 0. We define the
integration measure in S by ∫

dSµν =
1

2
ϵϵ′
∫
S
d2θ
√
|σ| n[µrν] (6.7.67)

where σ is the determinant of the induced metric on S, and ϵ (ϵ′) are defined according to
whether nµ (rµ) are timelike or spacelike respectively. If one of them is timelike then the
other must be spacelike and ϵϵ′ = −1. However, both ϵ and ϵ′ may be spacelike, in which
case ϵϵ′ = +1.

6.7.6 Stokes’ Theorem

Stokes theorem concerns the integration of an anisymmetric tensor field on a surface of
codimension two.

• Let R be any region in a codimension one hypersurface, Σ, bounded by a closed
(codimension two) hypersurface S and let Bαβ be any antisymmetric tensor field in
Σ, then ∫

R
dΣα∇βBαβ =

∮
S
dSαβB

αβ (6.7.68)

The proof follows the same pattern as the proof of Gauss’ theorem.27 We consider the
hypersurface integral in the coordinates {Φ,Ψ, θA} and employ the expression for the

27This is to be expected as they are both particular cases of one theorem, the Gauss-Stokes theorem,
which is easiest to prove using differential forms.
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divergence of an antisymmetric tensor. We imagine, as before, that the boundary of Σ
is given by the constraint Ψ = 1 and let Ψ vary from zero to unity so that surfaces of
constant Ψ foliate the hypersurface with Ψ = 1 being the outermost layer of the foliation
and coinciding with S. The coordinates θA are all compact because S is closed. Then∫

R
dΣα∇βBαβ = ϵ

∫
d3y
√
|γ|nα

1√
|g|
∂β

(√
|g|Bαβ

)
=

∫
d3y ∂a

(√
|g|BΦa

)
=

∫
d2θ

∫ 1

0
dΨ∂Ψ

(√
|g|BΦΨ

)
+

∫ 1

0
dΨ

∫
d2θ∂A

(√
|g|BΦA

)
=

∮
d2θ

(√
|g|BΦΨ

)1
0

=

∮
S
d2θNN ′√|σ|BΦΨ =

1

2
ϵϵ′
∮
S
d2θ
√
|σ| n[µrν]Bµν

=

∫
S
dSµνB

µν (6.7.69)

where we used nΦ = ϵN , rΨ = ϵ′N ′ and took the surface with Ψ = 0 to have zero area.

6.8 Riemann Curvature

The quantity that distinguishes between “flat” and “curved” space-times is the Riemann
curvature. As in the case of gauge theories, the covariant derivative does not commute
with itself except when it acts on scalars (assuming a torsion free connection). Indeed, if
we consider the action of its commutator on a vector we find an expression of the form

[∇µ,∇ν ]Aα = RαβµνA
β (6.8.1)

where (using commas for partial derivatives)

Rαβµν
def
= Γαβν,µ − Γαβµ,ν + ΓηβνΓ

α
ηµ − ΓηβµΓ

α
ην (6.8.2)

is called the Riemann or curvature tensor. It transforms as a mixed tensor of rank four
and contains second order derivatives of the metric. It can also be shown that

[∇µ,∇ν ]Aα = Rα
β
µνAβ = −RβαµνAβ (6.8.3)

and, more generally, that the action of the commutator on a general mixed tensor follows
the same pattern:

[∇µ,∇ν ]Tα1...αn
β1...βm = Rα1

σ1µνT
σ1α2...αn

β1...βm . . .−Rσ1β1µνTα1...αn
σ1β2...βm , (6.8.4)
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with one Riemann tensor appearing for each index (upper and lower) of T exactly as in
(6.8.1) and (6.8.3). Let us now see that the Riemann tensor depends only on the spin
connection and its derivatives. Consider

[∇µ,∇ν ]Aα = [∇µ,∇ν ]EαaAa = Eαa [∇µ,∇ν ]Aa (6.8.5)

where we used the fact that the vierbein (and its inverse) are covariantly conserved. Ex-
panding the last expression,

[∇µ,∇ν ]Aα = Eαa e
b
β

(
∂µω

a
νb − ∂νωaµb + ωaµcω

c
νb − ωaνcωcµb

)
Aβ (6.8.6)

where we assume a torsion free connection. Comparing this with our definition of the
Riemann tensor in (6.8.2),

Rαβµν = Eαa e
b
β

(
∂µω

a
νb − ∂νωaµb + ωaµcω

c
νb − ωaνcωcµb

)
= Eαa e

b
βR

a
bµν (6.8.7)

It follows that if a global Cartesian frame is available (ωaµb = 0) then the Riemann tensor
must vanish for, as a tensor, if it vanishes identically in one frame then it must also vanish
in every other frame.

6.8.1 Algebraic Symmetries and Bianchi Identities

The Riemann tensor possesses some algebraic symmetries that are worth taking note of
because they greatly reduce the number of independent components of this tensor. These
identities can be verified by direct computation: Rαβµν = gαηR

η
βµν :

• Rαβµν is antisymmetric in (µ, ν), i.e., Rαβ{µν} = 0,

• Rαβµν is antisymmetric in (α, β) i.e., R{αβ}µν = 0,

• Rα{βµν} = 0 and

• Rαβµν = Rµναβ .

The first of these follows from the definition of the Riemann curvature. The second is a
consequence of the metricity condition,

[∇µ,∇ν ]gαβ = 0 = Rσαµνgσβ +Rσβµνgασ. (6.8.8)

The third is a Bianchi identity, which we will derive below, and the last is not independent
but can be obtained using the first three.

The Bianchi identities for the Riemann tensor follow from the Jacobi identity

{[[∇µ,∇ν ],∇λ] + [[∇λ,∇µ],∇ν ] + [[∇ν ,∇λ],∇µ]}Tα1...αm
β1...βm = 0 (6.8.9)
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as did the Bianchi identities for the Maxwell tensor. Consider the first term when T is a
vector Aα,

[[∇µ,∇ν ],∇λ]Aα = [∇µ,∇ν ](∇λAα)−∇λ([∇µ,∇ν ]Aα)

= Rσλµν∇σAα +Rσαµν∇λAσ −∇λ(RσαµνAσ)

= +Rσλµν∇σAα −∇λ(Rσαµν)Aσ. (6.8.10)

Now add all terms in (6.8.9) and get (using semi-colons for covariant derivatives)

(Rσλµν +Rσνλµ +Rσµνλ)Aα;σ − (Rσαµν;λ +Rσαλµ;ν +Rσανλ;µ)Aσ = 0 (6.8.11)

but, since Aα is arbitrary, this is only possible if each term vanishes; the first gives just
the third of the identities listed above and the last gives a new (differential) identity

• Rσα{µν;λ} = 0.

The five bulleted identities above are worth remembering.

6.8.2 Independent Components

Let us now count the number of independent components of the Riemann tensor. The first
and second identities say that the first and second pairs of indices each satisfy n(n+1)/2
conditions (in n dimensions, 10 in four dimensions) and so, with these two conditions we
should have only [

n2 − n(n+ 1)

2

]2
=

[
n(n− 1)

2

]2
(6.8.12)

independent components. However, the antisymmetry implied by the third identity is
an additional set of n2(n − 1)(n − 2)/6 conditions and so the number of independent
components will be [

n(n− 1)

2

]2
− 1

6
n2(n− 1)(n− 2) =

1

12
n2(n2 − 1) (6.8.13)

independent components, i.e., 20 in four dimensions. This is far greater than the n(n+1)/2
independent components (10 in four dimensions) of the metric tensor which, in Einstein’s
theory, describes the gravitational field and for which we will eventually seek dynamical
equations. Therefore the full Riemann tensor cannot be required for a complete set of
equations governing the gravitational field. Instead, the following “contraction” of Rαβµν ,

Rµν = Rαµαν = Γαµν,α − Γαµα,ν + ΓηµνΓ
α
ηα − ΓηµαΓ

α
ην , (6.8.14)
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called the Ricci tensor is symmetric in its two indices (one can show this by direct
computation, using the listed properties of the Riemann tensor) and therefore has precisely
the required n(n + 1)/2 independent components. Another contraction gives the scalar
curvature or Ricci scalar,

R = gµνRµν , (6.8.15)

Both the scalar curvature and Ricci tensor will play important roles in the gravitational
field equations.

6.9 Curved Space Examples

To accustom ourselves to working with the connections and curvature tensors, let us take
a few simple examples of the non-trivial, curved space-times that we will encounter in
future chapters.

6.9.1 Homogeneous and Isotropic Metrics

If the universe is assumed to be homogeneous and isotropic, then one can show that
space-time may be described by a metric of the form

ds2 = c2dt2 − a2(t)
[
dχ2 + f2(χ)dΩ2

]
(6.9.1)

where a(t) is a function of time, dΩ is the two dimensional solid angle and

f(χ) =


sinχ χ ∈ [0, π/2)
χ χ ∈ [0,∞)

sinhχ χ ∈ [0,∞)
(6.9.2)

One should think of a(t) as a time dependent “scale factor”, whose effect is to scale the
spatial metric in a time dependent way. With f(χ) = sinχ the spatial metric itself repre-
sents a three sphere, S3, of unit radius. Likewise, with f(χ) = χ the spatial metric is that
of R3 (in spherical coordinates) and, with f(χ) = sinhχ the spatial metric is hyperbolic.
These different cases describe the “closed”, “flat” and “open” universes respectively.

The unique torsion free connection has non-vanishing components

Γtχχ =
1

c2
aȧ, Γtθθ =

1

c2
aȧf2, Γtθθ =

1

c2
aȧf2 sin2 θ

Γχtχ = Γχχt =
ȧ

a
, Γχθθ = −ff

′, Γχϕϕ = −ff ′ sin2 θ

Γθtθ = Γθθt =
ȧ

a
, Γθχθ = Γθθχ =

f ′

f
, Γθϕϕ = − sin θ cos θ

Γϕtϕ = Γϕϕt =
ȧ

a
, Γϕχϕ = Γϕϕχ =

f ′

f
, Γϕϕθ = Γϕθϕ = cot θ (6.9.3)
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The Riemann tensor, Ricci tensor and scalar curvature can be evaluated from (6.8.2),
(6.8.14) and (6.8.15) respectively; in particular the scalar curvature,

R =
1

c2f2a2
[
2c2(1− f ′2) + 6f2(ȧ2 + aä)− 4c2ff ′′

]
(6.9.4)

is non-vanishing. Even if a(t) = a (constant) we find

R =


+ 6
a2

f(χ) = sinχ
0 f(χ) = χ
− 6
a2

f(χ) = sinhχ
(6.9.5)

showing that only if f(χ) = χ is the space-time of zero curvature. This is, of course, just
Minkowski space in spherical coordinates and χ is the radial coordinate. In this case one
also finds that all components of the Riemann and Ricci tensor vanish.

An equivalent approach is via the vierbeins and spin connections. There is no unique
choice for eaµ because it depends on how we choose to define the LLF at each point. One
choice that generalizes the flat space vierbeins for spherical coordinates is

ẽaµ =


1 0 0 0
0 a(t) sin θ cosϕ a(t)f(χ) cos θ cosϕ −a(t)f(χ) sin θ sinϕ
0 a(t) sin θ sinϕ a(t)f(χ) cos θ sinϕ a(t)f(χ) sin θ cosϕ
0 a(t) cos θ −a(t)f(χ) sin θ 0

 . (6.9.6)

It is easy to see that it satisfies (6.2.9). However, a far simpler choice that also satisfies
(6.2.9) is

eaµ =


1 0 0 0
0 a(t) 0 0
0 0 a(t)f(χ) 0
0 0 0 a(t)f(χ) sin θ

 . (6.9.7)

With this choice, together with the unique torsion free connection obtained above, the
spin connection is obtained as,

ω0
r1 =

ȧ

c2
, ω0

θ2 =
1

c2
fȧ, ω0

ϕ3 =
1

c2
fȧ sin θ

ω1
r0 = ȧ, ω1

θ2 = −f ′, ω1
ϕ3 = −f ′ sin θ

ω2
θ0 = fȧ, ω2

θ1 = f ′, ω2
ϕ3 = − cos θ

ω3
ϕ0 = fȧ sin θ, ω3

ϕ1 = f ′ sin θ, ω3
ϕ2 = cos θ, (6.9.8)

using (6.5.16).28

28Problem: What rotation matrix transforms the vierbein in (6.9.6) into the one in (6.9.7)? Verify the
spin connections in (6.9.8), compute the components of Rα

βµν and show that it is identical to the Riemann
tensor obtained directly from the Christofel symbols.
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6.9.2 Static, Spherically Symmetric Metrics

The most general static, spherically symmetric metric can be written in terms of two
non-negative functions, A(r) and B(r) as

ds2 = c2A(r)dt2 −B(r)dr2 − r2dΩ2. (6.9.9)

The unique, torsion free connection associated with this metric is

Γttr = Γtrt =
A′

2A
,

Γrtt =
c2A′

2B
, Γrrr =

B′

2B
, Γrθθ = −

r

B
, Γrϕϕ = − r

B
sin2 θ

Γθrθ = Γθθr =
1

r
, Γθϕϕ = − sin θ cos θ

Γϕrϕ = Γϕϕr =
1

r
, Γϕθϕ = Γϕϕθ = cot θ (6.9.10)

from which follow the components of the Riemann tensor, the Ricci tensor and the scalar
curvature. They are non vanishing for general functions, A and B.29

The simplest vierbein that is compatible with the static, spherical metric is

eaµ =


√
A 0 0 0

0
√
B 0 0

0 0 r 0
0 0 0 r sin θ

 (6.9.11)

and, in conjunction with the Christoffel symbols, yields the following spin connection

ω0
t1 =

A′

2
√
AB

,

ω1
t0 =

c2A′

2
√
AB

, ω1
θ2 = −

1√
B
, ω1

ϕ3 = −
sin θ√
B
,

ω2
θ1 =

1√
B
, ω2

ϕ3 = − cos θ,

ω3
ϕ1 =

sin θ√
B
, ω3

ϕ2 = cos θ (6.9.12)

As always, the vierbein and spin connection provide an alternate route to the curvature
tensor and its contractions.

29Problem: Determine the components of the Riemann tensor, the Ricci tensor and the scalar curvature
of the general static, spherically symmetric space-time.



Chapter 7

The Gravitational Field

Once the principle of covariance was accepted, Einstein was faced with the following
dilemma: the equations of Newtonian gravity are not Lorentz but Galilei covariant, and
therefore imply that the gravitational force acts instantaneously at all points of space
propagating, as it were, at infinite speed. This is unacceptable in the face of special
relativity as no information is allowed to travel faster than the speed of light and it
becomes clear that gravity must be described by a Lorentz covariant field theory that
reduces, in the limit as the speed of light approaches infinity, to the Newtonian theory.

This was no easy task because gravity couples to the mass according to Newton and
according to special relativity mass is only a form of energy. Therefore in a relativistic
theory, gravity must couple not just to mass but to all forms of energy. However, as a
dynamical field, the gravitational field would carry its own energy and momentum and so
it would have to couple also to itself. Thus a relativistic theory of gravity would have to
be nonlinear. Non-linearity eliminates the possibility of superposition; as a consequence,
the field of two masses would not be the sum of the fields of the individual masses but
would be modified by the gravitational interaction between them.

7.1 The Equivalence Principle

Newton assumed, without further explanation, that the “gravitational masses”, by which
is meant the masses that appear in his force law,

F⃗ = −Gm1m2

r212
r̂12, (7.1.1)

are the the same as the “inertial masses”, by which is meant the masses that define the
momenta of the particles,

p⃗1 = m1v⃗1, p⃗2 = m2v⃗2. (7.1.2)

216
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Figure 7.1: Everything floats. Is the spaceship free or freely falling?

As a consequence,

• all particles satisfying the same initial conditions would follow the same path in a
gravitational field and this path would be independent of any characteristic property
of the particles, including the rest mass.

This is the weak equivalence principle and dates back to Galileo, whose famous ex-
periment at Pisa was meant to demonstrate it.

A consequence of the universality of the motion of particles is that, at least locally, it
should always be possible to find a reference frame that makes the effects of gravity disap-
pear. To understand this rather subtle point, Einstein proposed the following “gedanken”
(“thought”) experiment. A thought experiment is an “experiment” that is not performed
in a laboratory but in the experimenter’s mind: it consists of analyzing the consequences
of an hypothesis in an imagined, idealized experimental setup that may itself not be re-
alizable in practice, but is, in principle. Its goal is to rigorously pursue all the logical
consequences of any hypothesis. In this spirit, consider an experimentalist situated in a
closed spaceship, with no access to the universe outside. His task is to determine if he is
in a gravitational field.

Now imagine that the spaceship is floating freely in deep space, far from the gravita-
tional effects of stars and planets. In the absence of any forces, our astronaut scientist
will simply float in his spaceship and if he releases two stones of unequal mass they too
will float along with him. The “weightlessness” of all he is able to observe will convince
him that a gravitational field is absent. However, there is another possibility: he could
conclude, by the weak equivalence principle, that he is instead freely falling in an uniform,
external gravitational field. In fact he has no way of distinguishing between these two
possibilities because there is no experiment he could perform within the confines of his
spaceship that would distinguish between them.

Again, suppose that some alien power grabbed the spaceship and began dragging it
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Figure 7.2: Everything “falls”: Is the spaceship being dragged “up” or is it stationary in
an external gravitational field?

through space with a constant acceleration. Our experimentalist first finds that he is
pressed against the trailing end of the spaceship; then he releases his stones of unequal
mass and finds that they are both accelerated toward that end of the spaceship at the
same rate. He could conclude that his spaceship is being accelerated by some alien power,
but he could also conclude that he is stationary in an uniform, external gravitational
field. Again, no experiment performed inside the spaceship would be able to discriminate
between the two possibilities.

One conclusion that stands out is that in both cases our experimentalist is unable to
distinguish between the presence of an external gravitational field and some inertial effect.
Forces whose effects are the same for all bodies are well known: familiar examples are
the “fictitious” forces which depend only on the reference frame of the observer, viz., the
centripetal force and the Coriolis force. Our thought experiment therefore suggests that
gravitation must now be included in this class.

There is a subtlety, however: we have assumed that the field is uniform inside the
spaceship in which the experiment is being performed. This cannot hold in a general
external gravitational field because some degree of non-uniformity will be present in any
gravitational field due to a realistic mass distribution, owing to both its shape and the
distribution of matter within it (for example, the gravitational field due to the earth is
not constant but spherically symmetric and points toward a single point – the center
of the earth). Thus the falling objects, our experimentalist included, will follow paths
that focus at the earth’s center (see figure 7.3). Moreover, a sensitive enough experiment
would distinguish between the magnitude of the acceleration at different points within
the spaceship. The changing mangitude and direction of the acceleration at different
locations provides a way to distinguish between the presence of an external gravitational
field and kinematical acceleration through space. To overcome this difficulty, we can
imagine that the spaceship is very small, occupying, in the limit, an infinitesimal volume
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Figure 7.3: In a non-uniform field, trajectories will not generally be parallel.

in which all non-uniformity of the field can be ignored. Thus while the effects of an
external gravitational field cannot be completely eliminated or mimicked kinematically on
a large scale, it should be possible to do so locally. This leads us to a stronger form of the
equivalence principle:

• the effects of a gravitational field can be eliminated or mimicked locally by an appro-
priate choice of reference frame.

But if the effects of the gravitational field can be eliminated locally by an appropriate
choice of reference frame then we can make an even stronger statement that would agree
with the special theory of relativity. This is Einstein’s equivalence principle, or the
strong form of the equivalence principle, which may be stated as:

• it is always possible to find a reference frame in which all the laws of physics reduce
locally to those of the Special Theory of Relativity.

In this frame the motion of a free particle would be given by the usual equation

d2xa

ds2
= 0, (7.1.3)

but, because the motion of otherwise free particles in a gravitational field is also described
by a second order differential equation in which no characteristic of the particles appears,
Einstein proposed that free particle motion in a gravitational field should be interpreted as
geodesic motion. Since the trajectories are no longer “straight” world lines in the presence
of a gravitational field, he concluded that the effect of gravity is to deform the space-time
metric of special relativity.

This is a bold step if we take into account the pivotal role played by inertial frames in
the special theory of relativity and their intimate connection with the Minkowski metric
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and Cartesian frames that extend over all of space-time. By allowing deformations of
the Minkowski metric we are saying that whereas inertial can be defined locally according
to the strong form of the equivalence principle, global inertial frames do not exist. This
is very similar to the idea in Riemannian geometry that a smooth enough curved space
can always be considered “flat” in a small enough neighborhood of every point and it led
Einstein to conjecture that gravity in fact manifests itself as the curvature of space-time.
If we take this seriously, then the strong form of the equivalence principle suggests that
the gravitational field must be represented by a general metric, gµν(ξ), in a curvilinear
coordinate system, ξµ, that is not necessarily related to a global Cartesian system by a
coordinate transformation, but is always related to one in small enough neighborhoods of
points.

But what does the Einstein equivalence principle imply for the other laws of physics?
Since it declares that there is a reference frame at every point in which the laws of physics
take the form that they do in special relativity, we again begin in a local Minkowski frame.
In this frame, Maxwell’s laws of electromagnetism, for example, would have the form

Fab = ∂aAb − ∂bAa,

∂aF
ab = −jb, ∂a

∗F ab = 0. (7.1.4)

In a small neighborhood of the point we can transform these equations to a general coor-
dinate system

Fµν = ∇µAν −∇νAµ,

∇µFµν = −jν , ∇µ∗Fµν = 0 (7.1.5)

by making a coordinate transformation. Since the transformation properties of the left
and right hand sides are the same under general coordinate transformations, we simply
declare that these are Maxwell’s equations in any coordinate system and for any metric.
This procedure is often referred to as the principle of general covariance:

• the laws of physics must preserve their form under general coordinate transforma-
tions and should reduce to the laws of Special Relativity in a space-time that is
described by the Minkowski metric

By virtue of this principle, if the laws of physics in an inertial (Minkowski) frame are
known then they are also known in the presence of a gravitational field. The principle of
general covariance combines the Einstein equivalence principle and the requirement that
the laws of physics should be independent of the coordinate system.

The principle of general covariance offers guidance but not uniqueness in the construc-
tion of generally covariant equations. For example, an ambiguity appears when we want
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to apply its prescription to quantities involving second order or higher than second or-
der derivatives, for then there is no unique ordering of the derivatives in flat space but
in curved space the difference between different orderings will be depend on the curva-
ture. For example, there is no difference in flat space between Xc

ab = ∂a∂bA
c and and

Xc
ba = ∂b∂aA

c. In curved space, however,

Xγ
µν −Xγ

νµ = RγβµνA
β (7.1.6)

In particluar, if we define the scalar in flat space by X = BaXc
ac, then B

aXc
[ac] = 0, but

in curved space
BµXγ

[µγ] = −RαβA
αBβ. (7.1.7)

Because the principle of general covariance does not provide any preference for the or-
dering of derivatives, it cannot determine the status in the theory of additional curvature
dependent terms that may arise by different choices.

7.2 Geodesic Motion

If we accept the conjecture that particle motion in a gravitational field is described by the
geodesics of a curved space metric then the equations of motion should be obtained by
extremizing the proper distance between two points

S = −mc
∫ 2

1
ds = −mc

∫ 2

1
dλ

√
−gµν(ξ)

dξµ

dλ

dξν

dλ
, (7.2.1)

where λ is an arbitrary parameter (the action is reparameterization invariant) and

ds

dλ
= L =

√
−gµν

dξµ

dλ

dξν

dλ
, (7.2.2)

Setting Uµ(λ) = dξµ/dλ, we apply Euler’s equations to get1

dUµ(λ)

dλ
+ ΓµαβU

α
(λ)U

β
(λ) = f(λ)Uµ(λ) (7.2.3)

with f(λ) = d lnL/dλ. These are just the equations of parallel transport in (6.5.52), with
a specific function, f(λ), which can be made to vanish by choosing λ so that L is a positive
constant,

dλ

ds
= a ⇒ λ = as+ b (7.2.4)

1Problem: Derive the geodesic equation starting from the action in (7.2.1) and applying Euler’s equa-
tions,

d

dλ

(
∂L

∂Uµ
(λ)

)
− ∂L

∂ξµ
= 0.
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and then the geodesic equation reads

d2ξµ

dλ2
+ Γµαβ

dξα

dλ

dξβ

dλ
= 0. (7.2.5)

The geodesic equation has this form only for parameters that are related to the proper
distance by linear transformations. Parameters for which the geodesic equation has the
form in (7.2.5) are called affine parameters. An alternate and sometimes more useful form
for the geodesic equation is

(U(λ) · ∇)U
µ
(λ) = f(λ)Uµ(λ).

Although derived for time-like paths, (7.2.5) should also be valid for null paths. In the
latter case λ cannot be linearly related to s, since ds = 0 for null trajectories. However,
affine parameters do exist for null geodesics. To see this, begin with the general form in
(6.5.52) and ask if, for any λ, it is possible to find a transformation λ → λ′(λ) which is
such that (7.2.5) is recovered. From (6.5.52) we find(

dλ′

dλ

)2 [d2ξµ
dλ′2

+ Γµαβ
dξα

dλ′
dξβ

dλ′

]
=

[
f(λ)

dλ′

dλ
− d2λ′

dλ2

]
dξµ

dλ′
(7.2.6)

Evidently, what we want is

f(λ)
dλ′

dλ
− d2λ′

dλ2
= 0 (7.2.7)

assuming that dλ′/dλ ̸= 0. The solution is

λ′(λ) = a

∫ λ

dλ′′e
∫ λ′′ dλ′′′f(λ′′′) + b (7.2.8)

but the resulting equation for null geodesics cannot be thought of as a limit of the geodesic
equation for time-like trajectories. Remember also that the four velocities are subject to
the constraints Uµ(λ)U(λ)µ = −(ds/dλ)2 for time like geodesics and Uµ(λ)U(λ)µ = 0 for null
geodesics.

The existence of Killing vectors implies that there will be locally conserved quantities
characterizing the geodesics: let ϵµ be a Killing vector of the metric, then ϵ ·U is conserved
along the geodesic. This follows because, if λ is an affine parameter,

D

Dλ
(ϵ · U) = U · ∇(ϵ · U) = UαUβ∇αϵβ =

1

2
UαUβ∇(αϵβ) = 0 (7.2.9)

by the Killing equation.
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7.3 The Einstein Equations

Let’s consider the spatial acceleration of a slowly moving “test particle” in a weak, static
gravitational field. A “test particle” is an idealized particle whose energy is small enough
that it does not significantly alter the gravitational field in its neighborhood. A weak
gravitational field should be given by a small deformation of the Minkowski metric, so we
set

gµν = ηµν + hµν (7.3.1)

where |hµν | ≪ |ηµν |.2 If the metric is static then hµν,t = 0 and we can also set hti = 0
because, by time reversal invariance, terms of the form htidtdx

i in the expression for the
proper distance should vanish identically. As far as the test particle is concerned, by slowly
moving we will mean that ∣∣∣∣dxids

∣∣∣∣≪ c
dt

ds
(7.3.2)

so the geodesic equation for such a particle would be

d2xµ

ds2
≈ −Γµtt

(
dt

ds

)2

(7.3.3)

Now to first order in hµν we find

Γµtt ≈ −
1

2
ηµνhtt,ν (7.3.4)

and therefore
d2t

ds2
≈ 0, and

d2xi
ds2

≈ 1

2
htt,i

(
dt

ds

)2

. (7.3.5)

The first equation tells us that t ≈ as + b, where a, b are constants. Without any loss of
generality take a = 1/c and b = 0 then the second equation is

d2xi
dt2

=
1

2
htt,i (7.3.6)

which has the same form as the Newtonian force law,

d2r⃗

dt2
= g⃗ = −∇⃗ϕ, (7.3.7)

and leads us to interpret ϕ = −htt/2 as the Newtonian potential of the gravitational field.

2Problem: The inverse metric will be gµν = ηµν − hµν , where hµν is obtained by raising the indices
of hµν using the inverse Minkowski metric, ηµν . Show that the negative sign is necessary to ensure that
gµλgλν = δµν up to O(h).
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It would therefore appear that the Newtonian theory is the non-relativistic, static,
weak field limit of a more general theory in which gravity is described by the geometry of
a curved space-time. It remains to determine the equations that govern the metric, given
any distribution of matter in space-time; in other words we would like to know how the
Newtonian Poisson equation

∇⃗2ϕ(r⃗) = 4πGρ(r⃗), (7.3.8)

is generalized in such a theory. We will seek equations that are similar in structure
to this, in the sense that on the left it should have terms involving second derivatives
of the gravitational potentials, which our examination of geodesics has indicated must be
related to the metric coefficients, and, on the right, terms involving the matter distribution.
Moreover, not one but n(n+1)/2 such equations are needed, one for each of the n(n+1)/2
components of the metric tensor in n dimensions and they should obey the principle of
general covariance, i.e., they should relate tensors to tensors. We must therefore relate
a symmetric, second rank tensor involving non-vanishing second order derivatives of the
metric (we must allow for a curved space-time) to an algebraically similar tensor involving
energy and momentum. Finally, the n(n+ 1)/2 equations should reduce to (7.3.8) in the
non-relativistic, static, weak field limit.3, 4

From the discussion above it should have become clear that the equations we seek will
relate second rank tensors as follows:

Riemann / Contractions = const. × Energy/Momentum of matter distribution. (7.3.9)

The simplest candidate for the left hand side is

Rµν +Agµν(R− Λ), (7.3.10)

where A is a dimensionless constant and Λ has dimension l−2. We also know that the
stress energy tensor is a second-rank tensor that represents the energy and momentum
carried by the matter fields, so the equations governing the gravitational field should have
the form

Rµν +Agµν(R− Λ) =
DG

c4
Tµν (7.3.11)

3Problem: Obtain (7.3.6) by expanding the particle action to second order, then directly applying
Euler’s equations.

4Problem: Consider a space-time that is not static but stationary. In this case, we can still take
hµν,t = 0 but we cannot assume that hti = 0 because time reversal is not a symmetry of such space-times.
Calling Ai(r⃗) = hti(r⃗)/2, repeat the calculation in the previous problem to find the lowest order particle
Lagrangian

L = m

[
1

2
v⃗2 − ϕ(r⃗) + v⃗ · A⃗

]
,

then directly determine the modification of Newton’s force law by A⃗. Of which well-known interaction is
the addtitional term reminiscent? It is called the “gravitomagnetic” term.
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where we have introduced another dimensionless constant D on the right hand side and
G/c4 makes the two sides agree dimensionally. We must now determine the constants A,Λ
and D. Since the stress-energy tensor is conserved, the equation above can be consistent
only if the left hand side is also conserved, i.e.,

∇µRµν +AR,ν = 0, (7.3.12)

but by contracting the Bianchi identities in (6.8.9) we determine

2∇µRµν −R,ν = 0, (7.3.13)

so take A = −1/2 and it remains only to find Λ and D in

Rµν −
1

2
gµν(R− Λ) =

DG

c4
Tµν (7.3.14)

For this, we return to the weak field limit of the left hand side of (7.3.14). Setting
gµν = ηµν + hµν , we expand to first order in hµν , so

Γαµν ≈
1

2
ηαβ [hµβ,ν + hβν,µ − hµν,β ] (7.3.15)

and

Rµν ≈ ∂αΓ
α
µν − ∂νΓαµα

=
1

2
ηαβ [hµβ,αν + hνβ,µα − hµν,αβ − hµβ,αν − hαβ,µν + hµα,βν ]

= −1

2

[
h,µν − ηαβ(hµα,βν + hβν,µα)−□hµν

]
. (7.3.16)

In the static approximation, the time-time component of the Ricci tensor is

Rtt =
1

2
□htt = ∇⃗2ϕ(r⃗) (7.3.17)

and we will now see that this is sufficient to obtain the Newton-Poisson equation for the
gravitational potential. By contracting (7.3.14) we get

R = −DG
c4

T + 2Λ, (7.3.18)

therefore (7.3.14) can also be written as

Rµν =
DG

c4

(
Tµν −

1

2
gµνT

)
+

1

2
Λgµν . (7.3.19)
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For the right hand side we use the perfect fluid stress tensor,

Tµν = pgµν +
(
ρ+

p

c2

)
UµUν , T = 3p− ρc2, (7.3.20)

where ρ is the mass density of the fluid and p is the pressure. But, in the non-relativistic
limit U i ≈ 0 and we can ignore the pressure (as c→∞)

Ttt = ρc4, T = −ρc2 (7.3.21)

and the time-time component of field equations should read

∇⃗2ϕ(r⃗) =
1

2
DGρ− 1

2
Λc2. (7.3.22)

This compares with Newton’s equation (7.3.8) if D = 8π and Λ = 0. Thus we arrive at
Einstein’s equations for the gravitational field,

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (7.3.23)

The left hand side is often called the Einstein tensor, Eµν . It has the property that it
is divergence free, like the stress-energy tensor.

Λ represents a constant, intrinsic energy density of the vacuum and an associated
pressure. It can still be included in the equations (and was originally introduced by
Einstein to achieve a static universe) provided it is small enough so that it does not
significantly alter the predictions of Newton’s theory in experiments conducted within our
solar system. This is the regime in which Newton’s law of gravitation is extremely well
tested. Nevertheless, as the energy density of the vacuum, it may be important on larger,
even cosmological, distance scales. When it is included it is called the cosmological
constant, and Einstein’s equations with a cosmological constant,

Rµν −
1

2
gµν(R− Λ) =

8πG

c4
Tµν , (7.3.24)

represent the most general, self-consistent, second order equations for the gravitational
field in four space-time dimensions. Other possibilities involving higher powers of the
Riemann curvature and its contractions in very special combinations exist in higher di-
mensions. They must all be taken into account in any theory, such as string theory, that
aims to describe physics in more than four dimensions.

7.4 The Hilbert Action

Now that the equations governing the gravitational field are known, the next question
to ask is whether or not those equations are derivable from an action principle, i.e., as
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Euler-Lagrange equations of a particular action. Let us first show that the left hand side
of (7.3.23) can be obtained by a functional variation with respect to the metric of the
action

SG =
c4

16πG

∫
M
d4x
√
−g R, (7.4.1)

where R is the curvature scalar,M represents the space-time manifold and the constant in
front has been chosen so that SG has the dimension of “action”. We have returned to using
“x” for our coordinates; henceforth they will represent general curvilinear coordinates
unless otherwise stated.

Notice that the action involves second order derivatives of gµν via the curvature scalar,
which is unusual: in all the examples we have worked with so far, the action has only
involved first derivatives of the fields. However, the gravitational action must be a scalar
under coordinate transformations and there is no geometric scalar that involves only first
order derivatives of the metric, so we are left with no choice. Ordinarily, the presence of
second order derivatives in the action would lead to higher than second order equations
of motion and require us to impose additional boundary conditions on the variations so
that the contributions from the boundary vanish. However, the equations of motion will
continue to be second order if the higher derivative action can be shown to split into
a bulk (volume) action involving only first order derivatives and a total derivative, or
surface, term. Only the boundary conditions then need to be modified so that the surface
contribution to the variation vanishes. This is the case with the Einstein-Hilbert action.

To see how this comes about, let us rewrite the action as

SG =
c4

32πG

∫
M
d4x
√
−g PµναβRµναβ (7.4.2)

where Pµναβ = gµαgνβ − gµβgνα. Noting the symmetries of Pµναβ , it is antisymmetric in
(µ, ν) and in (α, β), we could rewrite the action as

SG =
c4

16πG

∫
M
d4x
√
−g Pµναβ

[
Γµνβ,α + ΓηνβΓ

µ
ηα

]
=

c4

16πG

∫
M
d4x
√
−g
[
Pµ

ναβΓηνβΓ
µ
ηα −

1√
−g

Γµνβ∂α(
√
−gPµναβ)

]
+

c4

16πG

∫
M
d4x ∂α(

√
−gPµναβΓµνβ) (7.4.3)

Now simplify the second term using

1√
−g

∂α(
√
−gPµναβ) = ∂α(Pµ

ναβ) + ∂α(ln
√
−g)Pµναβ (7.4.4)

together with the identities
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• ∂α ln
√
−g = Γλλα and

• ∇αPµναβ = 0 = ∂αPµ
ναβ − ΓλαµPλ

ναβ + ΓναλPµ
λαβ + ΓααλPµ

νλβ ,

and find
1√
−g

Γµνβ∂α(
√
−gPµναβ) = −2PµναβΓηναΓ

µ
ηβ, (7.4.5)

which leads to the compact result SG = Sbulk + Ssurf, where

Sbulk =
c4

16πG

∫
M
d4x
√
−gPµναβΓηναΓ

µ
ηβ (7.4.6)

and

Ssurf =
c4

16πG

∫
M
d4x ∂α(

√
−gPµναβΓµνβ). (7.4.7)

The “bulk” portion of the action contains only first order derivatives of the metric. The
boundary or surface portion contains second order derivatives. Neither of the actions is
separately coordinate invariant. This was to be expected because, as mentioned in the
introduction to this section, no coordinate scalar exists which involves only first derivatives
of the metric; so we have learned that the surface term in the Einstein Hilbert action is
unavoidable and it is a direct consequence of requiring coordinate invariance together
with second order dynamics for the gravitational field. It is, furthermore, a curious result
(proved by explicit computation) that

Lsurf = −
1

2
∂α

(
gλκ

∂Lbulk

∂gλκ,α

)
(7.4.8)

where Lbulk =
√
−gPµναβΓηνβΓ

µ
ηα, so that the gravitational action can be put into the form

SG =
c4

16πG

∫
M
d4x

[
Lbulk −

1

2
∂α

(
gλκ

∂Lbulk

∂gλκ,α

)]
(7.4.9)

This is a special form.5 With it we are guaranteed that the Euler equations will be second
order, if the momenta and not the configuration space variables are held fixed on the
boundary.

5Problem: Consider the particle action

S =

∫ 2

1

{
L(q, q̇, t)− d

dt

[
q

(
∂L
∂q̇

)]}
dt.

The total derivative term introduces higher order derivatives, but it will be recognized as a mere canonical
transformation that interchanges q → −P and p → Q. Show that the Euler equations are second order
and that it is the momentum, p, not the coordinate, q, that is required to be held fixed at the boundary
points.
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7.4.1 Variation of SG

Let us proceed with the variation of SG,

δ0SG =
c4

16πG

∫
d4x

[
(δ0
√
−g)R+

√
−g(δ0R)

]
. (7.4.10)

This involves the variations δ
√
−g and δR. The first is easy to determine if we recognize

that for any matrix Â the identity

ln det(Â) = tr ln(Â) (7.4.11)

implies, varying both sides and using A = det Â, that

δ ln(A) = 2δ ln
√
A =

2√
A
δ
√
A = tr(Â−1δÂ) (7.4.12)

and therefore taking Â to be the metric, the variation of
√
−g will be

δ0
√
−g =

1

2

√
−ggµνδ0gµν (7.4.13)

but if we use the fact that

δ0(g
ασgσβ) = 0⇒ δ0(g

ασ)gσβ = −gασ(δ0gσβ) (7.4.14)

then δ0gµν = −gµαgνβδ0gαβ and we have the equivalent expression

δ0
√
−g = −1

2

√
−ggµνδ0gµν . (7.4.15)

for the variation of
√
−g.

The variation of R is a little more delicate. Consider

δ0R = δ0(g
µνRµν) = (δ0g

µνRµν) + gµνδ0Rµν (7.4.16)

and let us now concentrate on the last term. It’s more convenient to consider

δ0R
α
βµν = δ0Γ

α
βν,µ−δ0Γαβµ,ν+(δ0Γ

η
βν)Γ

α
ηµ+Γηβν(δ0Γ

α
ηµ)−(δ0Γ

η
βµ)Γ

α
ην−Γ

η
βµ(δ0Γ

α
ην) (7.4.17)

instead. Direct computation shows that6

δ0Γ
α
βν =

1

2
gαη (δ0gηβ;ν + δ0gην;β − δ0gβν;η) , (7.4.18)

6Problem: Show this.
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which is manifestly a type (1, 2) tensor. If we take the covariant derivative of δ0Γ and
compare it to our expression for δ0R

α
βµν we will find the remarkable result that

δ0R
α
βµν = δ0Γ

α
βν;µ − δ0Γαβµ;ν (7.4.19)

and therefore
δ0Rµν = δ0Γ

α
µν;α − δ0Γαµα;ν . (7.4.20)

Now insert
gµνδ0Rµν = (gµνδ0Γ

α
µν);α − (gµνδ0Γ

α
µα);ν (7.4.21)

into (7.4.10) and find

δ0SG =
c4

16πG

∫
M
d4x
√
−g
[
−1

2
gµνR+Rµν

]
δ0g

µν

+
c4

16πG

∫
M
d4x
√
−g
[
(gµνδ0Γ

α
µν);α − (gµνδ0Γ

α
µα);ν

]
. (7.4.22)

The second term above is a boundary term and can be written as

c4

16πG

∫
M
d4x
√
−g
[
Pµανσδ0Γ

σ
µν

]
;α

(7.4.23)

so it follows that

δ0SG =
c4

16πG

∫
M
d4x
√
−g
{[
−1

2
gµνR+Rµν

]
δ0g

µν +∇αδ0jα
}

(7.4.24)

where

δ0j
α = Pµανσδ0Γ

σ
µν = Pµασνδ0gµν;σ = (gµσgαν − gµνgασ) δ0gµν;σ. (7.4.25)

involves derivatives of the variations. Notice, however, that

δ0Ssurf =
c4

16πG

∫
M
d4x
√
−g ∇αδ0jα +

c4

16πG

∫
M
d4x ∂α[Γ

µ
νβδ0(

√
−gPµναβ)] (7.4.26)

so the variation of the “bulk” action, Sbulk = SG − Ssurf, would involve a surface term
which does not contain derivatives of the metric variations. Therefore we conclude that:

• if the gravitational action is taken to be the coordinate invariant functional SG then

− 2√
−g

δSG
δ0gµν

= − c4

8πG

[
Rµν −

1

2
gµνR

]
(7.4.27)

subject to the condition that δ0j
α vanishes at the boundary ofM;

• alternatively, if it is taken to be the non-invariant functional Sbulk then

− 2√
−g

δSbulk
δ0gµν

= − c4

8πG

[
Rµν −

1

2
gµνR

]
(7.4.28)

subject only to the condition that δ0g
µν = 0 on the boundary ofM.
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7.4.2 Inclusion of Matter

Now if the left hand side is derived via a variation with respect to the metric then it
is reasonable to expect that the right hand side must also be derivable from a similar
procedure. Let SM be an action describing the matter fields, which must be added to the
total action giving a combined action of SG+SM . Then we define the stress-energy tensor
of the matter fields as the symmetric tensor

Tµν = − 2√
−g

δSM
δ0gµν

. (7.4.29)

How does it compare with the generalization, prompted by the principle of general co-
variance, of the stress tensors obtained in Chapter 2 from translation invariance in flat
space? Consider the examples of a scalar field and a massless vector field. The stress
energy tensor for a scalar field in a flat background is given in (2.5.22). Therefore, by the
principle of general covariance, it should be generalized to

Tµν = ∂µϕ∂νϕ+
1√
−g

gµνL. (7.4.30)

One can check explicitly that this is recovered from (7.4.29) by varying the scalar field
action (notice the definition of L below)

Sscalar =

∫
d4x L = −1

2

∫
d4x
√
−g [gµν∂µϕ∂νϕ+ 2V (ϕ)] . (7.4.31)

Likewise, applying the definition of the stress energy tensor to the action for the massless
vector field

Sem =

∫
d4x Lem = −gc

4

∫
d4x
√
−ggµαgνβFµνFαβ (7.4.32)

gives precisely

Tµν =

[
gcFµ

αFνα +
1√
−g

gµνLem

]
(7.4.33)

as in (2.7.28). Note that this is the symmetrized version of the vector field stress tensor. In
fact (7.4.29) will always yield the symmetric generalization of the stress tensors obtained
earlier because gµν is symmetric. If the total action is now taken to be the sum of the
gravitational and matter actions, S = SG+SM , then requiring that S is stationary under
variations of the metric will yield precisely Einstein’s equations.

For phenomenological applications, it is often useful to consider non-interacting parti-
cles. The stress energy tensor for a single free particle may be given as (see the footnote)

Tµν =
c2√
−g

pµpν
E

δ(r⃗ − r⃗(t)) (7.4.34)
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where δ(r⃗ − r⃗(t)) is defined by the integral
∫
d3r⃗ δ(r⃗ − r⃗(t)) = 1 and E = p0c2 =

mc2(dt/dτ).7 For an collection of non-interacting particles it follows that

Tµν =
∑
n

c2√
−g

p
(n)
µ p

(n)
ν

E(n)
δ(r⃗ − r⃗n(t)) (7.4.35)

and in the continuum limit, for an ideal fluid,

Tµν = pgµν +
(
ρ+

p

c2

)
UµUν (7.4.36)

where Uµ is the fluid four-velocity, p its pressure and ρ its mass density.8

7.5 Symmetries and Conservation Laws

The gravitational action is not scale invariant but it is invariant under general coordinate
transformations,

xµ → x′µ = xµ + εµ(x), gµν(x)→ g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) (7.5.1)

and thus
δxµ = εµ(x), δgµν = −gµαεα,ν − gναεα,µ (7.5.2)

As the symmetry is local, we want to determine the conserved current and Noether’s
identities for the theory. Even though the Lagrange density in the case of gravity is not
first order as assumed in writing the Noether identities in (2.2.15), their form remains the
same provided that we treat the EA as the Euler derivative for the higher order theory.
Then with

Gµα =
δxµ

δεα
= δµα, T βµνα =

δgµν
δ(∂βεα)

= −gµαδβν − gναδβµ (7.5.3)

we find from (2.2.15), using EA = −
√
−gEµν , that

− 2∂βEα
β − Eαβgλσgλσ,β + Eλσgλσ,α = −2∇βEαβ = 0, (7.5.4)

7Write the action for a free particle as

S = −mc
∫
ds = −mc

∫
dt
√
−gµνvµvν = −mc

∫
d4x
√
−gµνvµvν δ(r⃗ − r⃗(t))

and take the functional derivative w.r.t. gµν . We find

Tµν =
mc√
−g

vµvν√−gµνvµvν
δ(r⃗ − r⃗(t)) = m√

−g
UµUν

(dt/dτ)
δ(r⃗ − r⃗(t)) = c2√

−g
pµpν
E

δ(r⃗ − r⃗(t)).

8In flat space and in the rest frame of the fluid, T 0
0 = −ρc2, T 0

i = 0 and T i
j = pδij .
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which is the Bianchi identity of (7.3.13), so it tells us nothing new. This was also the case
for gauge fields.

For consistency we must also show that general coordinate invariance requires that
Tµν is divergence free, so consider what coordinate invariance would mean for the matter
action. Varying the action would involve two terms: (a) a variation with respect to the
metric and (b) a variation with respect to the matter fields. The variation with respect
to the matter fields vanishes on shell (i.e., if the equations of motion are satisfied). For
the variation with respect to the metric, use EA = 1

2

√
−gTµν , according to (7.4.29), in

(2.2.15). Because Tµν is symmetric we will find, as we did in the case of Eµν , that

2∂βTα
β + Tα

βgλσgλσ,β − T λσgλσ,α = 2∇βTαβ = 0, (7.5.5)

but only on-shell. One should be quite careful in interpreting these results.
Firstly, being covariantly divergence free is not the same as being divergence free

because of the added contributions from the connections

Tαβ ;β = 0⇒ Tαβ,β = −ΓββσT
ασ − ΓαβσT

σβ (7.5.6)

and the right hand side should be viewed as a “gravitational” source term. It encapsulates
the exchange of energy and momentum between the matter and the gravitational fields.
Secondly, tempting as it may be, it would be wrong to consider Eµν as representing the
stress energy tensor of the gravitational field. Although it is symmetric, covariantly diver-
gence free and constructed entirely out of the metric tensor, it contains second derivatives
of the metric tensor in contrast with the stress energy tensor of matter, which contains
only first derivatives of the fields. As a consequence, Eµν does not vanish in a local inertial
frame. On the other hand, we have seen that the gravitational force vanishes in such a
frame. Therefore, if Eµν were to represent the energy and momentum of the gravitational
field then we would arrive at the untenable conclusion that the gravitational field may
exert no force while still carrying energy and momentum in a locally inertial frame.

Apart from the Bianchi identities, general coordinate invariance will also lead to a
strongly conserved current density, but we cannot use (2.2.14) directly because it is adapted
to first order Lagrangians. Instead we use (2.2.8) to write

δSG =

∫
d4x [∂µ(Lε

µ) + δ0L] (7.5.7)

where L =
√
−gR. We have already seen that

8πG

c4
δ0L = −

√
−gEµνδ0gµν + ∂µ

√
−gδ0jµ (7.5.8)

so a variation of SG gives

δSG =
c4

8πG

∫
d4x

[
−
√
−gEµνδ0gµν + ∂µ

√
−g (Rεµ + δ0j

µ)
]
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=
c4

8πG

∫
d4x

[
−
√
−gEµνδ0gµν + ∂µ

√
−g
(
Rεµ + Pαµβσδ0Γ

σ
αβ

)]
(7.5.9)

Now δ0gµν represents a functional change in the metric under the diffeomorphism ξµ →
x′µ = xµ + εµ, therefore

δ0gµν = δgµν − ε · ∂gµν = −∇µεν −∇νεµ = −£εgµν (7.5.10)

and substituting this into the variation of SG, then integrating the first term by parts, we
determine

δSG =
c4

8πG

∫
d4x

{
−2
√
−gEµν ;νεµ + ∂µ

√
−g
[
2Eµνεν +Rεµ + Pαµβσδ0Γ

σ
αβ

]}
(7.5.11)

The first term vanishes by the Bianchi identity, showing that diffeomorphism invariance
requires the conservation of the current

Jµ =
c4
√
−g

8πG

[
2Eµνεν +Rεµ −

(
gασgµβ − gαβgµσ

)
∇σ∇(αεβ)

]
=

c4
√
−g

8πG

[
2Rµνεν − Pαµσβ∇σ∇(αεβ)

]
(7.5.12)

where the brackets, (. . .) mean symmetrization of the indices, as usual. We see right away
that if εµ is a Killing vector of the metric then

Jµ =
c4
√
−g

4πG
Rµνεν (7.5.13)

For a general diffeomorphism, the current can be simplified even further by reordering the
derivatives of ε in a suitable way so as to eliminate the curvature term. We get9

Jµ =
c4
√
−g

8πG
Pµαβσ∇α∇βεσ, (7.5.14)

which can further be written in terms of the antisymmetric tensor

Jµα =
c4
√
−g

8πG
Pµαβσ∇βεσ =

c4
√
−g

8πG
∇[µεα], (7.5.15)

where [. . .] mean antisymmetrization of the indices, as Jµ = ∇αJµα. As we know from
(2.2.16), conserved currents imply conserved charges, but we must first provide a general,
covariant proof of this statement.

9Problem: Derive the result by first showing that

Pαµσβ∇σ∇(αεβ) = ∇2εµ +∇λ∇µελ − 2∇µ(∇ · ε)
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Figure 7.4: The space-time split ofM = R× Σ

To this end, letM be a space-time that is globally hyperbolic, i.e., of the form R×Σ,
where R is a time-like direction and Σ is a spatial hypersurface. Let gµν(X) be a metric
on this space-time in some coordinates Xµ and let t(X) be a smooth, real-valued function
onM such that there is a differentiable bijection between spacelike surfaces, denoted by
Σt, of constant t(X). M may then be described as a sequence of spacelike hypersur-
faces (a foliation), which are the level surfaces of t(X) (see figure 7.4). Let a region M
of this space-time be bounded by a closed hypersurface ∂M made up of two spacelike
hypersurfaces, Σ±, characterised by constant times, t−(X) < t+(X), and a timelike hy-
persurface, B. Integrating the conservation equation for a (covariantly) conserved current,
J µ = Jµ/

√
−g, and applying Gauss’ theorem (6.7.63),

0 =

∫
M
∇µJ µ =

∮
∂M

nµJ µ =

∫
Σ+

dΣ+n
+
µ j

µ −
∫
Σ−

dΣ−n
−
µJ µ +

∫
B
dΣB bµJ µ (7.5.16)

where n±µ is the timelike, future directed, unit normal to the Σ±, the negative sign in the
second term on the right hand side compensates for the fact that we have chosen to use
the future directed unit normal on Σ−, which is inward pointing, and bµ is the outward,
spacelike unit normal to B. If we define

Q =

∫
Σt

dΣt nµJ µ (7.5.17)

where Σ is any spacelike hypersurface then,

Q+ −Q− = −
∫
B
dΣB bµJ µ (7.5.18)

Then, using [∇µ,∇α]ε
α = −Rµλελ, simplify the last term above to get

Pαµσβ∇σ∇(αεβ) = ∇2εµ −∇λ∇µελ + 2Rµλελ

and insert this into the expression for Jµ.
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This is the appropriate generalization of the statement in (2.2.16). The integral on the
right represents the flux of J µ through the timelike portion of the boundary, B. If this
flux vanishes then, because t±(X) can be chosen arbitrarily, it follows that Q is conserved.
Using the fact that our current is expressible as the derivative of an antisymmetric tensor,
we have

Q =

∫
Σt

dΣµJ µ =

∫
Σt

dΣµ∇νJ µν =
c4

8πG

∮
S
dSµν∇[µεν], (7.5.19)

where we have applied Stokes’ theorem (6.7.68) and S is the two dimensional boundary
of the spatial hypersurface Σt. When εµ is a Killing vector, the integral on the right is
called a Komar integral. When the spacetime is asymptotically flat, the integral over the
two sphere at infinity is the total mass energy as measured at infinity if εµ is the timelike
Killing vector and the angular momentum measured at infinity if εµ is the azimuthal
Killing vector.

7.6 Energy Conditions

Before we can look for solutions of the Einstein equations, we should ensure that the sources
of the gravitational field obey some general physical requirements. These are intended to
exclude matter that would lead to “unphysical” solutions of the Einstein equations. One
or more of these requirements are generally met by most forms of normal matter and non-
gravitational fields. There are four “energy conditions”, defined in terms of unit time-like
vector fields, nµ (n2 = −1), and light-like vectors fields, lµ (l2 = 0). Time-like vector
fields represent tangent lines to time-like trajectories and define the worldlines of (possi-
bily accelerated) time-like observers. Light-like vector fields represent the trajectories of
massless particles. All the energy conditions are defined locally.

• Weak Energy Condition: For every future directed time like vector field, nµ,

Tµνn
µnν ≥ 0. (7.6.1)

It states that the energy density of the matter distribution measured by every time-
like observer, with four velocity nµ, must be non-negative. Using Einstein’s equation
we can think of it as a statement about the geometry of space-time. The condition
directly translates into the requirement that Rµνn

µnν + 1
2R ≥ 0.

• Null Energy Condition: For every future directed null vector field, lµ,

Tµν l
µlν ≥ 0. (7.6.2)

This is essentially the weak energy condition applied to null vector fields. Since l2 = 0
it follows from Einstein’s equations that the null condition requires Rµν l

µlν ≥ 0 for
any future directed null vector field.
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• Strong energy Condition: For every future directed time-like vector field, nµ,(
Tµν −

1

2
gµνT

)
nµnν ≥ 0. (7.6.3)

The strong energy condition can also be put in a geometric form. Einstein’s equations
imply that

Rµν =
8πG

c4

(
Tµν −

1

2
gµνT

)
so the statement is that Rµνn

µnν ≥ 0 for any future directed, time-like vector field.

• Dominant Energy Condition: In addition to the weak energy condition, the
current vector field

jµ = −Tµνkν (7.6.4)

is always future directed and null or time-like, provided that kµ is future directed
and either null or time-like. This condition requires matter to always flow in future
directed, time-like or null directions.

Often these conditions are not required to hold at every space-time point but only on the
average; for example, the averaged null energy condition would read∫

Tµν l
µlνdλ ≥ 0 (7.6.5)

where λ is the affine parameter along the integral curves of lµ. This allows us to include
stress energy tensors of quantum fields as sources for the gravitational field, although there
is some argument about whether or not this is very meaningful.

As an example, consider the case of the stress tensor for the time-like ideal fluid,

Tµν = pgµν +
(
ρ+

p

c2

)
UµUν (7.6.6)

where Uµ is the time-like four velocity vector of the fluid elements. Since all the energy
conditions are scalar we can choose a particular frame in which to evaluate them, the
most convenient being the comoving frame of the fluid, i.e, the one in which U0 = 1
and U i = 0.

• The weak energy condition will be

− p+
(
ρ+

p

c2

)
(n · U)2 = −p+

(
ρ+

p

c2

)
n20 ≥ 0 (7.6.7)

since n2 = −1 and where we have set (n · U)2 = n20, which is positive but otherwise
arbitrary. If we take nµ = Uµ/c then we find that ρ ≥ 0. But since n20 can be made
arbitrarily large, we must also require ρc2 + p ≥ 0. This second condition restricts
how negative the pressure can get, but places no other restriction on its magnitude.
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• The null energy condition reads(
ρ+

p

c2

)
(l · U)2 ≥ 0⇒ ρc2 + p ≥ 0. (7.6.8)

since l2 = 0.

• Applying the strong energy condition and taking nµ = Uµ/c gives ρc2 + 3p ≥ 0 and
we must also have ρc2 + p ≥ 0 because n0 is arbitrary. Again, there is no restriction
on the magnitude of the pressures.

• Finally, the dominant energy condition requires, besides the weak energy conditions,
that −ρc2 ≤ p ≤ ρc2 and thus restricts the magnitude of the pressure as well.

In the general case, determining the implications of the energy conditions for any stress
tensor is essentially an algebraic problem and can always be formulated in terms of the
eigenvalues of the stress energy tensor.

7.7 Geodesic Congruences

The behavior of both time-like and null geodesics is an essential tool in analyzing the
space-time produced by a matter distribution.

7.7.1 Time-like Congruences

We will begin with a look at time-like geodesics. In fact, we will look at time-like geodesic
congruences in regions of space-time, by which we mean entire one parameter families
of time-like geodeiscs that do not intersect anywhere in the region. Therefore, only one
curve of a geodesic congruence passes through any given event in our region. Our goal is
to determine how the congruence “evolves” over time, which we will make precise below.

Let xµ(λ, σ) represent the geodesic congruence, shown in figure 7.5, where λ is an
affine parameter and σ labels the geodesics. Holding σ fixed and varying λ yields the
geodesic curve labeled by σ, but holding λ and varying σ yields a curve labeled by λ and
parameterized by σ. Thus Uµ(λ, σ) = ∂xµ(λ, σ)/∂λ would represent the tangent vector
field to the geodesic curve labeled by σ. Because each xµ(λ, σ) is a solution of the geodesic
equation, the acceleration vector vanishes,

aµ = (U · ∇)Uµ = 0. (7.7.1)

In analogy with the four velocity, let us define the vector field V µ(λ, σ) = ∂xµ(λ, σ)/∂σ.
V µ(λ, σ) represents the tangent vector field to the second family of curves mentioned
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l

s

Figure 7.5: The congruence xµ(λ, σ)

above that were labeled by λ and parameterized by σ. We want to determine some of its
properties, so first consider the fact that integrability requires,10

∂V µ

∂λ
=
∂Uµ

∂σ
⇒ (U · ∇)V µ = (V · ∇)Uµ. (7.7.2)

We can combine this with the geodesic equation to prove that ∂(V ·U)/∂λ = 0 as follows

∂

∂λ
(V · U) = (U · ∇)(V · U) = [(U · ∇)V ] · U + [(U · ∇)U ] · V. (7.7.3)

The last term vanishes by the geodesic equation and using (7.7.2) we have

∂

∂λ
(V · U) = [(V · ∇)U ] · U (7.7.4)

Now because U2 = −1 for time-like geodesics it follows that Uµ(∇αUµ) = 0, therefore

∂

∂λ
(V · U) = V α(∇αUµ)Uµ = 0 (7.7.5)

(as promised), which says that V · U is a constant in the affine parameter. Now we recall
that the affine parameter is not uniquely defined, being defined up to linear transforma-
tions. Thus we could shift the affine parameter by a constant that depends on the geodesic
label, λ→ λ′(σ) = λ+µ(σ), for any arbitrary function of σ. Under such a transformation,

V µ → V ′µ = V µ +
dµ

dσ
Uµ (7.7.6)

10Alternatively,
£UV

µ = 0 = £V U
µ
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Now V ′ · U = V · U − c2dµ(σ)/dσ. One could therefore choose µ(σ) so that V ′ · U = 0
at some point on each geodesic. Then by (7.7.5) the vector field V ′ would be everywhere
orthogonal to each geodesic in the congruence. The vector field V (or V ′) can be thought of
as characterizing the deviation between neighboring geodesics and is called the geodesic
deviation vector.

Expansion, Shear and Rotation

Given any time-like vector field, say Uµ, one defines a “projector” transverse to Uµ by

hµν = δµν + UµUν (7.7.7)

To see that hµν projects transverse to Uµ, notice that hµνU
ν = 0 = Uµh

µ
ν because

U2 = −1 and therefore, for any vector Aµ, if Aµ⊥ = hµνA
ν then U · A⊥ = 0. hµν satisfies

hαα = 3 and therefore projects onto a three dimensional (spatial) hypersurface, orthogonal
to U . The tensor

Bµν = Uµ;ν , (7.7.8)

is also transverse because BµνU
ν = UνUµ;ν = (U ·∇)Uµ = 0 by the geodesic equation and

UµBµν = UµUµ;ν = 1
2∇νU

2 = 0.11 Furthermore, by (7.7.2),

∂V µ

∂λ
= (U · ∇)V µ = (V · ∇)Uµ = Bµ

νV
ν , (7.7.9)

so Bµν governs the evolution of the deviation vector. It is convenient to separate B̂ into
a trace part, a trace free symmetric part and an antisymmetric part as follows,

Bµν =
1

3
Θhµν + σµν + ωµν , (7.7.10)

where Θ = Bα
α (hence the factor of three) is called the expansion scalar, the symmetric

tensor σµν = 1
2B(µν) − 1

3Θhµν is called the shear tensor and the antisymmetric part,

ωµν = 1
2B[µν] is called the vorticity or rotation tensor. The expansion represents

the rate of change of the volume of an infinitesimal sphere of geodesics with respect to
the affine parameter of the geodesic passing through its center (when Θ > 0 the geodesic
congruence is diverging and when Θ < 0 it is converging). The shear represents the rate at
which the original spherical volume gets distorted and the rotation describes the tendency
of the original sphere to rotate during its evolution, causing the geodesics to twist about
one another.

Let us examine the evolution of Bµν ,

∂

∂λ
Bµν = UαBµν;α = Uµ;ναU

α (7.7.11)

11Problem: Show this explicitly.
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Rewrite the right hand side as follows:

∂

∂λ
Bµν = [Uµ;[να] + Uµ;αν ]U

α = Uµ;ανU
α −RγµανUγUα

= (Uµ;αU
α);ν − Uµ;αUα;ν −RγµανUγUα (7.7.12)

The first term on the right vanishes by the geodesic equation, so

∂

∂λ
Bµν = −BµαBα

ν −RγµανUγUα. (7.7.13)

This allows us to obtain the geodesic deviation equation by taking a derivative of (7.7.9),

∂2V µ

∂λ2
= −RµαβγUαUγV β, (7.7.14)

which shows that it is the Riemann curvature that is responsible for the relative accelera-
tion between neighboring geodesics. This relative acceleration is sometimes referred to as
the tidal acceleration.

Hypersurface Orthogonal Vector Fields

Any vector field, ξµ, identifies a congruence of world lines to which the field is tangent at
every point. When are we guaranteed that there exists a family of hypersurfaces to which
these world lines are everywhere perpendicular? If there exists such a family of hypersur-
faces, Ψ(x) = const., then the vector field is said to be hypersurface orthogonal. In
that case,

ξµ(x) = N(x)Ψ,µ(x) (7.7.15)

where N(x) is some function. It follows that

ξµ;ν = N,νΨ,µ +NΨ;µν (7.7.16)

and therefore

ξ[µ;ν] = N[,νΨ,µ] =
1

N
N[,νξµ] =

1

N
[N,νξµ −N,µξν ] (7.7.17)

or
ϵαµνβξ[µ;ν]ξβ = 0 (7.7.18)

by the antisymmetry of the Levi-Civita tensor. The vector field

ωα =
1

2
ϵαµνβξ[µ;ν]ξβ (7.7.19)

is called the rotation of the congruence of world lines defined by ξµ. We have shown
that a vanishing rotation is necessary for a vector field to be hypersurface orthogonal,
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but it turns out that it is also sufficient, i.e., if the rotation vanishes then locally there
are functions N(x) and Ψ(x) such that ξµ = N(x)∂µΨ(x). This is more difficult to prove
(and we will not do so here). The result is called Frobenius’ theorem: a necessary
and sufficient condition for a vector field to be hypersurface orthogonal is that its rotation
vanishes.

A slightly simpler condition is obtained when Frobenius’ theorem is applied to a
geodesic congruence, Uµ. In this case, because Uµ is hypersurface orthogonal, i.e.,

U[µ;ν] =
1

N
[N,νUµ −N,µUν ], (7.7.20)

and Bµν is transverse, i.e., Uµ;νU
ν = 0 = Uµ;νU

µ, it follows that U[µ;ν]U
ν = 0 or

[(U · ∇)N ]Uµ + c2N,µ ⇒ N,µ = − 1

c2
[(U · ∇)N ]Uµ. (7.7.21)

Inserting this result back into (7.7.20) shows that

1

2
B[µν] = ωµν =

1

2c2N
[−[(U · ∇)N ]UνUµ + [(U · ∇)N ]UµUν ] = 0. (7.7.22)

i.e., the rotation tensor vanishes. The converse is also true: if the rotation tensor vanishes
then the geodesic congruence is hypersurface orthogonal.

Evolution of the Expansion, Shear and Rotation Tensors

Taking the trace of (7.7.13) gives the Raychoudhuri equation,

∂Θ

∂λ
= −BµνBνµ −RµνUµUν

= −1

3
Θ2 − σµνσµν + ωµνω

µν −RµνUµUν (7.7.23)

The first two terms are always negative because the tensor σµν is transverse to a time-like
congruence. If the strong energy condition holds, then the last term is negative as well.
Therefore, the divergence of a hypersurface orthogonal congruence (rotation free, ω̂ = 0)
will always decrease if the strong energy condition holds,

∂Θ

∂λ
= −1

3
Θ2 − σµνσµν −RµνUµUν ≤ 0. (7.7.24)

This is the focusing theorem. In particular,

∂Θ

∂λ
≤ −1

3
Θ2 ⇒ Θ−1(λ) ≥ Θ−1

i +
1

3
(λ− λi) (7.7.25)
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means that if Θi < 0 then Θ−1 → 0− or Θ→ −∞ for some value of the affine parameter.
This happens when the geodesics converge to a point called a caustic. A caustic is a
singularity of the congruence. At this point the decomposition (7.7.10) breaks down and
the expansion, shear and rotation are meaningless.

The evolution of the rotation tensor also follows directly from (7.7.13) because

∂

∂λ
ωµν =

1

2

∂

∂λ
B[µν] = −

2

3
Θ ωµν − σµαωαν + σναω

α
µ (7.7.26)

where we exploited the third of the algebraic symmetries of the Riemann tensor listed in
the previous chapter. Similarly, the evolution of the shear tensor can be obained as

∂

∂λ
σµν = −2

3
Θσµν − σµασαν − ωµαωαν −RαµβνUαUβ +

1

3

(
σ2 − ω2 +RαβU

αUβ
)
hµν ,

(7.7.27)
where σ2 = σαβσ

αβ and ω2 = ωαβω
αβ. We leave this as an exercise.12

7.7.2 Null Congruences

The analysis of null geodesic congruences has much in common with the anaylsis of time-
like geodesics, but there are also several complications, all of which are brought about by
the fact that K2 = 0, where Kµ = ∂xµ/∂λ. Thus we could define the geodesic deviation,
V µ in the same way as before and we would obtain £VK

µ = £KV
µ as before. The

acceleration of the geodesics is zero by definition, i.e., aµ = (K · ∇)Kµ = 0 and it is
straightforward to show that ∂(V ·K)/∂λ = 0, this time because K2 = 0.

The dificulties arise from the fact that, because Kµ is a null vector field, δµν +KµKν

does not not annihilateKµ and so it does not project transverse toKµ. This is because the
hypersurface orthogonal to any null vector is two and not three dimensional.13 To correct
this, we must introduce an auxilliary null vector field Nµ, which is such that K ·N = −1.
We do this by first picking any spacelike hypersurface, Σ, and a null vector field, Nµ,
defined on Σ, which satisfies K ·N = −1. If we extend N off Σ by parallel transport along
geodesics, (K ·∇)Nµ = 0, then the two conditions N2 = 0 and N ·K = −1 are guaranteed
to hold. While this can always be done, the conditions do not uniquely determine the null
vector Nµ. However, once a particular Nµ is chosen on Σ the projector

hµν = δµν +KµNν +NµKν (7.7.28)

12Problem: Derive the evolution of the rotation and shear from (7.7.13).
13To see this, consider flat space in null coordinates, u± = ct± x. The line element is

ds2 = du+du− − dy2 − dz2.

If we let K be tangent to the curves u± = const., then the transverse line element is given by ds2⊥ =
−dy2 − dz2, which is two dimensional.
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does indeed project transverse to Kµ. It also projects transverse to Nµ and therefore hµν
is a two dimensional projector, satisfying hαα = 2. Furthermore, because both K and N
are parallel transported along geodesics, it follows that so is hµν , i.e., (K · ∇)hµν = 0.

Expansion, Shear and Twist

Taking our cue from the treatment of time-like geodesics, we define the tensor

Bµν = Kµ;ν . (7.7.29)

It follows that
∂V µ

∂λ
= Bµ

νξ
ν , (7.7.30)

but Bµν is orthogonal only to Kµ, not to Nµ, so it is not transverse. Therefore, we use
the projector and define the transverse tensor

B̃αβ = Bµνh
µ
αh

ν
β. (7.7.31)

Expanding B̃ as before into a trace part, a symmetric, traceless part and an antisymmetric
part,

B̃µν =
1

2
Θhµν + σµν + ωµν (7.7.32)

defines Θ = B̃α
α, σµν = 1

2 [B̃(µν)−Θhµν ] and ωµν = 1
2B̃[µν], which are the expansion, shear

and twist of the null congruence, respectively. Note that the geodesic equation and the
null condition together ensure that B̃α

α = Bµ
µ.

The argument, given for timelike geodesics, to show that the deviation vector can
always be chosen to be transverse, fails in the case of the null geodesic congruence because
K2 = 0. Thus, even though V ·K is a constant along each geodesic, it is not guaranteed
to vanish everywhere by a suitable choice of parameterization. In general, the deviation
vector could be expanded as

V µ = aKµ + bNµ + Ṽ µ, (7.7.33)

where K · Ṽ = 0 = N · Ṽ and we are only guaranteed that b = −V ·K is constant along
each geodesic. Because hµν is parallel transported along geodesics, the evolution of the

transverse part of the deviation vector, Ṽ µ = hµαV
α, follows directly from (7.7.30) as

∂Ṽ µ

∂λ
= hµαB

α
βV

β. (7.7.34)

Now we have

∂Ṽ µ

∂λ
= hµαB

α
β(aK

β + bNβ + Ṽ β) = hµαB
α
β(bN

β + Ṽ β), (7.7.35)
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where the last equation follows because Bα
βK

β = 0. Thus deviation vectors for which
b = −K · V = 0 satisfy

∂Ṽ µ

∂λ
= hµαB

α
βṼ

β = hµαB
α
βh

β
γ h

γ
δV

δ︸ ︷︷ ︸ = hµαh
β
γB

α
β︸ ︷︷ ︸ Ṽ γ = B̃µ

γ Ṽ
γ , (7.7.36)

where we have used the definition of the transverse tensor B̃µν in (7.7.31).

The evolution equation for Bµν is obtained in precisely the same way as (7.7.13) with
the same result,

∂

∂λ
Bµν = −BµαBα

ν −RγµανKγK
α, (7.7.37)

which allows us to find the null geodesic deviation equation,

∂2V µ

∂λ2
= −RµαβγKαKγξβ (7.7.38)

and, once again, it is the Riemann curvature that is responsible for the relative acceleration
between neighboring (null) geodesics.14

Frobenius’ Theorem

The congruence Kµ is hypersurface orthogonal if and only if ωµν = 0. As before, we will
only prove that if the congruence is hypersurface orthogonal then ωµν = 0. Thus, suppose
that the congruence is orthogonal to the family of (null) hypersurfaces given by Ψ(x) =
const., then it follows that Kα ∝ Ψ,α. However, then Kµ is at once both orthogonal
and parallel to the hypersurfaces, since KαΨ,α = 0, and therefore Kµ is also tangent to
the hypersurfaces and lives within them. They are called the null generators of the
hypersurfaces Ψ(x) = const.

Now we may set Kµ = fΨ,µ as before, but now f(x) is any arbitrary function. Then

Bµν = f,νΨ,µ + fΨ;µν =
f,ν
f
Kµ +Ψ;µν (7.7.39)

and, if we assume that space-time is torsion free, it follows that

B[µν] =
1

f
(f,νKµ − f,µKν) . (7.7.40)

Therefore after projecting in the transverse direction we will find that B̃[µν] = 2ωµν ≡ 0.

14Problem: Determine the evolution equation for B̃µν and the geodesic deviation equation for the trans-
verse part of V µ.
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7.8 Hamiltonian Description

The Hamiltonian dynamics of particles and fields relies heavily upon the splitting of space-
time into space and time. In other words, we must consider space-times, M, that are
globally R×Σ3 where R represents a time-like direction and Σ a spatial hypersurface. We
therefore return to the foliation ofM by spatial hypersurfaces as described in section 7.5.
This approach, developed by Arnowitt, Deser and Misner, allows the problem of finding
the geometry ofM to be treated as an initial value problem in which the initial data are
prescribed on an “initial” hypersurface and then evolved according to the field equations.

7.8.1 Arnowitt-Deser-Misner (ADM) metric

The treatment here will closely resemble the discussion of three dimensional hypersur-
faces in the previous chapter. Because Σt is a surface of constant t, ∂µt is everywhere
perpendicular to Σt. Assuming that ∂µt is future directed and nowhere lightlike, let

N−2 = −gµν∂µt∂νt > 0 (7.8.1)

be its norm and let nµ be the future directed, unit normal to Σt,

nµ = −N∂µt. (7.8.2)

Now let us transform from the original system of coordinates, Xµ, to a new system,
X ′µ = {t, xi}. By the transformation laws,

n′0 = nµ∂µt =
1

N
(7.8.3)

and we can define three new functions N i(X ′) such that

n′i = nµ∂µx
i = −N

i

N
(7.8.4)

The metric onM in the coordinatesX ′ captures the geometric structure of the factorizable
manifoldM; by a straightforward calculation, we arrive at

g′00 = gµν∂µt∂νt = −
1

N2

g′0i = g′i0 = gµν∂µt∂νx
i = − 1

N
nµ∂µx

i =
N i

N2

g′ij = gµν∂µx
i∂νx

j = hµν∂µx
i∂νx

j − N iN j

N2
, (7.8.5)
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where we have defined the “projection” hµν = gµν +nµnν , which annihilates any vector in
the direction of nµ. Since the first term on the right hand side of the last equation “lives”
only on Σt, we let

γij = hµν∂µx
i∂νx

j (7.8.6)

and write the (inverse) metric as

gµν =

 − 1
N2 N j/N2

N i/N2 γij −N iN j/N2

 , (7.8.7)

where we have dropped the primes. Finally, defining γij to be the inverse of γij , i.e.,
γikγkj = δij , we have a canonical form for the metric onM:

gµν =

−N2 + γlmN
lNm Nj

Ni γij

 (7.8.8)

where Ni = γijN
j . The matrix γij is the induced metric on Σt, or the first fundamental

form. It defines the distance between infinitesimally separated points on Σt. When it is
given as (7.8.8), the metric is said to be in the Arnowitt-Deser-Misner (or ADM, for
short) form. The function N is called the shift and N i are called the lapse functions.
The ADM distance between two points onM will be

ds2 = −gµνdxµdxν = N2dt2 − γij(dxi +N idt)(dxj +N jdt) (7.8.9)

and the 10 functions comprising the shift, the lapse and the spatial metric are to be
recovered from Einstein’s equations. The volume element, written in terms of these 10
functions becomes

d4x
√
−g = d4xN

√
γ (7.8.10)

where γ represents the determinant of the induced metric.
The ADM form of the metric is designed to turn the problem of finding solutions to

Einstein’s equations into a Cauchy problem, i.e., into the problem of finding solutions
subject to initial data specified on some initial spatial hypersurface. This provides a clean
way to classify the initial data while also allowing us to formulate the concept of causality
in general relativity. Our aim in this section is more limited. We only seek a Hamiltonian
formulation of the theory.

7.8.2 Hamiltonian of a scalar field

As a preparatory exercise, let us first apply this general metric to determine the Hamilto-
nian of, say, a real scalar field. The procedure is similarly carried out for all other fields.
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Consider a (real) scalar field minimally coupled to the gravitational field so that its action
is

S = −1

2

∫
d4x
√
−g [gµν∂µϕ∂νϕ+ 2V (ϕ)] (7.8.11)

and re-express it, using the ADM decomposition in the previous subsection,

S = −1

2

∫
dt

∫
d3xN

√
γ

[
− 1

N2
ϕ̇2 +

2N iϕ,i
N2

ϕ̇− (N iϕ,i)
2

N2
+ γijϕ,iϕ,j + 2V (ϕ)

]
(7.8.12)

The Lagrangian density for the field is

L =
1

2
N
√
γ

[
1

N2
ϕ̇2 − 2N iϕ,i

N2
ϕ̇+

(N iϕ,i)
2

N2
− γijϕ,iϕ,j − 2V (ϕ)

]
(7.8.13)

and the momentum conjugate to the field is

π =
∂L

∂ϕ̇
=

√
γ

N

[
ϕ̇−N iϕ,i

]
. (7.8.14)

Solving for the field velocities,

ϕ̇ =
Nπ
√
γ
+N iϕ,i, (7.8.15)

and performing the Legendre transfrmation in the usual way, gives the Hamiltonian of the
scalar field,

H =

∫
d3x

[
πϕ̇− L

]
=

∫
d3xN

√
γ

[
π2

2γ
+

(N iϕ,i)π

N
√
γ

+
1

2

{
γijϕ,iϕ,j + 2V (ϕ)

}]
.

(7.8.16)

Now if ξµ is a Killing vector then the four momentum, pµ = ξµTµν , is (covariantly)
conserved (∇µpµ = 0), so integrating pµ over the spatial hypersurface, Σ, yields the
conserved quantity,

Qξ =

∫
Σ
d3x
√
γnµ(ξ

νTµν). (7.8.17)

In a stationary spacetime, taking ξµ to be the time-like Killing vector ξµ = (1, 0, 0, 0), we
find that Qξ ≡ H.15

15Problem: Work this out using the unit normal, nµ = (−N, 0, 0, 0), the ADM metric in (7.8.9) and the
stress tensor for a real scalar field in (7.4.30).
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7.8.3 Extrinsic and Intrinsic curvatures of a hypersurface

The metric and the unit normal together will define a projector onto the spatial hyper-
surfaces,

hµν = gµν + nµnν . (7.8.18)

To see that this is indeed a projector consider that acting on any vector parallel to nµ it
must yield exactly zero, since hµνn

ν = 0, and it also satisfies

hµλh
λ
ν = (gµλ + nµnλ)(δ

λ
ν + nλnν) = hµν . (7.8.19)

Now let us define the differential operator “D” by

DλT
α1...

β1... = hλ
σhα1

µ1 . . . hβ1
ν1 . . .∇σTµ1...ν1... (7.8.20)

i.e., by projecting the components of ∇T using the projector, ĥ. “D” defines the intrinsic
covariant derivative operator on the hypersurface. It is easy to show that Dαhβγ = 0
and that “D” inherits all the conditions (eg., the Leibnitz rule) that would make it an
acceptable derivative operator from the ordinary covariant derivative operator “∇”. It is
also torsion free i.e.,

[Dµ, Dλ]φ(x) = 0, (7.8.21)

therefore “D” defines a unique, torsion free connection in Σt. Now with the help of “Dµ”
and nµ we can define two properties of the spatial hypersurfaces, Σt.

The extrinsic curvature of Σt, or the second fundamental form, is defined as the
spatial rate of change of nµ,

16

Kµν = Dµnν = ∇µnν + nµaν , (7.8.22)

where aµ = (n · ∇)nµ, called the acceleration of the foliation, is perpendicular to nµ and
therefore tangent to Σt

17. The extrinsic curvatures is a symmetric tensor, a property that
is not obvious from its definition in (7.8.22). It follows because the connection is torsion
free so that

K[µν] = hµ
αhν

β∇[αnβ] = hµ
αhν

β(∂αnβ − ∂βnα). (7.8.23)

Now, using the fact that n0 = −N, ni = 0, we have

K[µν] = −hµαhν0∂αN + hµ
0hν

β∂βN, (7.8.24)

but hµ
0 = 0, so it follows that K[µν] = 0. Furthermore, all the indices of K̂ and of (3)R̂

are perpendicular to n̂ by definition.

16Problem: Show that Kµν = hµ
α∇αnν .

17This follows from the fact that n̂ is a unit vector and therefore nµ∇αnµ = 0. Thus n · a =
nαnµ(∇αnµ) ≡ 0.
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The intrinsic curvature of the hypersurface is defined in the usual way, but in terms
of the derivative operator D, as

[Dµ, Dν ]A
α = (3)RαβµνA

β (7.8.25)

for all vectors A that “live” on Σt, i.e., are perpendicular to n (n ·A = 0).

7.8.4 The Gauss equations

Let us now determine some relations between the four dimensional Riemann tensor, its
three dimensional counterpart and the the extrinsic curvature of Σt. Starting from the
definition of (3)R̂, we have

D[µDν]A
α = hµ

λhν
γhακ∇λ(hκσhγρ∇ρAσ)− (µ↔ ν)

= hµ
λhν

γhακ[(∇λhκσhγρ)∇ρAσ + hκσhγ
ρ∇λ∇ρAσ]− (µ↔ ν)

(7.8.26)

The last term in square brackets on the right, when antisymmetrized in (µ, ν) gives
hµ

λhν
γhασ∇[λ∇γ]Aσ = hασhµ

λhν
γRσκλγA

κ. Again, because n · A = 0 we can write

Aκ = Aβhβ
κ and express the contribution from this term as hασhβ

κhµ
λhν

γRσκλγA
β.

To evaluate the first term, notice that

hµ
λhν

γhακ[(∇λhκσ)hγρ + hκσ(∇λhγρ)]∇ρAσ

= [hµ
λhν

ρhακnσ∇λnκ + hµ
λhν

γhασn
ρ∇λnγ ]∇ρAσ

= [hν
ρnσKµ

α + hασn
ρKµν ]∇ρAσ (7.8.27)

The second term in square brackets will vanish upon antisymmetrization because K̂ is
symmetric. Moreover, the first term can be rewritten as

hν
ρKµ

αnσ∇ρAσ = −hνρKµ
α(∇ρnσ)Aσ, (7.8.28)

using the fact that n ·A = 0 and, because of the same identity, we can set Aσ = Aβhβ
σ so

the above expression turns into

− hνρhβσ(∇ρnσ)Kµ
αAβ = −Kµ

αKνβA
β.

Finally antisymmetrizing with respect to (µ, ν) we get the contribution −K[µ
αKν]βA

β

from this term. Therefore putting everything together, we recover the Gauss equations

(3)Rαβµν = hασhβ
κhµ

λhν
γRσκλγ −K[µ

αKν]β (7.8.29)
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relating the intrinsic and extrinsic curvatures of the three dimensional spatial hypersurfaces
with the projection of the intrinsic curvature of the four dimensional manifold onto the
spatial hypersurface. We can now contract appropriately to recover the Ricci tensor,

(3)Rβν = Rβν + 2Rβγnνn
γ +Rκγn

κnγnβnν +Rσβλνnσn
λ −K[α

αKν]β (7.8.30)

and the scalar curvature

(3)R = R+ 2Rβνn
βnν −K[α

αKν]
ν (7.8.31)

7.8.5 The Codazzi-Mainardi equations

There is another set of useful identities, called the Codazzi-Mainardi equations, that
are obtained by considering projections of the four dimensional Riemann tensor along the
normal direction. To obtain this set, consider the derivative of the extrinsic curvature,

DµKνλ = hµ
αhν

βhλ
σ∇αKβσ = hµ

αhν
βhλ

σ∇α(hβγhσρ∇γnρ)

= hµ
αhν

βhλ
σhβ

γhσ
ρ∇α∇γnρ + hµ

αhν
βhλ

σ∇α(hβγhσρ)∇γnρ

= hµ
αhν

γhλ
ρ∇α∇γnρ +Kµνhλ

ρ(n · ∇)nρ (7.8.32)

Hence we find that
D[µKν]λ = −hλρhµαhνγRβραγnβ (7.8.33)

because of the symmetry of Kµν . Contracting,

D[µKν]
ν = −hµαhγρRβραγnβ = −hµαRαβnβ (7.8.34)

The Gauss-Codazzi-Mainardi equations are useful for decomposing the ten Einstein equa-
tions into components that are orthogonal to and components that are tangential to the
spatial hypersurface. For instance, the orthogonal components of the Einstein tensor
(time-time) are given as

2Gαβn
αnβ = 2Rαβn

αnβ +R = (3)R+K[α
αKβ]

β, (7.8.35)

upon directly applying (7.8.31). Its mixed components (time-space),

hµ
αGαβn

β = hµ
αRαβn

β = −D[µKβ]
β, (7.8.36)

follow directly from (7.8.34) and so on.
Such a decomposition of the Einstein equations is a necessary prelude to setting up

the initial value problem of general relativity. The field equations are second order, so any
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unique solution requires a specification of the metric and its first time derivative at some
initial “time”, i.e., on some spatial hypersurface, Σ. However, on any Σ, the time-time and
time-space components of the space-time metric cannot be given meaning in terms of the
geometric properties of Σ alone, so only the six components of the first fundamental form
can be specified. The remaining four components of the space-time metric are arbitrary
and this reflects the freedom to choose how the four coordinates are laid down. Likewise,
specifying the time derivative of the induced metric turns out to be a statement about
the extrinsic curvature (the second fundamental form), as we will shortly see. The initial
value problem of general relativity therefore consists of specifying the induced metric and
the extrinsic curvature of some spatial hypersurface. They cannot be chosen freely but
must satisfy the four constraints of general relativity, one given by (7.8.35),

(3)R+K[α
αKβ]

β =
16πG

c4
Tαβn

αnβ
def
=

16πGρ

c4
(7.8.37)

and three by (7.8.36),

−D[µKβ]
β =

8πG

c4
hµ

αTαβn
β def

=
8πGjµ
c4

. (7.8.38)

The remaining six (the space-space equations) provide the evolution equations for the first
and second fundamental forms.

7.8.6 Action

With the help of the Gauss equation, we can now write the gravitational action (neglecting
the boundary term). However, we must first find an expression for Rµνn

µnν in terms of
(3)R and the extrinsic curvature, which we can do by using the fact that

[∇µ,∇ν ]Aα = RαβµνA
β (7.8.39)

holds for any vector and, in particular, for n̂. It follows that

Rµνn
µnν = nν [∇µ,∇ν ]nµ

= nν(∇µ∇ν −∇ν∇µ)nµ

= −(∇µnν)(∇νnµ) + (∇νnν)(∇µnµ) +∇µ(nν∇νnµ − nµ∇νnν)

= K[µ
µKν]

ν +
1

2
∇µQµ. (7.8.40)

where Qµ = 2[aµ −Knµ] and K = Kα
α. Inserting this into (7.8.31)

(3)R = R+K[µ
µKν]

ν −∇ ·Q (7.8.41)
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and therefore the bulk term of the Hilbert action can be written as

SG =
c4

16πG

∫
d4x
√
−gR =

c4

16πG

∫
d4x N

√
γ
[
(3)R−K[µ

µKν]
ν
]
+ S∂M (7.8.42)

where the surface term is

S∂M =
c4

8πG

∫
d4x N

√
γ ∇µ(aµ −Knµ). (7.8.43)

Now (3)R contains no time derivatives of the metric, so it is a “potential” term. The
bulk action therefore has the classic form of “kinetic energy”, captured by the extrinsic
curvature, minus “potential energy”, captured by the intrinsic curvature.

7.8.7 Hamiltonian

The Lagrangian density (here, we include
√
γ) for the gravitational field is now

L =
c4N

16πG

√
γ
[
(3)R+KµνK

µν −K2
]

(7.8.44)

Our configuration space consists of the lapse and shift functions together with the six
components of the induced metric. We want to obtain the momenta conjugate to these
variables.

The fact that all the indices of Kµν are perpendicular to nµ implies that K0µ = 0 =
Kµ0, therefore the Lagrange density can be written as

L =
c4N

16πG

√
γ
[
(3)R+KijK

ij −K2
]
, (7.8.45)

where K = γijK
ij . We may work only with the spatial components of K̂; consider

Kij = ∇inj = NΓ0
ij =

N

2
g0α [gαi,j + gαj,i − gij,α]

= − 1

2N
[Ni,j +Nj,i − γ̇ij ] +

N l

2N
[γli,j + γlj,i − γij,l]

=
1

2N

[
γ̇ij −D(iNj)

]
(7.8.46)

where the braces as usual refer to the anticommutator.18

18Problem: Using the expressions for the unit hypersurface normal, show that

h0
0 = 0 = hi

0, hi
j = δji , h0

i = N i.

Use these expressions and the definition of the extrinsic curvature to demonstrate that

K0i = Ki0 = N lKil, K00 = N lNmKlm,

and hence that K0α = Kα0 = 0 and Kij = γilγjmKlm.
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Notice that there are no time derivatives of the lapse and shift functions in the La-
grangian, so the momenta conjugate to these functions are identically zero. Let these be
πN , conjugate to N , and πiN conjugate to Ni. The vanishing of these momenta will be the
primary constraints. There are time derivatives of the induced metric, however, so call πij

the momentum conjugate to γij , then

πij =
∂L

∂γ̇ij
=

c4

16πG

√
γ (Kij − γijK) (7.8.47)

Taking the trace,

π = − c4

8πG

√
γ K (7.8.48)

and thus
√
γKij =

16πG

c4

[
πij − 1

2
γijπ

]
. (7.8.49)

Now, from (7.8.46) we have

γ̇ij = 2NKij +D(iNj) (7.8.50)

so putting it all together to get the Hamiltonian density, we find

Hp = γ̇ijπ
ij + πNµ+ πiNνi − L = πNµ+ πiNνi +NH +NiH

i (7.8.51)

and thus the Hamiltonian

Hp[γij , πkl] =
∫
d3x

[
πNµ+ πiNνi +NH(γij , π

kl) +NiH
i(γij , π

kl)
]
, (7.8.52)

where we introduced Lagrange multipliers µ and νi to enforce the (four) primary con-
straints Φ = πN ≈ 0, Φi = πiN ≈ 0, and where

H =

(
c4
√
γ

16πG

)
(KijK

ij −K2 − (3)R) =

(
16πG

c4

)
Gijlmπ

ijπlm −
(

c4

16πG

)
√
γ(3)R,

H i = −
c4
√
γ

8πG
(DiK −DjK

ji) = −2Djπ
ji, (7.8.53)

in which

Gijlm =
1

2
√
γ
(γilγjm + γimγjl − γijγlm) (7.8.54)

and from which a total divergence,(
c4

8πG

)
∂i[
√
γ(N iK −KijNj)] = 2∂i(Njπ

ij) (7.8.55)



7.9. THE INITIAL VALUE PROBLEM 255

has been dropped. Notice that H is quadratic in the momenta and of the form gij(q)p
ipj+

V (q), with Gijkl playing the role of a “metric” on the configuration space of components

of the induced metric. Ĝ is called the DeWitt metric.
Given that πN , π

i
N and πij are the conjugate momenta, one should define the funda-

mental Poisson brackets so that only

{N(t, r⃗), πN (t
′, r⃗′)}t=t′P.B. = δ3(r⃗ − r⃗′)

{Ni(t, r⃗), π
j
N (t

′, r⃗′)}t=t′P.B. = δji δ
3(r⃗ − r⃗′)

{γij(t, r⃗), πkl(t′, r⃗′)}t=t
′

P.B. = (δki δ
l
j + δliδ

k
j )δ

3(r⃗ − r⃗′) (7.8.56)

are non-vanishing. Taking the Poisson brackets of πN and πiN with Hp then shows that
H and Hi are secondary constraints,

π̇N (t, r⃗) = {πN (t, r⃗),Hp}P.B. = H ≈ 0

π̇iN (t, r⃗) = {πiN (t, r⃗),Hp}P.B. = H i ≈ 0 (7.8.57)

and, after some tedium, it can be shown that the secondary constraints H and Hi form a
closed algebra,

{H(t, r⃗), H(t′, r⃗′)}t=t′P.B. = gij
(
Hi(t, r⃗) +Hi(t, r⃗

′)
)
∂jδ

(3)(r⃗ − r⃗′)

{H(t, r⃗), Hi(t
′, r⃗′)}t=t′P.B. = ∂i

(
H(t, r⃗)δ(3)(r⃗ − r⃗′)

)
{Hi(t, r⃗), Hj(t

′, r⃗′)}t=t′P.B. = H(i∂j)δ
(3)(r⃗ − r⃗′) (7.8.58)

There are four primary constraints and four secondary constraints, all of which are first
class. Thus, the Lagrange multipliers µ and νi cannot be determined and we could simply
set them to be zero. Furthermore, the vacuum gravitational field will have just 10 − 4 −
4 = 2 local degrees of freedom. Just as the contraints of gauge theores generate local
gauge transformations, the constraints of general relativity generate general coordinate
transformations.

7.9 The Initial Value Problem



Chapter 8

The Weak Field

Finding solutions of the gravitational field equations is a difficult affair in general. Because
of the non-linearity of the field equations, it is very useful to first consider approxima-
tions in which the gravitational field is weak, by linearizing the equations about a flat
(Minkowski) background. Gravity being the weakest of the known forces, these approx-
imate solutions can be of great practical importance in many situations of astrophysical
interest such as, for example, in the study of the far field surrounding massive bodies and
therefore of phenomena such as the precession of Mercury’s perihelion, the bending of
light about the sun, etc., the field within tenuous clouds of matter ,useful for studying the
effects of Dark Matter, for example, gravitational waves and more. The weak field of slow
moving bodies is the subject of the present chapter.

8.1 Linearization

In the absence of a cosmological constant, a weak gravitational field may be represented
by a small perturbation of the Minkowski metric, i.e., we take gµν = ηµν + hµν , where
|hµν ≪ |ηµν | (the inverse metric is then gµν = ηµν − hµν , where the indices on hµν (hµν)
will be raised/lowered by the Minkowski metric). This allows us to retain only terms that
are first order in hµν in the gravitational equations of motion. We can then think of hµν
as a symmetric second rank tensor field in Minkowski space and Einstein’s equations as
the equations of a free symmetric tensor field in Minkowski space, in this way enlarging
our repertoire of free, Lorentz invariant field theories.

8.1.1 Field Equations

Up to first order, the Christoffel symbols are

Γλµν =
1

2

(
hλµ,ν + hλν,µ − hµν,λ

)
(8.1.1)

256
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and the Riemann curvature is

Rαµβν =
1

2
(−∂α∂βhµν − ∂µ∂νhαβ + ∂α∂νhµβ + ∂µ∂βh

α
ν) . (8.1.2)

Contracting, we find the Ricci curvature,

Rµν =
1

2

(
□hµν − h,µν + hα(µ,ν)α

)
(8.1.3)

and also the scalar curvature,

R = □h+ hαβ
,αβ. (8.1.4)

Einstein’s tensor becomes

Eµν =
1

2

(
□hµν − h,µν + hα(µ,ν)α − ηµν□h− ηµνhαβ,αβ

)
. (8.1.5)

If we define hµν = hµν − 1
2ηµνh, then h = −h and therefore hµν = hµν − 1

2ηµνh, so Eµν
can be re-expressed in terms of hµν as

Eµν =
1

2

(
□hµν + h

α
(µ,ν)α − ηµνhαβ

,αβ
)
. (8.1.6)

Now it is easy to see that Rαµβν is invariant under the transformation

hµν → h′µν = hµν + ξ{µ,ν}, (8.1.7)

where ξ is any arbitrary function. This is the change in the metric induced by a coordinate
transformation xµ → x′µ = xµ + ξµ(x) and corresponds to a “gauge freedom” within the
linearized theory, under which

hµν → h
′
µν = hµν + ξ{µ,ν} − ηµνξα,α. (8.1.8)

We may exploit this freedom to pick four functions, ξµ, so that h
µν
,ν = 0. To see that this

is possible, suppose that we know a solution of the equations of motion, hµν , but it does

not obey this condition. We will show that h
′
µν , given by (8.1.8), will satisfy this condition

provided we choose ξµ judiciously. We have

h
′µν

,ν = h
µν
,ν + ξ{µ,ν},ν − ηµνξα,αν = h

µν
,ν −□ξµ (8.1.9)

so if we take ξµ to be a solution of the equation

□ξµ = h
µν
,ν (8.1.10)
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then h
′µν

,ν = 0 and h
′
µν is an equivalent solution of the equations of motion. This is

called the “harmonic gauge” condition. Applying it from the start, we have the linearized
Einstein equations in their simplest form,

□hµν =
16πG

c4
Tµν . (8.1.11)

This is a wave equation in a flat background, so one can directly write down the solution
in terms of the retarded Green’s function for the four dimensional Laplacian,

hµν(t, r⃗) =
4G

c4

∫
d3r⃗′

Tµν(r⃗
′, ct− |r⃗ − r⃗′|)
|r⃗ − r⃗′|

+ h
(0)
µν (t, r⃗) (8.1.12)

where h
(0)

(t, r⃗) is an appropriate solution of Laplace’s equation and the integration is

over the past light cone of the observation point. Notice that h
(0)
µν must also satisfy the

harmonic gauge condition, because the stress tensor is divergence free. Equation (8.1.12)
is similar to the equation for electromagnetic waves except that the source is a second
rank symmetric tensor, not a vector, and can be used to describe a variety of physical
situations, including gravitational waves, in which the gravitational field is weak. The
stress tensor may belong to one or more fields, as determined in the previous chapters, or
a collection of particles.

8.1.2 Energy and Momentum

For small deviations about flat space, gravity is being described by a symmetric, second
rank tensor field propagating on a flat background. This should lead us to ask for the
energy and momentum carried by this field, just as we would for any other field Lorentz
invariant field theory. There are several proposals out there. For example, Wald1 sug-
gests that we should consider the vacuum equations to second order. While the linearized
vacuum equations require the first order Einstein tensor to vanish, this tensor will not gen-
erally vanish to second order in the metric perturbations. To continue to have a vanishing
Einstein tensor at second order, imagine adding to hµν a higher order perturbation,

gµν = ηµν + hµν + h(2)µν . (8.1.13)

To second order, the Einstein tensor will be quadratic in hµν and linear in h
(2)
µν . Any cross

terms would be third order in the perturbations, so to second order,

Gµν ≈ G(1)
µν (h

(2)) +G(2)
µν (h), (8.1.14)

1Wald, R. M., General Relativity, U. Chicago Press (1984).
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where the superscripts on G indicate the order of the expansion and we have used the fact

that G
(1)
µν (h) = 0. We may then write the last equation as

G(1)
µν (h

(2)) = −G(2)
µν (h), (8.1.15)

interpreting the right hand side as proportional to the stress energy tensor of the gravita-
tional, according to

tµν = − c4

8πG
G(2)
µν (h). (8.1.16)

It is certainly conserved, by the Bianchi identity, and symmetric by the properties of the
Einstein tensor. It is not gauge invariant, as is to be expected (it is impossible to define
a diffeomorphism invariant local energy and momentum density), and involves second
derivatives of the linearized field, hµν , a feature that is absent in other field theories.

It is possible, of course, to approach the question of the energy and momentum of the
gravitational field in a more canonical way, following the techniques laid out in Chapter 2.
Note that another approach to (8.1.5) is via the bulk action of (7.4.6). The bulk action is
Lorentz invariant in the weak field limit and first order in field derivatives, which makes
it straightforward to apply the machinery of Chapter 2. In the linear approximation the
action2

Sbulk =
c4

16πG

∫
d4x

[
hαβ,ηh

η
α,β − h,βhβη,η −

1

2
hαβ,ηh

αβ,η +
1

2
h,ηh

,η

]
, (8.1.17)

is both Lorentz invariant and gauge invariant provided that the fields vanish rapidly enough
at the boundary. The Lagrangian, however, is not gauge invariant, owing to the surface
terms that have been dropped. 3,4

2Problem: Derive (8.1.5) from (8.1.17).
3Problem: Show that Sbulk in (8.1.17) can be written as:

Sbulk =
c4

16πG

∫
d4x

[
h
αβ

,ηh
η
α,β −

1

2
hαβ,ηh

αβ,η
]
.

where hµν has been defined earlier.
4Problem: Show that so long as hµν vanishs rapidly enough at the boundary, the action is invariant

under a restricted gauge transformation
δghµν = −ξ{µ,ν},

where ξµ preserves its asymptotic behavior. Hint: You will need to integrate by parts several times, eg.,
write the first term as

δgSbulk,1 ∼
∫
d4x

[
δgh

αβ
,ηh

η
α,β + hαβ,ηδgh

η
α,β

]
∼

∫
d4x

[
ξ{α,β}ηhηα,β + hαβ,ηξ{η,α}β

]
∼

∫
d4x

[
2ξα□hηα

,η + 2ξβhηα
,αβη

]
.
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One finds

∂L

∂hµν,λ
=

c4

16πG

[
hλµ,ν + hλν,µ − ηµνhλσ

,σ − 1

2
ηλµh,ν − 1

2
ηλνh,µ − hµν,λ + ηµνh,λ

]
.

(8.1.18)
If we call this quantity F λµν then it is clear that ∂λF

λµν = c4Eµν/(8πG) so Euler’s
equations are precisely (8.1.11). Therefore, while F λµν itself is not gauge invariant, its
derivative, ∂λF

λµµ is gauge invariant and vanishes in the vacuum. It can be written as

F λµν =
c4

16πG

[
h
λµ,ν

+ h
λν,µ − hµν,λ − ηµνhλσ,σ

]
(8.1.19)

and is symmetric in (µ, ν), i.e., F λ[µν] = 0. The canonical stress energy tensor is obtained
by applying (2.3.3),

Θαβ = ηαβL− ∂L

∂hµν,α
hµν

,β = ηαβL− Fαµνhµν,β

= ηαβL− F̃αµνhµν
,β − c4

32πG
h
,α
h
,β
, (8.1.20)

where5

F̃αµν =
c4

16πG

[
h
αµ,ν

+ h
αν,µ − hµν,α

]
. (8.1.21)

It is not symmetric, because of the middle term, but we have already seen that the remedy
for this was given by Belinfante and Rosenfeld. We must first construct the intrinsic
angular momentum tensor density,

Sµαβ =
∂L

∂hλρ,µ
Gλραβ = FµλρGλραβ (8.1.22)

where
δhλρ = Gλραβδω

αβ. (8.1.23)

is the change in hλρ under a Lorentz transformation. As a symmetric, second rank tensor
field, hλρ suffers the change

hλρ → h′λρ =
∂x′λ

∂xσ
∂x′ρ

∂xκ
hσκ = (δλσ + δωλσ)(δ

ρ
κ + δωρκ)h

σκ

Doing this for all the terms, show that they cancel. Notice that, while the action is invariant under the
gauge transformation, the Lagrangian is not. This is because all the surface terms have been dropped in
using (7.4.6) to write (8.1.17).

5Problem: Show that

F̃λαβ → F̃ ′λαβ = F̃λαβ − 2ξλ,αβ +
(
ηλαδβσ + ηλβδασ − ηαβδλσ

)
ξκ

,κσ.

under the transformation hµν → h
′
µν = hµν − ξ(µ,ν) + ηµνξα

,α.
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δhλρ =
1

2

[
δλσδ

ρ
[αηβ]κ + δρκδ

λ
[αηβ]σ

]
hσκδωαβ, (8.1.24)

where we have taken care to antisymmetrize appropriately. Thus we could take

Gλραβ =
1

2

[
ηλ[αδ

σ
β]δ

κ
ρ + ηρ[αδ

σ
β]δ

κ
λ

]
hσκ (8.1.25)

and therefore
Sµαβ = Fµη[αhβ]η = F̃µη[αh

β]
η. (8.1.26)

gives the intrinsic angular momentum tensor. The last equality above follows from the
symmetries of F and h. To verify that this expression makes sense, we must check that
(2.3.8) holds. Now, because of the identity

F̃µηα = −F̃αηµ + c4

8πG
h
µα,η

, (8.1.27)

it is easy to see that in the vacuum and on shell the left hand side is

∂µS
µαβ = F̃µη[αh

β]
η,µ =

[
−F̃αηµ + c4

8πG
h
µα,η

]
h
β
η,µ − α↔ β

= −F̃αηµhβη,µ − α↔ β

= −1

2
F̃αηµ

(
h
β
η,µ + h

β
µ,η − hµη

,β
)
− 1

2
F̃αηµhµη

,β − α↔ β

= −1

2
F̃αηµF̃ βηµ −

1

2
F̃αηµhµη

,β − α↔ β

≡ −1

2

(
F̃αηµhµη

,β − F̃ βηµhµη
,α
)

where we have discarded terms that are symmetric in (α, β) in going from the first to the
second line and again in going from the fourth to the fifth line. The last expression is
precisely (Θαβ −Θβα)/2.

The Belinfante-Rosenfeld construction, (2.3.16), requires us to assemble the tensor

kµαβ = −
(
Sµαβ + Sαβµ + Sβαµ

)
= −

(
F̃µη[αh

β]
η + F̃αη[βh

µ]
η + F βη[αh

µ]
η

)
(8.1.28)

and (2.3.14) gives the symmetric energy momentum tensor as follows: we have already
seen that

Θαβ − ∂µSµαβ = ηαβL− c4

32πG
h
,α
h
,β − 1

2

(
F̃αηµhµη

,β
+ F̃ βηµhµη

,α
)
,
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Expanding the remaining terms,

−∂µ
(
Sαβµ + Sβαµ

)
= −∂µ

(
F̃αη[βh

µ]
η + F̃ βη[αh

µ]
η

)
= −∂µ

[(
F̃αηβ + F̃ βηα

)
h
µ
η − F̃αηµh

β
η − F̃ βηµh

α
η

]
= − c4

8πG

(
h
αβ

,ηµh
µη

+ h
αβ

,ηh
µη
,µ

)
+

+
(
F̃αηµ,µh

β
η + F̃αηµh

β
η,µ + F̃ βηµ,µh

α
η + F̃ βηµh

α
η,µ

)
,

(8.1.29)

and applying (8.1.27) together with the vacuum equations, ∂µF
µηα = 0, it follows that

F̃αηµ,µ =
c4

8πG
h
µα,η

,µ (8.1.30)

and the right hand side of (8.1.29) simplifies to

= − c4

8πG

(
h
αβ

,ηµh
µη − hαµ,ηµh

βη − hβµ,ηµh
αη

+ h
αβ

,ηh
µη
,µ

)
+F̃αηµh

β
η,µ + F̃ βηµh

α
η,µ

(8.1.31)

Putting all the terms together again,

tαβ = Lηαβ − 1

2
F̃αηµ

(
hµη

,β − 2h
β
η,µ

)
− 1

2
F̃ βηµ

(
hµη

,α − 2h
α
η,µ

)
− c4

8πG

[
h
αβ

,ηµh
µη − hαµ,ηµh

βη − hβµ,ηµh
αη

+ h
αβ

,ηh
µη
,µ +

1

4
h
,α
h
,β
]

= Lηαβ +
16πG

c4
F̃αηµF̃ βηµ

− c4

8πG

[
h
αβ

,ηµh
µη − hαµ,ηµh

βη − hβµ,ηµh
αη

+ h
αβ

,ηh
µη
,µ +

1

4
h
,α
h
,β
]
.

(8.1.32)

The expression above involves second derivatives of field, in contrast with the energy
momentum tensors of the other fields we have examined so far. It is Lorentz covariant but
not gauge invariant. This is quite as it should be, considering that gauge transformations
are diffeomorphisms and a diffeomorphism invariant definition of energy and momentum
cannot exist.
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If we employ vacuum solutions satisfying h
αβ

,β = 0 the expression for the stress energy
tensor is simplified,

tαβ = Lηαβ +
16πG

c4
F̃αηµF̃ βηµ −

c4

8πG

[
h
αβ

,ηµh
µη

+
1

4
h
,α
h
,β
]

(8.1.33)

but a term involving second derivatives of the gravitational field persists. This term can,
however, be expressed as a total derivative,

h
αβ

,ηµh
µη

=
(
h
αβ

,ηh
µη
)
,µ

and therefore does not affect the total momentum, Pα, of (2.3.9), provided that the fields
vanish at the boundary. Indeed, under these conditions, the total stress energy of the
gravitational field on shell is also greatly simplified. Integrating by parts and dropping
surface terms, we find

⟨tαβ⟩ =
∫
d3r⃗ tαβ =

c4

16πG

∫
d3r⃗

[
h
ηµ,α

hηµ
,β − 1

2
h
,α
h
,β
]
, (8.1.34)

which has the vitrue of also being gauge invariant under restricted gauge transformations.6

8.2 Gravitoelectromagnetism

Of some astrophysical interest is the stress-energy tensor of ideal fluids,

Tµν = pηµν +
(
ρ+

p

c2

)
UµUν , (8.2.1)

where p is the pressure and ρ is the mass density. The non-relativistic limit of this tensor
brings along some useful simplifications with interesting results. In this case the fluid flows
slowly, U0 = 1 and U i = vi, so the components of the ideal fluid stress tensor approach

T 00 = ρ, T 0i =
(
ρ+

p

c2

)
vi, T ij = pδij +

(
ρ+

p

c2

)
vivj . (8.2.2)

Notice that |T 0i/T 00| ∼ O(v) and |T ij/T 00| ∼ O(v2), so to linear order in vi we simply
take

T 00 = ρ, T 0i ≈ ρvi, T ij ≈ 0. (8.2.3)

With this stress energy, the equation of motion (8.1.12) lets us take hij = 0, but note

that this is a choice in boundary condition, because we have set h
(0)
µν = 0, and will limit

6Problem: Derive (8.1.34) and show that it is gauge invariant under restricted gauge transformations.
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its application to localized, stationary sources. To continue, let h = h
0
0 = −h def

= 4Φ/c2

and h0i = h0i = Ai/c. These definitions mean that h00 = h00 − 1
2η00h = −2Φ and

hij = −(2Φ/c2)δij . The metric becomes7

ds2 = c2
(
1 +

2Φ

c2

)
dt2 − 2Ai

c
dxidt−

(
1− 2Φ

c2

)
δijdx

idxj . (8.2.4)

Furthermore,

Φ(t, r⃗) = −G
∫
d3r⃗′

ρ(r⃗′, ct− |r⃗ − r⃗′|)
|r⃗ − r⃗′|

Ai(t, r⃗) = −4G

c

∫
d3r⃗′

ρ(r⃗′, ct− |r⃗ − vr′|) vi(r⃗′, ct− |r⃗ − r⃗′|)
|r⃗ − r⃗′|

(8.2.5)

and the gauge condition requires that Ȧi = 0 and ∇ · A⃗ = −4Φ̇/c. The off-diagonal terms
in the metric in (8.2.4) represent a genuine correction to Newton’s law of gravitation but
its effect is small for slowly moving objects, being suppressed by v/c. Conservation of the
energy momentum tensor, Tµν,ν = 0, implies that

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0

∂

∂t
(ρv⃗) = 0. (8.2.6)

The first is the continuity equation and guarantees the conservation of mass, the second
says that momentum is conserved.

In this linear approximation, the Christoffel symbols are

Γ0
00 =

Φ̇

c2
, Γ0

0i =
Φ,i
c2
, Γ0

ij = −
1

2c3

(
Ai,j +Aj,i +

2Φ̇

c
δij

)

Γi00 =
Ȧi

c
+Φ,i, Γi0j =

1

2c

(
Ai,j −Aj ,i −

2Φ̇

c
δij

)
Γijk = −

1

c2
(
Φ,kδ

i
j +Φ,jδ

i
k − Φ,iδjk

)
. (8.2.7)

We will consider only the stationary case, taking ∇⃗ · A⃗ = Φ̇ = 0. The geodesic equations
for a test particle moving slowly relative to the source, dτ ≈ dt, U0 ≈ 1 and U i ≈ ui (we
use ui for the test particle velocity to distinguish it from the velocity distribution, vi(r⃗′),
of the source in (8.2.5)) will be

d2xi

dt2
= −Γi00 − 2Γi0ju

j = −Φ,i − 1

c

[
Ai,j −Aj ,i

]
uj , (8.2.8)

7With our definitions, both gravitational potentials, Φ and Ai, have the mechanical dimension l2/t2.
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or
d2r⃗

dt2
= −∇⃗Φ+

u⃗

c
× (∇⃗ × A⃗). (8.2.9)

It has the appearance of the Lorentz force of electrodynamics, with A⃗ playing the role of
the vector potential. The analogy is completed by defining

E⃗g = −∇⃗Φ

B⃗g = ∇⃗ × A⃗, (8.2.10)

whence

a⃗ = E⃗g +
u⃗

c
× B⃗g. (8.2.11)

In the same approximation, using (8.2.5), we also find that the field equations mirror
Maxwell’s equations,

∇⃗ · E⃗g = −4πGρ, ∇⃗ × E⃗g = 0

∇⃗ · B⃗g = 0, ∇⃗ × B⃗g = −
16πG

c
j⃗, (8.2.12)

thus completing the electromagnetic analogy, but only in the non-relativistic limit. The
sign of the source terms is opposite to its electromagnetic counterpart; this because “like
charges” attract in gravity. The extra factor of four in the magnetic source term reflects
the fact that the gravitational field is spin-2 whereas the electromagnetic field is spin-1.
Equations (8.2.10), (8.2.11), (8.2.12) and the gauge condition define “Gravitoelectro-
magnetism” or GEM for short.

8.2.1 Static and Stationary Sources

The linear approximation can be used to determine the gravitational field far from mas-
sive bodies, so long as they are not moving too fast. For an example, the gravitational
potentials Φ and Ai, far from a spherical, static massM , of radius R, located at the origin
are found to be

Φ(r⃗) = −GM
r
, Ai = 0, (8.2.13)

to leading order, where r =
√∑

i x
i2 and

M =

∫
d3r⃗′ρ(r⃗′) = 4π

∫ R

0
drρ(r). (8.2.14)
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It gives the linearized Schwarzschild line element,

ds2 = c2
(
1− 2GM

c2r

)
dt2 −

(
1 +

2GM

c2r

)
δijdx

idxj , (8.2.15)

in “isotropic” coordinates.
For another example, consider the gravitational field far from a massive, rotating

body. Applying (8.2.5) and the multipole expansion of the Green’s function, because
we’re interested only in the far region, gives

Φ(r⃗) = −G
r

∫
d3r⃗′ρ(r⃗′)

[
1 +

r⃗ · r⃗′

r2
+O(r−3) + . . .

]
≈ −GM

r
(8.2.16)

and

Ai(r⃗) = −4G

cr

∫
d3r⃗′ T 0

i(r⃗
′)

[
1 +

r⃗ · r⃗′

r2
+O(r−3) + . . .

]
≈ −4G

cr3
xl
∫
d3r⃗′ T 0

i(r⃗
′) x′l (8.2.17)

to leading order. To evaluate the final integral, consider the integral∫
d3r⃗′∂k(x

′ix′lT 0k) =

∫
d3r⃗′

(
x′lT 0i + x′iT 0l + x′ix′lT 0k

,k

)
. (8.2.18)

By the continuity equation, the last term on the right hand side above vanishes for a
stationary source. The left hand side above also vanishes if the integral is taken over the
entire source. Therefore the symmetric part of the integrand for Ai(r⃗) vanishes,∫

d3r⃗′T 0
(i(r⃗

′)x′l) = 0, (8.2.19)

and Ai(r⃗) depends only on the antisymmetric part,

Ai(r⃗) = −
2G

cr3
xl
∫
d3r⃗′T 0

[i(r⃗
′) x′l] = −

4G

cr3
xl
∫
d3r⃗′L0

il(r⃗
′) (8.2.20)

where L0
il(r⃗

′) are the spatial components of the orbital angular momentum tensor density
as defined in (2.3.7). This term can be written in terms of the total angular momentum
Li = −ϵijkL0

jk (equivalently, 2L0
il = −ϵilkLk),

Ai(r⃗) =
2G

cr3
ϵilkx

lLk =
2G

cr3
(r⃗ × L⃗)i (8.2.21)

The GEM metric is,

ds2 = c2
(
1− 2GM

c2r

)
dt2 − 4G

c2r3
(r⃗ × L⃗)idx

idt−
(
1 +

2GM

c2r

)
δijdx

idxj , (8.2.22)
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the gravitoelectric and gravitomagnetic fields are

E⃗g = −
GM

r2
r̂

B⃗g =
2G

cr3

[
L⃗− 3(r̂ · L⃗) r̂

]
(8.2.23)

and the gravitomagnetic acceleration of a test particle moving with velocity u⃗ will be

a⃗ =
u⃗

c
× (∇⃗ × A⃗) = 2G

c2r3

[
u⃗× L⃗ + 3(r̂ × u⃗)(r̂ · L⃗)

]
. (8.2.24)

A test particle moving in the equatorial plane, with an inward radial velocity, will experi-
ence a tangential acceleration in the direction of the rotation and, vice-versa, opposite the
direction of the rotation if it is moving radially outward. This effect is known as rotational
“frame dragging” (or the “Lense-Thirring” effect) and occurs whenever the off-diagonal
components of the metric are non-vanishing.8 The effect is stronger for closer objects, so
imagine an extended test object falling into a massive, stationary body: the inner parts of
the test object will be dragged more than the outer parts, resulting in a net torque that
causes the the test body to rotate about itself, creating a locally rotating frame even as it
is dragged as a whole around the rotating body.9

8.2.2 Hydrodynamics in GEM

An ideal fluid cannot avoid gravitational collapse without pressure. To find the non-
relativistic Euler equations, we must consider the conservation equations on the space-time
given by (8.2.22), taking Tµν to order v2

T 00 ≈ ρ
(
1 +

v2

c2

)
, T 0i ≈ ρvi, T ij ≈ pδij + ρvivj . (8.2.25)

Using the connections in (8.2.7), we find, to lowest order,

∇µTµ0 = 0 ⇒ ∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0,

8You are already familiar with this effect as the “Coriolis Effect” in Newtonian mechanics.
9Problem: Suppose that the angular momentum vector points in the z direction with magnitude L. (i)

Show that the metric in (8.2.22) can be given in isotropic coordinates as

ds2 = c2
(
1− 2GM

c2r

)
dt2 +

4GL

c2r
sin2 θ dϕdt−

(
1 +

2GM

c2r

)(
dr2 + r2dθ2 + r2 sin2 θdϕ2) .

(ii) Now consider the conserved charges associated with diffeomorphism invariance of the metric in (7.5.19).
Taking ϵµ = (1, 0, 0, 0) and S to be the two sphere of radius r (thus nµ = (1, 0, 0, 0) and rµ = (0, 1, 0, 0)
and ϵϵ′ = −1) in (6.7.67), show that, in the linear approximation, Qt =Mc2, i.e., the mass of the body is
conserved. (iii) Repeat the calculation, taking ϵµ = (0, 0, 0, 1) and show that Qϕ = 3L, implying that the
angular momentum is conserved.
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∇µTµi = 0 ⇒ ρ
dvi
dt

= −∂ip− ρ∂iΦ− ρ
vj

c
(Ai,j −Aj,i), (8.2.26)

where we have included terms of linear order in v/c. These are the continuity and Euler
equations respectively. In the static case, we recover the equation of hydrostatic equilib-
rium, ∇⃗p = −ρ∇⃗Φ. When rotation is present it gets modified by the gravitomagnetic
potential,

∂ip = −ρ∂iΦ− ρ
vj

c
(Ai,j −Aj,i). (8.2.27)

or

∇⃗p = ρE⃗g + ρ
v⃗

c
× B⃗g, (8.2.28)

a result we should have expected from (8.2.11). These equations must be supplemented
by an equation of state of the form p = p(ρ).

What we have described so far are only the first steps in a systematic perturbative
approach, called the Post Newtonian Expansion, in which both the field potentials (hµν)
and the speed of the matter (vi and ui) are assumed to be small (compared respectively
to unity and the speed of light). This approach was used extensively in the early days of
General Relativity to determine some of the observational consequences of Einstein’s the-
ory such as the precession of planetary orbits and the deflection of light in a gravitational
field, among others.

8.2.3 Scalar Fields and GEM

Let us begin with the action for a scalar field in a gravitational field,

S = −
∫
d4x
√
−g
[
gαβ∂αϕ

∗∂βϕ+ V (|ϕ|)
]
, (8.2.29)

where gαβ is the space-time metric, V (|ϕ|) is the scalar potential, which we take to have
the form

V (|ϕ|) = m2c2

ℏ2
|ϕ|2 + 2m

ℏ2
V1(|ϕ|). (8.2.30)

In the weak field approximation, gαβ = ηαβ + hαβ, the determinant of the metric is given
to linear order in h by

√
−g = 1 + 1

2h and to the same order in h

S = −
∫
d4x

(
1 +

1

2
h

)[
ηαβ∂αϕ

∗∂βϕ− hαβ∂αϕ∗∂βϕ+ V (|ϕ|)
]

= S0 −
1

2

∫
d4xh

[
ηαβ∂αϕ

∗∂βϕ+ V (|ϕ|)
]
+

∫
d4xhαβ∂αϕ

∗∂βϕ, (8.2.31)
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where S0 is the ordinary scalar field action in flat space. The remaining terms represent
interactions between the scalar field and the gravitational field. Let us now go to the
non-relativistic limit as we did in (2.5.12). Then the first term has the familiar form

S0 =

∫
dt

∫
d3r⃗

[
iℏ
2
ψ∗←→∂t ψ −

ℏ2

2m
|∇⃗ψ|2 − V1(|ψ|)

]
. (8.2.32)

In the same approximation, the second term

S1 = −
1

2

∫
dt

∫
d3r⃗ h

[
iℏ
2
ψ∗←→∂t ψ −

ℏ2

2m
|∇⃗ψ|2 − V1(|ψ|)

]
(8.2.33)

is ignorable, and the last term is

S2 =

∫
d4xhαβ∂αϕ

∗∂βϕ

≈
∫
dt

∫
d3r⃗

[
1

2
mc4htt|ψ|2 + iℏc2

2
hti {ψ∗(∇iψ)− (∇iψ∗)ψ}

]
= m

∫
dt

∫
d3r⃗

[
−ΦG|ψ|2 +

1

c
j ·A

]
, (8.2.34)

where

ji = −
iℏ
2m

[ψ∗(∇iψ)− (∇iψ∗)ψ] (8.2.35)

is the Schroedinger current (see (2.4.4)) in the non-relativistic limit.
To the desired order, therefore,

S =

∫
dt

∫
d3r⃗

[
iℏ
2
ψ∗←→∂t ψ −

ℏ2

2m
|∇⃗ψ|2 − V1(|ψ|)−mΦG|ψ|2 +

m

c
j ·A

]
. (8.2.36)

This may be put in an amusing form, if we use the “four-vector” Aµ = (Φ,−Ai/c) and
the “gauge covariant derivative” Dµ = ∂µ +

im
ℏ Aµ, in terms of which our action reads

S =

∫
dt

∫
d3r⃗

[
iℏ
2
ψ∗←→Dtψ −

ℏ2

2m
|Diψ|2 − V1(|ψ|)

]
, (8.2.37)

dropping terms of O(A2). The first two terms have the form of an “electromagnetic”
coupling. Varying the action (8.2.36) yields the non-linear Schroedinger equation

iℏDtψ = − ℏ2

2m
∇2ψ +

m

2
Φ + V ′

1(|ψ|)ψ (8.2.38)

where we have used ∇ ·A = 0 and defined the transport derivative

Dtψ =

(
∂t −

1

2c
A · ∇

)
ψ, (8.2.39)
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which accounts for frame dragging due to the rotation. Finally, to this order, the stress
energy tensor for the scalar field in (2.5.26) has the following components,

Tψ00 = mc4|ψ|2, Tψ0i = Tψi0 = −mc2ji (8.2.40)

therefore, the (8.2.38) must be supplemented by (8.1.12),

∇2Φ = −4πGm|ψ(t, r)|2

∇2Ai =
8iπGℏ
c

[ψ∗(∇iψ)− (∇iψ∗)ψ] (8.2.41)

This completes the setup for non-relativistic scalar fields in GEM. In condensed matter
physics, the non-relativistic scalar field action on a flat background describes a Bose-
Einstein condensate in the mean field or Hartree-Fock approach, with ψ representing the
single particle wave function. In the Hartree approximation, all bosons are in the state
ψ. When the gravitational interaction is included, within the context of GEM, the Bose-
Einstein condensate becomes weakly self-gravitating and so is of interest in astrophysical
phenomena. This system has therefore been proposed in a description of dark matter as
a Bose Einstein condensate, which successfully avoids several of the issues associated with
dust (“cold” dark matter) models.

Unfortunately, equations (8.2.38) and (8.2.41) form a coupled system that is impossible
to solve analytically. Nevertheless, a (remarkable) hydrodynamic analogy is obtained by
performing a Madelung transformation,

ψ(t, r⃗) =
√
ρ(t, r⃗)eiS(t,r⃗), (8.2.42)

on the GEM-scalar field system. The real and imaginary parts of the non-linear Schroedinger
equation are then

Dtρ+
ℏ
m

(
∇ρ · ∇S + ρ∇2S

)
= 0

DtS +
ℏ
2m

(∇S)2 + m

2ℏ
Φ+

1

ℏ
V ′(ρ) +Q = 0 (8.2.43)

where

Q = − ℏ
4m

[
∇2ρ

ρ
− 1

2

(
∇ρ
ρ

)2
]

(8.2.44)

is Bohm’s “Quantum Potential”. If we call v = ℏ∇S/m, the first equation has the form
of a continuity equation,

Dtρ+∇ · (ρv) = 0, (8.2.45)
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so v has the interpretation of a velocity. It can be thought of as the velocity of a scalar
field “fluid” for the second equation can also be put into a suggestive form, if we take its
gradient,

∂tv −
1

2c
∇(A · v) + 1

2
∇v2 + 1

2
∇Φ+

1

m
V ′′(ρ)∇ρ+ ℏ

m
∇Q = 0. (8.2.46)

Now the velocity field is irrotational, therefore ∇ivj = ∇jvi and it follows that ∇v2 =
2(v · ∇)v and ∇i(Ajvj) = vj∇iAj + (A · ∇)vi; this leads to the following generalization of
Euler’s equation,

Dtvi + (v · ∇)vi −
1

2c
vj∇iAj = −

1

ρ
∇iP −

1

2
∇iΦ−

ℏ
m
∇iQ (8.2.47)

for a fluid of mass density ρ and pressure P , where

∇iP =
ρ

m
V ′′(ρ)∇iρ. (8.2.48)

serves as an equation of state. For example, if we take the interaction potential to be of
the form V (ρ) = λ

4ρ
2 (i.e., V (ϕ) = λ

4 |ϕ|
4), we find

P =
λρ2

4m
. (8.2.49)

Thus repulsive self-interactions (λ > 0) lead to a positive pressure and, vice-versa, attrac-
tive self-interactions to a negative pressure.

8.3 Plane Gravitational Waves

In the absence of sources, or if the sources are very distant, we could expand hµν in Fourier
modes, with mode functions that look like plane waves,

hµν(k, x) = Aµν(k⃗)e
ik·x (8.3.1)

where kµ = (−ωk, k⃗) and ωk = |⃗k|c. The actual metric functions will be of a similar form,

hµν = Aµν(k⃗)e
ik·x, Aµν = Aµν −

1

2
ηµνA

α
α. (8.3.2)

From the gauge condition, we find that the amplitude components of hµν must be perpen-
dicular to kµ, i.e., Aµνk

ν = 0 = Aµνk
ν − 1

2kµA
α
α. This set of four conditions reduces the

ten components of Aµν to six independent ones. But there are further constraints on Aµν ,
due to the fact that the solutions of Poisson’s equation in (8.1.10) are not unique. Indeed,
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one may add to ξµ any solution, χµ, of Laplace’s equation with no change in (8.1.10) so
that the gauge transformation still expresses the perturbations in the simplified, gauge
fixed form. This is similar to the situation with the massless vector field, but this time we
have four additional conditions on hµν , so it is left with, once again, only two independent
components, equivalently two independent polarization states. It was to be expected as we
have already seen from counting the gravitational constraints that the pure gravitational
field has only two degrees of freedom at each event.

8.3.1 The Transverse-Traceless gauge

Let us make this explicit, by taking (for a solution to Laplace’s equation)

χµ = bµe
ik·x (8.3.3)

with kµ = (−ωk, k⃗), as before. Let hµν and h
′
µν be two plane wave solutions satisfying

the gauge condition (therefore both are perpendicular to kµ) and let them be related by

h
′
µν = hµν − χ{µ,ν} + ηµνχ

α
,α. We will let Aµν be any set of coefficients (so long as they

are perpendicular to kµ) and ask if the additional freedom can be used to simplify A
′
µν .

The two sets of coefficients are related by

A
′
µν = Aµν − ik{µbν} + iηµνk · b (8.3.4)

and therefore, taking the trace, (A = A
α
α)

A
′
= A+ 2ik · b (8.3.5)

We could choose bµ so that A
′
= 0, in which case

k · b = i

2
A =

ωk
c

2
b0 + k⃗ · b⃗ ⇒ k⃗ · b⃗ = i

2
A− ωk

c

2
b0 (8.3.6)

Three further conditions may be imposed on bµ so we ask for A
′
0i = 0, which gives

A0i − ik0bi − ikib0 = 0 (8.3.7)

or, “dotting” with ki,

A0ik
i = −iωkk⃗ · b⃗+

iω2
k

c2
b0 =

ωk
2
A+

2iω2
k

c2
b0, (8.3.8)

upon eliminating k⃗ · b⃗ by using the previous equation. This can be used to solve for b0 in
terms of the components of the matrix A and of the momentum k,

b0 = −
ic2

2ω2
k

[
A0ik

i − ωk
2
A
]
. (8.3.9)
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Now because Aµν is perpendicular to kµ, we have in particular A0µk
µ = 0, or ωkA00/c

2 =
−A0ik

i. Therefore b0 can be re-expressed as

b0 =
i

2ωk

[
A00 +

1

2
c2A

]
, (8.3.10)

which ensures that A
′
00 = 0. The solution for b0 can be reinserted into (8.3.7) to find bi,

bi =
i

ωk

[
A0i +

ki
2ωk

(
A00 +

1

2
c2A

)]
. (8.3.11)

Thus all the components of bµ are fixed while A
′
µν is constrained to be traceless and

transverse, satisfying A
′
0µ = 0. We could simply begin with a traceless and transverse

(TT) form of the amplitude tensor, which we henceforth refer to as ATT
µν .

If, for example, the wave propagates in the z direction then k1 = k2 = 0 and

hTT
µν =


0 0 0 0
0 A(t, z) B(t, z) 0
0 B(t, z) −A(t, z) 0
0 0 0 0

 = A(t, z)e+ +B(t, z)e× (8.3.12)

where e+ and e× refer to the polarization states

e+ =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 , e× =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 (8.3.13)

It is completely characterized by its energy, and the coefficients A(t, z) and B(t, z). Again,

since h
TT
µν is traceless, there is no difference between h

TT
µν and hTT

µν .

8.3.2 Effect on Matter

We can understand the effect of this gravitational wave by considering the geodesic motion
of particles as a gravitational wave passes by. Consider a wave traveling in the x3 direction
and passing a stationary particle (U0 = const.); the geodesic equations become simply

dU i

dτ
= 0, (8.3.14)

so a particle that was initially at rest, will experience no acceleration and remain at rest,
i.e., its coordinates do not change.
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Figure 8.1: Effect of an e+ Gravitational Wave on a ring of particles in a plane ⊥ to its
propagation.

However, consider two particles at rest, say along the x axis, and separated by a
coordinate distance ∆x in the z = 0 plane. As a e+ wave passes them, the proper distance
between the particles will be

∆lx =

∫
| − gµνdxµdxν |1/2 =

∫ ∆x

0

√
gxxdx = ∆x

√
1 +A0 cos(ckt) (8.3.15)

Likewise, particles separated along the y axis will experience a changing proper distance
according to

∆ly =

∫ ∆y

0

√
gyydy = ∆y

√
1−A0 cos(ckt) (8.3.16)

so particles along the x axis are “pushed out” while particles along the y axis are “pulled
in”, and vice versa (depending on the phase of the incoming wave). We can make this
even more explicit by considering two particles in the x− y plane, separated by a distance
∆ along a line making an angle θ with the x axis, so that

∆l+ =

∫ √
gxxdx2 + gyydy2 = ∆

√
(1 + α(t)) cos2 θ + (1− α(t)) sin2 θ (8.3.17)

where α(t) = A0 cos(ckt) ≪ 1. Instead of two particles, now consider a ring of particles
for which diametrically opposite pairs make angles θ with the x axis, i.e., θ ∈ [0, 2π), then
we can view the above as the expression for the separation between diametrically opposite
points on an ellipse of time-varying eccentricity

e =

√
1− 1− |α(t)|

1 + |α(t)|
=

√
2|α(t)|

1 + |α(t)|
(8.3.18)

This is shown in figure 8.1

Next we analyze the passage of an e× wave on particles lying in the plane perpendicular
to its propagation. It is easy to see that particles separated along the x and y axes are not
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Figure 8.2: Effect of an e× Gravitational Wave on a ring of particles in a plane ⊥ to its
propagation.

affected by the wave, but particles separated along a line making an angle θ ( ̸= 0, π/2)
with the x axis will again experience the “pushing” and “pulling”. This time,

∆l× =

∫ √
dx2 + dy2 + 2gxydxdy = ∆

√
1 +B0 cos(ckt) sin 2θ. (8.3.19)

This can be brought to the same form as (8.3.17) if we rotate the coordinate system by
π/4, i.e., define θ′ = θ + π/4 and rewrite (8.3.19) as

∆l× = ∆

√
(1 + β(t)) cos2 θ′ + (1− β(t)) sin2 θ′. (8.3.20)

where β(t) = B0 cos(kct). The conclusions are the same as before, the ellipsoidal pertur-
bations are rotated by π/4 in the xy plane, as shown in figure 8.2.10

The changing proper distance between objects during the passage of a gravitational
wave is measured by gravitational wave detectors. They are monitored by measuring the
light travel time in the mutually perpendicular arms of a Michelson Morley interferometer.
Differences in the light travel time produce measurable interference fringes in the output
of the interferometer.

10Problem: Apply the equation for geodesic deviation (7.7.14), taking the non-relativistic limit, U0 ≈ 1,
U i ≈ 0, to arrive at the same conclusions. First show that

∂2V µ

∂t2
= −c2Rµ

0ν0V
ν , (8.3.21)

whence, for separations (V x, V y), in the xy plane,

∂2V x

∂t2
≈ c2

2

[
ÄV x + B̈V y

]
,
∂2V y

∂t2
≈ c2

2

[
ÄV x − B̈V y

]
.

Then argue for the ellipsoidal perturbations as follows: first let V i = V i
0 + δV i, where V i

0 is the separation
before the passage of the wave and assume that δV i ≪ V i

0 ; the equations become

¨δV x ≈ c2

2

[
ÄV x

0 + B̈V y
0

]
, ¨δV y ≈ c2

2

[
ÄV x

0 − B̈V y
0

]
.

Take A = A0 cos(ckt) and B = B0 cos(ctk).



276 CHAPTER 8. THE WEAK FIELD
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Figure 8.3: A distant, localized, gravitational source.

8.4 Sources of Gravitational Waves

We now give a general form of hTT
µν for an arbitrary (null) wave vector, kµ. To do this,

we first construct a projection operator that projects perpendicular to the direction of
propagation. However the wave vector is null, so we employ a second null vector mµ that
also satisfies m · k = −1 and define

Pµν = ηµν + k(µmν). (8.4.1)

It is easy to see that Pµν projects transverse to kµ, is symmetric, of trace Pαα = 2 and
satisfies PµαP

αν = Pµ
ν . With this projector we can construct the operator

Λµναβ = PµαPνβ −
1

2
PµνPαβ (8.4.2)

and define
hTT
µν = Λµν

αβhαβ (8.4.3)

where hαβ is given in Lorentz gauge, but not necessarily in the TT gauge.11

We will be interested in the spectral distribution of the radiation from a distant,
isolated source of finite size, d, much smaller than its distance, r, from the observer (see
figure 8.3). In terms of the temporal (inverse) Fourier transforms

Tµν(t, r⃗) =

∫ ∞

−∞

dω√
2π
e−iωtTµν(ω, r⃗)

11Problem: Show that hTT
µν defined by (8.4.3) is indeed traceless and transverse for a general h

αβ
. If we

consider propagation in the z direction, then kµ = {c−1, 0, 0, 1} and we could take mµ = 1
2
{c−1, 0, 0,−1}.

Show that the projection gives precisely the form in (8.3.12).
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hµν(t, r⃗) =

∫ ∞

−∞

dω√
2π
e−iωthµν(ω, r⃗), (8.4.4)

the wave equation will read

hµν(ω, r⃗) =
4G

c4

∫
d3r⃗′

Tµν(ω, r⃗
′)

|r⃗ − r⃗′|
eik|r⃗−r⃗

′| (8.4.5)

where k = ω/c. Now, since the integration is over the source and |r⃗| ≫ |r⃗′|, we can
approximate

|r⃗ − r⃗′| ≈ r − n̂ · r⃗′, (8.4.6)

where n̂ = r̂, so that

hµν(ω, r⃗) ≈
4G

c4
eikr

r

∫
d3r⃗′ Tµν(ω, r⃗

′)e−ikn̂·r⃗
′
. (8.4.7)

The Lorentz gauge ensures that we have to evaluate only the spacelike components of
hµν(ω, r⃗), for

hµν
,ν
= 0 ⇒ iω

c2
hµ0(ω, r⃗) + hµk

,k
(ω, r⃗) = 0

⇒ hµ0(ω, r⃗) =
ic2

ω
hµk

,k
(ω, r⃗) (8.4.8)

and therefore

hi0(ω, r⃗) =
ic2

ω
hik

,k
(ω, r⃗), h00(ω, r⃗) = −

c4

ω2
hik

,ik
(ω, r⃗). (8.4.9)

Now the spacelike components of ĥ are obtained from the spacelike components of the
stress energy tensor. If we define the wave vector k⃗ = kn̂, then

hij(ω, r⃗) ≈
4G

c4
eikr

r

∫
d3r⃗′ Tij(ω, r⃗

′)e−ik⃗·r⃗
′
. (8.4.10)

The exponent, above, has the Taylor expansion

e−ik⃗·r⃗
′
=

∞∑
s=0

(−ik⃗ · r⃗′)s

s!
(8.4.11)

so in the long wavelength limit, i.e., if the wavelength λ = 2π/k ≫ d, we may replace the
exponential by unity and

hij(ω, r⃗) ≈
4G

c4
eikr

r

∫
d3r⃗′ Tij(ω, r⃗

′). (8.4.12)
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Conservation of stress energy allows us to express the integral in a useful way. Using it
we find

Tµν,ν = 0 ⇒ Tµ0,t + Tµk,k = 0 ⇒ iωTµ0(ω, r⃗) = Tµk,k(ω, r⃗). (8.4.13)

With this in mind, consider the fact that

0 =

∫
d3r⃗′∂′k

[
x′iT jk(ω, r⃗′) + x′jT ik(ω, r⃗′)

]
=

∫
d3r⃗′

[
2T ij(ω, r⃗′) + x′iT jk,k(ω, r⃗

′) + x′jT ik,k(ω, r⃗
′)
]

=

∫
d3r⃗′

[
2T ij(ω, r⃗′) + iω

(
x′iT j0(ω, r⃗′) + x′jT i0(ω, r⃗′)

)]
(8.4.14)

(being an integral over the entire source), which implies that∫
d3r⃗′ T ij(ω, r⃗′) = − iω

2

∫
d3r⃗′

(
x′iT j0(ω, r⃗′) + x′jT i0(ω, r⃗′)

)
= − iω

2

∫
d3r⃗′

[
∂′k

(
x′ix′jT 0k(ω, r⃗′)

)
− x′ix′jT 0k

,k(ω, r⃗
′)
]

= −ω
2

2

∫
d3r⃗′x′ix′jT 00(ω, r⃗′) (8.4.15)

where, in the last step, we again dropped a total derivative over the source volume and
used (8.4.13). The integral on the right is the quadrupole moment tensor, Qij , of the
source, more precisely,

Qij(ω) = 3

∫
d3r⃗′x′ix′jT 00(ω, r⃗′) (8.4.16)

so we find a simple expression for the generation of long wavelength gravitational waves
from a distant source,

hij(ω, r⃗) ≈ −
2Gω2

3c4
eikr

r
Qij(ω) ⇒ hij(t, r⃗) ≈

2G

3c4r
Q̈ij(t− r/c). (8.4.17)

and, from here, one could employ (8.4.9) to determine h0i(t, r⃗) and h00(t, r⃗).
The leading contribution to the long wavelength, gravitational wave produced by an

isolated source and observed in the radiation zone depends only on the acceleration of the
quadrupole moment of the source at the retarded time. On the other hand, the leading
contribution to the electromagnetic radiation is from the dipole moment of the source. The
reason for the absence of dipole radiation in gravity is that an accelerating gravitational
(energy) dipole moment is forbidden by the conservation of momentum. There is no
gravitational dipole radiation. The lowest contribution is from the quadrupole moment,
which is weaker than the dipole moment, so gravitational radiation is generally weaker
than electromagnetic radiation.
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Figure 8.4: A simplified binary system.

8.4.1 Example

To illustrate (8.4.17), we consider the particularly simple but still very interesting system
consisting of a binary star system. Assume that two equal masses are rotating slowly and
uniformly in identical circular orbits in the x − y plane about their center of mass, as
shown in figure 8.4, and that it is sufficient to describe this system within the Newtonian
approximation. Thus, if Ω is their angular velocity then their positions at time t may be
given as

rA,B(t) = R⟨cos(Ωt+ ϕA,B), sin(Ωt+ ϕA,B)⟩ (8.4.18)

(we are using the angular brackets to denote the vector displacement of each star from
the center). Without loss of generality, take ϕA = 0 and ϕB = π. We may give the stress
energy tensor as

T 00(t, r⃗′) =M
[
δ2(r⃗′ − rA(t)) + δ2(r⃗′ − rB(t))

]
δ(z′), (8.4.19)

whence we compute the non-vanishing components of the quadrupole moment,

Q11(t) = 2MR2 cos2(Ωt)

Q12(t) = 2MR2 cos(Ωt) sin(Ωt)

Q22(t) = 2MR2 sin2(Ωt) (8.4.20)

The gravitational radiation follows from (8.4.17),

hij(t, r⃗) =
8GM

3c4r
(ΩR)2

 cos(2Ωtr) − sin(2Ωtr) 0
− sin(2Ωtr) − cos(2Ωtr) 0

0 0 0

 , (8.4.21)
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where tr = t− r/c and the angular frequency of the orbits is given by

Ω =

√
GM

2R3
. (8.4.22)

The remaining components of hµν are now easily recovered from (8.4.9).



Chapter 9

Static and Stationary Solutions

Within regions in which the gravitational field is too strong for the linearization to yield
meaningful results, we must ask for exact solutions of the Einstein equations. These are
ten coupled non-linear differential equations to be solved simultaneously, by no means an
easy problem. To yield tractable results, we confine our search for solutions to situations
involving a high degree of symmetry with idealized matter sources. Idealized as our so-
lutions will be, they are still important as building blocks for our understanding of more
complicated (and realistic) situations for which sophisticated numerical techniques must
be applied. We categorize the solutions according to their symmetries and the kind of
matter they describe, i.e., according to the physical interpretation of the stress energy
tensor. As such, we will consider (a) Vacuum solutions with and without a cosmological
constant: Tµν = 0, (b) Electrovacuum solutions, for which the stress tensor describes the
electromagnetic field, (c) Dust solutions, where the stress tensor describes pressureless
dust, (d) Ideal Fluid solutions in a cosmological context, for which the stress tensor de-
scribes an ideal fluid with some equation of state and (e) solutions sourced by classical
fields.

Before we proceed, it is well to say a few words about two essential concepts.

• Singular Space-time: The question of what constitutes a singular space-time is a very
difficult one. Here we take the pragmatic view that, in a singular space-time, one or
more of the curvature invariants becomes infinite somewhere, i.e., at a “point” or at a
set of points. Curvature invariants are scalars constructed from the Riemann tensor,
its derivatives and its contractions. For example, the Ricci scalar, R, is a curvature
invariant of the first order in the Riemann tensor and R2, RαβR

αβ and RαβµνR
αβµν

are examples of curvature invariants to second order in the Riemann tensor. Higher
order invariants can, of course, be likewise constructed. Because curvature serves as
a measure of the energy density and pressure of matter via Einstein’s equations, the

281
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physical properties of matter also become infinite at a space-time singularity. Space-
time singularities therefore signal a breakdown of the laws of physics wherever they
appear. What exactly is meant by “where” is, of course, ambiguous, because “where”
the geometry breaks down the notion of time and place will have no meaning. One
may detect these points by following a geodesic (lightlike or timelike), from any point
where the curvature is well behaved and finding that it terminates at a finite value
of the affine parameter, as it runs into the curvature singularity.

• Geodesic Incompleteness: If a geodesic of a space-time cannot be extended either into
the past or into the future to arbitrary values of the affine parameter then it is said to
be past or future incomplete. For a particular solution, geodesic incompleteness may
simply signal a failure of the coordinate system being used (a coordinate singularity),
in which case it can be extended by extending the coordinate system. It may also
indicate the presence of a genuine curvature singularity (which has to be verified)
at the point beyond which it cannot be extended. (For example, all infalling radial
geodesics will be future incomplete in the space-time of a black hole and the geodesics
of a Big Bang cosmology will be past incomplete.)

9.1 Spherical Symmetry

The earliest and arguably the most important solution of the Einstein equations, apart
from Minkowski space, was obtained by Karl Schwarzschild in 1916, very shortly after
Einstein published the gravitational field equations (in 1915). The solution describes a
spherically symmetric vacuum and is, as we will soon prove, unique (subject, of course,
to spherical symmetry). Whereas Schwarzschild solved Einstein’s equations without a
cosmological constant, we will here consider the more general case with a cosmological
constant, Λ.

Spherical symmetry means that it is possible to foliate the three dimensional space by
two spheres. The metric on each sphere of the foliation is

ds2(2) = dθ2 + sin2 θdφ2 (9.1.1)

where (θ, ϕ) are coordinates on the two sphere and may be identified with the polar
and azimuthal angle respectively, when the two sphere is viewed as embedded in a three
dimensions. The two sphere is a maximally symmetric space.1 We will now appeal to
the following theorem (without proof): for a m dimensional space-time foliated by n
dimensional maximally symmetric spaces with coordinates ui and metric γij , it is always

1Recall that a maximally symmetric n dimensional space is one that possesses the maximum number,
n(n + 1)/2, of linearly independent Killing vectors. You have already determined the three independent
Killing vectors of the two sphere in a pervious exercise.
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possible to find m− n coordinates, va, such that the space-time metric can be expressed
as

ds2 = −gµνdxµdxν = −gabdvadvb −R2(v)γijdu
iduj . (9.1.2)

where R(v) is some function of the m − n coordinates. A general, four dimensional,
spherically symmetric metric will then take the form

ds2 = −g11(dv1)2 − 2g12dv
1dv2 − g22(dv2)2 −R2(v1, v2)dΩ2 (9.1.3)

where dΩ2 = dθ2 + sin2 θdφ2 and the metric components gab are all functions of (v1, v2)
(we have not written this dependence out explicitly). Notice that the area of a sphere at
fixed (v1, v2) is 4πR2, so R(v1, v2) is called the “area radius”. Let us use the area radius
as one of our coordinates, solving R(v1, v2) = r for v2, and call the v1 = T . Replacing
v2 = v2(T, r) in the line element, it will take the form

ds2 = −gTTdT 2 − 2gTrdTdr − grrdr2 − r2dΩ2, (9.1.4)

where the metric components are all functions of (T, r). We now want to find a new
function t(T, r), if possible, which is such that the two dimensional (T, r) metric gets
replaced by

ds2(2) = −gttdt
2 − g′rrdr2 (9.1.5)

This would only be possible if we could satisfy the conditions:

gtt

(
∂t

∂T

)2

= gTT

gtt

(
∂t

∂r

)2

+ g′rr = grr

gtt

(
∂t

∂T

)(
∂t

∂r

)
= gTr (9.1.6)

These are three equations for three unknown functions, t(T, r), gtt(T, r) and g′rr(T, r).
They could be solved, in principle, subject to initial conditions for t(T, r), and the metric
could be given as

ds2 = −gtt(t, r)dt2 − g′rr(t, r)dr2 − r2dΩ2. (9.1.7)

Now we assume that the manfold is locally Lorentzian and identify t with the time-like
coordinate, so gtt(t, r) is negative definite. We have therefore concluded that the most
general spherically symmetric metric has the form

ds2 = A(t, r)dt2 −B(t, r)dr2 − r2dΩ2 (9.1.8)

and will depend on two unknown functions, to be determined by Einstein’s equations.
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In order to be static as well, the metric must also admit a time-like Killing vector
that is everywhere orthogonal to the spatial hypersurfaces. To satisfy this condition, the
spherically symmetric metric of (9.1.8) must be independent of time, so

ds2 = A(r)dt2 −B(r)dr2 − r2dΩ2 (9.1.9)

is the most general spherically symmetric and static line element. For a static metric there
are four Killing vectors, viz., the three spacelike Killing vectors associated with the two
spheres we used to foliate the three dimensional space and one timelike Killing vector. The
three spacelike Killing vectors are associated with the conservation of the three components
of the angular momentum and the timelike Killing vector with the conservation of energy.
These can be obtained by applying (7.5.19). For an asymptotically flat (static) spacetime,
integrating over the sphere at infinity, we find2

E = Qξ =
c4

2G

r2A′(r)√
A(r)B(r)

∣∣∣∣∣
r→∞

(9.1.10)

We will now apply (9.1.9) with certain simple sources to obtain some remarkably useful
exact solutions. But, first we remark on some quite general properties of geodesics in
static, spherically symmetric space-times.

9.2 Geodesics and Redshift

9.2.1 Geodesics

For every Killing vector, ξµ, of any metric, the scalar U ·ξ will be conserved along geodesics.
This is easy to prove because, if λ is the affine parameter,

d

dλ
(U · ξ) = Uµ

dξµ
dλ

+
dUµ

dλ
ξµ = UµUαξµ,α − ΓµαβξµU

αUβ (9.2.1)

where we used the geodesic equation in the last equality. We can rewrite this result as
follows:

d

dλ
(U · ξ) = 1

2

[
ξ(α,β) − 2Γµαβξµ

]
UαUβ. (9.2.2)

This is, of course, identically zero because ξ is a Killing vector, i.e., ξ(α;β) = 0.

2Problem: Show that the charges due to the three Killing vectors on the two sphere:

ηµ(1) = (0, 0, 0, 1)

ηµ(2) = (0, 0,− cosϕ, cot θ sinϕ)

ηµ(3) = (0, 0, sinϕ, cot θ cosϕ)

vanish.
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As the test particle’s angular momentum vector is conserved, the particle will move in
the plane perpendicular to its angular momentum vector, which, without loss of generality,
we can take to be the equatorial plane, θ = π/2. With this choice, two of the components
of the angular momentum will vanish and the two remaining non-vanishing conserved
quantities will be the energy, related to the timelike Killing vector, ξµ(t) = (1, 0, 0, 0),
and the surviving component of the angular momentum, related to the azimuthal Killing
vector, ξµ(φ) = (0, 0, 0, 1). Thus, for geodesics in the general spherically symmetric and

static metric (9.1.9), we have

ξ(t) · U = Ut = −A(r)
dt

dλ
= −E, ξ(φ) · U = Uφ = r2

dφ

dλ
= L, (9.2.3)

where we set θ = π/2. There is a preferred affine parameter for timelike geodesics, namely
the proper time, τ . If we take λ to be the proper time along the geodesics, the constants
are, respectively, the Killing energy and the angular momentum per unit mass of the
test particle. The Killing energy has been defined with a negative sign because both ξ(t)
and U are timelike, so their inner product is negative, and we want the particle energy
(per unit mass) to be positive. The second conservation law is the relativistic version
of Keppler’s second law. Unfortunately, E and L do not have such a clear meaning for
lightlike geodesics because of the freedom to rescale the affine parameter. However,

cL

E
=
cr2

A

dφ

dt
(9.2.4)

has dimension of length and is independent of any rescaling of λ. It can be related to
the impact parameter for a lightlike geodesic that propagates to infinity, where we assume
that the metric is almost flat.

The geodesic equations are,

dU t

dλ
+
A′

A
U tU r = 0

dU r

dλ
− r

B
Uφ2 +

A′

2B
U t

2
+
B′

2B
U r2 = 0

dUφ

dλ
+

2

r
UφU r = 0 (9.2.5)

and equations (9.2.3) give the first integrals of the first and the third. The first integral
of the second equation follows most easily from the constraint that the geodesics must
satisfy; for any affine parameter, λ, we may write

gµνU
µUν = −AU t2 +BU r2 + r2Uφ2 = −

(
ds

dλ

)2
def
= ϵc2, (9.2.6)
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where ϵ is a constant. If, moreover, λ is the proper time then ϵ = ∓1 or zero depending on
whether we are looking at timelike, spacelike or lightlike geodesics. For equatorial orbits
therefore, taking into account our conserved quantities, this amounts to

U r(r) = ±
√
ϵc2

B
+
E2

AB
− L2

Br2
. (9.2.7)

which completes the list of first integrals of the motion.3 Knowing the velocities,

Uµ = (−E,Ur(r), 0, L) (9.2.8)

allows us to compute the shear, expansion and rotation of the geodesic congruences. In-
deed, for timelike geodesics,

Bµν = Uµ;ν =



−A′Ur
2B

EA′

2A 0 0

EA′

2A U ′
r − B′Ur

2B 0 −L
r

0 0 rUr
B 0

0 −L
r 0 rUr

B


(9.2.9)

is symmetric, so we conclude that they are rotation free. In all static, spherically symmetric
vacuum space-times, a certain combination of Einstein’s equations will yield the relation
AB = c2. This simplifies the expression for the expansion,

Θ =
1

r2

(
r2Ur
B

)′
, (9.2.10)

for either timelike or null geodesics.

9.2.2 Gravitational Redshift

Stationary observers, i.e., at a fixed (r, θ, φ), in a static space-time are not in general
inertial observers. This is easily seen by calculating their acceleration vector, aµ. With
Uµ = (c/

√
A(r), 0, 0, 0) for such an observer, one finds

aµ = (U · ∇)Uµ =

(
0,
c2A′

2A
, 0, 0

)
. (9.2.11)

Consider two radially separated, stationary observers, located at r1 < r2 (with the same
angular coordinates). Suppose that observer O1, at r1, sends an electromagnetic wave,

3Problem: Derive the first integrals directly from the geodesic equations.
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which is later received by observer O2, at r2. We would like to know how the frequencies
of the emitted and received waves compare. To answer this question we must have a
coordinate independent (not observer independent!) definition of the frequency of an
electromagnetic wave. For this we appeal to the equivalence principle and the expression
for the frequency measured by any observer in flat space: if kµ = (−ω, k⃗) is the wave four
vector in some inertial frame, S, then ω′ = −k · U gives the wave frequency measured by
another inertial observer whose four velocity is Uµ relative to S. By the usual arguments
we take this to hold in all coordinate systems. Now kµ satisfies the null geodesic equation,
which we have already integrated. In particular, we know from (9.2.3) that kt = −E is
constant and the absence of a canonical affine parameter for null geodesics means that we
can choose it so that E represents the proper frequency of the electromagnetic wave.

Now the four velocities of the two observers, O1 and O2, are U
µ
(i) = (c/

√
A(ri), 0, 0, 0),

so we can give the frequencies measured by these observers as

ω1 = −k · U(1) =
Ec√
A(r1)

ω2 = −k · U(2) =
Ec√
A(r2)

(9.2.12)

and it follows that

ω2 =

√
A(r1)

A(r2)
ω1. (9.2.13)

Suppose, for example, that the space-time is asymptotically flat, i.e., it approaches flat
space as r →∞. In this case, let observer O2 be the asymptotic observer so that A(r2)→
c2 and O1 be located at r. Then O2 measures the frequency

ω∞ =
1

c

√
A(r) ω, (9.2.14)

where ω is the frequency measured at r. Now in the cases of interest it will turn out that
0 < A(r) < c2, so the electromagnetic wave is red-shifted as it climbs out of a gravitational
potential well. Conversely, it is blue-shifted as it falls into the well. We can also state this
result in terms of the wavelength,

λ2 =

√
A(r2)

A(r1)
λ1 (9.2.15)

and give the redshift factor as

z =
λ2 − λ1
λ1

=

√
A(r2)

A(r1)
− 1. (9.2.16)
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Because ω = 2π/T , where T is the proper period of the wave, gravitational redshifting is
equivalent to the statement that proper time intervals measured at r are related to proper
time intervals measured at infinity by

∆τ∞ =
c∆τ√
A(r)

, (9.2.17)

i.e., a proper time interval measured by a stationary clock at r corresponds to a larger
proper time interval as measured on an identical stationary clock at infinity.4 Therefore,
any activity deep within the space-time appears to take place at a slower rate to the
asymptotic observer. This phenomenon, known as gravitational time dilation, has even
been observed in terrestrial experiments by comparing clocks at differing altitudes. The
effect is small, being measured in nanoseconds.

9.3 Static Vacua

With a cosmological constant, the vacuum Einstein equations

Rµν −
1

2
gµν(R− Λ) = 0, (9.3.1)

and the metric (9.1.9) yield the following equations,

Ett = 0 ⇒ − 2B + (2− r2Λ)B2 + 2rB′ = 0

Err = 0 ⇒ 2A− 2AB + Λr2AB + 2rA′ = 0

Eθθ = 0 ⇒ − rBA′2 + 2A2B′ + 2ΛrA2B2 +A(−rA′B′ + 2BA′ + 2rBA′′) = 0

Eφφ = sin2 θEθθ (9.3.2)

The last is a consequence of spherical symmetry. The first says that

B(r) =

(
1 +

α

r
− Λr2

6

)−1

(9.3.3)

4A simpler approach to this particular case is the following: a proper time interval measured on a
stationary clock in the static space-time will be given by

∆τ =

√
A(r)

c
∆t,

therefore, if A(r)→ c as r →∞ then a proper time interval on a clock at spatial infinity will be ∆τ∞ = ∆t,
hence

∆τ∞ =
c∆τ√
A(r)

.

from which (9.2.14) and (9.2.16) follow. Employ similar reasoning to argue for length contraction.
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for some integration constant, α, whose meaning we will shortly determine. We also find
that

Ett
A

+
Err
B

= 0 =
(AB)′

rAB2
(9.3.4)

so that A(r)B(r) = c2β, where β is some constant. With these solutions for A(r) and
B(r) the last equation is an identity. Moreover, we can get rid of the constant β by simply
rescaling the time coordinate, t → βt. Our metric is therefore completely determined by
a single integration constant,

ds2 = c2
(
1 +

α

r
− Λr2

6

)
dt2 −

(
1 +

α

r
− Λr2

6

)−1

dr2 − r2dΩ2. (9.3.5)

To discover the meaning of this constant, consider the diffeomorphism charges, taking ϵµ

to be the time-like Killing vector, ϵµ = (1, 0, 0, 0), and Λ = 0. As we have seen before
(eg. in our study of the weak field) the conserved charge associated with time translation
invariance is the energy, specifically Mc2. Applying (7.5.19) we find

Qt = −
αc4

2G
=Mc2 ⇒ α = −2GM

c2
(9.3.6)

whereM now represents a point mass located at the origin.5 We therefore give the solution
in the form,

ds2 = c2
(
1− 2GM

c2r
− Λr2

6

)
dt2 −

(
1− 2GM

c2r
− Λr2

6

)−1

dr2 − r2dΩ2. (9.3.7)

When M = 0 and Λ > 0 the metric describes de-Sitter space (dS) and when M = 0 and
Λ < 0 it describes anti-de-Sitter space (AdS), both in static (or de-Sitter) coordinates.6

When Λ = 0 and M > 0 this is the Schwarzschild metric. It represents the space-time
of a point mass located at the origin of coordinates. Finally, when both M and Λ are not
zero, the space-time is called the “Schwarzschild-de-Sitter” space (SdS) when Λ > 0 or
the “Schwarzschild-Anti-de-Sitter” space (SAdS) when Λ < 0. Minkowski space, de-Sitter
space and Anti-de-Sitter space are maximally symmetric spaces, i.e., like the two sphere,
they possess the maximum number of Killing vectors.7

9.3.1 Uniqueness

The solution in (9.3.7) represents the unique vacuum solution of Einstein’s equations with
a cosmological constant. Its uniqueness can be proved quite easily by considering the most

5Problem: Show that the conserved charges associated with the three Killing vectors of the two sphere
vanish. These are associated with angular momementum.

6These were the coordinates that de-Sitter originally used.
7Problem: Obtain explicit expresions for the Killing vectors of dS and AdS space.



290 CHAPTER 9. STATIC AND STATIONARY SOLUTIONS

general spherically symmetric vacuum metric (not necessarily static),

ds2 = A(t, r)dt2 −B(t, r)dr2 − r2dΩ2 (9.3.8)

Of the four vacuum Einstein equations, Eµν = 0, the equation Etr = 0 tells us that B(t, r)
is independent of time and

Ett = 0 ⇒ − 2B + (2− r2Λ)B2 + 2rB′ = 0 ⇒ B(r) =

(
1 +

α

r
− Λr2

6

)−1

(9.3.9)

where α is some constant. Now we see that all of Einstein’s equations are time independent.
Also, inserting the solution for E(r) into Err = 0 gives

Err = 0 ⇒ 2A− 2AB + Λr2AB + 2rA′ = 0 ⇒ A(t, r)B(r) = c2β(t) (9.3.10)

and we can get rid of β(t) by simply defining a new time coordinate t→ t′ =
∫ t
β(t)dt. The

remaining Einstein equations are automatically satisfied, the metric becomes entirely time
independent and agrees with (9.3.7). Thus, every vacuum solution is static and reduces
to the SdS or SAdS solution. This is Birkhoff’s theorem.

9.3.2 de-Sitter Space

The metric

ds2 = c2
(
1− Λr2

6

)
dt2 −

(
1− Λr2

6

)−1

dr2 − r2dΩ2 (9.3.11)

represents only a part of de-Sitter space, called the static patch, r <
√

6/Λ. De-Sitter
space with d space dimensions is actually a hyperboloid in a higher dimensional flat,
Lorentzian manifold with d+1 spatial dimensions, Xi, and one time dimension, T , defined
by the constraint

c2T 2 −
∑
i

X2
i = −a2. (9.3.12)

where a is a real constant. The constraint preserves all of the symmetries of the d + 2
dimensional Lorentzian manifold, viz., d(d + 1)/2 rotations and d + 1 boosts, therefore
d+1 dimensional de Sitter space will admit d(d+1)/2+(d+1) = (d+1)(d+2)/2 Killing
vectors and is maximally symmetric. The four dimensional metric in (9.3.11) is recovered
by the following parameterization of the constraint:

X1 = r sin θ cosφ
X2 = r sin θ sinφ
X3 = r cos θ
X4 =

√
a2 − r2 cosh(ct/a)
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T =
1

c

√
a2 − r2 sinh(ct/a), (9.3.13)

which directly leads to (9.3.11) once we identify Λ with 6/a2. The space-time admits
no curvature singularities, but the parameterization is valid only so long as r < a. On
the hypersurface r = a, the norm of the timelike Killing vector vanishes. When this
happens, the hypersurface is a called a Killing Horizon. In this particular case, r = a is
known as the de-Sitter horizon. Because de-Sitter space has no curvature singularity,
the existence of the de Sitter horizon simply signals a breakdown of the coordinate system.
Other parameterizations of the constraint are possible. 8

Geodesics

The radial component of the velocity of equatorial geodesics for the de Sitter metric are

U r =
dr

dλ
= ±

√
E2

c2
−
(
L2

r2
− ϵc2

)(
1− r2

a2

)
(9.3.16)

where we have adopted the notation a2 = 6/Λ. When it is written as(
dr

dλ

)2

+ ϵc2
r2

a2
+
L2

r2

(
1− r2

a2

)
=
E2

c2
+ ϵc2. (9.3.17)

we notice the striking similarity with the energy equation describing orbits of test particles
in a central force. If we take λ to be the proper time, this allows us to identify an effective
potential measured by an observer attached to the test particle,

Veff = ϵc2
r2

a2
+
L2

r2

(
1− r2

a2

)
(9.3.18)

8Problem: The parametrization

Xi = ect/axi, 1 ≤ i ≤ 3

X4 = a cosh(ct/a)− r2

2a
ect/a

T =
a

c
sinh(ct/a) +

r2

2ac
ect/a, (9.3.14)

where r2 =
∑

i x
2
i , is called a “flat slicing” of dS. Show that (i) the parametrization is faithful and (ii) it

gives

ds2 = c2dt2 − e2ct/a
∑
i

dx2i . (9.3.15)
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It follows that the gravitational force is repulsive for timelike geodesics, attractive for
spacelike geodesics and vanishes altogether for lightlike geodesics. In the usual way, pro-
vided that L ̸= 0, we can give the solution of this equation as∫ r

r0

dr/r2√
E − L2

r2
− 1

2κr
2
= ± 1

L
(φ− φ0), (9.3.19)

where E = E2/c2 + L2/a2 + ϵc2 and κ = 2ϵc2/a2. This is precisely of the orbit of a body
in a central force whose magnitude is proportional to its distance from the force center
(like, eg., a harmonic oscillator). Therefore, borrowing the well known result, we give the
solution as

α2

r2
= 1 + ε cos 2(φ− φ0), (9.3.20)

where

α =

√
2L2

E
, ε =

√
1− 2κL2

E
(9.3.21)

and φ0 is an integration constant. Timelike geodesics, for which ε > 1, are then hyperbolæ
in the equatorial plane, spacelike geodesics are ellipses and lightlike geodesics (ε = 1) are
straight lines.9

For radial, timelike geodesics (L = 0) it is more convenient to consider (ṙ = dr/dτ)

ṙ2 =
E2

c2
+ ϵc2 − 1

2
κr2 ⇒ r̈ =

1

2

dṙ2

dr
= −1

2
κr (9.3.23)

so we have general solutions

r(τ) = A cosh(cτ/a) +B sinh(cτ/a), (9.3.24)

but they are subject to (9.3.23) and therefore the integration constants must satisfy

B2 −A2 = a2
(
E2

c4
− 1

)
. (9.3.25)

Lightlike geodesics are simply given by

r(λ) = ±E
c
λ+B, (9.3.26)

9Problem: This can be made explicit by taking x = r cosφ, y = r sinφ and φ0 = 0 (which amounts to
choosing an orientation of the x and y axes). Show that the solution takes the form

x2

α2/(ε+ 1)
− y2

α2/(ε− 1)
= 1, (9.3.22)

which describes an ellipse when ε < 1, a straight line when ε = 1 and a hyperbola when ε > 1.
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and the condition 0 < r < a implies that they are past and future incomplete, i.e.,
geodesics will exit the static patch in the past and in the future at finite values of the
affine parameter. Notice, however, that geodesics do not cross the horizon in a finite
coordinate time! To see this, it is sufficient to consider radial null geodesics, for which

dr

dt
=
dr/dλ

dt/dλ
= ±c

(
1− r2

a2

)
. (9.3.27)

Integrating the equation, setting r(t0) = 0, we find

r(t) = a tanh

(
c(t− t0)

a

)
(9.3.28)

showing that r only asymptotes to the horizon in coordinate time.
How can we understand the fact that gravity is repulsive when sourced by a positive

cosmological constant? The reason is that both pressure and energy density contribute to
the gravitational field in general relativity. Just as a negative energy density would lead
to a repulsive gravitational field (the gravitational force due to a negative mass would
be repulsive even in Newton’s theory), so does negative pressure. If we think of the
cosmological term as a source of the Einstein field equations, the effective stress tensor,

Tµν = − c4Λ

16πG
gµν , (9.3.29)

has the form of an ideal fluid with positive energy density and negative pressure. It satisfies
(just barely) the weak, null and dominant energy conditions, while violating the strong
energy condition. This violation of the strong energy condition is what leads to gravity
acting repulsively on timelike geodesics.

Analytic Extension

Mindful of the range of r, we can define a new coordinate system for de Sitter space as
follows. Letting

r∗ = −
∫

dr

1− r2

a2

= −a tanh−1 r

a
=
a

2
ln

1− r/a
1 + r/a

, (9.3.30)

the de Sitter metric takes the form

ds2 =

(
1− r2(r∗)

a2

)(
dt2 − dr2∗

)
− r2(r∗)dΩ2, (9.3.31)

where r∗ ∈ (−∞, 0]. This maneuver essentially pushes the horizon out to negative infinity,
where the metric becomes degenerate, but it leaves a simple light cone structure every-
where. Exploiting this simplified light cone, introduce the null coordinates u = ct − r∗,
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Figure 9.1: The maximally extended de Sitter space-time.

v = ct+ r∗; then the deSitter metric can be written as(
1− r2(u, v)

a2

)
dudv − r2(u, v)dΩ2 (9.3.32)

and we can get rid of the troublesome factor by defining a new set of null coordinates,
u = −ae−u/a ∈ (−∞, 0) and v = aev/a ∈ (0,∞). We find

ds2 = − a
2

uv

(
1− r2(u, v)

a2

)
dudv − r2(u, v)dΩ2

= e(u−v)/a
(
1− r2(u, v)

a2

)
dudv − r2(u, v)dΩ2

=

(
1 + r(u, v)/a

1− r(u, v)/a

)(
1− r2(u, v)

a2

)
dudv − r2(u, v)dΩ2

=

(
1 +

r(u, v))

a

)2

dudv − r2(u, v)dΩ2. (9.3.33)

But r(u, v) is found to be

r(u, v) = a

(
1 + uv/a2

1− uv/a2

)
, (9.3.34)
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so we may write the de Sitter metric as

ds2 =
1

(1− uv/a2)2
[
4dudv − a2

(
1 + uv/a2

)2
dΩ2

]
(9.3.35)

There is no pathology in the metric that prevents us from extending the ranges of the
coordinates u and v to the entire real line, so long as −a2 < uv < +a2. This is known
as the maximally extended de Sitter space. As r → a− both u and v approach zero.
Thus the horizon is matched to two null surfaces, viz., u = 0 and v = 0, whereas r → 0
and r →∞ are mapped to the hypesurfaces uv → −a2 and uv → a2 respectively. Indeed,
hypersurfaces of constant r are all characterized by uv = α, where −a2 ≤ α < +a2 is
constant. Inside the horizon, α < 0 and the surfaces are all timelike, but outside the
horizon, α > 0 and they are spacelike. Constant time (t) hypersurfaces are the straight
lines v/u = −δ, where δ is a constant. The null surfaces, u = 0 and v = 0, represent
t→ ±∞ respectively and are called the future and past horizons, H±, respectively.

We may also define the new coordinates, T and R by

u =
1

2
(cT −R) , v =

1

2
(cT +R) , (9.3.36)

and express the metric as

ds2 =
16a4

(4a2 − c2T 2 +R2)2

[
c2dT 2 − dR2 −

(
a+

c2T 2 −R2

4a

)2

dΩ2

]
(9.3.37)

The space-time diagram for maximal extension of de Sitter space-time is shown in figure
9.1. There we see that the space-time naturally divides into four regions, labeled I –
IV. Regions I and III have uv < 0 and are therefore covered by the static coordinates,
but regions II and IV have uv > 0. They represent the space-time beyond the de Sitter
horizon. Region I is what we would think of as the static de Sitter space: every future
directed, timelike geodesic in region I will eventually pass into region II and no future
directed path from II will get us back to region I. An observer in region I may move in
any radial direction, but must move forward in coordinate time; she can avoid crossing the
horizon by accelerating appropriately. In region II, the observer can move in any direction
in coordinate time, but must always move toward increasing r. Both regions II and IV
lie outside the de Sitter horizon. What one perhaps did not anticipate is the “doubling”
of the interior and exterior regions, i.e., the existence of regions III and IV. These are an
artifact of the analytic continuation and are not realized in nature.

9.3.3 Anti-de-Sitter Space

Like de Sitter space, Anti-de-Sitter space with d space dimensions is non-singular and can
be thought of as a quasi-sphere embedded in a flat, higher dimensional space. However,
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this time the higher dimensional space has d space dimensions and two time dimensions
and is SO(d, 2) invariant, while the quasi-sphere is defined via the constraint,

c2(T 2
1 + T2)

2 −
∑
i

X2
i = a2. (9.3.38)

The constraint preserves all of the SO(d, 2) symmetries of the original manifold, viz.,
d(d − 1)/2 spatial rotations, 2d boosts and one time rotation, therefore AdS will admit
the maximum number, d(d− 1)/2+1+2d = (d+1)(d+2)/2, of Killing vectors. The four
dimensional metric with a negative cosmological constant (Λ = −|Λ|),

ds2 = c2
(
1 +
|Λ|r2

6

)
dt2 −

(
1 +
|Λ|r2

6

)−1

dr2 − r2dΩ2, (9.3.39)

can be obtained by parameterizing the above constraint as follows:

X1 = r sin θ cosφ
X2 = r sin θ sinφ
X3 = r cos θ
cT1 =

√
a2 + r2 cos(ct/a)

cT2 =
√
a2 + r2 sin(ct/a), (9.3.40)

where, as before, a =
√
6/|Λ|. This time there is no restriction on r, the coordinates

are global but, as before, other parameterizations are possible.10 Note, however, that the

10Problem: A useful parameterization leads to the Poincaré coordinates of AdS: consider the transfor-
mations

X1 = aux1, X2 = aux2,
T2 = aut

X3 =
1

2u

(
1− u2a2 − u2[x21 + x22 − c2t2]

)
cT1 =

1

2u

(
1 + u2a2 + u2[x21 + x22 − c2t2]

)
.

where u > 0. Show that parameterization is faithful and that the line element is given as

ds2 = a2
(
u2(c2dt2 − dx21 − dx22)−

du2

u2

)
.

Because u > 0, this metric covers only half of AdS and the other half must be covered with a similar system,
for which u < 0. It enjoys the symmetries of the full Poincaré group, ISO(2, 1), in two space and one
time dimension, as well as an additional dilatation: {t, r⃗, u} → {λt, λr⃗, λ−1u}. A further transformation
u→ z = 1/u brings the metric into the form

ds2 =
a2

z2
(
c2dt2 − dx21 − dx22 − dz2

)
.

showing that AdS is conformally flat.
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periodic nature of the parametrization requires us to identify points that are separated
by ∆t = 2πa/c. Another way of saying this is that curves of constant r, θ, φ are closed
curves. This is very unpleasant in physics because closed time curves could lead to all
sorts of paradoxes, such as someone from the future returning to the past and killing their
own grandfather. Happily, we notice that because the metric is static periodicity in time
is not apparent. Therefore we simply unwrap all the time circles and extend them in
a line, allowing t to range over (−∞,∞) and discarding the original higher dimensional
quasi-sphere model of AdS. This space is referred to as the universal covering of AdS,
or CAdS.

Geodesics

The effective potential for geodesics now takes the form

Veff = −ϵc2 r
2

a2
+
L2

r2

(
1 +

r2

a2

)
(9.3.41)

Timelike geodesics with non-vanishing angular momentum will be elliptic and spacelike
geodesics will be hyperbolic. In particular, stable, circular, timelike orbits of radius

r =

√
aL

c
(9.3.42)

will exist. As was the case for dS, null geodesics experience no gravitational force in AdS
and travel in straight lines. The solutions are given in (9.3.19), with a2 → −a2. Radial
timelike geodesics, which are clearly given by

r(τ) = A cos(cτ/a) +B sin(cτ/a) (9.3.43)

together with the constraint,

B2 +A2 = a2
(
E2

c4
− 1

)
, (9.3.44)

just oscillate about r = 0 and never get to the boundary, r →∞. On the other hand, radial
null geodesics are straight lines given by (9.3.26) and eventually do reach the boundary of
AdS (as λ→∞). What about the coordinate time? Using

dr

dt
= ±c

(
1 +

r2

a2

)
(9.3.45)

we find

r(t) = a tan

(
c(t− t0)

a

)
(9.3.46)

showing that the boundary of AdS is reached in a finite coordinate time, ∆t = πa/(2c).
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9.3.4 Schwarzschild Black Hole

The Schwarzschild metric,

ds2 =

(
1− 2GM

c2r

)
dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2dΩ2, (9.3.47)

should be thought of as covering only a portion (the “static patch”) of the space-time
describing the gravitational field of a point mass, located at the origin.11 The coordinates
break down at r = rs, where

rs = 2GM/c2 ≈ 3 km

(
M

M⊙

)
, (9.3.48)

given in terms of the solar mass,M⊙ ≈ 1.99×1030 kg, and at r = 0. A genuine (curvature)
singularity of this space-time occurs only at r = 0. This is verified by computing the
Kretschmann scalar,

K = RαβµνRα
βµν =

12r2s
r6

. (9.3.49)

Thus, while static coordinates for the Schwarzschild metric are valid only so long as r > rs,
we should expect to be able to extend the coordinate system to cover the entire space-time,
up to the singularity at r = 0. The surface r = rs is nevertheless interesting because the
norm of the timelike Killing vector vanishes there. It is therefore a Killing horizon and
is called the Schwarzschild horizon. Its area radius, rs, is called the Schwarzschild
radius. This is similar to the case of dS, where the static patch is valid so long as r < a,
and the surface r = a is a Killing horizon called the deSitter horizon.

Outside the horizon, B(r) = (1− rs/r)−1 is positive and the normals to hypersurfaces
of constant r are all spacelike. This is just as it should be because hypersurfaces of
constant r are expected to be timelike. On the other hand, inside the horizon they are
all timelike, so that surfaces of constant r are spacelike! One might argue, of course, that
the coordinates cannot be used to draw any conclusions about the nature of hypersurfaces
when r < rs. However, the coordinates may be extended across the horizon and all the
way up to the singularity and this statement, being coordinate invariant, will continue to
hold true. Because surfaces of constant r are spacelike when r < rs, the singularity at
r = 0 is spacelike.

11Problem: Show that the exact solution in (9.3.47) is compatible with the GEM solution in (8.2.22)
with L⃗ = 0. Do this by finding a coordinate transformation from the radial coordinate, r, in (9.3.47) to a
new radial coordinate, r′, that transforms (9.3.47) to isotropic form:

ds2 =

(
1−GM/2c2r′

1 +GM/2c2r′

)2

dt2 −
(
1 +

GM

2c2r′

)4

(dr′2 + r′2dΩ2).

Then verify that the linearized version of the above is precisely (8.2.22) when L⃗ = 0.
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The gravitational redshift formula of (9.2.16) shows that an electromagnetic wave
emitted by a stationary source at a radius r in the Schwarzschild space-time will get
redshifted by the factor

z =

√
r

r − rs
− 1. (9.3.50)

Thus the wavelength of light emitted from a source closer to the horizon suffers a greater
redshift by the time its gets to the asymptotic observer, until the redshift factor simply
“blows up” as the source approaches the horizon. Therefore, the Schwarzschild horizon
is also an infinite redshift surface and appears black, hence this solution is commonly
known as the (eternal) Black Hole.12 The solution is asymptotically flat and, by (7.5.19),
its energy is Qξ =Mc2.

Geodesics

The geodesics of a particle outside the horizon are again given by (9.2.8) with

U r =
dr

dλ
= ±

√
E2

c2
−
(
L2

r2
− ϵc2

)(
1− rs

r

)
. (9.3.51)

From here we find the effective potential,

Veff = ϵc2
rs
r
+
L2

r2

(
1− rs

r

)
, (9.3.52)

the first two terms of which are familiar from the Newtonian case (apart from a factor of
a half). The last term, which is absent from the Newtonian effective potential, represents
the “spin-orbit” interaction between the spin of the gravitational field and the orbital
angular momentum. It is responsible for, among other phenomena, the precession of
Mercury’s perihelion and the bending of light by massive bodies (apart from this spin-
orbit interaction, the gravitational force is exactly zero for massless particles). Circular
timelike orbits (V ′

eff = 0) exist at

r± =
L2

c2rs

[
1±

√
1− 3c2r2s

L2

]
. (9.3.53)

The orbit of radius r+ is stable and the one of radius r− is unstable. As L → ∞, the
radius of the stable circular orbit grows,

r+ →
L2

c2rs
, (9.3.54)

12Problem: Show that it is impossible for an observer to remain stationary on the horizon.
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but the radius of the unstable orbit approaches r− → 3rs/2, which is also the radius
of the only circular lightlike orbit.13 A minimum angular momentum, L2

min = 3c2r2s , is
required for a timelike circular orbit. It gives a minimum radius for stable circular orbits
of r+,min = 3rs, which is also a maximum radius, r−,max, for unstable circular orbits. Thus
we see that stable timelike circular orbits have r ≥ 3rs and unstable (timelike) orbits lie
between 3rs/2 ≤ r < 3rs.

The radial equation (9.3.51) indicates that there will be a turning point of the motion
(ṙ2 = 0), if there exists a positive, real root of

E2

c2
r3 + (ϵc2r2 − L2)(r − rs) = 0. (9.3.55)

This is a cubic equation unless one considers a massive particle dropped from rest at
infinity. Such a particle is said to be marginally bound and has E = c2. In this case, a
turning point will exist if and only if

c2rsr
2 − L2(r − rs) = 0, (9.3.56)

which has real roots if and only if |L| ≥ 2crs = 4GM/c. Provided that the angular mo-
mentum satsifies this criterion, the turning points will lie outside the horizon. Otherwise,
we know that the polynomial on the left hand side of (9.3.55) must have at least one
negative root because it approaches −∞ as r approaches −∞ and a positive constant as
r approaches zero. Therefore, if it is to have a real, positive root then all three of its roots
must be real (i.e., the cubic discriminant should be non-negative). Turning points for
massless particles (photons) occur when

E2

c2
r3 − L2(r − rs) = 0. (9.3.57)

In this case, we can set L = Ea/c, where a is the impact parameter; then the smallest
value of a for which the orbit does not terminate at the black hole singularity is amin =
3
√
3rs/2 ≈ 2.60rs. This is the radius of the “black hole shadow”, because only rays

of light incident on one side of the hole, whose impact parameter is greater than a, can
make it to an observer on the other side of the hole. Thus a black hole will appear to
cast a shadow against a bright backdrop. If the impact parameter is smaller than amin,
the particles are captured by the black hole. If it is larger than but close to amin the
particles may rotate around the black hole in the neighborhood of r = 3rs/2 several times
before escaping. The deflection of light around massive bodies leads to the phenomenon
of gravitational lensing, in which one or more distorted images of an object in the

13Problem: Show that there is only one possible circular photon orbit at r = 3rs/2. This is called the
photon sphere.
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background are formed, depending on the observer’s location. By analyzing the images
one can estimate the mass of the gravitational source.

As a function of the azimuthal angle, provided that L ̸= 0,∫ r

r0

dr/r2√
E − ϵc2rs

r − L2

r2
+ L2rs

r3

= ± 1

L
(φ− φ0) (9.3.58)

where E = E2/c2 + ϵc2. Its solutions can be given in terms of the Weierstrass elliptic
function, ℘, which is the general solution of the equation(

dy

dx

)2

= 4y3 − g2y − g3, (9.3.59)

written as y(x) = ℘(x + x0 | g2, g3), where x0 is an an arbitrary constant. Substituting
u = rs/r, the orbital equation can be turned into(

du

dφ

)2

=

(
r2sE
L2
− ϵc2r2s

L2
u− u2 + u3

)
, (9.3.60)

but the cubic on the right hand side becomes a depressed cubic by the additional trans-
formation14

w = u− 1

3

and the orbital equation, (
dw

dφ

)2

= 4w3 − g2w − g3, (9.3.61)

now has the standard form defining the Weierstrass ℘-function in (9.3.59), where φ = φ/2
and

g2 = 4

(
1

3
+
ϵc2r2s
L2

)
g3 = 4

(
ϵc2r2s
3L2

− r2sE
L2

+
2

27

)
. (9.3.62)

Thus
3rs
r

= 1 + 3℘

(
1

2
φ+ φ0 | g2, g3

)
. (9.3.63)

14Any cubic ax3 + bx2 + cx+ d can be brought to “depressed” form by the transformation y = x+ b/3a,
which turns the expression into

ay3 +

(
c− b2

3a

)
y +

(
d− bc

3a
+

2b3

27a2

)
.
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provides an exact solution of the orbits. These are not exact conic sections, owing to the
spin-orbit coupling.

Radial timelike geodesics are the same as they are for the Newtonian case because of
the absence of the spin-orbit coupling. Lightlike geodesics,

r(λ) = ±E
c
λ+B, (9.3.64)

are future incomplete if they are infalling and past incomplete if they are outgoing because
they cannot be extended beyond rs; there is no curvature singularity of space-time at r =
rs, however, so the incompleteness signals a breakdown of the spherical coordinates. One
can find regular coordinates that extend the solution beyond the Schwarzschild horizon,
where the solution is no longer static but time dependent and spatially homogeneous.
Again, we see that the lightlike geodesics do not cross the horizon in a finite coordinate
time,

dr

dt
= ±c

(
1− rs

r

)
⇒ r∗ = r + rs ln

(
r

rs
− 1

)
= ±c(t− t0) (9.3.65)

showing that r only asymptotes to the horizon in coordinate time.
A particle at rest in the gravitational field of a black hole will have a four velocity

Uµ =
c√
A
(1, 0, 0, 0), (9.3.66)

and its associated Killing energy per unit mass will depend on its position, E(r) = −ξ(t) ·
U = −Ut = c

√
A. It is conserved along geodesics, but a particle at rest is not in free fall.

Thus, a particle at rest very far from the hole has E∞ = c2 and a particle at rest near
the horizon has energy E(rs) = 0. Imagine lowering the particle quasi-statically into a
black hole from infinity. The quasi-static process is taken to mean that the particle does
not follow a geodesic, rather it is instantaneously at rest relative to the hole at all times.
Thus, while lowering the partcile to the horizon from infinity quasi-statically, all its rest
mass energy could be extracted as useful work at infinity. Conversely, raising a particle
quasi-statically from the horizon to infinity would require an input of energy equal to the
rest mass energy of the particle. Upon lowering the particle to the horizon, one could
simply let it fall in; the black hole mass remains unchanged because the particle energy
is zero: δM = 0. Since the area, As, of the horizon depends only on the mass, this also
implies that δAs = 0 in this adiabatic process.

Analytic Extension

The Schwarzschild coordinates can be extended across the horizon. In the coordinates
(t, r∗, θ, φ), the Schwarzschild metric reads

ds2 =
(
1− rs

r

) (
dt2 − dr2∗

)
− r2(r∗)dΩ2. (9.3.67)
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Figure 9.2: The maximally extended Schwarzschild space-time.

The coordinate r∗ is called the tortoise coordinate. It ranges in from −∞ to ∞ and is
only related to r by (9.3.65) when r > rs. Following our construction for de Sitter space,
we introduce the lightcone coordinates, u = t− r∗ and v = t+ r∗, and

u = −rse−u/2rs ∈ (−∞, 0), v = rse
v/2rs ∈ (0,∞). (9.3.68)

The Schwarzschild metric

ds2 =
4rs

r(u, v)
e−r(u,v)/rsdudv − r2(u, v)dΩ2, (9.3.69)

is now free of any explicitly bad behavior at the horizon. Now we simply extend the
ranges of the coordinates u and v to cover the entire real line, subject to the condition
uv < r2s . This is the maximal extension of the Schwarzschild space-time: the event horizon
is mapped to the two null surfaces H+ : u = 0 and H− : v = 0, and the singularity at
r = 0 turns into the (spacelike) hypersurface uv = r2s . The intersection of H+ and H−

is called the bifurcation two-sphere. On the bifurcation two sphere, the Killing vector
vanishes, as opposed to being simply null.

Hypersurfaces of constant r are all characterized by uv = α, where α is a constant.
When r > rs, α is negative and the hypersurfaces are timelike, but when r < rs, α is
positive and the hypersurfaces are spacelike. (This has already been noted through an
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argument concerning the sign of B(r).) Constant time (t) hypersurfaces are the straight
lines v/u = −δ, where δ is a constant.

As in the case of de Sitter space, one can make yet another transformation to coor-
dinates, one of which is timelike. These are the Kruskal-Szerkeres coordinates for the
black hole: letting u = cT −R and v = cT +R, we find

ds2 =
4rs

r(T,R)
e−r(T,R)/rs

(
c2dT 2 − dR2

)
− r2(T,R)dΩ2, (9.3.70)

The space-time diagram for the “maximal” Schwarzschild black hole is shown in figure
9.2. It is useful to divide the space-time into four regions, as shown. In region I, u < 0
and v > 0, and in region III, u > 0 and v < 0. In both these regions, uv < 0, so these
regions represent the space-time outside the horizon, where the Schwarzschild coordinates
are adequate. On the other hand, in region II both u and v are positive whereas they are
both negative in region IV. In these two regions, uv > 0, so they represent the space-time
within the horizon. The portion of the event horizon that serves as the boundary between
regions I and II is called the future event horizon (u = 0) and the portion that serves as
the boundary between regions IV and I is called the past event horizon (v = 0).

• Region I is called the “normal” region. It is asymptotically flat and observers may
move in either direction in r, but always move forward in time. Radial, timelike
geodesic observers in this region cannot evade the future horizon and will cross over
into region II. Non-geodesic observers may, however, hold themselves at constant
r. Once the future horizon is crossed, all communication with observers in region I
is cut off. The future horizon represents the last null ray that is able to escape to
infinity.

• Region II is called the “black hole” region. Particles may move in either direction
in t, but always move toward decreasing r. This region is cut of by the space-time
singularity at r = 0, which lies in the future of all trajectories, geodesic or otherwise,
i.e., it is not possible to maintain a fixed radial coordinate in this region: crashing
into the singularity in the future is inevitable.

• Region III is a parallel or mirror universe, identical to region I in all respects, except
that observers must always move backward in time.

• Region IV is called the “white hole” region. Just as region III is the time reverse
of region I, so is region IV the time reverse of region II. Observers are required to
always move toward larger values of r, but are free to move in either direction in t.
In doing so, they may choose to enter regions I or III.

Only regions I and II are actually realized in stellar collapse. Regions III and IV are
artifacts of the anaytical continuation.
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9.4 The Electrovacuum

The electrovacuum solution is a static solution of the Einstein-Maxwell system describing
the gravitational field of a non-rotating mass M of charge Q. Thus the field equations are

Rµν −
1

2
gµν(R− Λ) =

8πgG

c3

[
FµαFν

α − 1

4
gµνFαβF

αβ

]
∇µFµν = 0, (9.4.1)

where g is the electromagnetic coupling and Fαβ = ∇[αAβ] is the Maxwell field strength
tensor and we have used the expression

tµν = gc

[
FµαFν

α − 1

4
gµνFαβF

αβ

]
(9.4.2)

for the electromagnetic stress tensor. For spherical symmetry to hold, the only non-
vanishing components of the Maxwell tensor can be Ftr = f(r) and Fθφ = g(r) sin θ. The
Bianchi identities, ∂α

∗Fαβ = 0, require that g(r) = Qm (a constant) and the other two
Maxwell’s equations imply that

f ′ +

[
2

r
− B′

2B
− A′

2A

]
f = 0 ⇒ f(r) = Qe

√
AB

r2
, (9.4.3)

where Qe ([Qe] = ml) is also an arbitrary constant. The two constants of the integra-
tion, Qe and Qm, represent, respectively, electric and magnetic charges. (We include the
magnetic charge, although no magnetic monopoles have been detected, to show that the
electric and magnetic charges play the same role as far as the space-time is concerned. Of
course, it can can be set to zero.) Thus we find the general static, spherically symmetric
electromagnetic potential,

Aµ =

(
−
∫ r

dr′f(r′), 0, 0,−Qm cos θ

)
(9.4.4)

and the stress energy tensor

tµν =
1

2
gc


−Q2

r4
0 0 0

0 −Q2

r4
0 0

0 0 Q2

r4
0

0 0 0 Q2

r4

 . (9.4.5)

where Q2 = Q2
e +Q2

m. Now according to the Einstein equations,

Ett =
8πgG

c

Q2A

2r4
⇒ −B(2 +B[Λr2 − 2]) + 2rB′ =

8πgG

c

Q2B2

r2
, (9.4.6)
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which is easily solved to give

B(r) =

(
1− rs

r
+
r2Q
r2
− Λr2

6

)−1

, (9.4.7)

where we set the arbitrary integration constant to rs = 2GM/c2, in view of the fact
that the diffeomorphism charge associated with time translations is the mass energy, and
r2Q = 4πgGQ2/c. Again, it turns out that

Ett
A

+
Err
B

= 0 =
(AB)′

rAB2
⇒ A(r) = c2βB−1(r) (9.4.8)

as we had for the vacuum solutions. The constant β is absorbed into a redefinition of t
and the last independent equation is automatically satisfied. In this way we have found
the Reissner-Nordström-(A)dS solution,

ds2 = c2

(
1− rs

r
+
r2Q
r2
− Λr2

6

)
dt2 −

(
1− rs

r
+
r2Q
r2
− Λr2

6

)−1

dr2 − r2dΩ2 (9.4.9)

along with the electrostatic potential,

Φ(r) =
c2Qe
r

. (9.4.10)

The solution has the same overall form as our previous spherically symmetric vacua, with
an additional contribution from the electric and magnetic fields, and is valid so long as
gtt > 0,.

Consider the Reissner-Nordström solution (with Λ = 0). Its curvature invariants are
singular only as r → 0, if they are singular at all (eg., the scalar curvature vanishes
everywhere). An example of an curvature invariant that is singular is the Kretschmann
scalar,

K = RαβµνRα
βµν =

12r2s
r6
−

48r2srQ
r7

+
56r4Q
r8

. (9.4.11)

If rs > 2rQ, there are two Killing horizons at the real roots of gtt,

r = r± =
rs ±

√
r2s − 4r2Q

2
, (9.4.12)

called the “outer horizon” and the “inner horizon” respectively. If rs = 2rQ (this is known
as the extremal Reissner-Nordström solution) there is one Killing horizon, and there is
no horizon if rs < 2rQ. Surfaces of constant r are timelike outside r+, spacelike between
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r− and r+ and timelike within r−. The singularity at r = 0 is therefore timelike. In
the second case, the singularity is hidden behind just one horizon located at half the
Schwarzschild radius. This horizon is a root (of gtt) of multiplicity two, therefore the sign
of grr does not change as it is crossed and surfaces of constant r never become spacelike,
so that the singularity at r = 0 is timelike in this case as well. It is also timelike in
the third case, because no horizon is present. Thus the Reissner-Nordström singularity is
always timelike. As it is asymptotically flat, the energy of the Reisner-Nordstrom solution
is given by (7.5.19) as Qξ =Mc2.

As we did with the Schwarzschild black hole, we will now imagine lowering a charge
(of unit mass) quasi-statically down from infinity to the outer horizon of the Reissner-
Nordstrom black hole. Because the four momentum of the charged particle is pµ = Uµ +
δqAµ, its Killing energy will depend on its position through the four velocity and the
electrostatic potential, E(r) = −ξ(t) · p = c

√
A+ δqΦ. At infinity, where the electrostatic

potential is zero, E = c2, but very near the outer horizon, E = δqΦ(r+). This is negative
if the black hole and the particle are oppositely charged, implying that we have could have
extracted an amount of energy greater than the mass energy of the particle to do useful
work, W = c2 − δqΦ(r+). Dropping the mass into the black hole will have changed the
black hole mass by δMc2 = −|δqΦ(r+)| so the additional energy that was extracted has
come at the cost of the mass of the black hole. Again, by dropping in an opposite charge,
the black hole’s charge has been reduced by δQe = −(4πgc)−1|δq| and we have the relation

δMc2 − 4πgcδQe|Φ(r+)| = 0, (9.4.13)

which implies that the area of the horizon, A(r+) = 4πr2+, does not change in this adiabatic
process, i.e., δA(r+) = 0.15

9.5 Static Interiors

Whether or not a given amount of matter will collapse into a black hole depends on its
mass and its equation of state. The Schwarzschild radius of the earth, for example, is
about 1 cm, so, to form a black hole, it would have to be compressed to a density far
exceeding the nuclear density of roughly 3 × 1017 kg/m3. All the mass of a ten solar
mass star, however, would have to be compressed to under nuclear densities for it to cross
the star’s Schwarzschild radius of about 30 km. Let us now consider the metric inside

15Problem: Show that W is the maximum amount of energy that it is possible to extract from a
marginally bound, charged particle. (For example, if the particle is not dropped quasi-statically but is
allowed to fall freely, its Killing energy would be conserved and the amount of energy that could be
extracted is exactly zero.) Verify that the area of the horizon does not change in the adiabatic process.
Suppose that the energy extracted to do useful work were less than the maximum possible energy. How
do the mass and charge of the black hole change? Is the change in horizon area still zero, less than zero or
greater than zero?
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a static ideal fluid. We will take its energy momentum tensor to be given by (7.4.36),
with Uµ = (c/

√
A(r), 0, 0, 0) to ensure a static condition. Then Einstein’s equations are

sourced by the stress tensor

Tµν =


−ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (9.5.1)

and must be supplemented by some equation of state, p = p(ρ). Spherical symmetry
requires the energy density and pressure to be functions only of r.

The Einstein equations for this system,

Ett =
2

B
+ 2r

(
1

B

)′
− (2− Λr2) = −16πG

c2
r2ρ(r),

Ett
A

+
Err
B

=
(AB)′

rAB2
=

8πG

c4
(ρc2 + p),

Eθθ =
rA′′

2AB
− rA′2

4A2B
+

A′

2AB

(
1− B′

2B

)
− B′

2B2
+

Λr

2
=

8πG

c4
p, (9.5.2)

are readily solved by quadratures. Formally integrating the time component of the gravi-
tational field equations, we find

B(r) =

(
1 +

α

r
− 8πG

c2r

∫ r

dr′r′2ρ(r′)− Λr2

6

)−1

, (9.5.3)

where the integration constant, α, represents a mass point at the center. To avoid a
singularity there, we take α = 0 and write

B(r) =

(
1− 2GM(r)

c2r
− Λr2

6

)−1

, (9.5.4)

where we have interpreted

4π

∫ r

dr′r′2ρ(r′) =M(r) (9.5.5)

as the mass contained within a radius r. M(r) is known as the Misner-Sharp mass. The
proper mass within the body is given, over a constant time hypersurface and within a
volume bounded by r, by

4π

∫ r

dr′r′2
√
B(r′) ρ(r′) =Mp(r). (9.5.6)
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It is always greater than the Misner-Sharp mass and the difference, Mp(r)−M(r), called
the mass defect. The mass defect represents the gravitational binding energy, which
must be subtracted from the proper mass to get the gravitational mass.

Next we appeal to the special combination of the time and radial components of the
Einstein equations, which can be written as

A′

A
=

8πGrB

c4
[
p+ ρc2

]
− B′

B
(9.5.7)

and formally integrated,

A(r) = βc2
(
1− 2GM(r)

c2r
− Λr2

6

)
exp

[
8πG

c4

∫ r

dr′r′

(
p(r′) + M ′(r′)c2

4πr′2

1− 2GM(r′)
c2r′

)]
, (9.5.8)

where β is an arbitrary integration constant. If we now plug these results for A(r) and
B(r) into the angular components of the Einstein tensor we get one additional constraint
that must be satisfied by p(r) and ρ(r). This is the equation of hydrostatic equilibrium,
which is entirely equivalent to and can be recovered more directly from the conservation
of stress energy (∇µTµν = 0),

p′ +
A′

2A
(p+ ρc2) = 0, (9.5.9)

or, using (9.5.8),

p′(r) +
GB(r)

c4r2

[
M(r)c2 + 4πr3p(r)− Λc4r3

6G

] (
p(r) + ρ(r)c2

)
= 0. (9.5.10)

Equation (9.5.10) is the Tolman-Oppenheimer-Volkoff (TOV) equation.
Suppose that the mass sphere has a sharp boundary at rb. Then ρ(r) = 0 = p(r) when

r ≥ rb and the mass function is constant outside the sphere. By Birkhoff’s theorem, we
know that the unique vacuum space-time is Schwarzschild, therefore the the two solutions
must be compatible at rb. In fact, whenever two regions of space-time, described by two
different metrics, meet at a sharp boundary, it is necessary to match the two regions at
that boundary in such a way that the entire space-time is at least C(1). This implies
the continuity of the first and second fundamental forms across the boundary, called the
Darmois-Israel junction conditions. In the case of the static interior and the Schwarzschild
exterior, we use the same coordinates – the Schwarzschild coordinates – on both sides and
match at r = rb, so the induced metric (first fundamental form) can be written as

hµν = gµν − nµnν =


−A 0 0 0
0 0 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , (9.5.11)



310 CHAPTER 9. STATIC AND STATIONARY SOLUTIONS

where nµ = (0, 1/
√
B, 0, 0) is the unit normal to hypersurfaces of constant r, and the

extrinsic curvature (second fundamental form) is

Kµν = hµ
α∇αnν =


− A′

2
√
B

0 0 0

0 0 0 0
0 0 r√

B
0

0 0 0 r sin2 θ√
B

 , (9.5.12)

To distinguish between the interior and exterior metrics, let “−” represent the interior and
“+” the exterior. Earlier we had seen that both A(r) and B(r) are continuous across the
boundary if the pressure vanishes there, therefore the first fundamental form is continuous.
The second fundamental form is continuous if

lim
r→rb−

A−′
√
B−

= lim
r→rb+

A+′
√
B+

, (9.5.13)

which is a condition on the arbitrary constant of integration we encountered in (9.5.8),
and implies that16

A(r) = c2
(
1− 2GM(r)

c2r
− Λr2

6

)
exp

[
8πG

c4

∫ r

rb

dr′r′

(
p(r′) + M ′(r′)c2

4πr′2

1− 2GM(r′)
c2r′

)]
. (9.5.15)

This guarantees that any perfect fluid interior can be matched to a Schwarzschild exterior.
For particular models, we must either specify ρ(r) or p(r) or an equation of state,

p = p(ρ). If ρ(r) is specified, B(r) is obtained by integrating the density to findM(r) while
the TOV equation (9.5.9) can be rewritten as a Riccati equation for z(r) = p(r) + ρ(r)c2,
using (9.5.7) to eliminate all dependence on A(r),

z′ +
4πGrB

c4
z2 − B′

2B
z − c2ρ′ = 0 (9.5.16)

and gives, in principle, the pressure as a function of r. If this step is successful, knowing
the pressure and the energy density allows us to use (9.5.9) to recover A(r). On the other
hand, if an equation of state p(ρ) is specified, the TOV equation in the form (9.5.9) may
be integrated to recover both p(r) and ρ(r) in terms of A(r), then the time component
in (9.5.2) and (9.5.7) solved as a coupled system to obtain B(r) and A(r). Notice that

16Problem: Show that the second fundamental form is continuous across the boundary if p(rb) = 0 and

β = exp

[
−8πG

c4

∫ rb

dr′r′
(
p(r′) + M′(r′)c2

4πr′2

1− 2GM(r′)
c2r′

)]
(9.5.14)
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the TOV equation is inconsistent for pressureless dust, implying that a stable dust ball
is impossible. This is expected because, bereft of pressure, dust is helpless against the
inexhorable pull of gravity.

In all but the simplest cases, only a numerical solution of the TOV equation will be
possible. However, consider the following example, with Λ = 0, for which the TOV is
readily integrated. Taking the mass density to be constant within the ball,

ρ =

{
ρ0 r ≤ rb
0 r > rb.

(9.5.17)

According to (9.5.4),

B(r) =

(
1− 8πGρ0r

2

3c2

)−1

. (9.5.18)

and the TOV equation (9.5.16) is a Bernoulli equation whose solution is,

z(r) = ρc2

 2z0

3
(
z0 −

√
3c2

B(r)

)
 , (9.5.19)

where z0 is a constant, which can be fixed by demanding that the pressure vanishes at the
boundary, p(rb) = 0. After some algebra, one finds

p(r) = ρ0c
2

 √1− 8πGρ0r2/3c2 −
√
1− 8πGρ0r2b/3c

2

3
√
1− 8πGρ0r2b/3c

2 −
√
1− 8πGρ0r2/3c2

 (9.5.20)

and

A(r) =
9

4
A(rb)

1− 1

3

√√√√1− 8πGρ0r2

3c2

1− 8πGρ0r2b
3c2

2

. (9.5.21)

The central pressure, required to sustain the ball,

pc = ρ0c
2

[
1−

√
1− 2GM/c2rb

3
√
1− 2GM/c2rb − 1

]
. (9.5.22)

will be positive if

3
√
1− 2GM/c2rb > 1 ⇒ rb >

9

4

GM

c2
. (9.5.23)

Therefore, a star of uniform density, sustained by a positive central pressure, cannot be
smaller that 1.125 times its Schwarzschild radius. This places an upper limit on the star’s
density, which behaves as ρmax ∼M−2.
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The TOV equation is also easily integrated for a polytropic fluid, with equation of
state

p =

{
α(ρc2)1+1/n r ≤ rb

0 r > rb
(9.5.24)

where α and n ̸= −1 are constants (n is called the polytropic index). Polytropic fluids
are useful in describing a variety of astrophysical objects, ranging from rocky planets, to
main sequence stars, white dwarfs and neutron stars. In this case, equation (9.5.9) is a
Bernoulli equation

p′ +
A′

2A
p = − A

′

2A

( p
α

) n
n+1

, (9.5.25)

and may be integrated to obtain

p(r) = α−n

[(
A(rb)

A(r)

) 1
2(n+1)

− 1

]n+1

,

ρ(r)c2 = α−n

[(
A(rb)

A(r)

) 1
2(n+1)

− 1

]n
. (9.5.26)

Now that the pressure and the energy density are known as functions of A(r), one may
attempt to solve the time component of (9.5.2) and (9.5.7),( r

B

)′
− 1 = −8πG

c2
r2ρ(A(r))

A′

A
=

8πGrB

c4
z(A(r))− B′

B
(9.5.27)

as a coupled system of first order differential equations for A(r) and B(r). This is best
done numerically.

9.6 Axial Symmetry

Intuitively, axial symmetry (or axisymmetry) refers to the symmetry of rotations about
a fixed axis. More precisely, it is an isometry generated by a spacelike Killing vector, ξ,
with compact orbits. The “axis of symmetry” is the set of all fixed points of the isometry.

Consider some general coordinates, (t,Xi) on the (axisymmetric) manifold and let
X3 = φ be the coodinate adapted to the Killing vector that generates the isometry, so that
ξµ(φ) = (0, 0, 0, 1) in this chart. This means that all the metric functions are independent
of φ, as can be shown by applying the Killing equation,

∇{µξν} = 0 = ∂µξν + ∂νξµ − 2Γλµνξλ (9.6.1)
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and expanding the right hand side, noting that ξµ = gµ3,

0 = gµ3,ν + gν3,µ − gλ3gλσ(gσµ,ν + gσν,µ − gµν,σ) = gµν,3. (9.6.2)

According to the ADM decomposition, the line element can always be written in the form

ds2 = N2dt2 − γij(dXi +N idt)(dXj +N jdt) (9.6.3)

where N and N i are the “lapse” and “shift” functions, and γij is the first fundamental
form, i.e., the metric on the spatial submanifold, Σt. All the metric functions will be
depend on (t,X1, X2).

Let us focus on the three dimensional hypersurfaces, foliating them by surfaces of
constant φ,

ds2(2) = γ11dX
12 + 2γ12dX

1dX2 + γ22dX
22, (9.6.4)

and exploiting a most useful theorem, which says that every two dimensional metric is
conformally flat. What is meant by this statement is that new coordinates, (r, z) can
always be found so that (9.6.4) takes the form

ds2(2) = B(r, z)(dr2 + dz2), (9.6.5)

where B(r, z) is called the conformal factor. The proof of this statement goes as follows:
from the transformation properties of the metric,

g′µν =
∂x′µ

∂xα
∂x′ν

∂xβ
gαβ, (9.6.6)

we find the following relations:

B−1 = γij∂ir∂jr

B−1 = γij∂iz∂jz

0 = γij(∂ir)(∂jz). (9.6.7)

Direct substitution shows that the last of these equations is satisfied by

∂iz = ϵikγ
km∂mr (9.6.8)

(because of the antisymmetry of the two dimensional Levi-Civita tensor, ϵij). The inte-
grability condition, ∂1∂2z = ∂2∂1z implies that

− ∂1(
√
γγ1m∂mr) = ∂2(

√
γγ2m∂mr) (9.6.9)
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or simply □(2)r(X
1, X2) = 0. With this solution the second equation becomes equivalent

to the first, which in turn defines the conformal factor, B(r, z). Therefore any solution of
Laplace’s equation on the two dimensional surface provides a coordinate transformation
to the conformally flat metric in (9.6.5).17

The two dimensional surfaces are generally not maximally symmetric, so the proper
distance on Σt will involve three additional functions and have the form

ds2(3) = B(r, z)(dr2 + dz2) + 2D1(r, z)drdφ+ 2D2(r, z)dzdφ+ C(r, z)dφ2, (9.6.10)

i.e.,

γij =

B(r, z) 0 D1(r, z)
0 B(r, z) D2(r, z)

D1(r, z) D2(r, z) C(r, z)

 (9.6.11)

Recall that a space-time is stationary if it admits a time-like Killing vector. If t is adapted
to this Killing vector, the metric functions will depend only on r and z. Moreover, if we
assume that the proper distance is invariant under the simultaneous reflections t→ −t and
φ → −φ, then four of the metric functions, viz., N r(r, z), N z(r, z), D1(r, z) and D2(r, z)
will vanish. We conclude that the most general stationary, axially symmetric metric in
four dimensions obeying the reflection symmetry will be given in terms of four functions,

ds2 = N2(r, z)dt2 −B(r, z)(dr2 + dz2)− C(r, z) (dφ− J(r, z)dt)2 . (9.6.12)

Using (7.7.19) one can see that, so long as J(r, z) ̸= 0, neither ξµ(t) = (1, 0, 0, 0) nor

ξµ(φ) = (0, 0, 0, 1) are hypersurface orthogonal, although

ξµ = ξµ(t) + J(r, z)ξµ(φ) (9.6.13)

is hypersurface orthogonal but not a Killing vector field unless J(r, z) is constant.

In order to be static as well the time-like Killing vector must be hypersurface orthog-
onal, which implies that J(r, z) = 0. Then the most general static, axially symmetric
metric is given in terms of three functions,

ds2 = N2(r, z)dt2 −B(r, z)(dr2 + dz2)− C(r, z)dφ2. (9.6.14)

If we are interested in vacuum solutions, it is convenient to redefine the three functions
according to

ds2 = c2e2µ(r,z)dt2 − e−2µ(r,z)
[
e2σ(r,z)(dr2 + dz2) + α2(r, z)dφ2

]
, (9.6.15)

17Problem: Find a transformation that turns (9.1.1) into a conformally flat metric.
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as this simplifies Einstein’s vacuum equations. Indeed, a remarkable consequence is that

α
(
Rtt +Rφφ

)
= −e−2(σ−µ) (∂2r + ∂2z

)
α = 0, (9.6.16)

showing that α is harmonic in the flat, (r, z) plane. We could now take α(r, z) = r to get
the canonical, Weyl form of the static, axisymmetric metric:

ds2 = e2µ(r,z)dt2 − e−2µ(r,z)
[
e2σ(r,z)(dr2 + dz2) + r2dφ2

]
, (9.6.17)

which depends on just two unknown functions, µ(r, z) and σ(r, z).
The vacuum equations, Rµν = 0, will now read

Rtt = −e−2(σ−µ)
(
µ,rr + µ,zz +

µ,r
r

)
= 0

Rrr = e−2(σ−µ)
(
µ,rr + µ,zz +

µ,r
r
− σ,rr − σ,zz +

σ,r
r
− 2µ,r

2
)

Rzz = e−2(σ−µ)
(
µ,rr + µ,zz +

µ,r
r
− σ,rr − σ,zz −

σ,r
r
− 2µ,z

2
)

Rrz = e−2(σ−µ)
(σ,z
r
− 2µ,rµ,z

)
Rφφ = −Rtt. (9.6.18)

It follows from the first equation that

∇2µ(r, z) = 0, (9.6.19)

where the Laplacian is on a flat, three dimensional manifold in cylindrical coordinates.
The remaining three equations are not all independent and reduce to the pair

σ,r
r

= µ,r
2 − µ,z2,

σ,z
r

= 2µ,rµ,z, (9.6.20)

whose integrability condition is just (9.6.19). Thus, once a suitable solution for µ(r, z) has
been found, the solution for σ(r, z) follows by quadratures.

9.7 Weyl Vacua

The existence of two Killing vectors, guarantees that geodesics in the static, axisymmetric
space-time will be possess two conserved quantities, viz.,

ξ(t) · U = −e2µ(r,z) dt
dλ

= −E (9.7.1)

and

ξ(φ) · U = e−2µ(r,z)r2
dφ

dλ
= L. (9.7.2)
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The remaining geodesic equations read

dU r

dλ
+ 2(σ,z − µ,z)U rU z + (U r2 − U z2)(σ,r − µ,r) + P = 0

dU z

dλ
+ 2(σ,r − µ,r)U rU z + (U r2 − U z2)(µ,z − σ,z) + µ,zQ = 0 (9.7.3)

where

P = e−2σ

[
E2µ,r −

L2

r2
e4µ
(
1

r
− µ,r

)]
Q = e−2σ

[
E2 +

L2

r2
e4µ
]
. (9.7.4)

If we take λ = τ (the proper time), then the geodesic constraint reads

− E2e−2µ +
L2

r2
e2µ + e2(σ−µ)(U r2 + U z2) = ϵc2 (9.7.5)

where ϵ = ∓1 or zero, depending on whether we are examining timelike, spacelike or
null geodesics, respectively. These equations are evidently difficult to solve except in very
special cases. We now examine some Weyl space-times.

9.7.1 The Chazy-Curzon Metrics

Consider a single mass point, M , located at r = 0 = z, with density

ρ(x′) =
M

r′
δ(r′)δ(z′)δ(φ′).

acting as a source for (9.6.19). The solution of Laplace’s equation is clearly

µ(r, z) = − GM

c2
√
r2 + z2

(9.7.6)

and we easily find from (9.6.20) that

σ(r, z) = − G2M2r2

2c4(r2 + z2)2
(9.7.7)

The solution is regular on the axis (r = 0) but not at the origin and is not equivalent to
the Schwarzschild metric, which is the unique spherically symmetric vacuum solution of
General Relativity.
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Consider also two masses, M±, located on the z−axis at z = ±a. The linearity of the
equation for µ(r, z) allows for superposition, so the solution for µ(r, z) is now

µ(r, z) = −GM+

c2R+
− GM−
c2R−

(9.7.8)

where R± =
√
r2 + (z ∓ a)2, and (9.6.20) shows that

σ(r, z) =
G2

2c4

[
−
M2

+r
2

R2
+

−
M2

−r
2

R2
−

+
M+M−(r

2 + z2 − a2)
a2R+R−

]
(9.7.9)

Curzon has also given solutions for N point masses located symmetrically on the z axis.18

Notice that for the single particle solution µ(r, z)→ −GM/c2|z| and σ(r, z)→ 0 along
the z axis. On the other hand, for the two particle solution in the same limit,

µ(r, z) → − G

c2

[
M+

|z − a|
+

M−
|z + a|

]
σ(r, z) → G2M+M−

2c4a2
sgn(z2 − a2) = σ0 (9.7.10)

Thus, σ approaches a negative constant between the mass points and a positive constant
everywhere else outside z = ±a. Considering the conformally scaled spatial metric very
near the axis, we see that

ds̃ 2
(3) = dr2 + dz2 + r2e−2σ0dϕ2, (9.7.11)

which reveals that the geometry admits a deficit angle. A deficit angle is the difference
between 2π and the angle subtended by a closed loop about a point. For example, starting
with a flat sheet of paper, cut off a wedge and identify the edges of the wedge. The result
is a cone. The angle subtended by the wedge is the “deficit angle”, δ, and the apex of
the cone is a topological defect, called a conical singularity. Note, however, that the cone
is locally identical to the sheet, i.e., the curvature invariants of a cone vanish everywhere
except at the conical singularity, where they are undefined. In the situation at hand,

δ = 2π
(
1− e−σ0

)
(9.7.12)

occurs at all points on the z axis. This line defect is referred to as a cosmic string (or
“strut”) laid along the z axis. The strut holds the two masses apart. A deficit angle will
occur whenever σ0 ̸= 0 and µ(r, z) is regular on the axis.

18See the original papers: J. Chazy, Bull. Soc. Math. France, 52 (1924) 17; H. Curzon, Proc. Math.
Soc. London, 25 (1924) 477.



318 CHAPTER 9. STATIC AND STATIONARY SOLUTIONS

9.7.2 The Zipoy-Voorhees Metrics

The Zipoy-Voorhees metrics are defined by a uniform rod of finite length located along the
z axis, from z = −a to z = +a, which acts as a source for (9.6.19). The density function
for this source is

ρ(x′) =
M

2ar′
δ(r′)Θ(a+ z′)Θ(a− z′)δ(φ′) (9.7.13)

where Θ is the Heaviside function. Applying the spatial Green function,

G(r⃗, r⃗′) = − 1

4π|r⃗ − r⃗′|
,

we find the appropriate solution to Laplace’s equation,

µ(r, z) = −GM
2c2a

∫ a

−a

dz′√
r2 + (z − z′)2

=
GM

4c2a

[
ln
R+ − (z + a)

R− − (z − a)
+ ln

R− + (z − a)
R+ + (a+ z)

]
, (9.7.14)

where R± =
√
r2 + (z ± a)2. Now direct computation reveals that

R+ − (z + a)

R− − (z − a)
=
R− + (z − a)
R+ + (a+ z)

=
R+ +R− − 2a

R+ +R− + 2a
, (9.7.15)

therefore

µ(r, z) =
GM

2c2a
ln
R+ +R− − 2a

R+ +R− + 2a
(9.7.16)

To find σ, we turn to (9.6.20) and find

σ(z, r) =
1

2

(
GM

c2a

)2

ln

[
(R+ +R−)

2 − 4a2

4R+R−

]
. (9.7.17)

These solutions were first given by Bach and Weyl19 and later explored and interpreted
by Zipoy20 and Voorhees.21 Notice that σ(r, z) → 0 as r → 0 when |z| > a, so, in this
case, there is no strut on the z axis outside the rod.

19R. Bach and H. Weyl, Mathematische Zeitschrift 13 (1922) 134.
20D. M. Zipoy, Jour. Math. Physics 7 (1966) 1137.
21B. H. Voorhees, Phys. Rev D 2 (1970) 2119.
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9.7.3 Weyl-Bach Ring Metrics

As a final example, we consider an uniform ring of mass M and radius a, laid out in the
z = 0 plane and centered at the origin. The density function for this metric is

ρ(x′) =
M

2πr′
δ(r′ − a)δ(z′) (9.7.18)

and the solution to Laplace’s equation for the metric function µ(r, z) is

µ(r, z) = −GM
2πc2

∫ 2π

0

dφ√
r2 + a2 + z2 − 2ar cosφ

= −GM
πc2

[
1

R+
K

(
4ar

R2
+

)
+

1

R−
K

(
−4ar

R2
−

)]
(9.7.19)

where R± =
√

(r ± a)2 + z2 and K(x) is the complete elliptic integral of the first kind.
From here, the solution for σ(r, z) is found by quadratures.

The solutions described are difficult to interpret because, as we have seen, the space-
time geometry does not generally reflect the geometry of the source. For example, we do
not recover the Schwarzschild black hole in the case of a single point mass. Motivated by
the need to directly compare the symmetries of the space-time with those of the source,
Zipoy and Voorhees suggested that the coordinates chosen to express any Weyl metric
should be adapted to the symmetries of the source.

9.7.4 Prolate and Oblate Spheroidal Coordinates

Prolate spheroidal coordinates are obviously best suited to the line metrics of Zipoy and
Voorhees. These may be defined by

r = a sinhu sin θ, z = a coshu cos θ, (9.7.20)

where u ≥ 0 and θ ∈ [−π/2,+π/2]. The level curves u = const. and θ = const. represent
confocal prolate ellipses,

z2

a2 cosh2 u
+

r2

a2 sinh2 u
= 1 (9.7.21)

and (orthogonal) hyperbolæ

z2

a2 cos2 θ
− r2

a2 sin2 θ
= 1 (9.7.22)

respectively, with foci at z = ±a as shown in figure 9.3. One finds that the gravitational
equipotentials, eµ(r,z) = const. are equivalent to the statement that u = const., as

µ(u, θ) =
GM

2c2a
ln
R+ +R− − 2a

R+ +R− + 2a
=
GM

c2a
ln tanh

u

2
(9.7.23)
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Figure 9.3: Prolate Coordinates in the r − z plane.

and

σ(u, θ) =
1

2

(
GM

c2a

)2

ln

[
sinh2 u

cosh2 u− cos2 θ

]
. (9.7.24)

Now suppose we define the radial coordinate

ρ = a coshu, (9.7.25)

then

µ(ρ) =
GM

2c2a
ln

[
ρ− a
ρ+ a

]
σ(ρ, θ) =

1

2

(
GM

c2a

)2

ln

[
ρ2 − a2

ρ2 − a2 cos2 θ

]
(9.7.26)

and the line element reads,

ds2 = e2µdt2 − e−2µ

[
e2σ
(
ρ2 − a2 cos2 θ

)( dρ2

ρ2 − a2
+ dθ2

)
+ (ρ2 − a2) sin2 θ dφ2

]
.

(9.7.27)
A special case clearly arises when a = GM/c2, for then

e2µ(ρ) =
ρ− a
ρ+ a

e2σ(ρ,θ) =
ρ2 − a2

ρ2 − a2 cos2 θ
(9.7.28)
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Figure 9.4: Oblate Coordinates in the r − z plane.

so that (9.7.27) can be written as

ds2 =
ρ− a
ρ+ a

dt2 − ρ+ a

ρ− a
dρ2 − (ρ+ a)2

(
dθ2 + sin2 θ dφ2

)
. (9.7.29)

If we shift the radial coordinate by a, i.e., let R = ρ+ a ≥ 2a, we may express (9.7.27) as

ds2 =

(
1− 2a

R

)
dt2 −

(
1− 2a

R

)−1

dR2 −R2
(
dθ2 + sin2 θ dφ2

)
, (9.7.30)

which is explicitly the exterior line element of a Schwarzschild black hole of mass M .
Notice the counter-intuitive fact that the (spherically symmetric) Schwarzschild black hole
arises as the Weyl vacuum solution sourced by a rod of a particular length (equal to the
Schwarzschild radius of the hole). The mapping from Weyl coordinates to the spherically
symmetric ones is one-to-one and covers the entire region outside the line mass.

Oblate spheroidal coordinates are likewise defined as

r = a coshu sin θ, z = a sinhu cos θ (9.7.31)

with the same ranges as before, viz., u ≥ 0 and θ ∈ [−π/2, π/2]. The level curves u = const.
are once again confocal ellipses whereas the level curves θ = const. are the orthogonal
hyperbolæ, with focus at r = a as shown in figure 9.4. Instead of guessing at an appropriate
source for this metric symmetry, let us consider Laplace’s equation in the coordinates
(u, θ, φ) defined in (9.7.31). Assuming that the gravitational potential depends only on u,
we find that µ(u) must satisfy

µ′′(u) + tanh(u)µ′(u) = 0 (9.7.32)
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outside of sources, with solution (C is an arbitrary constant)

µ(u) = C tan−1
(
tanh

u

2

)
=
C

2
gd(u), (9.7.33)

representing the gravitational field outside an oblate homoeioid, i.e., a thin shell bounded
by two confocal ellipsoids. (Note that this same approach could be taken in the case of
the prolate system of (9.7.20) to arrive at (9.7.23).22)

If we define R± =
√
(r ± a)2 + z2, then

tanh
u

2
=

√
R+ +R− − 2a

R+ +R− + 2a

and therefore

µ(r, z) = C tan−1

√
R+ +R− − 2a

R+ +R− + 2a
. (9.7.34)

We can now integrate the second of (9.6.20) to find that

σ(r, z) =
C2

8
ln

[
2R+R−

(R+ +R−)2

]
+D(r) (9.7.35)

and the first requires that D(r) = D (constant), which we take to be zero. Thus,

σ(r, z) =
C2

8
ln

[
2R+R−

(R+ +R−)2

]
, σ(u, θ) =

C2

8
ln

[
cosh 2u+ cos 2θ

4 cosh2 u

]
, (9.7.36)

gives the metric function “σ” in the original cylindrical (r, z) coordinates and the oblate
(u, θ) coordinates.

9.8 Kerr Metric

The discovery of the Schwarzschild solution only a few months after the publication of
Einstein’s field equations began a search for other exact solutions. Particularly sought
after was a solution that could describe a rotating mass carrying angular momentum.
This, however, took almost fifty years to discover, even though the weak gravitational
field (8.2.22) due to a rotating massive body had been discovered by Lense and Thirring

22Problem: (a) Determine the flat, three dimensional metric in the prolate system. (b) Show that, if
µ = µ(u), Laplace’s equation reads

µ′′(u) + coth(u)µ′(u) = 0

and (c) show that the solution of this equation is precisely (9.7.23).
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within about two years. The result is the Kerr metric, named after its discoverer, R.
Kerr.

Kerr’s original derivation of the metric is complicated, so we will here follow a more
intuitive path to it. A rotating mass tends to flatten at the poles, so it is reasonable to
expect that the coordinates best suited to describe the gravitational field outside the mass
belong to an oblate, spheroidal system, which we may define as

x = a coshu sin θ cosϕ
y = a coshu sin θ sinϕ
z = a sinhu cos θ, (9.8.1)

where u ≥ 0, θ ∈ [0, π] and φ ∈ [0, 2π]. In this way, u = const. describes a family of
oblate, confocal ellipsoids. Now let r = a sinhu ∈ [0,∞). Then

x =
√
r2 + a2 sin θ cosφ

y =
√
r2 + a2 sin θ sinφ

z = r cos θ, (9.8.2)

and the flat line element in this system is

ds2 = c2dt2 − ρ2

r2 + a2
dr2 − ρ2dθ2 − (r2 + a2) sin2 θdφ2 (9.8.3)

where ρ2 = r2 + a2 cos2 θ. By simply rearranging terms, this metric may be written as

ds2 =
r2 + a2

ρ2
(cdt−a sin2 θdφ)2− ρ2

r2 + a2
dr2−ρ2dθ2− sin2 θ

ρ2
[(r2+a2)dφ−acdt]2. (9.8.4)

The cross term vanishes, i.e., the coefficient of the dtdφ term is zero because this is only
the flat space metric.

We may rewrite the GEM line element (8.2.22), with the angular momentum, J , point-
ing in the +z direction, as

ds2 = c2
(
1− 2GM

c2r

)
dt2 +

4GJ

c2r
sin2 θdφdt−

(
1 +

2GM

c2r

)
dr2 + r2dΩ2

= c2dt2 −
(
1 +

2GM

c2r

)
dr2 − r2dΩ2 − 2GM

c2r

(
cdt− a′

c
sin2 θdφ

)2

(9.8.5)

where a′ = J/M ([a′] = l2/t) is the angular momentum per unit mass of the body and the
second expression is only valid up to terms linear in a′. Comparing (9.8.5) and (9.8.4),
we are able to guess that the oblateness parameter a in (9.8.4) must be related to the
angular momentum per unit mass by a′ = ac or a = J/Mc. Again, taking a cue from



324 CHAPTER 9. STATIC AND STATIONARY SOLUTIONS

Schwarzschild’s spherically symmetric solution, we ask if (9.8.5) would be recovered as the
linear approxmation of a line element of the form (9.8.4), with r2+a2 replaced by F (r) in
the first and second terms. The function, F , if it exists, would be obtained from Einstein’s
vacuum equations and the line element for the solution would read

ds2 =
F (r)

ρ2
(cdt− a sin2 θdφ)2 − ρ2

F (r)
dr2 − ρ2dθ2 − sin2 θ

ρ2
[(r2 + a2)dφ− acdt]2 (9.8.6)

or, letting F (r) = r2 + a2 + f(r),

ds2 = c2dt2 +
f(r)

ρ2
(cdt− a sin2 θdφ)2 − ρ2

F (r)
dr2 − ρ2dθ2 − (r2 + a2) sin2 θdφ2

= c2
(
1 +

f(r)

ρ2

)
dt2 − 2f(r)

ρ2
ac sin2 θdtdφ− ρ2

r2 + a2 + f(r)
dr2 − ρ2dθ2

−
(
r2 + a2 − f(r)a2

ρ2
sin2 θ

)
sin2 θdφ2 (9.8.7)

Note that we recover the flat metric (in oblate spheroidal coordinates) as f(r)→ 0 and the
Schwarzschild metric if a → 0 and f(r) = −rsr. Let us now look at Einstein’s equations
for the geometry described by the line element given above. We find

Eθθ =
1

ρ2

(
f − rf ′ + 1

2
ρ2f ′′

)
= 0 ⇒ f ′′ = 0, rf ′ = f (9.8.8)

which establishes that f = αr for some constant α and in fact solves all of Einstein’s
vacuum field equations. Comparing the solution to the GEM line element (8.2.22) then
reveals that α = −2GM/c2 = −rs, so we have arrived at the Kerr solution in “Boyer-
Lindquist” coordinates,

ds2 = c2
(
1− rsr

ρ2

)
dt2 +

2rsrac sin
2 θ

ρ2
dtdφ− ρ2

r2 + a2 − rsr
dr2 − ρ2dθ2

−
(
r2 + a2 +

rsra
2

ρ2
sin2 θ

)
sin2 θdφ2. (9.8.9)

It can be put in the ADM form

ds2 = c2
ρ2∆

Σ
dt2 − ρ2

∆
dr2 − ρ2dθ2 − Σ

ρ2
sin2 θ(dφ− ωdt)2 (9.8.10)

where

ρ2 = r2 + a2 cos θ2, ∆ = r2 + a2 − rsr
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Figure 9.5: Surfaces of the Kerr metric

Σ = (r2 + a2)2 − a2∆sin2 θ, ω =
acrsr

Σ
. (9.8.11)

One should be careful in interpreting the coordinates. For example, r = 0 is not a point.
On a constant t hypersurface it represents the double cover of a disk whose boundary,
at θ = π/2, is a ring of physical radius a, which is a curvature singularity. The solution
is asymptotically flat, but it is not unique. There is no equivalent of Birkhoff’s theorem
for the Kerr metric, therefore, to assume that it necessarily describes the space-time near
a very massive rotating body would not be correct. What is true is that the vacuum
geometry of a massive rotating body asymptotically approaches the Kerr geometry. To
include charge (electric and magnetic), simply replace rs by rs − Q2/r in (9.8.9), where
Q2 = Q2

e +Q2
m. The metric is then known as the Kerr-Newman metric.

Let us now take a closer look at the Kerr geometry. It admits two Killing vectors,
one timelike, ξµ(t) = (1, 0, 0, 0) and the other spacelike, ξµ(φ) = (0, 0, 0, 1). The norm of the

spacelike (azimuthal) Killing vector, being the sum of non-negative terms, never vanishes,
but the norm of the timelike Killing vector vanishes when

1− rsr

ρ2
= 0, ⇒ r

(E)
± =

1

2

[
rs ±

√
r2s − 4a2 cos2 θ

]
, (9.8.12)

which defines two Killing horizons when rs > 2a. These are the outer and inner ergo-
surfaces of the Kerr black hole, shown in red and green in the figure 9.5. There is no

ergosurface when rs < 2a and, when the angular momentum vanishes, r = r
(E)
+ becomes

the Schwarzschild horizon. There is also a coordinate singularity when

r2 + a2 − rsr = 0 ⇒ r± =
1

2

[
rs ±

√
r2s − 4a2

]
(9.8.13)
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and rs ≥ 2a. The two solutions describe the outer and inner event horizons, shown in
orange and blue in figure 9.5. We will soon see that the event horizons are also Killing
horizons. There are no event horizons when rs < 2a and, when rs = 2a (the extremal
case), only one event horozon exists at half the Schwarzschild radius. (This is also the case
when a = 0, but now this is just the Schwarzschild black hole). Finally, the Kretschmann
scalar reads

K = RαβµνR
αβµν =

12r2s(r
2 − a2 cos2 θ)(ρ4 − 16a2r2 cos2 θ)

ρ12
, (9.8.14)

so there is a curvature singularity when ρ = 0, which happens only when r = 0 and
θ = π/2. Referrng back to the coordinate definitions in (9.8.2), this turns out to be not a
point but the ring

x2 + y2 = a2, z = 0. (9.8.15)

Thus the angular momentum “stretches” the point-like Schwarzschild singularity into a
ring singularity. It is easy to see that

r
(E)
+ ≥ r+ ≥ r− ≥ r(E)

− (9.8.16)

and that the ring singularity is surrounded by three of the four surfaces we have described,

viz., r = r
(E)
+ and r = r±, as shown in figure 9.5. It coincides with the inner ergosurface

in the equatorial plane. The region between the outer ergosurface and outer horizon is
called the erogoregion. We will soon see that in the ergoregion it is impossible for an
observer to remain stationary.

The Killing vectors show the space-time is characterized by its mass energy, Qt =Mc2

and angular momentum, Qφ = −2Mac = −2J , as may be calculated by evaluating (7.5.19)
on the two sphere at infinity.

9.8.1 Equatorial Geodesics

It is not difficult to verify that motion remains confined to the equatorial plane if the
initial velocity is in the plane. To simplify matters, therefore, take θ = π/2 and we have
the following conservation laws,

ξ(t) · U = −c2
(
1− rs

r

)
U t − acrs

r
Uφ = −E def

= AU t +BUφ

ξ(φ) · U = −acrs
r
U t +

[
r2 + a2

(
1 +

rs
r

)]
Uφ = L

def
= BU t + CUφ (9.8.17)

This system is readily solved for U t and Uφ by inversion,

U t =
CE +BL

B2 −AC
, Uφ = −AL+BE

B2 −AC
(9.8.18)
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or

U t =
−acLrs/r + E[r2 + a2(1 + rs/r)]

c2(r2 + a2 − rsr)

Uφ =
cL(1− rs/r) + aErs/r

c(r2 + a2 − rsr)
(9.8.19)

where we used B2 −AC = c2(r2 + a2 − rsr) = c2∆.
It is immediately evident that a particle carrying zero angular momentum (a ZAMO,

or inertial, Zero Angular Momentum Object) will possess a non-zero angular velocity,

ω(r) =
dφ

dt
=
Uφ

U t
=

acrs/r

r2 + a2(1 + rs/r)
, (9.8.20)

in the direction of the hole and increasing as the hole is approached. This property of the
space-time is called the “dragging of inertial frames”. The effect vanishes at large distances
from the hole as r−3. Another consequence is that, no matter what its angular momentum
or energy, the particle’s angular velocity on the outer ergosurface will necessarily be,

ωE+ =
dφ

dt

∣∣∣∣
r=rs

=
ac

r2s + 2a2
= lim

r→rs
ω(r). (9.8.21)

Similarly, regardless of its angular momentum and energy, it will have the angular velocity

ω+ =
dφ

dt

∣∣∣∣
r=r+

=
ac

rsr+
(9.8.22)

on the outer event horizon.
Taking λ to be the proper time for spacelike or timelike geodesics we find

gµνU
µUν = AU t

2
+ 2BU tUφ + CUφ2 +

r2

∆
U r2 = ϵc2 (9.8.23)

where ϵ = ∓1 or zero, depending on whether the geodesics are timelike, spacelike or null
respectively. The expression may be simplified and written in terms of the conserved
quantities with the help of (9.8.17); we find

− EU t + LUφ +
r2

∆
U r2 = ϵc2 (9.8.24)

from which, using (9.8.18), it follows that

U r2 =
CE2 +AL2 + 2BEL

c2r2
+
ϵc2∆

r2
(9.8.25)
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One may frame the above equation as follows:

U r =
dr

dλ
= ±

√
E − Veff (9.8.26)

where

E =
E2

c2
+ ϵc2 (9.8.27)

and

Veff =
ϵc2rs
r

+
1

r2

[
L2 − a2

(
E2

c2
+ ϵc2

)]
− rs
r3

(
L− aE

c

)2

(9.8.28)

The first term represents the ordinary Newtonian gravitational potential, the second repre-
sents the centrifugal force and the last the spin-orbit interaction. Notice that the structure
of the effective potential is identical to (9.3.52) and in the Schwarzschild limit (a→ 0) we
recover the geodesic equation in (9.3.51)23. Equatorial geodesics can be recovered by the
same methods.

9.8.2 Equatorial Static and Stationary Particles

The outer ergosphere is a Killing horizon of the time like Killing vector ξ(t) = (1, 0, 0, 0),
which implies that, within the outer ergosphere and the outer horizon, the particle cannot
remain static. To be static its velocity four vector would have to point along the time di-
rection, i.e., Uµ = γξµ, where ξµ = (1, 0, 0, 0) is the Killing vector and γ is a normalization
factor (ensuring U2 = −c2). Static particles are, naturally, not inertial and their motion
is not geodesic. They require some external agent to keep them in place, but we see that
they cannot exist within the ergoregion, where ξµ becomes spacelike! What happens is
that frame dragging within the erogoregion compels the particle to rotate with the hole.

We may then ask if it is possible for a particle to remain stationary within the ergore-
gion. To remain stationary, the particle should possess a velocity that looks like

Uµ = γχµ = γ
(
ξµ(t) +Ωξµ(φ)

)
(9.8.30)

where γ is again a (constant) normalization and Ω is a constant angular velocity. Like static
particles, stationary particles are not inertial and their motion is not geodesic. Because
Ω must be constant, χµ is a linear combination of Killing vectors and is therefore also a

23Problem: Consider circular, timelike orbits. Show that for any value of E and L there are two circular
orbits at radii

V ′
eff = 0 ⇒ r± =

L2 − a2E
c2rs

[
1±

√
1− 3c2(L− aE/c)2r2s

(L2 − a2E)2

]
. (9.8.29)

What is the radius of the only lightlike orbit?
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Killing vector. Our only requirement is that it should be timelike, and this is possible
(rs > 2a) if and only if r < r− or r > r+ and

Ω− < Ω < Ω+ (9.8.31)

where

Ω± = ω(r)± c
√
∆

r2 + a2(1 + rs/r)
= ω(r)

[
1± r

√
∆

ars

]
. (9.8.32)

From here we learn that:

• it is possible to remain stationary but not static within the outer ergosphere, outside
the outer event horizon and inside the inner event horizon,

• the stationary particle on the outer ergosurface will have an angular velocity between
zero and 2ωE+ ,

• Ω− is negative outside the outer ergosphere and positive inside it,

• as r decreases, Ω+ decreases and Ω− increases, and

• Ω+ = Ω− on the outer horizon, where the stationary particle will have an angular
velocity precisely equal to ω+.

Owing to the last, we associate

ΩH+ = ω+ =
ac

rsr+
(9.8.33)

with the angular velocity of the black hole. Stationary particles enter into a state of
corotation with the black hole as they approach the outer horizon. The vector χµ is
null on the outer and inner horizons, which are therefore also Killing horizons. Within the
outer and inner even horizons stationary particles do not exist. Thus, the outer ergosphere
serves as the inner boundary of the static region, which extends to infinity, and the outer
horizon as the inner boundary of the stationary region of the Kerr geometry.

9.8.3 The Penrose Process

Penrose discovered a way in which energy could be extracted from a rotating black hole
via a fully classical process. The idea hinges on the conservation of energy and momentum
and the fact that that the outer ergosphere is the boundary of the static region of the Kerr
geometry.

Consider an inertial particle originating at infinity and falling into the Kerr black hole.
If pµ is its momentum, its energy will be E = −ξ(t) · p > 0 and its angular momentum
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L = ξ(φ) · p. Both of these quantities are conserved during its (geodesic) motion. Once it
enters the horizon, imagine that it decays into two particles. Conservation of momentum

implies that pµ = p
(1)
µ + p

(2)
µ , which means that the original energy and momentum get

split into two parts according to

E = −ξ(t) · p = −ξ(t) · p(1) − ξ(t) · p(2) = E1 + E2

L = ξ(φ) · p = ξ(φ) · p(1) + ξ(φ) · p(2) = L1 + L2. (9.8.34)

In the outer ergoregion ξ(t) is spacelike and therefore the signs of E1,2 are individually
indefinite although the sum is required to be positive and equal to E. Suppose that E2

is negative then the other particle’s energy would have to be greater than the original,
E1 > E. But, because E2 is negative, the second particle cannot exit into the static region,
for then its four velocity would be spacelike. The first particle, however, can return to the
static region, where its energy can be extracted, with an energy that is greater than the
energy that fell into the hole. Of course, we cannot create energy, so the excess energy
must have come from the black hole. Some of the energy of the rotating black hole has
been extracted. This is the Penrose process.

More concretely, for the second particle to fall into the outer event horizon, it must
satisfy

χH+ · p2 = −(ξ(t) + ω+ξ(φ)) · p2 = E2 − ω+L2 > 0 (9.8.35)

and, because E2 is negative, this implies that

L2 < −
|E2|
ω+

, (9.8.36)

so the particle must have a negative angular momentum, i.e., opposite the hole. Once
this particle crosses the outer event horizon it is effectively absorbed by the hole. Then
the mass and angular momentum of the hole will change according to δMc2 = −|E2| and
δJ = −|L2| < −|E2|/ω+, where we let J = acM be the angular momentum of the Kerr
black hole. It follows that

δMc2 − ω+δJ > 0, (9.8.37)

which ensures that the area of the outer horizon increases during such a process.24. This
result and its analogue for the Reissner-Nordstrom black hole in (9.4.13) can be viewed as
consequences of an interesting set of theorems concerning the physics of horizons.

9.9 Classical Black Hole Thermodynamics

We have seen, in each of the special cases treated above, that processes involving black
holes can (even on the classical level) allow for exchanges of energy in which useful work

24Problem: Show that the area of the outer horizon increases as a consequence of the Penrose process.
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may be extracted from physical systems, with black holes acting as intermediaries. As far
as the extraction of energy goes, adiabatic process, in which the area of the black hole
horizon does not change, are the most efficient. This is strikingly similar to isentropic
processes in thermodynamics, if the area of the horizon plays the role of entropy. This
analogy is the subject of the present section.

9.9.1 Surface Gravity

The proper acceleration of a body at rest at r in a spherically symmetric vacuum is

aµ =
dUµ

dτ
= (U · ∇)Uµ = −1

2
A′δµr ⇒ a =

√
aµaµ =

cA′

2
√
A
. (9.9.1)

When r represents the surface radius of an astronomical object, we call it the object’s
surface gravity. For example, the surface gravity of the Earth is calculated to be 9.81
m/s2 and that of a 2 solar mass neutron star of radius 11 km is 2.2× 1012 m/s2. Within
strong gravitational fields (such as on the surface of a neutron star) time dilation plays a
significant role. The effect of time dilation will only grow as the horizon of a black hole
(A(r) = 0) is approached and the definition will fail near the event horizon of a black hole.

Suppose we ask a different question: what force would have to be applied to a unit
mass, by an agent at infinity, to suspend an object (by an infinitely long, light string)
near the horizon of a black hole? One way to think about this would be to note that dt
represents an infinitesimal interval of proper time at infinity, therefore this observer exerts
a force per unit mass of aµ∞ = dUµ/dt. But because

aµ =
dUµ

dτ
=
dUµ

dt

dt

dτ
, (9.9.2)

we have

aµ∞ = −
√
AA′

2c
δµr ⇒ a∞ =

1

2
A′, (9.9.3)

which is well defined on the horizon of a black hole. We wish to construct a scalar that
reproduces a∞. If we are successful, then its value on the horizon is what we shall mean
by the “horizon surface gravity”.

More generally, a Killing horizon is defined as a surface on which a Killing vector,
which is timelike in a region of space-time bounded by it, becomes null. The surface
gravity of a Killing horizon can be expressed in terms of its defining Killing vector, ξ(t).
Because ξ(t) is null on the horizon, it is both tangent and perpendicular to it. The normal
to the hypersurface Φ = ξ(t) · ξ(t) = const. is nµ = Φ,µ, which on the horizon (only!) is
proportional to ξ(t). Therefore we define the surface gravity, κ, of the Killing horizon as
(dropping the subscript (t)),

(ξαξα),µ|H = −2κ

c
ξµ|H . (9.9.4)
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We will now check that κ is precisely a∞, but first let us work with the above definition.
An equivalent definition of κ is via

(ξ · ∇)ξµ = −κ
c
ξµ (9.9.5)

on the horizon. This can be shown by expanding the left hand side of (9.9.4) and using the
fact that ξ(α;µ) = 0 because ξ is a Killing vector. Now, the Killing vector is hypersurface
orthogonal,25 so it satisfies the identity

ξµ;νξλ + ξλ;µξν + ξν;λξµ = 0 (9.9.6)

Contracting with ξµ;ν ,

ξµ;νξµ;νξλ = −ξµ;ν [ξλ;µξν + ξν;λξµ]

= −κ
c
[ξµξλ;µ − ξνξν;λ]

= −2κ2

c2
ξλ (9.9.7)

Comparing the two sides, we get yet another equation for κ,

κ2 = −c
2

2
ξµ;νξµ;ν (9.9.8)

on the horizon. All three equations (9.9.4), (9.9.5) and (9.9.8), are equivalent definitions
of κ.

For example, using (9.9.8) in the static background and taking the positive root of
(9.1.8) we find

κ = a∞ =
A′(r)

2

∣∣∣∣
H
. (9.9.9)

Thus, the surface gravity of the Schwarzschild horizon is

κ =
c2

2rs
=

c4

4GM
(9.9.10)

and of the outer horizon of the Reissner-Nordstrom black hole it is

κ =
c2(r+ − r−)

2r2+
=

c4
√
G2M2 − c4r2Q(

GM +
√
G2M2 − c4r2Q

)2 . (9.9.11)

25Problem: Verify that the rotation of the timelike Killing vector vanishes everywhere.
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v

rr
s

Figure 9.6: The light-cone in the v − r system.

These are both finite and constant.
One can also use (9.9.4) and (9.9.5) to obtain the same result, but Schwarzschild

coordinates do not serve us well because they are ill defined on the horizon; in particular,
the light-cone “closes” at A(r) = 0,

dt

dr
= ±A(r)−1. (9.9.12)

To evaluate the left hand side of either of the equations on, say, the future horizon, we
transform to the advanced time coordinate, t → v = t + r∗, in which the static solution
takes the form

ds2 =
1

c2
A(r)dv2 − 2dvdr − r2dΩ2. (9.9.13)

The light cones do not close on the future horizon in this system, for the radial null curves
are given by

dv

dr
=

{
0

2c2A−1(r)
(9.9.14)

as shown in figure 9.6. The timelike Killing vector transforms to ξµ = (c, 0, 0, 0), but now
ξµ = (−A(r)/c, c, 0, 0) does not vanish when A(r) = 0. Then

Φ = ξ · ξ = −A(r) → Φ,µ = −A′(r)δrµ (9.9.15)

so, applying (9.9.4), we find (again) that κ = A′(r)/2|H.26

26Problem: Repeat the calculation of the surface gravity on the past horizon, by using the retarded time
coordinate, t→ u = t− r∗. You should find that κ = −A′(r)/2|H. What is the significance of the change
in sign? Sketch a few light-cones in this system.
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We can also use (9.9.8) and (9.8.10) to directly calculate the surface gravity of the
outer horizon of the Kerr space-time, taking

ξµ = (1, 0, 0, ω+), (9.9.16)

where ω+ is the surface gravity of the outer horizon. The result is

κ =
c2∆′

2
√
Σ

∣∣∣∣
r=r+

=
c2(2r+ − rs)
2(r2+ + a2)

, (9.9.17)

which is also finite and constant.

9.9.2 Zeroeth Law

We have seen that the surface gravity is a constant on a (Killing) horizon in three exam-
ples. In fact, this can be proved rigorously, assuming only (i) stationarity, (ii) Einstein’s
equations and (iii) the dominant energy condition.27. The statement that:

• the surface gravity of a Killing horizon is constant

is known as the zeroeth law of black hole thermodynamics. The law itself is reminiscent
of the implicit assumption, made in classical Thermodynamics, that thermal equilibrium
is a reflexive property of equilibrium thermodynamic systems. It is therefore saying that
the black hole horizon is in a kind of “thermal” equilibrium with itself but it is not a
statement about the transitivity of this “thermal” equilibrium, as is the zeroeth law of
thermodynamics. The analogy between the surface gravity and the “temperature” gets
better with the first law.

9.9.3 First Law

Let us return to the Schawarzschild black hole, whose event horizon has an area A = 4πr2s ,
and notice that

κ

2π
d

(
c2A
4G

)
= d(Mc2). (9.9.18)

Likewise, for the Reissner-Nordstrom black hole, where the outer horizon has the area
A = 4πr2+, we find

κ

2π
d

(
c2A
4G

)
= d(Mc2)− 4πgcΦ(r+)dQe (9.9.19)

27J.M. Bardeen, B. Carter and S.W. Hawking, “The Four Laws of Black Hole Mechanics”, Commun.
Math. Phys. 31 161 (1973).
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and, for the Kerr black hole, whose outer horizon has the area A = 4π(r2+ + a2),

κ

2π
d

(
c2A
4G

)
= d(Mc2)− ω+dJ (9.9.20)

where ω+ is the angular velocity of the black hole. In all three cases, we find equations
analogous to the first law of thermodynamics,

TdS = dE +
∑
i

pidX
i (9.9.21)

where E is the energy, Xi are the extensive variables of the system and pi their conjugate
momenta, provided we think of the surface gravity of the Killing horizon as a temperature
and its area as an entropy. Then we can think of d−W = 4πgcΦ(r+)dQe and d

−W = ω+dJ
as thermodynamic work done by a black hole on charges and/or objects falling into it.

The Smarr Formula

All of this can be made more rigorous by considering the conserved charges in (7.5.19).
Recall that we had ∫

Σt

dΣµ∇νJ µν =
c4

8πG

∮
S
dSµν∇[µεν] (9.9.22)

and that the left hand side can be written as28

∇νJ µν =
c4

8πG
∇α∇[µεα] =

c4

4πG
Rµαε

α, (9.9.23)

therefore

2

∫
Σt

dΣµR
µ
αε
α =

∮
S
dSµν∇[µεν] (9.9.24)

For stationary black holes, we apply the equation above to a spatial hypersurface stretching
from the (outer) event horizon to spatial infinity. The spatial hypersurface then has two
boundaries: one is the two sphere at infinity, S∞, and the other is the horizon two sphere,
SH+ . With the help of Einstein’s equations we may write∫

Σt

dΣµ(2T
µ
α − δ

µ
αT )ε

α =
c4

8πG

[∮
S∞

dSµν∇[µεν] −
∮
SH+

dSµν∇[µεν]

]
(9.9.25)

or

c4

8πG

∮
S∞

dSµν∇[µεν] =

∫
Σt

dΣµ(2T
µ
α − δ

µ
αT )ε

α +
c4

8πG

∮
SH+

dSµν∇[µεν] (9.9.26)

28Problem: Show that if εµ is a Killing vector then ∇2εµ = −Rµ
αε

α.
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If εµ is the timelike Killing vector, the left hand side represents the total mass energy of
the spacetime, the first term on the right is the matter contribution to the mass energy
and the second term is the energy of the black hole. An analogous interpretation in terms
of the angular momentum can be made if εµ is the azimuthal Killing vector. In the case
of vacuum spacetimes there is no distinction between the mass and angular momentum of
the spacetime and that of the black hole.

Let us therefore take the timelike Killing vector, ξµ(t), in (9.9.26). The left hand side

yields Mc2. To evaluate the horizon integral on the right, we note that

ξµ(t) = χµ − ω+ξ
µ
(φ) (9.9.27)

so that

c4

8πG

∮
SH+

dSµν∇[µεν] =
c4

8πG

[∮
SH+

dSµν∇[µχν] − ω+

∮
SH+

dSµν∇[µξ
ν]
(φ)

]
=

c4

8πG

∮
SH+

dSµν∇[µχν] + ω+JH (9.9.28)

where we have simply called JH the angular momentum of the hole and

c4

8πG

∮
SH+

dSµν∇[µξ
ν]
(φ) = −JH.

The integral over χµ is straightforward because because H+ is a Killing horizon of χµ so
the area element on the horizon two sphere may be expressed dSµν = dSχ[µnν], where nν
is any vector that is null on H+ and satisfies n · χ = −1 there. Then

c4

8πG

∮
SH+

dSµν∇[µχν] =
c4

8πG

∮
SH+

dSχ[µnν]∇µχν =
c2

8πG

∮
SH+

κdS (9.9.29)

where we have used (9.9.5). As the surface gravity of the horizon is constant, we have the
remarkable result (for the Kerr black hole) that

Mc2 =
κ

2π

(
c2AH
4G

)
+ ω+JH (9.9.30)

where AH is the area of the horizon (we have discarded the source term because we are in
a vacuum).

The source term cannot be discarded when Tµν does not vanish, which is what happens
when the black hole is charged. In that case, we must include the stress tensor term in
(9.9.26). The integral of (9.4.5) over the spatial hypersurface gives QeΦ(r+), so we get
the general result

Mc2 =
κ

2π

(
c2AH
4G

)
+QeΦH + ω+JH. (9.9.31)
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9.9.4 Second and Third Laws

The analogy with thermodynamics is made complete if it can be said that:

• the area of the Killing horizon never decreases in any process.

In fact, this statement is true on the classical level and was proved by Hawking29. This
proof is summarized in the Appendix.

The third law of of black hole thermodynamics is similar to the Nernst statement of
the third law in ordinary thermodynamics:

• the surface gravity of a black hole horizon cannot be reduced to zero in a finite
advanced time.

To see what this means, notice that κ would be zero for either the extremal charged
or rotating black holes, i.e., rs = 2rQ in the charged case and rs = 2a in the rotating
case. The extremal black holes are boundaries between “covered” singularities (those
that are protected by an event horizon) and “naked” ones (with no event horizon for
protection). Naked singuarities present a problem for describing time evolution in their
futures because no initial data can be given on a singular surface. The third law can
be viewed as prohibiting the existence of naked singularities, a statement about “cosmic
censorship”. However, there are many theoretical counterexamples to this and the issue
remains open. There is no statement of the third law analogous to Planck’s.

9.9.5 Information Loss

The association of the surface gravity with temperature and the horizon area with entropy
may seem strange at first glance. After all, we have used the classical, time reversal
invariant, equations of a field theory to obtain these space-times and there was never a
hint of anything approaching (Fermi’s) master equation along the way. Moreover, the
mechanical dimension of the surface gravity is acceleration and that of the horizon area
is, well, area. Finally, thermodynamic objects are supposed to radiate but classical black
holes are black. In yet another brilliant work, Hawking showed that quantum black holes
do radiate and that the temperature that can be associated with this radiation is indeed
proportional to their surface gravity. In fact, using Planck’s constant, dimensional analysis
shows that temperature can be related to the acceleration by

kBT =
ℏκ
2πc

(9.9.32)

and the thermodynamic entropy (called the black hole horizon entropy) to the horizon
area by

S = kB
c3A
4ℏG

. (9.9.33)

29S. W. Hawking, Phys. Rev. Lett., 26 (1971) 1344.
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These relations are entirely compatible with the statement of the first law:

κ

2π
d

(
c2A
4G

)
= d(Mc2) + d−W. (9.9.34)

If a quantum black hole does radiate, then the area of a black hole horizon must actually
decrease in some processes and such processes would violate the underlying assumptions
of Hawking’s proof of the area law, but they are possible in the quantum theory. However,
the black hole cannot be thought of as an isolated system and one must account for the
entropy of other fields that are also present in space-time. In that case, one may expect
that a generalized second law of black hole thermodynamics, which states that

• the total entropy, the sum of the radiation entropy and the black hole horizon entropy,
does not decrease

would remain inviolate. All of this brings about what is perhaps one of the greatest puzzles
of modern theoretical physics: information loss.

This is most easily seen in the case of the Schwarzschild black hole. Suppose that the
black hole evaporates (radiates away its energy) over time, shrinking as it does so. Its
temperature keeps rising in this process, näıvely implying that the process accelerates. If
it continues, the black hole should end up evaporationg completely into thermal radiation.
If what is left is only a density matrix and not a wave function then the unitarity of
the quantum theory is challenged. However, unitarity may be preserved if some unknown
mechanism (arising, perhaps, from a more complete theory of quantum gravity) terminates
the evaporation at some stage leaving behind a highly degenerate remnant. Alternatively,
it is possible that Hawking’s radiation from the black hole is not thermal in a more complete
treatment. It should also be remembered that this problem arises because of the presence
of a Killing horizon, which leads to a third possibility: quantum gravity may prevent the
formation of a horizon in gravitational collapse.



Chapter 10

Time Dependent Solutions

10.1 Gravitational Collapse

We begin with the simplest form of matter obeying the energy conditions, i.e., time-like,
pressureless dust, whose energy momentum tensor is given simply by

Tµν = ρUµUν (10.1.1)

where ρ represents the mass density of the dust in its comoving frame and Uµ its four
velocity. This stress tensor can be derived by varying the action

Sdust = −
1

2

∫
d4x
√
−g ρ(x)

(
gαβU

αUβ + c2
)

(10.1.2)

with respect to gµν and ρ. The first returns the energy momentum tensor and the second
yields the constraint U2 + c2 = 0, which enforces the time-like nature of the dust. Dust
obeys all the energy conditions trivially if ρ > 0. We will look for spherically symmetric
solutions of the Einstein equations sourced by (10.1.1). The equations we want to solve will
therefore represent a spherically symmetric dust cloud (a dust ball) that may be collapsing
under its own gravitational field, or expanding by virtue of its energy. Their solutions were
first obtained by G. LeMâıtre in 1933 and later developed by Tolman (1934) and Bondi
(1947).

Although the spherically symmetric metric can be given in terms of just two functions
as in (9.1.8), it is more convenient to express it in terms of three functions,

ds2 = −gµνdxµdxν = c2e2µ(t,r)dt2 − e2λ(t,r)dr2 −R2(t, r)dΩ2, (10.1.3)

and use the additional freedom to choose a suitable frame. The function R(t, r) is the
physical (area) radius and our objective is to determine the functions µ(t, r), λ(t, r) and

339
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R(t, r) from Einstein’s equations, once a suitable choice of frame has been made. We take
the comoving frame, (U0 = e−µ(t,r), U i = 0) and begin by exploiting the conservation
of energy and momentum, ∇µTµν = 0. With the metric in (10.1.3) conservation leads to
two equations

ρ̇+ ρ

(
λ̇+

2Ṙ

R

)
= 0

ρµ′ = 0 (10.1.4)

where the overdot refers to a time derivative and the prime to a space derivative. The
first can be integrated in terms of one arbitrary function of r,

ρ(t, r) =
Q(r)e−λ(t,r)

R2(t, r)
. (10.1.5)

The second says that µ = µ(t), but this is equivalent to the statement that it is possible
to make the gauge choice µ = 0, for if µ is a function of time, we could define a new time
coordinate, t′ =

∫ t
eµ(t)dt. Thus we take

ds2 = c2dt2 − e2λ(t,r)dr2 −R2(t, r)dΩ2 (10.1.6)

and

ρ(t, r) =
Q(r)e−λ(t,r)

R2(t, r)
. (10.1.7)

Coordinates for which g0i = 0 and g00 = −c2 are called synchronous. In synchronous
coordinates, the proper time, t, is the same for all comoving observers. “Synchronous”,
therefore refers to the fact that all comoving observers’ clocks are synchronized.

10.1.1 Dust Einstein Equations

Of the four non-trivial Einstein equations, consider

G01 = 0⇒ λ̇R′ − Ṙ′ = 0 (10.1.8)

which can readily be put in the form eλ∂t(e
−λR′) = 0 and whose solution is clearly

eλ(t,r) =
R′(t, r)√
H(r)

, (10.1.9)

where H(r) is a positive definite but otherwise arbitrary function of r. Then we can write
the mass density as

ρ(t, r) =
F ′

4πc2R2R′ (10.1.10)
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where we defined Q(r) = F ′(r)/4πc2
√
H(r) for reasons that will soon become clear. The

energy conditions require that ρ ≥ 0, which means that F ′/R′ ≥ 0. It seems reasonable
to impose the condition that the area radius increases with the label coordinate, so that
R′ > 0. Then we must also require that F ′ ≥ 0 to ensure that the positive energy condition
holds.1 Also with this identification, the equation

G00 =
8πG

c4
T00 = 8πGρ (10.1.11)

gives

[R{Ṙ2 + c2 − c2H}]′ = 2GF ′

c2
(10.1.12)

or

Ṙ2 + c2(1−H) =
2GF

c2R
. (10.1.13)

In addition we have the equations,

G11 = 0⇒ 2RR̈+ Ṙ2 + c2(1−H) = 0

G22 = 0⇒ (2RR̈+ Ṙ2 − c2H)′ = 0

G33 = sin2 θG22 (10.1.14)

Of the last three only one is independent and we take that to be the first. It is compatible
with (10.1.13), for if we multiply (10.1.13) throughout by R and take a derivative with
respect to t, we get ṘG11 = 0. Thus the “equation of motion” for the area radius is

Ṙ = ±
√
c2(H − 1) +

2GF

c2R
(10.1.15)

and the sign that is chosen will depend on whether we wish to describe an expanding or a
collapsing dust ball: the positive sign represents an expanding dust ball and the negative
sign a collapsing one.

At this stage, it’s a good idea to take stock of where we are: we have seen that the most
general solutions of the gravity-dust system are given in terms of two functions, F (r) and
f(r) = H(r)− 1. The function F (r) must be non-negative and monotonically increasing;
the function f(r) must be everywhere larger than −1. The metric is given by

ds2 = c2dt2 − R′2(t, r)

1 + f(r)
dr2 −R2(t, r)dΩ2, (10.1.16)

1Situations in which R′(t, r) = 0 for any r must be excluded since they would correspond to a singular
energy density for that r. These are called “shell crossing singularities” and are generally avoided by
carefully choosing F (r) and f(r).



342 CHAPTER 10. TIME DEPENDENT SOLUTIONS

where the area radius satisfies

1

2
Ṙ2(t, r)− GF (r)

c2R(t, r)
=
c2

2
f(r). (10.1.17)

Notice that (10.1.17) has the traditional Newtonian form: “Kinetic Energy” + “Potential
Energy” = “Total Energy”, if we interpret M(r) = F (r)/c2 as the gravitational mass
contained within r, and c2f(r)/2 as the total energy contained within that radial label. The
gravitational mass energy of the dust is determined by F (r) according to (10.1.10). These
solutions obviously become singular when R(t, r) = 0 and F ′(r) ̸= 0, or when R′(t, r) = 0
and F ′(r) ̸= 0. A “central singularity” forms when R(t, r) = 0 and F ′(r) ̸= 0. A “shell
crossing” singularity occurs when R′(t, r) = 0 and F ′(r) ̸= 0. Shell crossing singularities
can be avoided by appropriate choices of the initial data (the functions F (r) and f(r))
but a central singularity cannot be avoided without the introduction of a cosmological
constant.

Let us now turn to the interpretation of these solutions. In particular we want to give
a physical meaning to F (r) and f(r) in terms of familiar concepts and then explore the
properties of the space-times described by the solutions.

10.1.2 Meaning of the Integration Functions

The function M(r) can be obtained by integrating the energy density (10.1.10) at a fixed
time,

M(r) =
F (r)

c2
=M0 +

∫ r

0
dr R2(t, r)R′(t, r)ρ(t, r). (10.1.18)

where M0 = F (0)/c2 is a constant. If M0 is non-vanishing, it leads to a singular initial
configuration, so it is usually set to zero. Now, according to (10.1.17), M(r) is naturally
interpreted as that total gravitational mass energy contained within the shell labeled by
r; it is called the Misner-Sharp mass function or simply the mass function. The
gravitational mass contained within any shell does not change with time.

The gravitational mass is not the same thing as the sum of shell masses within the
body. Over a constant time hypersurface, and within a volume bounded by r, the latter
quantity is given by

Mshell(r) =

∫ r

0
dr
√
γ(t, r)ρ(t, r) =

∫ r

0
dr

R2(t, r)R′(t, r)√
1 + f(r)

ρ(t0, r) (10.1.19)

or, simply

Mshell(r) =

∫ r

0
dr

F ′(r)/c2√
1 + f(r)

. (10.1.20)
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Evidently the sum of shell masses is also constant in time, but, depending on the sign
of f(r), the sum of shell masses may be greater than (f(r) < 0), equal to (f(r) = 0)
or less than (f(r) > 0) the gravitational mass. If f(r) < 0 the system is gravitationally
bound and the energy difference, Mshell(r) −M(r), called the mass defect, represents
the binding energy of the system which must be subtracted from the simple sum of shell
masses to get the gravitational mass. If f(r) = 0, the marginally bound case, the
two masses are equal. On the other hand, when f(r) > 0, the system is unbound and
the gravitational mass is greater than the simple sum of shell masses indicating that the
excess energy contributes to the gravitational mass.

The function f(r), which represents the total energy in the Newtonian equation, is
called the energy function.

10.1.3 Geodesics

Let us take a quick look at the radial geodesics of (10.1.16); these are described by the
equations

d2t

dλ2
+

R′Ṙ′

c2(1 + f)

(
dr

dλ

)2

= 0

d2r

dλ2
+

2Ṙ′

R′

(
dt

dλ

)(
dr

dλ

)
+

[
R′′

R′ −
f ′

2(1 + f)

](
dr

dλ

)2

= 0, (10.1.21)

where λ is any affine parameter and must be subjected to one of the two conditions,

dt

ds
= +

√
1 +

R′2

c2(1 + f)

(
dr

ds

)2

, (10.1.22)

where s is the proper distance, for time-like geodesics, or

dt

dλ
= ± R′√

c2(1 + f)

dr

dλ
, (10.1.23)

for null geodesics. The positive sign refers to outgoing geodesics and the negative sign to
infalling ones. It is clear by inspection that the future directed time-like solution,

dt

ds
= +1,

dr

ds
= 0 (10.1.24)

is valid for any time-like matter distribution, i.e., any choice of F (r) and f(r), and that
it represents the dust flow lines. Because of this, a shell at rest in a comoving frame will
stay at rest and it is often useful to think of the dust ball as made up of “shells”, each
at rest in this frame and labeled by the coordinate r. Although each shell remains at a
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fixed r during its entire evolution, its physical distance from the center, given by the area
radius, is a function of time.

If dr/dλ ̸= 0, we can set t = t(r) so

dt

dλ
= t′

dr

dλ
,

d2t

dλ2
= t′

d2r

dλ2
+ t′′

(
dr

dλ

)2

(10.1.25)

and using the second geodesic equation in the first,

d2t

dλ2
= t′′

(
dr

dλ

)2

− t′
{
2Ṙ′

R′ t
′ +

[
R′′

R′ −
f ′

2(1 + f)

]}(
dr

dλ

)2

, (10.1.26)

gives the equation for t(r),

t′′ − 2Ṙ′

R′ t
′2 −

[
R′′

R′ −
f ′

2(1 + f)

]
t′ +

R′Ṙ′

c2(1 + f)
= 0. (10.1.27)

This is nonlinear and one can expect to be able to construct other families of geodesics,
which will naturally depend on the properties of a particular solution of the field equations.

It may be verified by using (10.1.23) that (10.1.27) is automatic for all null geodesics,
so (for null geodesics only) it is sufficient to find a solution of the first order equation
(10.1.23). Outgoing null geodesics must satisfy

t′ =
R′√

c2(1 + f)
. (10.1.28)

Therefore, letting tn(r) represent a solution of this equation, the physical radius along an
outgoing null geodesic will be Rn(r) = R(tn(r), r) and

dRn
dr

= Ṙ
∣∣∣
t=tn(r)

t′n + R′∣∣
t=tn(r)

= R′

(
1 +

Ṙ√
c2(1 + f)

)
t=tn(r)

. (10.1.29)

If the solution represents a collapsing dust ball, using the negative sign in (10.1.17) one
finds

dRn
dr

= R′

(
1−

√
c2f + 2GF/c2R

c2(1 + f)

)
t=tn(r)

, (10.1.30)

which clearly vanishes when Rn = 2GF/c4 (assuming no shell crossing singularities). Thus
outgoing light rays starting out, say, at the origin, may not cross the surface R(tah, r) =
2GF/c4. This closed surface is called the apparent horizon. Since outgoing light itself
may not cross this surface, it is a surface of no return. Anything that crosses the apparent
horizon from the exterior will forever be confined within it. An apparent horizon forms
during a collapse and not during an expansion.
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10.1.4 Marginal Models

While the shell label does not change during collapse or expansion, the radius of the shell
changes according to the evolution equation (10.1.13). This equation can actually be
solved in general, but here, as an illustration, we will consider the marginally bound
case, for which f(r) = 0. Eq. (10.1.13) integrates to

R3/2 = ψ(r)

[
1± 3

2

√
2GF (r)

ψ2(r)
(t− t0)

]
, (10.1.31)

the function ψ(r) being another integration function and t0 being the initial time. We can
exploit our freedom to choose r by asking for R(t0, r) = r, which makes ψ(r) = r3/2 and

R(t, r) = r

[
1± 3

2

√
2GF (r)

c2r3
(t− t0)

]2/3
. (10.1.32)

If f(r) ̸= 0 the solution is more complicated, but it still can be given implicitly.2

Notice that, in the case of collapse (the negative sign), R(t, r) in (10.1.32) will approach
zero in a finite amount of proper time,

R(tf , r) = 0⇒ tf − t0 =
2

3

√
c2r3

2GF (r)
. (10.1.33)

This says that the shell labeled by r will approach zero physical radius in the time ts(r) =
tf − t0. R(t, r) = 0 is a singularity of the space-time and ts(r) is called the singularity
curve of the collapse. Since all the shells will eventually approach zero physical radius,
every dust ball with f(r) = 0 will eventually reach a singular configuration, there being
no pressure to counter the collapse.3 However, as we have seen in the previous subsection,
an apparent horizon also forms. It turns out that the singularity may be covered by the
apparent horizon, in which case no information (light ray) from the singularity will be
accessible to observers outside it. Covered singularities are generally considered benign.
If the singularity is not covered by the apparent horizon for any interval of time then it
is called a naked singularity. Naked singularities are generally considered unacceptable
because information from the singularity is capable, in principle, of reaching an external

2Problem: Determine a solution of (10.1.13) when f(r) ̸= 0.
3Problem: Show that the condition for the avoidance of shell-crossing singularities in the marginal

model is

t− t0 ̸=

√
2c2rF (r)

GF ′2(r)
.

If this condition is violated for t < tf , shell crossing singularities will form.
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observer. But singularities are, by definition, unpredictable therefore a naked singularity
would destroy causality in its future. The cosmic censorship hypothesis declares that
one should simply consider all initial data leading to naked singularities as unphysical.

10.1.5 Constant Mass Function

The particular solution with F (r) = F0 and f(r) = 0 is very interesting. A constant mass
function should represent a point mass located at the center, which is just a Schwarzschild
black hole. We will now show that this is indeed the case by finding the transformation
from the LeMâıtre-Tolman-Bondi coordinates to Schwarzschild coordinates, but only in a
restricted portion of space-time. Suppose we retain the same angular coordinates that we
have been using and label the time and radial coordinates of the static metric T (t, r) and
R(t, r) respectively. We express the transformation between the coordinates by(

dT
dR

)
=

(
Ṫ T ′

Ṙ R′

)(
dt
dr

)
(10.1.34)

or (
dt
dr

)
=

1

∥∥

(
R′ −T ′

−Ṙ Ṫ

)(
dT
dR

)
(10.1.35)

where ∥∥ refers to the Jacobian of the transformation matrix. The transformation from
the marginally bound solution to the new coordinates takes the form

ds2 =

(
∂t

∂T
dT +

∂t

∂R
dR

)2

−R′2
(
∂r

∂T
dT +

∂r

∂R
dR

)2

−R2dΩ2 (10.1.36)

which we rewrite, using (10.1.35), as

ds2 =
c2

∥∥2
(R′dT − T ′dR)2 − R′2

∥∥2
(−ṘdT + Ṫ dR)2 −R2dΩ2. (10.1.37)

We want to choose T (t, r) so that the off diagonal terms in the metric vanish,

− c2T ′ +R′ṘṪ = 0. (10.1.38)

But, for a constant mass function, the marginally bound solution is

R(t, r) = r

(
1− 3

2

√
2GF0

c2r3
(t− t0)

)2/3

(10.1.39)

so that

Ṙ = −
√

2GF0

c2R
, R′ =

√
r

R
(10.1.40)
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and therefore our condition for no off diagonal terms becomes

− c2T ′ −
√

2GF0r

c2R2
Ṫ = 0. (10.1.41)

Now if we ask for a solution of the form T (t, r) = t+ f(R(t, r)), where f(R(t, r)) is some
function to be determined, then

− c2 df
dR

R′ −
√

2GF0r

c2R2

(
1 +

df

dR
Ṙ

)
= 0 (10.1.42)

or

df

dR
=

√
2GF0
c2R(

2GF0
c2R
− c2

) . (10.1.43)

The solution is readily determined and we define the Killing time, T (t, r), as

T (t, r) = t− 2

√
2GF0R(t, r)

c6
− 2GF0

c5
ln

(√
R(t, r)−

√
2GF0/c4√

R(t, r) +
√
2GF0/c4

)
(10.1.44)

so that

Ṫ =
R

R− 2GF0
c4

, T ′ =

√
2GF0r
c6

2GF0
c4
−R

. (10.1.45)

Then, using (10.1.34) and (10.1.35) it is straightforward to show that line element of
(10.1.16) can be written in terms of the new coordinates (T,R) as

ds2 = c2
(
1− 2GM

c2R

)
dT 2 −

(
1− 2GM

c2R

)−1

dR2 −R2dΩ2, (10.1.46)

where we have let Mc2 = F0.

10.1.6 Matching the Solutions to an Exterior

The solutions we have discussed cover only a portion of the space-time, which is the
interior of the collapsing dust ball. We must also concern ourselves with the exterior of
the dust ball (for example, the dust ball may represent a “star” with a definite boundary).
The “interior” solution, must be matched to an “exterior” solution in such way that the
solution over the entire space-time is at least C(1). This means that one should ensure the
continuity of metric and its first derivatives, equivalently the first and second fundamental
forms, across the boundary between the “interior” and the “exterior”.

If the exterior is taken to be a vacuum, the solution is uniquely a Schwarzschild solution
of some mass M , by Birkhoff’s theorem. We will now show that every dust interior can



348 CHAPTER 10. TIME DEPENDENT SOLUTIONS

be matched to a Schwarzschild exterior at the boundary of the dust ball. In the process
we will also determine the Schwarzschild mass, M , and thus the mass of the entire dust
ball as viewed by an external observer. As we have seen, the exterior Schwarzschild metric
can be written as

ds2 = c2V (R̃)dT 2 − V −1(R̃)dR̃2 − R̃2dΩ2, V (R̃) =

(
1− 2GM

c2R̃

)
. (10.1.47)

Let us choose the synchronous and comoving coordinates (t, θ, ϕ) to describe the boundary
Σb := r = rb of the dust cloud. Then, as seen from the exterior, Σb will be described by
the parametric equations T = T (t), R̃ = R̃(t) and the metric of the boundary as viewed
from the exterior will be

ds2Σb+
= (c2V Ṫ 2 − V −1 ˙̃R

2

)dt2 − R̃2dΩ2 (10.1.48)

From the interior, its metric will be

ds2Σb− = c2dt2 −R2(rb, t)dΩ
2,

so identifying the angular coordinates and comparing the two tells us that the area radii
must be equal on Σb, i.e.,

R̃(t) = R(t, rb) = Rb(t) (10.1.49)

and

(c2V Ṫ 2 − V −1 ˙̃R
2

) = c2. (10.1.50)

Thus

V Ṫ =

√
V (R̃) +

˙̃
R

2

/c2 =

√
1 + f(rb)−

2G

c2R̃

(
M − F (rb)

c2

)
def
= A (10.1.51)

which can be solved for T (t) because we already know that R̃(t) = Rb(t). Thus we have
matched the first fundamental form on Σb.

We now turn to the second fundamental form. Viewed from the interior the unit
(outward) normal to Σb will be

n−µ =

(
0,

R′(t, rb)√
1 + f(rb)

, 0, 0

)
rb

(10.1.52)

and the non-vanishing components of the extrinsic curvature of the boundary (using
(7.8.22)) turn out to be

K−
θθ =

K−
φφ

sin2 θ
=
√

1 + f(rb)R(t, rb) =
√
1 + f(rb)Rb(t). (10.1.53)
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Viewed from the exterior the condition defining the boundary can be found from the
general transformation equations in (10.1.35) by setting dr = 0.4 This gives the outward
unit normal to the surface as

n+µ = (− ˙̃
R, Ṫ , 0, 0) = (c

√
A2 − V (R̃),

A

V (R̃)
, 0, 0) (10.1.54)

Given n+µ it is straightforward to compute the extrinsic curvature, K+
µν , viewed from the

exterior. We find the non-vanishing components

K+
TT =

c2G(F (rb)−Mc2)/(c4Rb)

Rb

√
1 + f(rb) +

2G(F (rb)−Mc2)

c4Rb
,

K+
TR = K+

RT =
cG(F (rb)−Mc2)/(c4Rb)

Rb

(
1− 2GM

c2Rb

) √
f(rb) +

2GF (rb)

c4Rb

K+
RR =

G(F (rb)−Mc2)/(c4Rb)
(
f(rb) +

2GF (rb)
c4Rb

)
Rb

(
1− 2GM

c2Rb

)2√
1 + f(rb) +

2G(F (rb)−Mc2)
c4Rb

K+
θθ =

K+
ϕϕ

sin2 θ
= Rb

√
1 + f(rb) +

2G(F (rb)−Mc2)

c4Rb
. (10.1.55)

The angular part of K̂+ agrees with its interior counterpart if F (rb) =Mc2. Furthermore,
in this case, all the other components of K̂+ will vanish so their counterparts in the (t, r)
system will also vanish. Hence the components of the extrinsic curvatures on both sides
of the boundary agree and we have confirmed that the mass of the Schwarzschild exterior
geometry that smoothly joins with the collapsing geometry is the total gravitational mass
of the dust ball.

10.1.7 Homogeneous Models

A very interesting class of models is obtained by requiring R(t, r) = ra(t), where a(t) is
known as the scale factor.5 According to (10.1.17) this would only be possible if

F (r) = λr3, f(r) = −kr2 (10.1.56)

4Setting r = rb in (10.1.35) shows that − ˙̃
RdT + Ṫ dR̃ = 0 on the hypersurface. Therefore, the unit

normal to the surface will be proportional to n+
µ = (− ˙̃

R, Ṫ , 0, 0). But one can check explicity that it n+
µ

already has unit magnitude.
5A homogeneous space is translationally invariant. An isotropic space is rotationally invariant. A

space that is everywhere isotropic is also homogeneous, but the converse is not true.



350 CHAPTER 10. TIME DEPENDENT SOLUTIONS

where λ and k are constants. We will take r to be dimensionless, so the scale factor has
a length dimension. Then k is also dimensionless and [λ] = ml2/t2. The mass density of
the dust ball depends only on time,

ρ(t) =
3λ

4πc2a3(t)
, (10.1.57)

the equation of motion can be written in the form,(
ȧ

a

)2

+
kc2

a2
=

8πGρ

3
, (10.1.58)

and the metric as

ds2 = c2dt2 − a2(t)
[

dr2

1− kr2
+ r2dΩ2

]
. (10.1.59)

This is known as the Friedmann model.
Three distinct types of solutions exist, viz., solutions with k = 0, k > 0 and k < 0.

However, only the sign of k and not its magnitude is relevant since one can eliminate |k|
by simply rescaling the radial coordinate by the transformation r →

√
|k|r and letting

a(t) → a(t)/
√
|k|. It is sufficient to take k = 0,±1. The curvature scalar of the spatial

sections of the metric (10.1.59) is R = 6k. When k = 0 the spatial sections are all flat
and they are positively and negatively curved when k = +1 and k = −1 respectively. The
first case is obvious since when k = 0 the spatial section is just the metric of a flat three
dimensional space in spherical coordinates. In order to gain some insight into the other
two cases, consider the following coordinate transformation,

r → χ =

∫ r dr√
1− kr2

=


sin−1 r k = +1

r k = 0

sinh−1 r k = −1

(10.1.60)

When k = +1, the coordinate r is not infinite in range but runs from zero to one. Other-
wise, r extends over the entire non-negative real line. Consequently, χ runs from zero to
π/2 when k = +1 and the spatial sections are compact, being equivalent to a three sphere
but when k = 0,−1, they are non-compact. In terms of χ the metric can be expressed as

ds2 = c2dt2 − a2(t)
[
dχ2 + f2(χ)dΩ2

]
(10.1.61)

where f(χ) is one of

f(χ) =


sinχ k = +1 χ ∈ [0, π2 )

χ k = 0 χ ∈ [0,∞)

sinhχ k = −1 χ ∈ [0,∞)

(10.1.62)
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The corresponding proper distance between two “radially” separated points is a(t)∆χ,
i.e., it’s time dependence arises only via the scale factor, a(t), and the cross-sectional area
subtended by a solid angle dΩ at time t is dS(t) = a2(t)f2(χ)dΩ.

Recalling the connection between the energy function and the constant k, we see that
k = 0 describes a homogeneous, marginal expansion or collapse, k = −1 describes shells of
positive total energy and k = +1 describes shells of negative total energy. If the dust ball
is expanding, it will continue to expand (at an ever decreasing rate) forever if k = 0 or if
k = −1, but it will eventually collapse if k = +1. If one transforms the time coordinate
according to

t→ η =

∫ t dt

a(t)
(10.1.63)

then η(t) is called conformal time and the metric gets re-expressed as

ds2 = a2(η)
[
c2dη2 − dχ2 − f2(χ)dΩ2

]
, (10.1.64)

which are conformally related to the metrics on (a) R× S3 (k = +1), (b) R× R3 (k = 0)
and (c) R×H3 (k = −1) respectively.

Solutions to (10.1.58) can be chosen to be expanding (ȧ(t) > 0) or contracting (ȧ(t) <
0). The gravitational collapse of a homogeneous dust ball was first considered by J.R.
Oppenheimer and H. Snyder (1939) and the collapsing solution with k = +1 is referred
to as the Oppenheimer-Snyder model. Expanding (dust) solutions are studied in Cos-
mology, where they are found to be useful in describing the universe at late times. For
the model with k = 0 the solution could simply be read off from (10.1.32), but it is often
more useful to give it as a function of the conformal time. Noting that

ȧ(t) =
da

dη

dη

dt
=
a′

a
(10.1.65)

where the prime denotes a derivative with respect to η, we have the Friedman equation

a′2 + c2ka2 =
2Gλa

c2
. (10.1.66)

It follows that with k = 0, the solution is

a(η) =

(
√
a0 ±

√
Gλ

2c2
(η − η0)

)2

(10.1.67)

where a(η0) = a0. The negative sign is for collapse and the positive sign is for expansion.
On the other hand, with k = 1 (the Oppenheimer-Snyder model) we find the general
solution

a(η) =
Gλ

c4

[
1± sin

{
c(η − η0)± sin−1

(
c4

Gλ
a0 − 1

)}]
(10.1.68)
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where a(η0) = a0 and, again, the negative sign is for collapse, the positive for expansion.
With k = −1,

a(η) =
Gλ

c4

[
cosh

{
c(η − η0) + cosh−1

(
1 +

c4

Gλ
a0

)}
− 1

]
, (10.1.69)

with the same conventions as before. Collapse does not occur in this case.6

In the case of collapse, an apparent horizon will form at

a(ηah(χ)) = 2Gλf2(χ)/c4. (10.1.70)

Each shell therefore arrives at the apparent horizon at a different time, but all the shells
will collide into a central singularity the same time, given, in each case, by a(ηs) = 0.

An expanding dust ball is obtained by choosing the positive signs in the above expres-
sions. In this case, because a(η) is an increasing function, it will vanish at some past time
and describes a big bang singularity. For example, in the marginally bound case (k = 0)

ηb − η0 = −
√

2c2a0
Gλ

. (10.1.71)

If we agree to set the origin of time at the bang then η0 =
√

2c2a0
Gλ represents the time at

which the scale factor has the value a(η0), which could be taken to be the present moment.
The solutions then become greatly simplified and we find

a(η) =



Gλ
c4
[1− cos cη] k = +1

Gλ
2c2
η2 k = 0

Gλ
c4
[cosh cη − 1] k = −1

(10.1.72)

with commensurate simplifications in the expressions for a(t).

10.2 Cosmological solutions

Cosmological solutions are geometries that describe an entire universe. They are founded
on an extension of the Copernican principle. Recall that, in connection with the solar
system, the Copernican principle simply states that Earth is in no privileged position
in our solar system and that, in fact, the motion of the planets could be more simply
understood and described if one treats the Sun and not the Earth as its center. The

6In each of these cases, the solutions may also be expressed in terms of the proper time by integrating
(10.1.63). Find the general solutions in terms of t in each case.
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Figure 10.1: The large scale structure of the Universe.

Copernican principle represented, in its day, a major paradigm shift from the Ptolemaic
system in which the Earth was taken as the center of the Universe. In cosmology this
idea is extended to the universe as a whole: we assume that there is no privileged position
within the universe and, by extension, no privileged observers.

Looking out from our position in the universe, we observe it to be roughly isotropic
on distance scales larger than about 300 Mpc. By the Copernican principle, then, every
observer should observe that the universe is roughly isotropic on the same distance scales
and, if the Universe is everywhere isotropic, it follows that it must also be homogeneous.
The two assumptions, that the universe is (a) homogeneous and (b) isotropic on large
enough distance scales, form the cosmological principle. We will now begin a brief
discussion of some exact solutions in General Relativity that are relevant to the study of
cosmology, i.e., that obey the cosmological principle.

10.2.1 Classical Perfect Fluid Cosmology

A perfect fluid is described by the energy momentum tensor

Tµν = pgµν +
(
ρ+

p

c2

)
UµUν (10.2.1)
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where p is the pressure exerted by the fluid and ρ is its mass density. In a comoving frame
this takes the simple form

Tµν =


−ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (10.2.2)

and we seek solutions of Einstein’s equations for a homogeneous expansion. If we take the
metric to be of the form7

ds2 = c2dt2 − a2(t)
[
dχ2 + f2(χ)dΩ2

]
(10.2.3)

then Einstein’s equations read

3

(
ȧ

a

)2

+
c2(1− f ′2 − 2ff ′′)

f2a2
= 8πGρ

− 1

c2
(ȧ2 + 2aä) +

f ′2 − 1

f2
=

8πG

c4
pa2

− 1

c2
(ȧ2 + 2aä) +

f ′′

f
=

8πG

c4
pa2 (10.2.4)

Since f ′2 = 1 − kf2 and therefore f ′′ = −kf we find two independent equations after
rearranging terms, (

ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ

2ä

a
+

(
ȧ

a

)2

+
kc2

a2︸ ︷︷ ︸ = −
8πG

c2
p (10.2.5)

and with the help of the first, which is the Friedmann equation we had for dust, the second
can be put in the form

ä

a
= −4πG

3

(
ρ+

3p

c2

)
. (10.2.6)

These two equations are not sufficient to determine the three functions, ρ(t), p(t) and a(t)
and must be supplemented by an equation of state.

The equation of state is generally taken to describe a barotropic flow, p = p(ρ). A
large class of fluids may be described by a linear barotropic flow,

p = c2wρ, (10.2.7)

7It can be shown that this is the most general homogeneous and isotropic metric.
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where the weak energy condition requires that w ≥ −1, the dominant energy condition
requires, in addition, that w ≤ 1 and the strong energy condition requires that w > −1/3.
Polytropic flows, for which

p = c2wρα, (10.2.8)

where α = 1+ 1/n have also been considered. The constant n is known as the polytropic
index.

The conservation of energy and momentum can be obtained directly from the Bianchi
identity, ∇νT νµ = 0, but it is just as easily found by taking one derivative of the Friedmann
equation and using the second equation in (10.2.5),

dρ

dt
+

3ȧ

a

(
ρ+

p

c2

)
= 0. (10.2.9)

In relativistic flows, one must distinguish between the mass density, ρ(t), and the rest mass
density, ε(t), which is defined in terms of the number density of particles, n(t), and the
rest mass of each particle, according to ε = nm. From the relativistic hydrodynamics of
perfect fluids8 we know that, given a fluid velocity Uµ, one can define the particle number
density current, Nµ = nUµ, which must be conserved if the total number of particles is
constant. Combining the conservation of particle number with the conservation of energy
and momentum then yields,

pd

(
1

n

)
+ d

(
ρc2

n

)
= 0. (10.2.10)

Because 1/n is the specific volume, v and ρc2/n is the specific energy, u, this expression
has the form of the first law of thermodynamics

Tdσ = du+ pdv (10.2.11)

where T is the temperature and σ is the specific entropy. Of course, ideal fluids undergo
isentropic flows, hence dσ = 0. The first law can also be written as

pd

(
1

ε

)
+ d

(
ρc2

ε

)
= 0 (10.2.12)

and therefore

dρ =
(
ρ+

p

c2

) dε
ε
. (10.2.13)

This permits us to express (10.2.9) as

ε̇

ε
+ 3

ȧ

a
= 0, (10.2.14)

8See notes on Classical Mechanics
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provided that ρ+ p/c2 ̸= 0, which shows that

ε(t) = ε0

(
a0
a(t)

)3

(10.2.15)

and expresses the conservation of particle number in cosmology.
If the pressure is given in terms of the rest mass density, p = p(ε), it is not difficult

to see that (10.2.13) is a Bernouli equation giving the mass density, ρ in terms of the rest
mass density,

dρ

dε
− ρ

ϵ
=
p(ε)

c2ε
, (10.2.16)

whose solution is

ρ(ε) = Aε+ ε

∫ ε

dε′
p(ε′)

c2ε′2
, (10.2.17)

where A is an integration constant. On the other hand, if the pressure is given as p = p(ρ),
then the rest mass density is found from the mass density,

ε = ε0 exp

[∫ ρ

ρ0

dρ

ρ+ p(ρ)/c2

]
, (10.2.18)

where ε(ρ0) = ε0. In case p(ρ)≪ ρc2, we may approximate the relation above by

ε(ρ) = Bρ−Bρ
∫ ρ

dρ′
p(ρ′)

ρ′2c2
(10.2.19)

which can be compared with (10.2.17). Equations of state for barotropic flows may be
specified in either form.

Returning to the linear barotropes in (10.2.7), we see that if w = −1 then ρ = −p/c2 =
Λ (constant). This is, of course, the case of a cosmological constant, which one associates
with space itself or a vacuum energy. On the other hand, with w = 0 we have pressureless
dust with ρ(t) given by (10.1.57). In general,

ρ(t) = ρ0

(
a(t)

a0

)−3(1+w)

, (10.2.20)

where ρ0 is a constant representing the dust energy density at time t0, which can be taken
to be the present, and a0 = a(t0).

9

9Problem: Show that the the first equation of (10.2.5) is the first integral of (10.2.6) by rewriting the
latter as

ä =
1

2

dȧ2

da
= −4πG

3
(1 + 3w)aρ(a),

where ρ(a) given in (10.2.20). Integrate the equation for ȧ2 to recover the first. Interpret the integration
constant.
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The evolution of the scale factor will depend on whether space is flat, spherical or
hyperbolic. We want to find general solutions of the equations of motion, but let us first
transform them to conformal time, η. Then since ȧ = a′/a and ä = a′′/a − a′2/a2, it
follows that

a′2

a2
+ kc2 =

8πG

3
a2ρ

a′′

a
− a′2

a2
= −4πG

3
(1 + 3w)a2ρ (10.2.21)

Defining the function h = a′/a, we have

h2 + kc2 =
8πG

3
a2ρ

h′ = −4πG(1 + 3w)a2ρ. (10.2.22)

We can now use the first equation to eliminate ρ(a) obtaining the following equation for
h,

2h′ + (1 + 3w)(h2 + kc2) = 0. (10.2.23)

When k = −1, the weak energy condition requires that h ≥ c. One possible non-trivial
solution occurs when k = −1 and h = c. It describes an empty, hyperbolic space-time
called the “Milne” universe (see the problem below). Again, w = −1/3 also implies that
h is constant for any value of k, but in this case the universe is not necessarily empty. If
ρ ̸= 0 and so long as w ̸= −1/3,

h(η) =



c tan
[
− c

2(1 + 3w)(η − η0) + tan−1 h0
c

]
k = +1

2h0
(1+3w)h0(η−η0)+2 k = 0

c coth
[
c
2(1 + 3w)(η − η0) + coth−1 h0

c

]
k = −1

(10.2.24)

where h0 = h(η0). We can integrate the above to find

a(η) =



a0

[√
h20
c2

+ 1 cos
{
c
2(1 + 3w)(η − η0)− tan−1 h0

c

}] 2
1+3w

k = +1

a0
[
1
2(1 + 3w)h0(η − η0) + 1

] 2
1+3w k = 0

a0

[√
h20
c2
− 1 sinh

{
c
2(1 + 3w)(η − η0) + coth−1 h0

c

}] 2
1+3w

k = −1

(10.2.25)
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Figure 10.2: Behavior of the scale factor for dust with k = 0,±1.

The special case of w = −1/3, for which the function h is constant, h = h0, has the
solution a(η) = a0e

h0(η−η0). Notice that, in this case, the scale factor only vanishes as
η → −∞. Solutions satisfying a(0) = 0 can only be found for w > −1

3 ,

a(η) =



a0

[
1
2

(
h20
c2

+ 1
)
(1− cos(1 + 3w)cη)

] 1
1+3w

k = +1

a0
[
1
2(1 + 3w)h0η

] 2
1+3w k = 0

a0

[
1
2

(
h20
c2
− 1
)
(cosh(1 + 3w)cη − 1)

] 1
1+3w

k = −1

(10.2.26)

These generalize the solutions in (10.1.72) to linear barotropic ideal fluids and are shown
in 10.2 for the case of dust, w = 0.10

In each of these cases, the proper time may be expressed in terms of the conformal
time by using (10.1.63) but the expressions are complicated in all but the simplest case of

10Problem: Use the dust energy density in (10.1.57) to recover (10.1.72) for w = 0.
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a spatially flat cosmology, for which

t =

∫ η

a(η)dη ∼


η

3(1+w)
1+3w w ̸= −1,−1

3

eh0η w = −1
3

ln h0η w = −1

. (10.2.27)

Therefore, a(t) ∼ t2/3(1+w), except when w = −1. In particular, for some standard forms
of matter/energy we obtain

a(t) ∼


t2/3 w = 0 (dust)

t1/2 w = 1
3 (radiation)

t1/3 w = 1 (stiff matter)

(10.2.28)

When w = −1/3 we find, using the solution for a(η) given earlier, that

a(t) ∼ h0t. (10.2.29)

In this case there is neither acceleration nor deceleration of the scale factor and the universe
expands at a constant rate.11 Indeed this is the boundary between solutions with a
decelerating scale factor (ä < 0) and solutions with an accelerating scale factor (ä > 0),
which always occur when w < −1/3. In all cases, except when w = −1, the bang occurs
at t = 0. When w = −1, which is the case of a cosmological constant, we find

a(t) ∼ e(h0/a0)t, w = −1 (10.2.30)

and the bang occurs in the infinite past.

10.2.2 Distance and Red-Shift

The proper spatial distance between two points is the distance between two events as
measured simultaneously by an observer. Going back to (10.1.61) we see that the proper
spatial distance between two points separated along the radial coordinate (dt = dΩ = 0)
depends on time via the scale factor according to D(t) = a(t)∆χ (the coordinate distance,

11Problem: Show that this same solution is obtained for the Milne universe. We end up with the metric
solution

ds2 = c2dt2 − c2t2(dχ2 + sinh2 χdΩ2).
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∆χ, is often called the comoving distance). Consider an observer located at χ0 and an
object located at χ(t). The proper distance to the object, measured at time t, will be

D(t) = a(t)[χ(t)− χ0] (10.2.31)

and gives the proper velocity

v =
dD(t)

dt
= ȧ(t)[χ(t)− χ0] + a(t)χ̇(t), (10.2.32)

which is the sum of two parts. We call the first term on the right hand side the Hubble
flow because it is a contribution that arises purely from the changing scale factor. The
second term is called the peculiar velocity because it arises from changes in the position
of the object in the comoving coordinate system, i.e., changes in χ(t). We might write
this as

v =
ȧ(t)

a(t)
D(t) + a(t)vpec(t)

def
= H(t)D(t) + a(t)vpec(t) (10.2.33)

where H(t) = ȧ/a is called the Hubble parameter. The Hubble flow will be non-
vanishing as long as the universe is not static. This contribution is referred to as Hubble’s
Law,

v = HD, when vpec = 0. (10.2.34)

Hubble’s law is extremely powerful in determining distances to far-away stars and galaxies,
assuming that their peculiar velocities are zero or negligible, since D is then determined
directly from a measurement of v at the present time and the present value of the Hubble
parameter according to D = v0/H0.

But how is v determined? Everything we know about the universe is determined from
the electromagnetic waves reaching us from distant objects. In traveling through space,
light emitted by any source will suffer a red-shift due to the universe’s expansion. To see
this, let λ be the wavelength emitted by the source at the time, t, that it was emitted. If
there is no peculiar motion of the object then λ may be written in terms of of the scale
factor as λ = a(t)∆χ, where ∆χ represents the coordinate separation between successive
crests of the wave. Likewise, if λ0 is the wavelength received at the present time, t0, then
λ0 = a(t0)∆χ and then

λ0
λ

=
a(t0)

a(t)
(10.2.35)

and one defines the red-shift factor by

z =
λ0 − λ
λ

=
a(t0)

a(t)
− 1. (10.2.36)
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It is positive for an expanding universe and negative for a contracting universe when we
would expect blue-shifts, not red-shifts, for distant objects. For close enough objects we
may expand a(t) in a power series,

a(t) = a0 [1 +H0(t− t0) + . . .] (10.2.37)

where a0 = a(t0). The time t0− t is the time it takes for light to travel from the object to
the observer. From the equation for null geodesics,

c

∫ t0

t

dt′

a(t′)
= χ− χ0 (10.2.38)

and, if we take the scale factor to be approximately constant in this time, a(t) ≈ a0, then
c(t0 − t) ≈ a0(χ− χ0) = D0 and the red-shift factor becomes

z ≈ H0D0/c = v0/c. (10.2.39)

The red-shift can be directly determined by comparing the spectrum of the received ra-
diation with the known spectra of elements. Assuming there is an independent way to
determine the proper distance D, the slope of red-shift distance diagrams for nearby stars
will yield the present value of the Hubble parameter, which is today found to be

H0 = 70.2± 1 (km/s)/Mpc. (10.2.40)

From Hubble’s law, we then conclude that the proper distance to the “edge” of the ob-
servable universe is D0 = c/H0 ≈ 4.27 Gpc or 13.9 Gly. This is called the Hubble radius
of the universe.

When we consider that only a miniscule fraction of the electromagnetic energy emitted
by sources in the universe is actually collected in our telescopes, we realize that the another
relevant measurable quantity is the flux of energy arriving at the present time on Earth.
The inverse square law for the flux gets modified by the red-shift for three reasons, viz.,

• the proper area of a sphere centered at the source and passing through Earth at
the present time is different from the proper area of a sphere centered on Earth and
passing through the source in the past. The difference is captured by the reciprocity
theorem.12

• the intrinsic luminosity of the source differs from its measured luminosity because
of the red-shifting of photons and

12Etherington, I.M.H., “On the definition of distance in general relativity”, Phil. Mag. Ser. 7 15 (1933)
761.



362 CHAPTER 10. TIME DEPENDENT SOLUTIONS

• the expansion of the universe slows down the arrival rate of the photons leading to
an additional drop in the measured luminosity.

For an observer at the present time, t0, the area radius is defined to be the distance R0

for which a past directed bundle of null rays, subtending an angle of dΩ0 at the observer
has a cross-sectional area dS0 = R2

0dΩ0 at R0 (which is, say, the area radius to some
observed galaxy G). On the other hand, the galaxy area radius RG is defined as the radius
at which a future directed bundle of null rays subtending a solid angle ΩG would have
a cross-sectional area dSG = R2

GdΩG at the observer at time t0. Because of the cosmic
expansion, the two radii are not the same; one has

RG = a(t0)f(χ), R0 = a(t)f(χ) (10.2.41)

so they are related to one another by

RG = (1 + z)R0. (10.2.42)

While the observer area radius is, in principle, measurable via direct astronomical obser-
vations, the galaxy area radius is not.

The luminosity radius, DL, is defined as the distance satisfying the inverse square
law

F0 =
L

4πD2
L

, (10.2.43)

where L is the intrinsic luminosity (also known as the bolometric luminosity) of the emitter
at t and F0 is the apparent flux, i.e., the luminosity per unit area received by the observer
at t0. The reason for this peculiar mixing of intrinsic and observed quantities is that the
intrinsic luminosity is often known from theoretical considerations as, for example, in the
case of the “standard candles” such as Type IA supernovæ. However, the received flux
will depend on the received luminosity and the area radius as measured from the source
according to

F0 =
L0

4πR2
G

=
L0

4πR2
0(1 + z)2

(10.2.44)

but L0 is not the same as the intrinsic luminosity, L, which also suffers a change due to the
expansion as we can see from the following argument: photons emitted with a frequency
ν in time intervals δt at time t are received with a frequency ν0 in time intervals δt0 at
the present time. Wavelengths and time intervals are related by

λ0
λ

=
ν

ν0
=
δt0
δt

= 1 + z, (10.2.45)

therefore the emitted power (or Luminosity) is related to the received power by

L0

L
=
ν0δt

νδt0
= (1 + z)−2 ⇒ L0 =

L

(1 + z)2
(10.2.46)
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and it follows that the received flux, expressed in terms of the intrinsic luminosity of the
emitter and the observer radius is

F0 =
L0

4πR2
G

=
L

4πR2
0(1 + z)4

. (10.2.47)

Hence we find DL = R0(1 + z)2 = a0f(χ)(1 + z)2. Assuming thermal radiation, the
wavelength at which the received flux is maximum gives the apparent temperature of the
star according to Wein’s law, λ0,maxT0 = const. As the constant on the right depends only
on the fundamental constants, the intrinsic temperature of the source is then

T = (1 + z)T0. (10.2.48)

Knowing the intrinsic temperature of the source, one may employ the Stefan-Boltzmann
law, L = σAT 4, where A = πD2

A is its surface area and DA is its angular diameter, to
determine the intrinsic luminosity of the source assuming that its angular diameter can
be measured. This requires an accurate measurement of the angle, δθ, subtended by the
source at the observer, in terms of which DA = R0δθ = a(t)f(χ)δθ.

10.2.3 Many Species

The universe consists not simply of one type of energy (by which we mean satisfying a
particular equation of state) but of different types. In different epochs one type of energy
may have dominated its evolution only to be superseded by another type at a later time.
This follows by the fact that, as the universe expands, the energy density of the various
species falls as ρ(a) ∼ a−3(1+w) so, for example, the density of pressureless dust falls off as
a−3 whereas that of radiation as a−4. This implies that, at some stage, the universe will
cease to be dominated by radiation energy and become dominated by dust. On the other
hand, the energy density of the cosmological constant never changes, so the universe will
ultimately become dominated by this vacuum energy (however small, but provided it is
non-vanishing) no matter what its initial conditions were.

Consider the cosmological equations with many species, singling out the special case
of the cosmological constant, which lies at the very boundary of what is permitted by the
weak energy principle, and writing the Friedmann equations as

H2 +
kc2

a2
=

8πG

3

(∑
i

ρi + Λ

)

Ḣ +H2 = −4πG

3

[∑
i

(1 + 3wi)ρi − 2Λ

]
(10.2.49)

In a flat universe it must hold that∑
i

ρi + Λ =
3H2

8πG

def
= ρcr (10.2.50)
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which defines a “critical energy density” (including all forms of energy) of the universe for
which it would be flat. We use this to define the fraction of the critical energy density
contributed by each component species present as follows:

Ωi =
ρi
ρcr

, ΩΛ =
Λ

ρcr
(10.2.51)

All quantities above are time dependent, of course, so in the case of a non-flat universe

3kc2

8πGa2ρcr
=
∑
i

Ωi +ΩΛ − 1. (10.2.52)

If we define

Ωk = −
3kc2

8πGa2ρcr
,

the Friedmann equations become the statements that∑
i

Ωi +Ωk +ΩΛ = 1

Ḣ

H2
+ 1 = −1

2

[∑
i

(1 + 3wi)Ωi − 2ΩΛ

]
(10.2.53)

The fractions at the present time will be referred to, as usual, by the suffix “0”. Current
observations of the Cosmic Microwave Background (CMB) indicate that the universe is
flat, Ωk = 0, and

Ωm0 = 0.31, Ωr0 = 10−4, ΩΛ0 = 0.69 (10.2.54)

where Ωm refers to pressureless matter and Ωr to radiation.13 Pressureless matter is
further categorized as baryonic (atoms) and non-baryonic (dark) matter,

Ωm = Ωb +Ωdm, Ωb0 = 0.04, Ωdm0 = 0.27 (10.2.55)

so the vacuum energy, by all standards a bizarre form of energy that we have no direct
(i.e., non-gravitational) means to observe and study, clearly dominates the energy budget
of our universe at the present time. This is the “Dark Energy” problem. Furthermore, only
4% of the matter energy content of the universe has been accounted for and not much is
known of the properties of the remaining 27%. This is the “Dark Matter” problem. They
are two of the most pressing problems in theoretical physics today.

13How data on the CMB is analyzed is beyond the scope of these notes. A clear description may be
found in Weinberg, “Cosmology”, Oxford University Press (2008).
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Figure 10.3: The scale factor in ΛCDM (solid) and CDM (dashed).

10.2.4 The ΛCDM Model

Let us now consider a two component, flat universe with a cosmological constant (Λ) and
pressureless dust (cold dark matter, CDM). The equations we want to solve are then

Ωm +ΩΛ = 1

Ḣ +H2 = −H
2

2
[Ωm − 2ΩΛ] (10.2.56)

Using the first equation, the second may be put in the form

2Ḣ + 3H2 = 3ΩΛH
2 = 8πGΛ (10.2.57)

From (10.2.56), the absence of CDM implies that Ḣ = 0 and we recover the w = −1 result
of (10.2.30). For CDM obeying the weak energy condition, we must take 3H2 > 8πGΛ
we easily solve (10.2.57) to find

H(t) =

√
8πGΛ

3
coth

[
√
6πGΛ (t− t0) + coth−1

√
3H2

0

8πGΛ

]
(10.2.58)

Integrating once more gives the scale factor

a(t) = a0

[√
3H2

0

8πGΛ
− 1 sinh

{
√
6πGΛ (t− t0) + coth−1

√
3H2

0

8πGΛ

}]2/3
, (10.2.59)
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Figure 10.4: The Hubble parameter in ΛCDM (solid) and CDM (dashed).

so the solution with a(0) = 0 becomes

a(t) = a0

[√
3H2

0

8πGΛ
− 1 sinh

√
6πGΛ t

]2/3
. (10.2.60)

The solution reduces to ordinary CDM at “early” times,

a(t) ≈ a0
(
1− 8πGΛ

3H2
0

)1/3(3H0t

2

)2/3

, t≪ (6πGΛ)−1/2, (10.2.61)

with a negative acceleration, ä < 0, but, at late times, it grows exponentially,

a(t) =
a0

22/3

(
3H2

0

8πGΛ
− 1

)1/3

e

√
8πGΛ

3
t
, t≫ (6πGΛ)−1/2 (10.2.62)

To estimate the time at which the cosmological constant begins to dominate it is sufficient
to determine the inflection point in a(t), which occurs at τ0 = cosh−1(

√
3/2)(6πGΛ)−1/2.

Given the presently quoted values of H0 and ΩΛ, one finds Λ ≈ 0.67× 10−26 kg/m3. This
gives the estimate τ0 ≈ 7.2 by for the transition from a matter dominated to a vacuum
energy dominated universe, which is in fair agreement with the conclusions from various
supernovae experiments and the CMB data. Figure 10.3 shows the evolution of the scale
factor in the ΛCDM model as compared with its evolution in a dust (CDM) model and
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Figure 10.4 shows the Hubble parameter as a function of time in each case.14,15

The causal structures of the space-times discussed above are determined by the light
cone structure, for which it is necessary to solve the null geodesic equation

dt2 − a2(t)dχ2 = 0 ⇒ η − ηi =
∫ t

i

dt′

a(t′)
= ±1

c
(χ− χi) (10.2.63)

It is helpful to rewrite the time integral as∫
dt

a(t)
=

∫
d ln a

h(a)
(10.2.64)

and then to employ the Bianchi identity in (10.2.20) and the Friedmann equation in
(10.2.22), which, in the simplest case of a flat universe, implies that

h = h0

(a0
a

)(1+3w)/2
(10.2.65)

and gives (w ̸= −1/3) ∫
dt

a(t)
=

2h−1
0

1 + 3w

(
a

a0

)(1+3w)/2

. (10.2.66)

Therefore

η − ηi =
2h−1

0

1 + 3w

[(
a(t)

a0

)(1+3w)/2

−
(
ai
a0

)(1+3w)/2
]
= ±1

c
(χ− χi). (10.2.67)

Rewriting this in terms of h, using (10.2.65) gives

χp = χ− χi = ±
2c

|1 + 3w|
(h−1 − h−1

i ) (10.2.68)

This is the light cone and therefore the greatest coordinate (or comoving) distance that
light can travel between two times, ti and t. If the initial time, ti, is taken to be the
time of the big bang, it is called the particle horizon. The physical distance to the

14Problem: Repeat the analysis for a two component evolution with a cosmological constant and matter
with an arbitrary w > −1/3. Show that the solution with a(0) = 0 is

a(t) = a0

[√
3H2

0

8πGΛ
− 1 sinh

√
6πGΛ (1 + w)t

]2/3(1+w)

and determine the inflection point. How does the time τ0 change with w?
15Problem: Consider a two component system consisting of radiation and CDM. Obtain the scale factor

as a function of time. When does the transition from a radiation dominated universe to a matter dominated
universe occur?



368 CHAPTER 10. TIME DEPENDENT SOLUTIONS

Figure 10.5: The particle horizon for the CDM and ΛCDM models.

particle horizon is, of course, dp = a(t)χp. So long as the strong energy condition is
obeyed (w > −1/3), the scale factor is increasing and h−1 also increases, causing the
particle horizon to increase in time. However, if a component that violates the strong
energy condition (w < −1/3) controls the evolution of the universe, then an increasing
scale factor will cause the particle horizon to decrease in time. This is shown in figure 10.5
for the CDM and ΛCDM models worked out earlier.

In the ΛCDM model less and less of the universe is accessible to the observer in time.
Therefore in the distant future an Earth bound astronomer will eventually be confined to
observing just our Milky Way.

10.3 The Fine-Tuning Puzzles of Classical Cosmology

Classical Cosmology describes the evolution of the universe well and in close agreement
with observations provided two assumptions are made concerning the initial conditions.
These initial conditions cannot be specified at the big bang because there is a singularity
there. Rather, we must give them on some later, smooth spatial hypersurface, Σ. It
is customary to take this hypersurface to be at the time of last scattering, when the
CMB was released, i.e., when the universe became cool enough to become transparent to
electromagnetic waves, about 300,000 years after the big bang. Physics is not so much
about initial conditions as it is about evolution, so one could take the point of view that
the initial conditions are given à priori and simply to be accepted, there being no context
for arriving at them or “explaining” them within the confines of physics. However, one
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Figure 10.6: The Planck spacecraft’s large telescope view of the CMB.

hopes that the initial conditions that lead to our present day universe would be, in some
sense, generic. They do not appear to be. On the contrary it appears that we live in a
very finely tuned universe.

10.3.1 The Horizon Problem

The first of puzzle is that the universe appears to have begun isotropic and homogeneous
over regions that should have been causally disconnected at the time of last scattering.
This is because, if the universe had a beginning, the light cone from any point on the last
scattering surface cannot be traced “back” indefinitely.

Let us consider the behavior of the particle horizon, given by (10.2.68). We found that

χp ∼ a(1+3w)/2. (10.3.1)

The exponent is positive for matter obeying the strong energy condition (this is assumed
in standard cosmology) and the particle horizon increases with time. As it does so, regions
that were outside the horizon at the time of last scattering enter the horizon. But this
means that portions of the CMB that we observe today were causally disconnected regions
at the time it was released and so there is no dynamical mechanism by which they could
achieve thermal equilibrium with each other. On the contrary, we observe an almost
perfectly isotropic thermal background at approximately 2.7◦ K (see figure 10.6).

10.3.2 The Flatness Problem

The second puzzle is that the universe appears to be “flat” (k = 0), that is Ωk ≈ 0 at the
present time. But, according to (10.2.53),

Ωk = −
3kc2

8πGa2ρcr
= − kc2

(Ha)2
=
∑
i

Ωi +ΩΛ − 1. (10.3.2)
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In standard cosmology, (Ha)−1 grows with time, therefore |Ωk| = |
∑

iΩi+ΩΛ−1| should
diverge in time if k deviated even slightly from zero in the early universe! In other words,
the critical value

∑
iΩi+ΩΛ = 1 is an unstable fixed point of the evolution. The fact that

energy density of the universe at the present time is found to be very close to its critical
value, means that the early universe must have had an energy density even closer to its
critical value, numerically estimated to have departed from it by no more than one part
in 1062.

10.3.3 Inflation

Both of the problems above are connected to a common assumption: that the strong
energy condition (w > −1/3) holds throughout the evolution of the universe. What if we
relaxed this condition for some time interval? We have seen that when −1 < w < −1/3
the particle horizon shrinks in time,

dχp
dt

< 0, (10.3.3)

the so-called “Hubble radius”, (Ha)−1, decreases,

d

dt
(Ha)−1 < 0 (10.3.4)

and the scale factor accelerates,
d2a

dt2
> 0. (10.3.5)

Generically, when these conditions are met, we say that the universe is in an inflationary
phase.

Therefore imagine that, for some interval of time soon after after the big bang, the
universe undergoes an inflationary phase, after which the component responsible for it be-
comes sub-dominant and allows the universe to follow a normal track. This early inflation
would solve both the horizon and flatness problems.

• Provided that inflation occurred for a sufficiently long time, regions that enter the
particle horizon during its later normal phase could have been inside the horizon be-
fore the early inflation began. Spatial homogeneity would then have been established
prior to the start of the inflationary period. This solves the horizon problem.

• Again, through such an inflationary period, (Ha)−1 decreases, driving Ωk to zero
and the energy density to its critical value. This solves the flatness problem.

The universe thus appears to have undergone roughly four principal eras in its expansion,
up to the present time. Immediately after emerging from the quantum gravity (Planck)
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era, it is thought to have inflated, going from a length scale of about 10−35 m to about one
micron in a small fraction of a second. Later, it passed through an era first dominated by
radiation and followed, as its temperature cooled to below roughly 104 K, by one dominated
by matter. During this time, the universe decelerated in its expansion. Finally, about 7
billion years ago, it appears to have entered the so-called Dark Energy (DE) dominated
era and has been accelerating in its expansion ever since. Whereas the last three eras
are observationally on solid ground, early inflation remains speculative. It is generally
accepted, however, because it solves both the horizon problem and the flatness problems
as well as the problem of the initial singularity.

10.4 Cosmology with Scalar Fields

Matter that satisfies the condition w < −1/3 is at best unfamiliar. The simplest models
of inflation employ a single scalar field source, with action

S = −1

2

∫
d4x
√
−g [gµν∂µϕ∂νϕ+ 2V (ϕ)] , (10.4.1)

and stress tensor

Tµν = ∂µϕ∂νϕ− gµν
[
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

]
. (10.4.2)

For a homogeneous solution, Einstein’s equations are (10.2.5),

H2 +
kc2

a2
=

8πG

3
ρϕ

2Ḣ + 3H2 +
kc2

a2
= −8πG

c2
pϕ (10.4.3)

where the field mass density, ρϕ, and pressure, pϕ, are given by

ρϕc
2 =

1

2c2
ϕ̇2 + V (ϕ)

pϕ =
1

2c2
ϕ̇2 − V (ϕ). (10.4.4)

To these we may add the scalar field equation of motion,

ϕ̈+ 3Hϕ̇+ c2V ′(ϕ) = 0, (10.4.5)

although it is not independent but follows from the conservation of energy and momentum.
The middle term can be thought of in the same way as one thinks of the frictional “drag” on
a particle moving in a medium. In this case, the drag coefficient is the Hubble parameter,
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therefore, the faster the universe expands the greater the drag on the field and the slower
it evolves.

For simplicity, let us begin by considering the post inflationary era in which the universe
is flat. The equation of state depends on the potential V (ϕ). Scalar potentials leading to
prescribed equations of state may be found, but a given potential does not always lead to
a unique equation of state. To see this, employ the first of (10.4.3) in (10.4.5) for a flat
and expanding universe to express the latter as

2
d

dϕ

√(
1

2
ϕ̇2 + c2V (ϕ)

)
+

√
24πG

c4
ϕ̇ = 0. (10.4.6)

Letting y = ϕ̇, z2 = ρϕc
4, the scalar field equation reduces to

dz

dϕ
+ σy = 0 (10.4.7)

where σ =
√

6πG/c4. The dominant energy condition holds so long as V (ϕ) ≥ 0. In this
case, we may set z = c

√
V (ϕ) coshu(ϕ) and y = c

√
2V (ϕ) sinhu(ϕ). Rescaling ϕ, z and

V (ϕ) according to16

φ =

√
12πG

c4
ϕ,

z̃ =

√
12πG

c4
z, Ṽ (φ) =

12πG

c2
V (ϕ) (10.4.8)

allows us to write the scalar field equation as

z̃′

z̃
+ tanhu = 0 (10.4.9)

or

u′(φ) +
Ṽ ′(φ)

2Ṽ (φ)
cothu(φ) + 1 = 0, (10.4.10)

where the prime now refers to a derivative with respect to φ. We can take the equation
of state to be a specification of wϕ(ϕ), defined by

wϕ(φ) =
pφ
ρφc2

=
φ̇2 − 2Ṽ (φ)

φ̇2 + 2Ṽ (φ)
= 2 tanh2 u(φ)− 1 ∈ [−1, 1). (10.4.11)

The potential completely determines the equation of state (subject to boundary conditions)
and, conversely, the equation of state (i.e., a particular solution u(ϕ)) determines V (φ)

16By this recaling, φ is dimensionless, but [z̃] ∼ 1/t and [Ṽ ] ∼ 1/t2.
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up to a multiplicative constant. The former is a formidable problem because (10.4.10) is
nonlinear. It can lead to multiple possible equations of state. However, if u(φ) is known,
all the quantities of interest may be expressed in terms of the energy density and its
derivative, in particular,

Ṽ (φ) = z̃2 − z̃′2,

wφ =
2z̃′2

z̃2
− 1, and

qφ =
1

2
(1 + 3wφ) =

3z̃′2

z̃2
− 1, (10.4.12)

where Λ is some constant and qφ is the “deceleration parameter”. From Einstein’s equa-
tions it follows that the universe accelerates in its expansion when qφ < 0 and decelerates
otherwise. The complete solution reduces to quadratures:

φ̇ = −
√
2 ϵz̃′(φ) ⇒

∫ φ

φ0

dφ

z̃′(φ)
=
√
2 ϵ(t− t0)

ȧ

a
= +

√
2 ϵ

3
z̃(φ) ⇒ a(φ) = a(φ0) exp

[
−1

3

∫ φ

φ0

dφ
z̃(φ)

z̃′(φ)

]
, (10.4.13)

where ϵ = ±1 accounts for periods of expansion or contraction of the universe. We will
now examine a few examples of the application of the above relations.

10.4.1 Linear Barotropes Revisited

Consider what scalar field potential would lead to linear barotropic behavior, i.e., to wϕ
(equivalently, u) is constant. If u = u0 we find

z̃ = z̃0e
γφ ⇒ Ṽ (φ) = Ṽ0e

2γφ (10.4.14)

where γ = − tanhu0 = ∓
√

1+w0
2 and we have used (10.4.12). For definiteness, let γ < 0

(an analogous solution is obtained if γ > 0). The corresponding scalar field equation in
(10.4.13)

φ̇ = ϵ

√
2Ṽ0(1 + w0)

1− w0
eγφ (10.4.15)

has the solution

φ(t)− φ0 = ln

1 + ϵ

√
Ṽ0(1 + w0)2

1− w0
eγφ0(t− t0)


√

2
1+w0

. (10.4.16)
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Figure 10.7: The exponetial potential,

with γ = −
√

2
3 .

Figure 10.8: Scalar field vs. velocity plots
for the three families of solutions for the
exponetial potential.

When ϵ = +1, the scalar field increases indefinitely, i.e., descends, or “rolls down”, the
potential in time (because γ < 0) while, by the first of Einstein’s equations, the scale
factor grows as a power law,

a(t) = a0

1 + ϵ

√
Ṽ0(1 + w0)2

1− w0
eγφ0(t− t0)

 2
3(1+w0)

, w0 ̸= −1, (10.4.17)

arising out of a singularity at the time

ts = t0 −
√

1− w0

Ṽ0(1 + w0)2
e−γφ0 (10.4.18)

If w0 = −1 both the potential and the the scalar field are constant and the universe
undergoes an exponential expansion. We have obtained these results before, of course.

With an exponential potential, the nullcline (u′ = 0) also solves equation (10.4.10) for
u and serves as a separatrix between two families of solutions. This makes it very special.
The general solution of (10.4.10) for the exponential potential is obtained in implicit form,

φ0 − φ =


γ ln|γ coshu+sinhu|−u

γ2−1
γ ̸= ±1

1
4

[
2u+ e−2u

]
γ = ±1

(10.4.19)

but, because the solution naturally yields φ(u), one can now seek to find u(t), using

φ̇ = u̇
dφ(u)

du
= c

√
2Ṽ0e

γφ(u) sinhu. (10.4.20)
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Figure 10.9: The scalar potential for the
Chaplygin gas.

Figure 10.10: Scalar field vs. velocity plot
for the evolution of the scalar field.

A simple, yet useful way to obtain a qualitative picture of the evolution is via a “phase”
diagram for the evolution. Figure 10.8 is a plot of φ̇ vs.

√
V (φ) for the evolution of the

scalar field with the exponential potential, where we have taken γ = −
√

2
3 , showing the

two families of solutions on either side of the separatrix. Bear in mind, however, that this
is not a true phase diagram for the evolution of solutions (in a cosmological background,
the scalar field momentumis pϕ ∼ a3ϕ̇, and not simply ϕ̇, while the momentum conjugate
to the scale factor is pa ∼ −aȧ; because our system is Hamiltonian, Louville’s theorem
guarantees that the total phase space volume remains constant throughout the evolution).
It only serves to illustrate the behavior of the field alone during the evolution. For all
solutions, φ → ∞ as t → ∞, i.e., the scalar field eventually “rolls down” the potential,
with decreasing speed as φ grows indefinitely. Thus all solutions terminate at the origin.

The separatrix, shown as the dashed line in green, is a straight line of slope
√

3γ2

1−γ2 and

represents linear barotropic fluids. Solutions above the separatrix simply “roll down” the
potential, whereas solutions below may begin by “rolling up” the potential but eventually
stop and “roll down”.

10.4.2 Polytropes

With the polytropic equation of state

p = K ′c2ρ1+1/n, w = K ′ρ1/n = Kz̃2/n,

we find, by (10.4.11),

tanhu = ±
√

1

2

(
1 +Kz̃2/n

)
. (10.4.21)
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Thus the energy density is determined from∫ z̃

z̃0

dz̃

z̃
√
1 +Kz̃2/n

= ±φ− φ0√
2

. (10.4.22)

Considering the special case for which K = −|K| < 0 and n = −|n| < 0, we find

z̃ = |K||n|/2 cosh|n|
(
φ∓ φ0√

2|n|
+ cosh−1 z̃

1/|n|
0√
|K|

)
, (10.4.23)

and the scalar field potential

Ṽ (φ) = Ṽ0 cosh
2(|n|−1)X±

(
1 + cosh2X±

)
, (10.4.24)

where

X± =
φ∓ φ0√

2|n|
+ cosh−1 z̃

1/|n|
0√
|K|

. (10.4.25)

When n = −1/2, (10.4.21) describes the Chaplygin gas, for which the scalar field potential
is

Ṽ (φ) = Ṽ0 (sechX± + coshX±) , (10.4.26)

where X =
√
2(φ∓ φ0) + cosh−1 z̃20/

√
|K|. Applying (10.4.13), one finds that

a(φ) = a(φ0)

(
sinhX

sinhX0

)−1/6

(10.4.27)

so that the energy density, as a function of the scale factor, behaves as

z2 = ρc4 =

√
|K|+A

(a0
a

)6
, (10.4.28)

where A = |K| sinhX0. For small values of the scale factor ρ ∼ a−3, which behavior is
characteristic of pressureless dust. On the other hand, for large values of a, the energy
density ρ ∼ const., which is characteristic of a cosmological constant. This simple model
therefore interpolates between an early dust phase and a late de Sitter phase, mimicking
the ΛCDM model and has been suggested as a unification of Dark Matter and Dark
Energy. Solutions for φ(t) and a(t) can be found in implicit form, and we leave that to the
reader. From the shape of the potential (figure 10.9) we can deduce the shapes of the φ̇ vs
φ plots, shown in figure 10.10. For example, a field beginning at a positive value of φ and
a positive velocity (the curve in red) slows to a stop, reverses course and rolls down the
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Figure 10.11: Evolution of a scalar field with a quadratic potential.

potential toward φ = 0, where all solutions eventually converge.17 The late inflationary
phase results from the fact that φ̇→ 0 and Ṽ (φ)→ 2Ṽ0 ̸= 0 as t→∞, so that the scalar
field behaves as a cosmological constant at late times.

10.4.3 The Potential V (φ) = µ2φ2

The inverse problem, which is to determine the equation of state and evolution from a
given problem is far more difficult. The reason is that it is most often extremely difficult
to find a suitable integrating factor for (10.4.10). In such cases, a numerical approach
must be taken. As an example, the evolution of the scalar field with a quadratic potential
is shown in figure 10.11. Notice the existence of an “attractor” to which all solutions
converge in time, as the scalar field oscillates about the φ = 0.

Although a closed-form solution is unavailable, we can distinguish some regions that
are of interest. For example, consider what happens when the kinetic energy dominates
over the potential energy, φ̇≫ µ|φ|. In this case, we may neglect the potential compared

17Problem: Analyze the equation of state

p = ρ

(
A− B

ρ1/n

)
where −1 ≤ A ≤ 1, and B and n are positive constants. Determine the scalar field potential and describe
the evolution in the case n = 1/2; in particular, show that the evolution interpolates between a linear
barotropic fluid, whose nature is determined by A, and a late de Sitter phase.



378 CHAPTER 10. TIME DEPENDENT SOLUTIONS

with φ̇ and, from (10.4.5), find

φ̇ = φ̇0e
∓(φ−φ0), (10.4.29)

where the negative (positive) sign refers to positive (negative) field velocities. Integrating,

φ(t)− φ0 = ± ln (1 + φ̇0(t− t0)) (10.4.30)

and substituting this result into the Friedman equation reveals that H(t) ∼ 1/3t, which
describes decelerated expansion typical of stiff matter. The opposite limit, where the
potential energy dominates over the kinetic energy, φ̇ ≪ µφ, will describe a period of
accelerated expansion.

10.5 Inflation Parameters

In practice, however, one is really interested in the conditions on V (ϕ) that would en-
sure that the universe undergoes an early inflationary phase for a sufficiently long time.
Continuing with a flat universe, and returning to (10.4.3), we see that

ä

a
= −4πG

3
(1 + 3wϕ)ρϕ = −1

2
H2(1 + 3wϕ) (10.5.1)

(we will no longer require wϕ to be constant, so pϕ = wϕ(ρϕ)ρϕc
2 represents a general

equation of state). If we define the first slow roll parameter, ε, by

ä

a

def
= H2(1− ε) (10.5.2)

then ε = 3
2(1 + wϕ) ≥ 0. Accelerated expansion occurs when ε < 1. It is easy to see that

ε = − Ḣ

H2
(10.5.3)

and so it is related to the evolution of the Hubble parameter. In the limit as ε → 0,
ϕ̇2 ≪ V (ϕ) and the potential energy dominates the evolution giving a constant Hubble
parameter, H0, which in turn implies that

a = a0e
H0t. (10.5.4)

The solution is therefore a flat slicing of de-Sitter space, so it is known as the de-Sitter
limit. Again, the accelerated expansion will be sustained only so long as the frictional
term dominates over the acceleration in (10.4.5), i.e.,

|ϕ̈| ≪ |3Hϕ̇|. (10.5.5)
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We therefore define the second slow roll parameter, η, by

η = − ϕ̈

3Hϕ̇
(10.5.6)

In a flat universe, the two parameters can be related. Using (10.5.3), we find that

ε− 1

2H

d

dt
ln ε = − Ḧ

2HḢ
(10.5.7)

and Ḧ can be associated with the acceleration of the scalar field in (10.5.6) by Einstein’s
equations. Combining the two equations of (10.4.3) we find

Ḣ = −4πG

c4
ϕ̇2, (10.5.8)

and it follows that

η = − ϕ̈

3Hϕ̇
= − Ḧ

6HḢ
=

1

3

(
ε− 1

2H

d

dt
ln ε

)
. (10.5.9)

If we call dN = Hdt = d ln a, then dN represents the number of e−folds by which an
exponentially growing scale factor would increase, and

η =
1

3

(
ε− 1

2

d

dN
ln ε

)
. (10.5.10)

Thus η ≃ ε/3 ensures that the fractional change in ε per e−fold is small.
The conditions on the slow roll parameters, namely 3η ≃ ε < 1, may be expressed as

conditions on the shape of the potential as well. Within the slow roll regime (φ̇ ≈ 0 ≈ ϕ̈)
the first of (10.4.3) and the scalar field equation of motion respectively tell us that

H2 ≈ 8πG

3c2
V (ϕ) and ϕ̇ ≈ −c

2V ′(ϕ)

3H
. (10.5.11)

In this approximation, the slow roll parameters of (10.5.3) and (10.5.6) become, respec-
tively,

εV =
c4

16πG

(
V ′

V

)2

and ηV =
1

3

[
εV +

c4

8πG

V ′′

V

]
, (10.5.12)

and the spacetime is almost de-Sitter (with an exponentially growing scale factor). Infla-
tion ends when εV ≈ 1. The number of e−folds before inflation ends is given by

Ntot = ln
aend
astart

=

∫ tend

tstart

Hdt =

√
4πG

c4

∫ ϕstart

ϕend

dϕ
√
εV

(10.5.13)
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and is required to be between 40 and 60, based on the fluctuations observed in the CMB.18

A homogeneous and isotropic universe has no structure. To describe the observed large
scale structure of our universe one must turn to fluctuations of the field(s) responsible for
inflation, Dark Matter and Dark Energy.

18Problem: Determine the slow roll conditions for the potentials considered in the previous section. In
each case, (i) what is the relation between the number of e−folds and the field value before the end of
inflation, and (ii) when are the fluctuations observed in the CMB created?



Appendix A

The Poincaré Group

If there is a physically measurable feature of a physical system that remains unchanged by a
set of transformations, those transformations are symmetries of that system. Symmetries
represent redundant descriptions of the system, but they may also point to particular
useful descriptions. Here we will consider only continuous symmetries described by matrix
groups.

A.1 Galilei Group

The Newtonian concept of “absolute time” and “absolute space” requires that time and
space intervals and are independent of the (inertial) observer. As all distance measure-
ments involve a simultaneous measurement of the end points, this is equivalent to saying
that the spatial distance,

ds⃗ 2 = δijdxidxj , (A.1.1)

is invariant, and implies that there is a set of transformations of the coordinates, xi, that
leaves it unchanged.

A.1.1 Rotations

If those transformations act linearly on the coordinates, we let

xi → x′i = Rijxj (A.1.2)

where R̂ = Rij represents a set of real, constant square matrices having the dimension of
space (say, n). Then, because of the invariance of ds⃗ 2

ds⃗ 2 = δijdxidxj = δijdx
′
idx

′
j = δijRilRjmdxldxm (A.1.3)

i
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so that
RilRim = RTliRim = δlm (A.1.4)

or, simply, R̂T ·R̂ = δ̂, where δ̂ is the unit matrix. We assume that R̂ depends continuously
on a certain number of parameters (to be determined), αI .The set of transformations
satisfying (A.1.4) form a group under matrix multiplication, where the unit matrix is
the identity element and the inverse of any transformation is its transpose. Associativity
follows because matrix multiplication is associative.

This is the orthogonal group O(3), of orthogonal matrices. It turns out that the
group elements also form a manifold in which group multiplication and inversion are
smooth maps. Such a set, combining both group and manifold structures, is called a Lie
group. The orthogonality condition (A.1.4) implies that every orthogonal matrix will
have determinant ∥R̂∥ = ±1. Orthogonal matrices of determinant +1 represent rotations
and form a subgroup of O(3) called the special orthogonal group, SO(3). We will focus
on the special orthogonal group.

We will build finite transformations from infinitesimal transformations, which means
that all our group elements will be connected to the identity. An infinitesimal transforma-
tion can be written as

Rij = δij + δUij (A.1.5)

where ϵ is some small parameter. Then (A.1.4) requires that∑
i

(δij + δUij)((δik + δUik) = δjk + (δUjk + δUkj) +O(ϵ2) = δjk (A.1.6)

or δÛT = −δÛ . We conclude, therefore, that δÛ , being real, square and antisymmetric,
can depend on at most n(n − 1)/2 parameters, δαI . We therefore write a general δÛ as
the sum

δÛ =
∑
I

δαI Û
(I), (A.1.7)

where Û (I) are constant matrices called the generators of the group, and construct a
finite group element connected to the identity by simply iterating the group operation
many times,

R̂ = lim
N→∞

(
δ̂ +

∑
I

αI
N
Û (I)

)N
=

∞∑
n=0

(αI Û
(I)))n

n!

def≡ eαI Û
(I)

(A.1.8)

As an example, consider an explicit representation of the rotation group in three dimen-
sions. There are three parameters and and three generators, which we can choose to
represent rotations about each of the three axes,

U (1) = U1 =

0 0 0
0 0 1
0 −1 0

 ,
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U (2) = U2 =

0 0 −1
0 0 0
1 0 0

 ,

U (3) = U3 =

 0 1 0
−1 0 0
0 0 0

 (A.1.9)

(Notice that [Ûi]jk = ϵijk, where ϵijk is the totally antisymmetric Levi-Civita tensor in
three dimensions.) For example, if only αz ̸= 0 (αx,y = 0) then the exponentiation in
(A.1.8) gives a finite rotation about the z axis:

R̂z = eαzÛ3 = δ̂ +

(
1

2!
α2
z −

1

4!
α4
z + . . .

)
Û2
3 +

(
αz −

1

3!
α3
z +

1

4!
α4
z − . . .

)
Û3

=

 cosαz sinαz 0
− sinαz cosαz 0

0 0 1

 (A.1.10)

and we may similarly derive expressions for the rotation matrices about the other two
axes. The generators form a closed commutator algebra,

[Ûi, Ûj ] = −ϵijkÛk, (A.1.11)

called the Lie algebra so(3) of SO(3) and the components of the Levi-Civita symbol on
the right hand side are called the structure constants of the algebra.

The matrices Ûi generate the action of SO(3) on the finite dimensional vector space
R3. They form a finite (in this case, three) dimensional representation of so(3) called the
fundamental representation. Let us now consider the action of SO(3) on the infinite
dimensional space of real valued, C∞ functions, ϕ(x), on R3,

δϕ(x) = δ0ϕ(x) + ∂kϕ(x)δxk = δ0ϕ(x)− δαiϵijkxj∂kϕ(x), (A.1.12)

where we made use of the fact that [Ûi]jk = ϵijk. The first term above represents a
functional change in f . The second is a change in ϕ(x) induced by a change in its arguments
and can be expressed as

δ1ϕ(x) = −δαi(L̂iϕ) (A.1.13)

where L̂i = ϵijkxj∂k. It has the same form as δxi and the set of operators L̂i satisfy the
Lie algebra (A.1.11),

[L̂i, L̂j ] = −ϵijkL̂k. (A.1.14)

An alternate form of these generators,

L̂ij = ϵijkL̂k = xi∂j − xj∂i (A.1.15)



iv APPENDIX A. THE POINCARÉ GROUP

is also frequently used, in terms of which

δ1ϕ(x) = −
1

2
δωij(L̂ijϕ), δωij = ϵijkδαk. (A.1.16)

They satisfy the algebra1

[L̂ij , L̂lm] = δimL̂jl − δilL̂jm + δjlL̂im − δjmL̂il (A.1.17)

Finally, note that L̂2 = δijL̂iL̂j is the only quadratic invariant of the algebra, i.e.,

[L̂2, L̂i] = 0. (A.1.18)

L̂2 is known as the quadratic Casimir invariant of so(3).

A.1.2 Boosts

Galilean boosts,

t → t′ = t, xi → x′i = xi − vit (A.1.19)

act on a four dimensional space of vectors with components xµ = {t, xi}, µ ∈ {0, 1, 2, 3},
with action (

t
xi

)
→

(
t′

x′i

)
=

(
1 0j
vi 1

)(
t
xj

)
. (A.1.20)

Therefore, two boosts with parameters u⃗ and v⃗ are simply equivalent to a single boost
with parameter u⃗+ v⃗, i.e., the order in which they are applied is irrelevant. The following
are the three generators of pure Galilean boosts:

K̂1 =


0 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , K̂2 =


0 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , K̂3 =


0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0

 (A.1.21)

They are obviously nilpotent of degree 2 and commute with one another,

[K̂i, K̂j ] = 0 (A.1.22)

but they do not commute with the generators of spatial rotations,

[K̂i, Ûj ] = −ϵijkK̂k (A.1.23)

1Exercise: Find the structure constants of the algebra of the generators L̂ij .
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What about the action of boosts on the infinite dimensional vector space of C∞ functions
ϕ(x)? We find

δϕ(x) = δ0ϕ(x) + δxk∂kϕ(x) = δ0ϕ(x)− tδvi∂iϕ(x) (A.1.24)

shows that
δ1ϕ(x) = −δvi(B̂iϕ) (A.1.25)

with B̂i = t∂i. It satisfies the same algebra as K̂i, i.e.,

[L̂i, L̂j ] = −ϵijkL̂k
[B̂i, L̂j ] = −ϵijkB̂k
[B̂i, B̂j ] = 0, (A.1.26)

where we have included the algebra of pure rotations for completeness.

A.1.3 Translations

The Galilei group is a combination of rotations, boosts and translations, the last of which
capture the homogeneity of space and time. Translations are given by

t→ t′ = t+ s
xi → x′i = xi + ai. (A.1.27)

To obtain a finite dimensional representation of the Galilei group as a matrix group one
must enlarge the dimension of the vector space on which it acts by taking a space-time
event to be represented by the five dimensional vector (t, xi, 1). A suitable form of a
general Galilei transformation would then be t

xi
1

 →

 t′x′i
1

 =

1 0j s

vi R̂ ai
0 0 1

 t
xj
1

 (A.1.28)

We see that time translations are generated by

Ê =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (A.1.29)

whereas the three generators of space translations are

M̂1 =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , M̂2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 , M̂3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 (A.1.30)
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These are all nilpotent of degree 2 and commute among themselves,

[Ê, M̂i] = 0 = [M̂i, M̂j ] (A.1.31)

but not with the rotations and boosts. In fact, one can show that

[Ê, Ûi] = 0, [Ê, K̂i] = M̂i (A.1.32)

and

[M̂i, K̂j ] = 0, [M̂i, Ûj ] = ϵijkM̂k (A.1.33)

The Galilei group is ten dimensional, with generators Ê, M̂i, K̂i and Ûi satisfying the
algebra above. Its algebra is the extension of the group of rotations and boosts by trans-
lations. Acting on the functions of space and time, we find that Ê → −Ĥ = −∂t and
M̂i → P̂i = ∂i. The infinite dimensional representations obey the same algebra, which we
now state:

[Ĥ, P̂i] = 0
[Ĥ, B̂i] = P̂i
[Ĥ, L̂i] = 0
[P̂i, P̂j ] = 0

[P̂i, B̂j ] = 0

[P̂i, L̂j ] = ϵijkP̂k
[B̂i, B̂j ] = 0

[B̂i, L̂j ] = ϵijkB̂k
[L̂i, L̂j ] = −ϵijkL̂k (A.1.34)

There are two Casimir invariants, viz., P̂ 2 and W 2, where W⃗ = P̂ × B̂.2

One may consider a central extension of the algebra by a generator, M̂ , which
commutes with all the other generators (i.e., which lies at the center of the algebra), by
modifying the fifth commutation relation above as follows:

[P̂i, B̂j ] = −M̂δij

This is called the Bargmann algebra. With the central extension, the two Casimir invari-
ants get modified to

M̂Ĥ − P⃗ 2

2
and W⃗ · W⃗ , (A.1.35)

where W⃗ = M̂J⃗ + P⃗ × B⃗.

2Problem: Check this using the algebra of the Galilei group.
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A.2 Poincaré Group

The Lorentz SO(3, 1), group keeps the (Minkowski) distance between events in space-time,

ds2 = c2dt2 − δijdxidxj , (A.2.1)

invariant. When we add space-time translations to the rotations and boosts, as we did for
the Galilei group, we obtain the Poincaré group.

A.2.1 Lorentz Group

According to (1.3.51), boosts are captured by the transformations(
ct′

x′i

)
=

(
γ −γvj

c

−vi

c δij + (γ − 1)
vivj
c2

)(
ct
xj

)
, (A.2.2)

which lead to the following three generators of the boosts,

K̂1 =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , K̂2 =


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , K̂1 =


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0

 , (A.2.3)

These generators do not commute with one another (as they did in the Galilei algebra),
rather the commutator of two boost generators yields a rotation generator, according to

[K̂i, K̂j ] = ϵijkÛk (A.2.4)

so the boosts do not form a subgroup of the Lorentz group, whose Lie algebra reads

[Ûi, Ûj ] = −ϵijkÛk
[K̂i, Ûj ] = −ϵijkK̂k

[K̂i, K̂j ] = ϵijkÛk (A.2.5)

The generators of rotations can now be given in terms of the four dimensional Levi-Civita
tensor as [Ûi]jk = ε0ijk and it follows that are

δ1ϕ = −δαi(L̂iϕ) = −
1

2
δωij(L̂ijϕ), ωij = ε0ijkδα

k (A.2.6)

where

L̂i = ϵ0ijkxj∂k =
1

2
ε0ijkL̂jk, L̂ij = xi∂j − xj∂i. (A.2.7)
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The finite dimensional boost generators can also written in terms of the Levi-Civita tensor
as

[K̂i]
µ
ν =

1

2
ε0ijkε

jkµ
ν = η0νδ

µ
i − δ

µ
0 ηiν (A.2.8)

where indices are raised and lowered by

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (A.2.9)

and its inverse. Therefore, acting on the infinite dimensional space of real valued, C∞

functions,

δ1f(x) = δxµ∂µf(x) =
δvi

c
[K̂i]

µ
νx

ν∂µf(x)

= −δv
i

c

(
ct∂i +

1

c
xi∂t

)
f(x), (A.2.10)

we find that the boost generators are represented by

B̂i = ct∂i +
1

c
xi∂t (A.2.11)

This has the same form as the rotations in (A.2.7) if we define xµ = (ct, xi) and xµ =

ηµνx
ν = (−ct, xi). In fact, by defining B̂i = L̂i0 both rotation and boost generators can

be combined into

L̂µν = xµ∂ν − xν∂µ. (A.2.12)

Moreover, (we check explicitly that) the Lorentz algebra is

[L̂µν , L̂αβ] = ηµβL̂να − ηµαL̂νβ + ηναL̂µβ − ηνβL̂µα (A.2.13)

The Lorentz group admits two quadratic Casimirs, which can be conveniently expressed
as

C1 = L̂2 = L̂µνL̂µν , and C2 =
∗L̂ · L̂ = ϵµναβL̂

αβL̂µν . (A.2.14)

However, these are no longer invariant once translations are included, because translations
do not commute with the rotations and boosts.
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A.2.2 Translations

To complete the symmetries required by all classical field theories, we must include trans-
lations,

t→ t′ = t+ s
xi → x′i = xi + ai. (A.2.15)

Finite dimensional representations can, once again, be given by enlarging the dimension
of the vector space on which the group acts, so that the generators of time and space
translations will be exactly given by (A.1.29) and (A.1.30) respectively. If we let Ê = −M̂0,
the algebra of all ten generators is now (A.2.13) together with

[M̂µ, M̂ν ] = 0

[M̂µ, L̂αβ] = ηµαM̂β − ηµβM̂α (A.2.16)

Moreover, the infinite dimensional representation of M̂µ is P̂µ = −∂µ. We may cast the
entire Poincaré algebra in the compact and covariant form

[L̂µν , L̂αβ] = ηµβL̂να − ηµαL̂νβ + ηναL̂µβ − ηνβL̂µα
[P̂µ, P̂ν ] = 0

[P̂µ, L̂αβ] = ηµαP̂β − ηµβP̂α (A.2.17)

There are again two quadratic Casimirs, but they are

C1 = P̂ 2, and C2 = Ŵ 2 = ŴµŴ
ν (A.2.18)

where Ŵµ is the Pauli-Lubanski vector,

Ŵµ =
1

2
εµαβγP̂

αL̂βγ . (A.2.19)

Hence, both P̂ 2 and Ŵ 2 are not only Lorentz invariant but Poincaré invariant as well,
whereas (A.2.14) are only Lorentz invariant.

A.3 Poincaré Invariance of Fields

Physical fields, ϕA, generically transform under the action of a Poincaré group element Λ
according to some finite dimensional representation, D̂(Λ),

ϕ⃗(x)→ ϕ⃗′(x′) = D̂(ω)ϕ⃗(x) (A.3.1)
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so that an infinitesimal transformation will have the form (see (2.2.1))

δϕ⃗(x) = ϕ⃗′(x′)− ϕ⃗(x) = δωµνĜµν ϕ⃗ (A.3.2)

where, explicitly, [Ĝµν ϕ⃗]
A = [Ĝµν ]

A
Bϕ

B and [Ĝµν ]
A
B is some finite dimensional represen-

tation of the Lorentz generators; their precise form will depend on the nature of the field.
Furthermore, the change induced in the field may be decomposed into a functional change
and a change brought about by the change in coordinates, xµ → x′µ = xµ+δxµ, according
to

δϕ⃗(x) =

δ0ϕ⃗︷ ︸︸ ︷
ϕ⃗′(x)− ϕ⃗(x) +

δ1ϕ⃗︷ ︸︸ ︷
δxµ∂µϕ⃗(x)= δ0ϕ⃗(x) + δ1ϕ⃗(x) (A.3.3)

We are concerned principally with the functional change in the fields, on which the con-
served quantities depend as shown in (2.2.10). Under a Lorentz transformation,

δ0ϕ⃗(x) = δϕ⃗(x)− δ1ϕ⃗(x) = δωµν
[
Ĝµν +

1

2
L̂µν

]
ϕ⃗(x) (A.3.4)

where, L̂µν = xµ∂ν − xν∂µ are the generators of the Lorentz group in the infinite di-

mensional representation. As we have seen, the action of Ĝµν on ϕ⃗ produces its spin

whereas the action of L̂µν on ϕ⃗ produces its orbital angular momentum. Physical fields
are invariant under translations, therefore (under pure translations)

δ0ϕ⃗(x) = δaµP̂µϕ⃗(x). (A.3.5)

We may now state the total functional change in the field due to a general Poincaré
transformation as

δ0ϕ⃗(x) =

[
δωµν

(
Ĝµν +

1

2
L̂µν

)
+ δaµP̂µ

]
ϕ⃗(x) (A.3.6)

and, employing the second term in (2.2.10), find the conserved currents of (2.3.5).

A.4 Finite Dimensional Representations

Given the importance of the finite dimensional representations of the Lorentz algebra, let
us classify them. These representations act on finite dimensional vector spaces and, as far
as the standard model is concerned, only four of them participate. The simplest of these
is the trivial representation, for which Ĝ is zero. This is the scalar field, for which the
transformation matrix D̂(ω) = 1.
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To construct the non-trivial representations, it is best to return to the non-covariant
form of the generators, Ûi and K̂i, which satisfy (A.2.5). If we define

L̂i =
1

2

(
Ûi + iK̂i

)
, R̂i =

1

2

(
Ûi − iK̂i

)
(A.4.1)

then it follows that the generators {Ûi} and {K̂i} commute with one another, while each
satisfies the same commutation relations,

[L̂i, L̂j ] = −ϵijkL̂k
[R̂i, R̂j ] = −ϵijkR̂k
[L̂i, R̂j ] = 0 (A.4.2)

In this way, the Lorentz algebra has turned into two copies of the algebra of the group
SU(2), i.e., so(3, 1) ≃ su(2)× su(2). The finite dimensional representations of SU(2) are
well known, viz., the spin j/2 representations with j being any whole number. Let us
consider how these come about.

Consider the algebra of either L̂ or R̂ (say L̂), defining L̂± = 1√
2
(L̂1 ± iL̂2),

[L̂+, L̂−] = iL̂3
[L̂3, L̂±] = ±iL̂± (A.4.3)

and let |l⟩ be an eigenstate of L̂3, with eigenvalue m, i.e., L̂3|l⟩ = im|m⟩ (the eigenvalues
are imaginary because the generators, as defined, are antihermitean). It follows that
L̂+|m⟩ is an eigenstate of L̂3 of eigenvalue m + 1 and L̂−|m⟩ is an eigenstate of L̂3 of
eigenvalue m− 1, as follows:

L̂3L̂+|m⟩ = L̂+L̂3|m⟩+ iL̂+|m⟩ = i(m+ 1)L̂+|m⟩
L̂3L̂−|m⟩ = L̂−L̂3|m⟩ − iL̂−|m⟩ = i(m− 1)L̂+|m⟩ (A.4.4)

By succesively applying L̂+ to any state, we could generate an infinite set of eigenstates
of L̂3, unless there is a state, |l⟩, for which

L̂+|l⟩ = 0

This is called the highest weight state and will determine the dimension of the represen-
tation, so let us label the eigenstates of L̂3 with l as well as m, taking L̂3|l,m⟩ = im|l,m⟩,
m ≤ l. Furthermore, we will have

L̂+|l,m⟩ = N+
l,m|l,m+ 1⟩, L̂−|l⟩ = N−

l,m|l,m− 1⟩ (A.4.5)

where N± are to be determined, and N+
l,l = 0. Any state, |l,m⟩ can be recovered from the

highest weight state by a successive application of L̂−, since

L̂ l−m
− |l, l⟩ = N−

l,m+1 ·N
−
l,m+2 · . . . ·N

−
l,l|l,m⟩ (A.4.6)
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Now,

[L̂+, L̂ l−m
− ]|l, l⟩ = L̂+ · L̂ l−m

− |l, l⟩ = N−
l,m+1 ·N

−
l,m+2 · . . . ·N

−
l,lL̂+|l,m⟩

= N−
l,m+1 ·N

−
l,m+2 · . . . ·N

−
l,l ·N

+
l,m|l,m+ 1⟩ (A.4.7)

because L̂+|l, l⟩ = 0. However, applying the algebra, we find that

[L̂+, L̂ l−m
− ]|l, l⟩ =

l−m−1∑
r=0

L̂ r
− · [L̂+, L̂−] · L̂ l−m−r−1

− |l, l⟩

= i
l−m−1∑
r=0

L̂ r
− · L̂3 · L̂ l−m−r−1

− |l, l⟩

= −
l−m−1∑
r=0

(m+ r + 1)L̂ l−m−1
− |l, l⟩

= −
[
(m+ 1)(l −m) +

(l −m)(l −m− 1)

2

]
L̂ l−m−1
− |l, l⟩

= −1

2
(l −m)(l +m+ 1)L̂ l−m−1

− |l, l⟩ (A.4.8)

and putting this together with (A.4.7) we have

N−
l,m+1 ·N

+
l,m = −1

2
(l −m)(l +m+ 1) (A.4.9)

But the generators are antihermitean, which implies that

(⟨l,m|L̂−|l,m+ 1⟩)∗ = ⟨l,m+ 1|L̂ †
− |l,m⟩ = −⟨l,m+ 1|L̂+|l,m⟩ (A.4.10)

and therefore (N−
l,m+1)

∗ = −N+
l,m. Again, since N

+
l,l = 0, it follows that

N+
l,m =

i√
2

√
(l −m)(l +m+ 1)

N−
l,m =

i√
2

√
(l +m)(l −m+ 1) (A.4.11)

Notice N−
l,m vanishes when m = −l, so the representation is 2l + 1 dimensional. Fur-

thermore, the state |l,−l⟩ is arrived at after an integer number of applications of L̂− to
the highest weight state, so 2l is an integer and 2m must be an integer as well. There is
exactly one irreducible representation for each l ∈ {0, 12 , 1,

3
2 , . . .} and, because the fields

will transform in some representation of two copies of su(2), we’ll say that they trans-
form in the (l, r) representation, where l will refer to the representation of L̂ and r to the
representation of R̂ in which they transform.
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A.5 Spinors and Vectors

As an example, let us construct the lowest non-trivial representation, l = 1
2 . The vector

space is two dimensional, so we will take it to be spanned by the unit (basis) vectors

|1
2
,
1

2
⟩ =

(
1
0

)
and |1

2
,−1

2
⟩ =

(
0
1

)
for which

L̂3 =
1

2

(
i 0
0 −i

)
, L̂+ =

1√
2

(
0 i
0 0

)
, L̂− =

1√
2

(
0 0
i 0

)
(A.5.1)

and hence

L̂1 =
i

2
σ1 =

1

2

(
0 i
i 0

)
, L̂2 =

i

2
σ2 =

1

2

(
0 1
−1 0

)
, L̂3 =

i

2
σ3 =

1

2

(
i 0
0 −i

)
. (A.5.2)

Consider fields that transform under L̂ but not under R̂. In this case,

Ûi = iK̂i ⇒ Ûi = L̂i =
i

2
σi and K̂i =

1

2
σi (A.5.3)

They are called “left handed spinors” and are said to transform in the
(
1
2 , 0
)
representation

of SO(3, 1),

D̂L(ω) = e
i
2
(ai−ibi)σ̂i , (A.5.4)

where ai are real rotation angles and bi are parameters of the boosts. “Right handed
spinors” would transform under R̂, but are unchanged by L̂, so that

Ûi = −iK̂i ⇒ Ûi = R̂i =
i

2
σi and K̂i = −

1

2
σi. (A.5.5)

They are in the
(
0, 12
)
representation of SO(3, 1),

D̂R(ω) = e
i
2
(ai+ibi)σ̂i . (A.5.6)

Spinors are a pair of complex fields because the representations of SU(2) are necessarily
complex. Let ψL and ψR represent the left/right handed spinors, then

ψL(x)→ ψ′
L(x

′) = D̂L(ω)ψL(x) = e
i
2
(ai−ibi)σ̂iψL(x)

ψR(x)→ ψ′
R(x

′) = D̂R(ω)ψR(x) = e
i
2
(ai+ibi)σ̂iψR(x) (A.5.7)

Similarly,

ψ∗
L(x)→ ψ′∗

L (x
′) = (D̂L(ω)ψL(x))

∗ = e−
i
2
(ai+ibi)σ̂∗

i ψ∗
L(x)



xiv APPENDIX A. THE POINCARÉ GROUP

ψ∗
R(x)→ ψ′∗

R(x
′) = (D̂R(ω)ψR(x))

∗ = e−
i
2
(ai−ibi)σ̂∗

i ψ∗
R(x) (A.5.8)

but, if we define ϵ̂ = σ̂2, we find that ϵ̂ σ̂∗i = −σ̂i ϵ̂ and it follows that

ϵ̂ψ∗
L(x)→ ϵ̂ψ′∗

L (x
′) = ϵ̂e−

i
2
(ai+ibi)σ̂∗

i ψ∗
L(x) = e

i
2
(ai+ibi)σ̂i ϵ̂ψ∗

L(x) (A.5.9)

which is precisely the transformation of ψR(x). Likewise, ϵ̂ψ
∗
R(x) will transform as ψL(x).

Since a Lagrangian for the two component spinors would involve both the field and its
conjugate, one can work with either left or right handed Weyl spinors.

Under a parity transformation, rotation generators remain unchanged but boost gener-
ators change sign, causing ψL to transform as ψR and vice-versa. A theory that is invariant
under parity must therefore include both left and right handed spinors. These are the four
component “bispinors” or Dirac spinors that transform in the direct sum,

(
1
2 , 0
)
⊕
(
0, 12
)
,

representation of su(2)× su(2),

Ûi =
i

2

(
σi 0
0 σi

)
, K̂i =

1

2

(
σi 0
0 −σi

)
, ψD =

(
ψL
ψR

)
(A.5.10)

The boosts and rotations are readily verified by writing the matrix Ŝ of (3.3.16) in the
Weyl basis (3.2.4). It is now easy to see that the combination

ψψ = ψ†γ0ψ =
(
ψ†
L, ψ

†
R

)(0 1
1 0

)(
ψL
ψR

)
= ψ†

LψR + ψ†
RψL (A.5.11)

is Lorentz invariant.
We now turn to the vector representations,

(
1
2 ,

1
2

)
=
(
1
2 , 0
)
⊗
(
0, 12
)
of su(2) × su(2).

These are four dimensional representations, produced by taking the tensor product, D̂L⊗
D̂R, of the two dimensional representations and, by looking at the infinitesimal transfor-
mations, the generators are seen to be

Ûi = L̂i ⊗ 1+ 1⊗ R̂i, K̂i = L̂i ⊗ 1− 1⊗ R̂i. (A.5.12)

Given L̂ and R̂ in (A.5.2),

Ûi =
i

2
(σi ⊗ 1+ 1⊗ σi) , K̂i =

i

2
(σi ⊗ 1− 1⊗ σi) , (A.5.13)

which give

Û1 =
i

2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , Û2 =
1

2


0 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 −1 0

 , Û3 = i


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 (A.5.14)
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and

K̂1 =
1

2


0 −1 1 0
−1 0 0 1
1 0 0 −1
0 1 −1 0

 , K̂2 = −
i

2


0 −1 1 0
1 0 0 1
−1 0 0 −1
0 −1 1 0

 , K̂3 =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


(A.5.15)

While these look nothing like the representations we had earlier for the action of rotations
(in (A.1.9)) and boosts (in (A.2.3)) on four vectors, they are in fact related by a similarity

transformation, Ĝ→ Ĝ′ = Ŵ Ĝ Ŵ−1, where

Ŵ =
1√
2


0 1 −1 0
1 0 0 −1
i 0 0 i
0 −1 −1 0

 . (A.5.16)

Ŵ is unitary and generates a change in basis,

1√
2


x− iy
t− z
−t− z
−x− iy

→

t
x
y
z

 , (A.5.17)

so the standard representation for D̂
(
1
2 ,

1
2

)
is just given with respect to a different basis.

In a coordinate basis, the finite dimensional vector representations of the Lorentz algebra

can be given simply as (Ĝµν)
αβ

= δαµδ
β
ν − δβµδαν , which was used in (2.7.21) to define the

spin of the vector field in (2.7.23) and (4.3.5).
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