IMAGE BY REDPIXEL.PL

viewpoints

Brett A. Becker

DOI:10.1145/3469115

» Mark Guzdial, Column Editor

Education

What Does Saying That

‘Programming Is Hard’ Really

Say, and About Whom?

Shifting the focus from the perceived difficulty of learning
programming to making programming more universally accessible.

HE COMMONLY HELD belief

that programming is inher-

ently hard lacks sufficient evi-

dence. Stating this belief can

send influential messages
that can have serious unintended con-
sequences including inequitable prac-
tices.! Further, this position is most of-
ten based on incomplete knowledge of
the world’s learners. More studies need
toinclude a greater diversity of all kinds
including but not limited to ability, eth-
nicity, geographic region, gender iden-
tity, native language, race, and sacio-
economic background.

Language is a powerful tool. Stating
that programming is hard should raise
several questions but rarely does. Why
does it seem routinely acceptable—ar-
guably fashionable—to make such a
general and definitive statement? Why
are these statements often not accom-
panied by supporting evidence? What
is the empirical evidence that program-
ming, broadly speaking, is inherently
hard, or harder than possible analogs
such as calculus in mathematics? Even
if that evidence exists, what does it
mean in practice? In what contexts
does it hold? To whom does it, and
does it not, apply?

Computer science has a reputation®
and this conversation is part of that. Is
programming inherently hard? Al
though worthy of discussion, this View-

Lo — .
T At O @k op R D T

A
L iatae

i ok O
(¥ 2

point is not concerned with explicitly
answering this question. It is con-
cerned with statements such as “pro-
gramming is hard” and particularly the
direct and indirect messages such state-
ments can convey. It explores who says
this, why and how it is said, and what
the ramifications are. Consider the
statement “computer programming
could be made easier.”” Although this
implies that programming is possibly
more difficult than it needs to be, it
clearly sends a different message than
“programming is hard.” This exempli-
fies how two fairly similar statements

AUGUST 2021 | VOL. 64 | NO.8 :

can convey very different messages and
likely have different effects.

Who Says Programming Is Hard?

The belief that programming is hard
seems to be widespread among teachers
and researchers.* Academic papers fre-
quently state that programming is hard
anecdotally, as if just stating the obvious.
Yet it is rarely discussed outside of moti-
vating and justifying research. Although
this approach is rarely challenged,
when it is, the stakes are high. One cri-
tique points out this stance can lead
to uncritical teaching practices, poor

COMMUNICATIONS OF THE AcM 27



VIiEwWPOINTS

student outcomes, and may impact
negatively on diversity and equity.*
That work suggests the expectations
of educators are unrealistic—not that
programming is too hard.

The message of difficulty is also
carried through more everyday mech-
anisms. It can be unknowingly or in-
advertently perpetuated through our
teaching habits, textbook language,
terminology, the defensive climates
in our classrooms,® tools, and pro-
gramming languages themselves. A
case in point is programming error
messages that, across almost all lan-
guages, are notorious for causing con-
fusion, frustration, and intimidation,
and have been described as mysteri-
ous and inscrutable.?

The belief that programming is
hard is not confined to academia. The
concept of the “10x developer”—the
elusive developer that is 10 times
more productive than others—serves
to communicate that programming is
hard and few can be good at it. Even
professionals have referred to pro-
gramming as a black art,® a view that
persists to present day for some. Hol-
Iywood typecasts embodying the
hacker stereotype, staring at screens
while 1s and 0s quickly stream by,
present programming as a mystical,
supernatural ability. It is possible that
such portrayals have negative side ef-
fects in addition to their entertain-
ment value.

Known Difficulties and
Overlooked Successes
It is more accurate to say that certain
aspects of programming are diffi-
cult or more challenging than others.
This considerably dilutes the notion
that programming is innately hard,
as some aspects of many endeavors
are more difficult than others. More
pointed statements are also less likely
to inflict collateral damage on general
audiences and are less prone to mis-
use. Aspects of programming that are
accepted to be challenging include
knowledge transfer issues—includ-
ing negative transfer—and developing
a notional machine, among others.?
Programming has several candidate
threshold concepts® but so do aspects
of many disciplines.

Programming is also the subject of
many misconceptions.® This might be

2B COMMUNICATIONS OF THE ACM | AUGUST 2021

B Sy 9 b T =
The belief that

programming is
hard seems to be
widespread among
teachers and
researchers.

because it is hard. On the other hand,
saying it is hard might be a convenient
way of explaining these misconcep-
tions. Other (and generally older) disci-
plines also have challenges with mis-
conceptions. Many physics students
struggle with the fundamentals of me-
chanics such as force vs. acceleration,
speed vs. velocity, weight vs. mass, and
the concept of inertia. Such compari-
sons are not that indirect. These well-
established concepts underpin a more
formulaic approach in much practice,
similar to how the conceptual under-
pinnings of programming are ex-
pressed ultimately in code. Engineer-
ing also can suffer from a hard image.
The notion that mathematics is hard
already exists in many school systems
and is often echoed by parents and
other stakeholders, leading to nega-
tive implications including working
against broadening participation.
However, computing casts a very wide
net in modern society; it is intertwined
with much of daily life and influences
chances of success in manyways. Simi-
lar could be said for mathematics but
computing may seem more visible and
tangible to many. It is also a very attrac-
tive and in demand career path for to-
morrow’s graduates.

There are examples that support
programming not being hard. Success
has been found in pair programming,
peer instruction, worked examples,
games, and contextualized approach-
es such as media computation.? These
are often backed by empirical evi-
dence® but are frequently overlooked
when convenient. Block-based pro-
gramming has become extremely suc-
cessful, particularly with younger chil-
dren. Newmodalitiesalso demonstrate
that computing is relatively young and

VOL. 84 | NO.8

rapidly changing. This pace of change
itself may be one of the leading factors
contributing to the perceived difficulty
of programming.

Hard For Whom?
Given how many people are affected
by computing technologies, another
problem with statements that pro-
gramming is hard is that most re-
search and media reports are based
on very narrow samples of Earth’s
population—largely from Ameri-
can, Commonwealth, and European
contexts. There are entire countries,
nearly entire continents, and count-
less groups whose experiences have
not been rigorously studied and con-
trasted with others. Even in more fre-
quently researched locales, our cur-
rent views are not representative of
many. This is rarely acknowledged or
acted upon. Many sub-populations in
terms of all manners of diversity and
identity including ability, culture
and ethnicity, geography, gender,
native language, race, socioeconom-
ic background, and many others are
still underrepresented, everywhere.
Additionally, most data and experi-
ence currently come from computing
students, yet computing is quickly
becoming a mainstream discipline
embedded in school curricula and for
an increasing range of academic dis-
ciplines in higher education.’ Declar-
ing programming to be hard for rela-
tively well-resourced Western
computing students paints a bleak
view for others. Even if programming
was found to be uniquely hard for
these students, this finding might
only hold for the very limited, biased
samples that have contributed to our
current knowledge. Carelessly at-
tempting to generalize such a finding
would serve to shut the door on those
who have not yet had their experienc-
es counted. In effect, such practice is
already happening when the message
that programming is hard is perpetu-
ated with little or no context.

Ramifications

There are several examples where expla-
nations for observations in computing
education have unintended negative
consequences. For instance, to explain
struggling students sitting next to high
achievers, the “Geek Gene” hypoth-



esis proved convenient. This states
that programming is an innate ability.
In other words, one generally cannot
learn to be a great programmer; one
is or is not, and most are not. There is
evidence that computer scientists be-
lieve that innate ability is more impor-
tant in computing than in other disci-
plines and this is known to be a barrier
to broadening participation.’ Although
the Geek Gene hypothesis has met resis-
tance™* damage has already been done
and might continue.

One need not look far for other con-
temporary examples of unintended
messages having undesired effects. It
was recently shown that competitive en-
rollment policies for university-level
computing majors have a negative im-
pacton student sense of belonging, self-
efficacy, and perception of department.®
Of course, these were not intended out-
comes. Competitive enrollments were
largely a response to growing student
numbers and demand that could not be
met. Nonetheless, this mechanism sent
an unintended signal to students, re-
sulting in undesired negative conse-
quences. Itis likely the perpetuation of
the message that programming is hard
has similar effects.

A recent series of NSF workshops re-
vealed one of the most-heard com-
ments made by non-computing educa-
tors when discussing computing
curricula was “stop making comput-
ing/programming look scary.™ Is that
really the image that we intend to por-
tray or is it just a byproduct of comput-
ing culture? If educators think that
programming is scary, how can we ex-
pect students to think any differently?
These messages may already have re-
sulted in countless students abandon-
ing computing, or not considering itin
the first place. We will never know. It is
likely that untold damage has already
occurred and continues to accumulate.

The Future

The relatively short history of program-
ming is filled with constant change,
and what is taught can change often.’
Character-based high-level program-
ming has, overall, led the battle for
adoption particularly at university and
in industry, but there are many exam-
ples of programming that do not fit
this mold. From Logo and Hypertalk,
to prototype spoken-language Ppro-

gramming languages, to block-based
programming, and domain- and task-
specific programming, what exactly
constitutes programming can depend
on who is asked and when they are
asked. Today, low-code and no-code
are emerging programming modali-
ties, another sign that what constitutes
programming is in constant flux. The
number of programmers in non-com-
puting contexts is also rapidly increas-
ing.! Surely even if programming was
deemed hard yesterday, that does not
mean it will be tomorrow.

How can we change programming’s
notorious reputation? The answer is
likely multifaceted and includes being
aware of the true effects of the beliefs
we hold and the messages we send. In
addition, these should be based on evi-
dence, informed by an appropriate di-
versity of people. We should have real-
istic expectations of students andfocus
on what we know is successful both in
practice and in our messaging, includ-
ing examining the intent of statements
on the matter.

Conclusion

The notion that “programming is
hard” is frequently reinforced in our
classrooms, workplaces, academic lit-
erature, and the media. However, this
position frequently reflects ideologi-
cal views and lacks sufficient evidence.
Statements that programming is hard
can have obvious direct consequences.
However, they can also convey more
indirect messages—in effect sending
signals that can have unintended con-
sequences on students, educators, the
community, and the discipline of com-
puting itself. These are rarely consid-
ered.

Is programming hard or not? Cur-
rent evidence is not compelling nor di-
verse enough to answer this question in
general. More defensible (and likely
honest) answers are: “it depends,” and
“both.” Why then, is it so common to
say that it is hard? Is it often said anec-
dotally because there is not that much
evidence to support it? Because the evi-
dence that does exist is difficult to un-
derstand? Could it be that it is just too
convenient for motivating and justify-
ingwork? Is it that many want pro gram-
ming to seem hard, consciously, or un-
consciously? Do tech companies and
hiring managers depend on the image

of programming being tough and elite?
Is it too convenient for explaining phe-
nomena whose true explanations re-
main elusive? Is it just an easy excuse
for failure? Perpetuating this belief
only serves to reinforce a shaky base of
evidence that undermines any more
rigorous evidence-based research. If we
are going to make claims on the diffi-
culty of programming, the community
has a duty to provide robust empirical
evidence from diverse contexts and
state the findings responsibly.

Many current events and sociopo-
litical realities have caused us to ques-
tion our educational practices recently.
Considering the present global con-
text, blanket messages that “program-
ming is hard” seem outdated, unpro-
ductive, and likely unhelpful at best. At
worst they could be truly harmful. We
need to stop blaming programming for
being hard and focus on making pro-
gramming more accessible and enjoy-
able, for everyone.

—— e e

References

1. Becker, BA. et al. Compiler errar messages cansidered
unhelpful: The landscape of text-hased prograrming
error message research, In Procesdings of the
Working Group Reparts on Tnnovdtion and Technology
in Computer Soience Education (Aberdeen, Scotland
UK] (ITICSE-WGR 18). ACM, New York, NY, 2018,
177-210; https://bit.ly/2TSTWUT

2. Birnbaum, L., Hambrusch, 5. and Lewis, C. Report on
the CUENEXT Warkshops, Technical Report (2020);
https://bitly/3xBavB0

3. Guzdial, M, Learner-centered desian of computing
edutation: Research on computing for everyone.
Synthesis Lectures on Humgn-Centered Informatics 8.
6 (2015), 1-165.

4. Luxton-Rellly, A, Learning to program is easy.
In Proceedings of the 2016 ACM Conferenceon
Tnnovation and Technology in Compiuter Science
Eduration {Arequipa, Peru) (ITICSE "16). ACM, New
York, NY, 2016, 284-289; hitps://bitby3ivrK M

5. Luxton-Reilly, A. etal, Introductory programming:
A systematic literature review. In Proceedings
Campanion of the 237 Annual ACM Canference
an Innovation and Technology in Computer
Srienre Education {Larnaca, Cyprus) (ITICSE 2018
Companion). ACM, New York, MY, 2018, 55-106;
https://bitly/3v108gh

. Nguyen,A. and Lewis, .M, Competitive enrollment
policies in computing departments negatively predict
first-year students sense of belonging, seli-efficacy,
and perception of department. 1n Proceedings of the
513 ACM Technical Symposium an Cornputer Science
Education (Portiand, OR, USA) (SIGLSE '20), ACM,
Hew Yark, NY, 2020, 6B5-681; https:fbitly/2TTraTl

7 Sime, ME., Arblaster, AT, and Green, TR.G.
Structuring the programmers task. Journol af
Qccupational Psycholoay 50, 3 [1977), 205-216;
https//bitly/3w4 L

8, Tedre, M.From ablackarttoa school subject:
Computing education’s search for status. In
Praceedings of the 2020 ACM Conference on
Tnnovation and Technotogy in Cornputer Science
Fefueation (Trandheim, Norway) (ITICSE 20), ACM,
New York, NY, 2020, 3-4 \rttps:/itly/3v436p00

Brett A. Becker (bretl.becker@ucd.ie] js an assistant
professor in the Schoal of Computer Science, University
College Dublin, Dublin, Ireland.

Copyright held by author.

AUGUST 2021 1 VOL. B4 | NO, 8 | COMMUNICATIONS OF THE ACM 29



