464

Section4 GUI programming with Swing

How to design a form Th

B T
B g

Most developers use a tool known as a GUI builder to develop forms. As |
mentioned earlier, NetBeans includes a popular GUI builder known as the
Swing GUI Builder that lets you build GUIs using Swing components. In thig
topic, you’ll learn how to use the Swing GUI Builder to design a form for the
Future Value application.

How to create a project for a GUI application

To create a project for a GUI application, you use the same technique you
use for any other Java application. When you create a project for a GUI applica-
tion, though, you should create it without a main class. That’s because NetBeans

automatically adds a main method to a form that yan add to the project. Then,
you can use that main method to display the form.

heck an <t G

How to add a form to a project

Figure 15-3 shows the dialog box for adding a form to a project. Notice here
that the form, which I’ve named FutureValueFrame, is being stored in a package
named murach.ui (ui stands for user interface). When you develop GUI applica-
tions, you’ll typically store the forms for the application in a separate package.
Before you add the first form to a project, then, you should create that package.

For most GUI applications, you base the form on the JFrame class. How-
ever, it’s also possible to base a form on other classes. If, for example, you want
to create a form that can be displayed in a browser, you can base the form on the
JApplet class. You’ll learn more about this class and how you use it to create
applets in chapter 17 of this book.

Chapter 15 How to develop a form 465

The New JFrame Form dlalog box

Project: - [ch15 Futurevakue |

Location: M_.__mm.a&qﬂ—_ S S T Y “

Padage: [mrachu -]

- —E———ERS —— 1

Created Fle.[achfjavalnetbeans book spps\chi5_FutureVakue rc ymrach iFutureVakieFrame.java | |

—

-D:a,]wuw o

Description

» Before you add the first form to a project, you should create a package to hold the
forms for the application.

* To add a form to a package, right-click on the package and select the New->JFrame
Form command. Then, enter a class name in the resulting dialog box.

Notes

* When you create a project for a GUI application, you should create it without a
/ main class. Then, you can use the class that defines the first form of the application
as the main class.

e If the JFrame Form command isn’t available from the New menu, the GUI Builder
plugin may not be activated. To activate this plugin, select the Tools>Plugins
command and display the Installed tab of the resulting dialog box. Then, locate the
GUI Builder plugin, select the check box for this plugin, and click the Activate
button.

e ——

Figure 15-3 How to add a form to a project

Section4 GUI programming with Swing

How to add controls to a form

———

T ——

When you add a form to a project, NetBeans displays a blank form in
Design view. In this view, you can use the Palette window to add controls to the
form. In figure 15-4, for example, you can see the Future Value form that wag
created in the previous figure after several controls have been added to it. Notice
here that the file for the form has the java extension just like all the other files
you’ve seen in this book.

The easiest way to add a control to a form is to click on the control in the
Palette window and then click on the form where you want to add the control. In
this figure, for example, I selected the Button control in the Palette window.
Then, I clicked the mouse pointer to add the second button to the form.

Once you add a control to a form, you can resize the control by clicking on
it to display its sizing handles and then dragging one of the handles. Similarly,
you can move a control by dragging the control to a new location on the form.
As you work with the controls on the form, you’ll find that alignment guides
will appear and attempt to help you align controls with the other controls on the
form. Most of the time, these guides are helpful and make it easier to develop
forms that are visually pleasing. Other times, these guides can make it difficult
to place controls where you want them. However, with a little experimentation,
you should figure out how best to work with these guides.

If you want to change the size of the form, you can drag its edges. In this
figure, for example, the form is too tall and too wide for the controls. As a
result, it makes sense to drag the bottom and right sides of the form to make it
smaller.

If you need to work with several controls at the same time, you can do that
by holding down the Ctrl key as you click on the controls. Or, you can click on
a blank spot in the form and drag an outline around the controls you want to
select. Then, you can work with the selected controls as a group. For example,
you can align a group of selected controls by clicking one of the alignment
buttons in the toolbar at the top of the form window.

De

Chapter 15 How to develop a form

A form after some controls have been added to it

......

|- jLabell [Label) :
! background ([[240.240,240]

uwt flabel2 [Labe] font +Tahoma 11 Plain

~im jLabeld [Habe] o 000

‘et jlabet [NLabe]] Fo L

[fTextFeld1 {Textrield] T

- JTextField2 [JTextFicld] | - {Butson]
+ O jrextField3 [Trextrield] |

=[] jTextField4 [TTextField)

|-@ Butionl [Button) ~
X : Output - murach_wobd (run)
i Pytton2 [Button] »1 b P Sa S S

Description

To open a form, double-click on the .java file for the form in the Projects window.

You can display a form in two views in NetBeans. Design view shows a graphical
representation of the form, and Source view shows the source code for the form.

To switch between Design view and Source view, click on the Design and Source
buttons in the toolbar at the top of the form window.

To add a control to a form, select the control in the Palette window and then click
on the form where you want to place the control. If the Palette window isn’t
displayed, you can display it by using the Window->Palette command.

To select a control, click on it. To move a control, drag it. To size a control, select it
and drag one of its handles. To change the size of the form, drag its edges.

To select a group of controls, hold down the Ctrl key as you click on each control.
Or, click on a blank spot in the form and drag an outline around the controls.

To move a group of controls, drag one of them. To align a group of controls, use the
buttons in the toolbar at the top of the form window.

——

F
'Qure 15-4 How to add controls to a form

467

Section4 GUI programming with Swing

How to set properties

After you add controls to a form, you can set each control’s properties.
These are the values that determine how a control will look and work when the
form is displayed. In addition, you need to set some of the properties for the
form itself.

The text property for a control determines what is displayed in or on the
qqqlg_ql:_iri figure 1 5-5, for example, the text properties of the two buittons have
been changed from their default values to “Calculate” and “Exit.” The easiest
way to change the text property is to use the Edit Text command from the menu
that’s displayed when you right-click on a control in Design view. Then, you
can edit the text property directly on the control. In most cases, it makes sense
to set this property before you set the other properties of the controls.

To set the other properties of a control or to set the properties of a form, you
can use the Properties window as shown in this figure. To display the properties
for a specific control, just select that control by clicking on it. To display the
properties for the form, click any blank area of the form.

To select a property in the Properties window, just click on it. When you do,
a brief description of that property is displayed at the bottom of the Properties
window. Then, you can often change a property setting by entering a new value
to the right of the property name or by selecting a value from a combo box or
check box. However, if an ellipsis button (...) is displayed to the right of the
property name, you have to click that button to display a dialog box that lets you
change the property. '

As you work with properties, you'll find that most are set the way you want
them by default. In addition, some properties are set interactively as you size
and position the form and its controls in Design view. As a result, you usually
need to change just a few properties for each control.

When you change a property from the default value, the property is dis-
played in bold in the Properties window. As a result, you can easily identify all
properties that you’ve changed. In this figure, for example, the mnemonic and
text properties for the Exit button have been changed from their defaults.

Fig

Chapter 15 How to develop_a form 469

A form after the propertles have been set

:ﬂ"w“’ﬂ..__ WWWM‘WMYEM :—_‘Trf;.j-['\j':‘ﬁ; 1l ; |
P 9@ [quﬁbBG) 1 paretat' /i
iProl @ a iAo e [E* : IS E) rpaero .
@ Hisn |gmm|=u=nnh|aa ;Ju:avaWT
E_JESourcePad:ags B o pock- NP IA
| i B8 murach.business QweﬂmCmmdebumn(n&emdm)mesw‘ammnhelwemc
| Bﬁmuud\u I
B”Fuhmvdueﬁmpva
| Eh m Librartes

i || i Inapactor am
Form FutrevValueFrame
@5 Other Camponents
=] fj [Frame]
~ubwt jLabell [HLabel]
-um Jabel2 [Rabe]
| wbal jLabel3 [TLabel]
b JLabeH [TLabel]
{3 fTextFeld1 [TTextField]
i [T jTextField2 [TMextFiek]
O jTextFad3 [ITextFled)
1 JTextField4 [TextFiekd]
@ Putton] [Buttor] E—

] R Pution? [Buttor) DD{ o TRENE v - —a
L ol
‘ ~ Description |
i -« To set a property for a control, select the control and then use the Properties ‘

window to change the property.

You can also change the text property for a control by right-clicking the control,
selecting the Edit Text command, and entering new text for the control.

To set a property for more than one control at the same time, select the controls and
use the Properties window to change the property.

To set a property for a form, click outside the controls to select the JFrame object.

The properties that have been changed from their default values are displayed in
bold in the Properties window.

To sort the properties of a control by category or name, right-click in the Properties
window and select the Sort by Category or Sort by Name command.

To search for a specific property when the focus is in the Properties window, type
the starting letter or letters of the property. This starts the Quick Search feature.

: A description of the currently selected property is normally displayed at the bottom
of the properties window. If this description isn’t shown, right-click in the Proper-
ties window and select Show Description Area. |

.": SUre 15-5 How to set properties

470

Section4 GUI programming with Swing

Common properties for forms and controls

o ATl o L= e
RS T |

= S

b ' ‘-—-—.-:'.-—'.-'J:'- '_5_:‘—-‘%'- ‘:}t";.'."dl'-:. A

—

Figure 15-6 shows some common properties for forms and controls. Note
that some of these properties only apply to certain types of controls. That’s
because different types of controls have different properties. For example, the
mnemonic property is available for buttons, but not for labels or text fields,

For most controls, you use the text property to specify the text that’s dis-
played on the control. However, this property works a little differently for each
type of control. For a label, this property sets the text that’s displayed by the
label. For a text field, this property sets the text that’s displayed within the text
field. For a button, this property sets the text that’s displayed on the button. And
0 on.

For simple applications, you’ll probably need to use just the properties
shown in this figure. If you want to learn about the other properties that are
available for a control, though, you can select the control and then use the
Properties window to review its properties.

|
|

Co

Chapter 15 How to develop a form 471

Common properties for forms
Property Description

title Sets the text that’s displayed in the title bar for the frame.

defaultCloseOperation Sets the action that’s performed when the user clicks on
the Close button in the upper right corner of the frame. .
The default value, EXIT_ON_CLOSE, causes the
application to exit.

resizable Determines whether the user can resize the frame by
dragging its edges.

Common properties for controls

Property Description
text Sets the text that’s displayed on the control.
i editable Determines whether the user can edit the text that’s

stored in the control. Typically used for text fields and
other controls that contain text.

enabled Determines whether a control is enabled or disabled.
focusable Determines whether the control accepts the focus when

the user presses the Tab key to move the focus through
the controls on the form.

horizontalAlignment Determines how the text on a button or in a text field is
aligned: left, right, center, trailing, or leading.

mnemonic Specifies a keyboard character that allows the user to
quickly access the control by holding down the Alt key
and pressing the specified character. Typically used for
buttons.

preferredSize Sets the width and height in pixels for the control.

- * To learn about the properties that are available for a control, you can select the
control, use the Properties window to scroll through its properties, and read the
descriptions for each property.

':Figufe 1 5-6

Common properties for forms and controls

472

- i ﬂé,‘ﬁ“ﬁ_‘f}‘.

Section4 GUI programming with Swing

How to add code to a form

After you add controls to a form and set their properties, you can run the
form and it should display properly. However, you won’t be able to interact with
the controls on the form until you add the required Java code. You’ll learn how

to do that in the topics that follow. But first, you’ll learn how to set the variable
names that you’ll use to refer to controls in code.

How to set the variable name for a control

When you add a control to a form, NetBeans creates a.generic variable
name for the control. For example, it uses JTextField1 for the name of the first
JTextField control you add to the form, JTextField2 for the name of the second
JTextField control you add, and so on. Before you write code that uses any of
the controls on a form, you should change these generic names to meaningful
names that are easier to remember and use,

As figure 15-7 shows, you can set the variable name for a contro] using the
Properties window. To do that, you select the control in Design view, click on
the Code button at the top of the Properties window to access the properties that

affect code generation, and then edit the default value for the Variable Name

property. In this figure, for example, I changed the default value of JButton2 to
exitButton.

Figi

Chapter 15~ How.to develop a form 473 ‘

A form after the variable na

i e Sosce: Rfsctor Ry Debug Proffe Toue Tools Windew Help 0 1 L1 il
@ e o T DB O
T

java W) 5

[rutmeeiauetrame
souce [BET)| R B[RS LI[®F

liproi. @ w]iii

P -
&l Sowce Packages
| & BB mwrach.u

L B#uhlevdueﬁame.java
@ (i Liraries

| iwspecor 4]
|| B9 Form FunrevaleFrase
1fi-&3 Other Companents
& [Freme]
| bt fabelt [Xabel]

wem Labet? [Wabel)
| s JLabel3 [Lahel]
- atml jLabeld [Wabell
|10 frextrieid [Textrsid]
=21 frextField2 [extField)
i [T fTextFisidd (Tesxdeld)

: e B S —
3 F: i Dutput - wrebd
y - i} exBution [Button] Ff’“—m owebAg) -
3 1
1 P
N

L
~ Typical variable names for controls

..-' 3 paymentTextField

E ! calculateButton

- l' . messagelabel

“ I’.' u gl

:_. N ~ Description

‘ e When you add controls to a form, default variable names are given to the controls.

) ! If you’re going to refer to a control in your Java code, you should change its name
A Ji! s0 it’s easier to remember and use.

. * To change the name of the variable that’s used for a control, select the control, click
the Code button in the Properties window, and then change the Variable Name

property.

Figure 15-7

.l

How to set the variable name for a control

i S .

=1 1Al 1 b 1.0) 1 AR T
(53, o, 416 SO) %
A, (i 1 2R A A .

ae) BN 2L I G "
'."‘“lz'- oo L agl'y ke
i -.-=—:£-.?=§ ?n- O g5 fr 1

1 304

- e eyt el
474 Section4 GUI programming with Swing

How to create an event handler for a control

—

The

—

—

=

An event handler is a special type of method that responds to an event thypg
triggered when a user interacts with a form. For example, the most common
type of event handler is a method that’s executed when a user clicks on a buttop
For an event handler to work, it must be connected, or wired, to the event. Thig
is known as the event wiring, and it’s generated automatically when you uge
NetBeans to generate an event handler as described in figure 15-8.

The most common event that you’ll write code for is the actionPerformed
event. This event is a high-level event that’s raised when a user clicks a button
with the mouse or when a user activates a button using keystrokes. However,
there are dozens of other events for each control, including low-level events like
the focusGained and focusLost events that occur when the focus is moved to or
from a control. As you will see, you can use the same general techniques to
work with all types of events.

To create an event handler for a control, you can select the control, click on
the Events button at the top of the Properties window, click to the right of the
event that you want to handle, and then press the Enter key. Then, NetBeans
generates a default name for the method that will handle the event, generates the
code for the event handler and its wiring, and switches to Source view. In this
figure, for example, NetBeans has generated the name
exitButtonActionPerformed for the event handler that will handle the
actionPerformed event of the Exit button. At this point, you just need to enter
the code for that event handler.

If you don’t want to use the generated name for an event handler, you can
change it in the Properties window before you press the Enter key. If, for
example, you want to create an event handler named textFieldFocusGained for
the focusGained event of a text field, you can enter “textFieldFocusGained” to
the right of the focusGained event and press the Enter key. Later, if you want to
wire another text field to the event handler named textFieldFocusGained, you
can enter that event handler name in the Properties window for the focusGained
event of the text field. That way, the same event handler will be used for the
same event of two different text fields.

When you generate event handlers, you should realize that they’re added to
your code in the sequence in which you generate them. Unfortunately, NetBeans
doesn’t let you change that sequence. If you want the event handlers for an
application to appear in a specific sequence, then, you will need to generate
them in that sequence.

Below the screen in this figure, you can see the code for the event handler
that’s generated for the Exit button on the Future Value form. Here, the name of
the method is the name of the control (exitButton) followed by the name of the
event (ActionPerformed). This shows that it’s important to set the variable name
for the control before you start an event handler for a control. That way, the
variable name will be reflected in the name of the event handler.

This figure also shows the wiring for the event handler that’s generated for
the Exit button. This wiring is stored in a generated region of code, and you

Th

Tt

Chapter 15 How to develop a form 475

The actionPerformed event for the Exit button

Souit; "WMWMMM‘M‘W" rhe b as gt et s s Qe Sesrch (S 40

'ﬁnuumumqqan 12 B) |; paotee L “ANE D-f
-Imam SR IR Dmmﬂ TR -

{jumuuu I sttpane

Qﬁ mach'u 9“‘5 C menu ttem alovs you to mod BMM [:Tnd!a 5%"‘ 4
; . By®rutrevalerrame.java - —y ElimemaiFrame [W] Layered Pane
&Elhma 1N Eﬂﬁﬂﬂ#ﬁtﬂ??f' 12“&§hﬂmmﬂjﬂ
- 1" Gilll Toggle Button
B=CheckBox | | @~ Radofution ;aummw
Eouhuu Bl 'f [J Text Reld
lnwm-- N Soul br & Shder

| e jLabell [ALabel]
| fbel? [Xabel]
ot ool [Xabel]
e §abelq [Label]
[fextiedd | [enti=id]
) fTextFiedd [Iexteld)
+ [frextFieidd [MextFeld)
| E) fTextFieidd [Mexield]
| Fatioat [Button]
- exf@atton [Dutton]

E . The code that’s generated for the actionPerformed event of the Exit button

| private void exitButtonActionPerformed(java.awt.event.ActionEvent evt) {
2) // TODO add your handling code here:

i }

AN ~ The generated code that wires the event handier to the event

exitButton.addActionlListener (new java.awt.event.ActionListener () {
: public void actionPerformed(java.awt.event.ActionEvent evt) {
o/ exitButtonActionPerformed (evt) ;

' :

| l

b 's hs
Description
4 . * To create an event handler for the default event of a control, double-click on the control.

To create an event handler for other events, select the control, click the Events,

! . button in the Properties window, and select the name for the event handler from the
b\ g combo box list.

To create an event handler with a custom name, select the control, click the Events
button in the Properties window, click in the combo box for the event that you want
to handle, enter a custom name for the event handler, and press the Enter key.

" To wire an event to an existing event handler, enter the name of the event in the

"d__ ' 1 combo box for the event that you want to handle.
0 E*-«.__
3 ' '‘Yure 15.8 How to create an event handier for a control

Section4d ~ GUI programming with Swing

How to rename or remove an event handler

can’t edit it manually. In addition, you can’t manually rename or remove the
method declaration for an event handler. Instead, if you need to rename or
remove an event handler, you must use the Handlers dialog box shown in the

next figure.

In some cases, you’ll need to rename Or remove an event handler that
you've generated. For example, you might generate an event handler acciden-
tally by double-clicking on a control. Then, you can remove the handler using
the Handlers dialog box shown in figure 15-9. This dialog box lists all the event
handlers for the control, and it lets you remove an event handler by selecting it
and then clicking on the Remove button. This causes the event handler and its
wiring to be deleted from the source code for the form. _

You can use a similar technique to rename an event handler, but you click :
the Rename button and then enter a new name for the event handler. You may L !
need to do that if you generate an event handler that you want to use to handle R 8
two or more events. In that case, you’ll want the name to reflect the purpose of
the event handler. 4 3

Suppose, for example, that you want to execute the same code for the = i
focusGained event of the first three text fields on the Future Value Calculator id [
form you saw in figure 15-1. If you generated an event handler with the default 5 3
name for the first text field, the event handler would be named 3 @
monthlyPaymentTextFieldFocusGalncd. Then, you could rename this event
handler to something like textFieldFocusGained to make it clear that it’s used
for all three text fields. Of course, you could also create the event handler with a
custom name to begin with so you wouldn’t have to rename it.

-
[} I

Chapter 15 How todevelop a form 477

(e Qs) . Copeels)

e e =

. Description
. ¢ Since an event handler includes wiring code that’s automatically generated and
. stored in a different location than the event handler code, you should always use the

R . Handlers dialog box if you need to rename or remove an event handler. That way,
: both the event handler and its wiring are updated or removed in a single operation.

To rename or remove an event handler, select the control, click on the Events
button in the Properties window, and click on the ellipsis button to the right of the
event that you want to work with. Then, use the Handlers dialog box to remove or
rename the event handler.

3 F
Ure 15.
3 59 How to rename or remove an event handler

478 Section4 GUI programming with Swing

How to enter the code for a form

— T —

Figure 15-10 shows how to enter the code for a form. To start, you shoulg
enter any import statements that you need for classes that are going to be yseq
by the form. That way, you won’t have to qualify these classes with thejr
package names when you refer to them in code.

Next, you can enter the code for the event handlers that you’ve generated
for the form. In this figure, for example, I have entered the code for the eyent
handlers for the actionPerformed event of the Exit and Calculate buttons, Asl
entered the code, I used the variable names that refer to the text field controls,
For example, I used the name “paymentTextField” to refer to the entry in the
Monthly Payment text field.

Although the event handlers in this figure don’t call any other methods, you
can add methods to a form just as you would add methods to any other class.

For example, this application could have included a method that calculates the
future value. When you add a method like this to a form class, you typically
place it near the event handlers that call it.

If you need to use code to initialize a control, you can add that code to the
end of the constructor for the form class. In this figure, you can see that the
constructor contains a single statement that calls the initComponents method.
This method contains generated code that creates the controls on the form and
sets the properties for the form and its controls so they’re displayed correctly. If
you want to set any additional properties, you can add that code after the call to
the initComponents method. For example, you might want to load the items that
will be displayed in a list box or combo box. You’ll learn more about these
controls in the next chapter.

The Generated Code region of a form contains the code that’s generated as
you create the form in Design view. Since you can’t edit this code directly, you
rarely need to view it. If you’re curious, however, you can review this code to
see how it works. To do that, just expand this region by clicking on the plus sign
(+) that’s displayed to its left.

Chapter 15 How to develop a form 479

The source code after two event handlers have been coded

) oo |83 TR B SR P & &[5 0 m 81

S

Creac=s new form FuturavalusfFrama A/ -
public FutureValueFrame () {
initComponencs () ;

|
) 3

@Supp:essﬁu:nxngs { "urcheuked }

.. Generated Code|: ke T - =\ N

J

double p = Douhle parseDoubJ.e(mnthly?awgm:l’:xtﬂeld getText{)):
double xr = Double.parseDouble(ysarlykaceTaxtField. getText(}):

¥
|
. Driyate ‘void caloplal S tonAnti onk d(inva.awt,.event ,ActionEvent evL} }1
|
|
int ¥y = Integer.parselnt{yearsTextField.getText()):

double fv = FinancialCalculations.calculateFutureValue(p, t, y):

Me=be Yaw
0 Futircysiueframe 5 Fiome
|~ © FutreYelseFrame()

ee

@ man(String(] arge) ‘ | 133
@3 clasateBution : Eatton j 18i v
exitBution : Button | 1 u‘f * dparam args the command lins argucents
| " N
P S T S St e |

NumberFormat currency = NumberFarmat,getCurrencyInstanca():
fururAValu»Tex:}]eld secl’exc(curxency famn (fv))
i . - -

o T privatervera -&:meeeam:mmmum it eV Bt sEveR S eR) VT
1;1|‘T System.axit(0) s

132 &) 4 x » e ok St 2t kb {

{Outpat - chis FutaroVelua from) B =
S —
<4 N

Description

* You can use the code editor to enter the code for an event handler just as you would
enter any other code.

To refer to the controls on the form, you use the variable names that you assigned

to the controls. You can review these variable names in the Navigator window for

the frame. You can also review the declarations for these variables at the end of the
source code for the form.

To import a class that will be used by the form, code an import statement after the

package statement that’s at the start of the form class just like you would for any
other class.

If you need to initialize a control, you can add code to the constructor for the class

after the call to the initComponents method.

Yyou typically place the methods following the event handlers that call them.

heed to change this code, use Design view as described in previous topics.

—~—

You can also add methods other than event handlers to a form. When you do that,

NetBeans shades all generated code, and you can’t manually edit this code. If you

94 1510 How to enter the code for a form

480

Section 4 GUI programming with Swing

Common methods for controls

__-_-__—_""""--..

Now that you know how to generate event handlers and use the code editor
to enter the code for an application, you should know about S0me common
methods for working with controls in your code. Figure 15-11 presents the
methods that are used in the applications in this chapter and chapter 16, I also
shows some examples that use some of these methods.

The first example includes three statements that use the getText method to
get the text from the three enabled text fields on the Future Value form. N otice
that because this method returns a string, all three statements must convert the
string to a numeric value so it can be used in the future value calculation. Here,
the first two strings are converted to doubles and the third string is converted to
an int.

The statement in the second example uses the setText method to set the text
that’s displayed in the Future Value text field. Note that the value that’s dis-
played must be a string. In this case, the future value is displayed using the
currency format. 4

The statement in the last example uses the requestFocusInWindow method
to move the focus to the Monthly Payment text field. As you’ll see later in this
chapter, this method is particularly useful for moving the focus to a control
when the user enters a value that isn’t valid.

You shouldn’t have any trouble understanding the other methods in this
figure, and you’ll see examples of them in the next chapter. You should notice,
though, that three of these methods—setEditable, setEnabled, and
setFocusable—nhave property counterparts that you saw in figure 15-6. When I
designed the Future Value form, for example, I set the editable property of the
Future Value text field so the user can’t edit the text in this field. Another way to
do that would be to use the setEditable method in the constructor for the Future
Value form like this:

futureValueTextField.setEditable (false);

Since the editable property doesn’t change as the program executes, though, it’s
easier to set the editable property as you’re designing the form. In contrast, if a
property like this will change as the program executes, you can use the related
method to change the setting in code.

Chapter 15 How to develop a form

Common methods for controls

Method Description

getText () Returns the text in the control as a string. Used for text
fields and other controls that contain text.

setText (String) Sets the text in the control to the specified string. Used
for fext fields and other controls that contain text.

requestFocusInWindow () Moves the focus to the control.

setEditable (boolean) If the boolean value is true, the control is editable.
Otherwise, it’s not. Used for text fields and other controls
that contain text.

setEnabled (boolean) If the boolean value is true, the control is enabled so the
user can interact with it. Otherwise, it’s disabled.

setFocusable (boolean) If the boolean value is true, the control can receive the
focus. Otherwise, it can’t.

selectAll() Selects all the text in a control. Used for text fields and
other controls that contain text.

Example 1: Code that gets the text from three controls

double p = Double.parseDouble (monthlyPaymentTextField.getText ());
" double r = Double.parseDouble (yearlyInterestRateTextField.getText());
I int y = Integer.parselnt (yearsTextField.getText());

—_iExampIe 2: Code that sets the text in a control

1| futureValueTextField.setText (currency.format (futureValue)) ;

" Example 3: Code that moves the focus to a control
’ . monthlyPaymentTextField.requestFocusInWindow() ;

- Description

‘-‘, * To learn more about the methods that are available for a control, refer to the API
' documentation for the control.

; _* The getText, setText, setEditable, and selectAll methods are defined by the

. JTextComponent class. The setEnabled and requestFocusInWindow methods are

defined by the JComponent class. And the setFocusable method is defined by the

Component class.

e ———

-‘:"“-.__
F'QUr S
®15-14 Common methods for controls

481

‘ﬂ;iﬁ-#’ .
482 Section 4 GUI programming with Swing

How to display and center a form

—

Figure 15-12 starts by showing the main method that’s generated by

—

NetBeans for a form. Although this code may seem complicated, most of j .
works the way you want. As a result, you typically only need to make some ae
minor changes to the statements within the run method. In this figure, for

example, the generated code creates a new form and displays it using a single

statement like this:

new FutureValueFrame () .setVisible(true); ;
This displays the form in the upper left corner of the screen. Ama

If you want to display the form in the center of the screen, you can do that pu
as shown in the second example. Here, the run method starts by creating a
FutureValueFrame object and assigning it to a variable named frame. Then, the
setVisible method of that frame is used to display the frame, and the
setLocationRelativeTo method is used to center the frame on the screen,

Most of the time, that’s all you need to know about displaying a form. If L.
you're curious about how the rest of this generated code works, though, you can Am
review the notes at the bottom of this figure along with the information in the
related chapters. P

De:
°
[]

Nc
e

[]

[]

F

- Chapter 15 How to develop a form 483

Two methods for displaying a form

Method Description

setVisible (boolean) Shows this component if the boolean value is true.
Otherwise, this method hides the component.
setLocationRelativeTo (component) Sets the location of this component relative to the

specified component. If the component is null, this
method centers the frame on the screen. Otherwise,
it centers the frame on the specified component.

A main method for a form that’s generated by NetBeans

public static void main(String args[])
java.awt.EventQueue.invokeLater (new Runnable() {
public void run() {
new FutureValueFrame () .setVisible (txue);
}

RE
}

A main method for a form that displays and centers the form

~ Description

public static void main(String args{])} {
java.awt.EventQueue.invokeLater (new Runnable () {
public void run() {
FutureValueFrame frame = new FutureValueFrame () ;
frame.setVisible (true); E
frame.setLocationRelativeTo (null) ;

0yl —elasg name
} see /Oj 1«'/45

By default, NetBeans generates a main method for a form that creates the form and
displays it in the upper left corner of the user’s screen.

You can modify this code to display the form in the center of the screen as shown
in the second example above.

. Notes

Fi —
gure 15.12 How to display and center a form

The code that’s generated by NetBeans for a form creates a new thread for the
form, which is a single flow of execution through the program. To create this
thread, the code creates a new class that implements the Runnable interface. This
interface has a single method named run. For more information about working with
threads, see chapter 22.

The class that implements the Runnable interface is coded within the invokeLater
method of the EventQueue class. As a result, this class is a type of inner class as
described in chapter 10. Since this inner class doesn’t have a name, it’s known as
a0 anonymous class.

The invokeLater method of the EventQueue class puts the thread for the form in a
dueue. Then, it runs the thread when the thread reaches the front of the queue.

486 Section4 GUI programming with Swing

‘How to validate Swing input data

In chapter 5, you learned how to validate input data for console applica-
tions. Then, in chapter 7, you saw an example of a Validator class that uses
static methods to help validate data for console applications. In the topics that

follow, you’ll see that you can use similar techniques to validate the input datg
for Swing applications.

How to display error messages

When you validate data in a Swing application, you need to be able to
display an error message to inform the user that an invalid entry has been
detected. The easiest way to do that is to display the error message in a separate
dialog box as shown at the top of figure 15-14. To display a dialog box like this,
you use the showMessageDialog method of the JOptionPane class as described
in this figure.

The four parameters accepted by this method are the parent component that
determines the location of the dialog box, the message displayed in the dialog
box, the title of the dialog box, and the message type, which determines the icon
that’s displayed in the dialog box. The parent component can be the control
that’s being validated or the frame that contains the control. It can also be null,
in which case the dialog box is centered on the screen.

The code example in this figure shows how to display a simple error mes-
sage. To start, the first statement defines a string for the message to display in
the dialog box, and the second statement defines a string for the title of the
dialog box. Then, the third statement calls the showMessageDialog method.
Here, the parent component argument is set to the this keyword, which causes
the dialog box to be displayed within the current frame. For that to work, this
code must appear in a class that inherits the Component class or a class derived
from it, such as JFrame or JApplet. Finally, the message type argument is set to
the ERROR_MESSAGE field of the JOptionPane class. This causes the dialog
box to display an error icon.

Cc

)
i

Chapter 15 How to develop a form

An error message displayed in a JOptionPane dialog box

Invalid Entry

Monthly lnvemment Is a required fiekd.
Please re-enter.

The showMessageDialog method of the JOptionPane class
Syntax

showMessageDialog (parentComponent, messageString,
titleString, messageTypelnt);

Arguments

Argument Description

parent An object representing the component that’s the parent of the dialog box.
If you specify null, the dialog box will appear in the center of the screen.

message A string representing the message to be displayed in the dialog box.

title A string representing the title of the dialog box.

messageType An int that indicates the type of icon that will be used for the dialog box.
You can use the fields of the JOptionPane class for this argument,

i Fields used for the message type parameter

Icon displayed Field
PLAIN_MESSAGE

(none)

& INFORMATION_MESSAGE
WARNING_MESSAGE

@ ERROR_MESSAGE

E QUESTION_MESSAGE

Code that displays the dialog box shown above

String message = "Monthly Investment is a required field.\n"
+ "Please re-enter.";
String title = "Invalid Entry";

JOptionPane.showMes sageDialog(this,
message, title, JOptionPane.ERROR MESSAGE) ;

Description

* The showMessageDialog method is a static method of the JOptionPane class that is
Cf‘mmon!y used to display dialog boxes with error messages for data validation.

To close o dialog box, the user can click the OK button or the close button in the
UPper right corner of the dialog box.

LU can also use the JOptionPane class to accept input from the user. For more

nfg : . ;
~__Mation, see the API documentation for this class.

Figure 151, 1,
1514 How to display error messages

487

488

FE S T e
II [R T]
1 R e = . 43
T R S e 1

1]

Sectiond GUI programming with Swing

How to validate the data entered into a text fielq

Figure 15-15 shows two techniques
enters into a text field, The first code example checks that the user h
data into the field. To do that, it uses the getText method to get the t
entered as a string. Then, it uses the length method to get the length of the

string. If the length is zero, it uses the JOptionPane class to display an erroy
message in a dialog box. Then, it calls the text field’s requestFocusInWindow
method to move the focus to the text field

after the user closes the dialog box.
The second example shows how to check that the user entered a numeric

value. Here, the parseDouble method of the Double class is used to parse the
text entered by the user to a double value. This conversio
statement. Then, if a NumberFormatException occurs, th
the exception, displays an error message, and moves the

you can use to validate the (

e catch block catches
focus to the text field.

ata the user
as entereq
ext the user

n is placed within 3 try

.

Example 1:
if (monthlyPaymentTextField.getText().1ength()

String message = "Monthly Investment ig a
String title = "Invalid Entry";
J0ptionPane.showMessageDialog(this,

title, JOptionPane.ERROR_MESSAGE);‘
monthlyPaymentTextField.re
return;

}

Pescri ption
|' » Like console applications, GUI
" user before processing the data,

user another chance to enter valid data.

To test whether a value has been entered into
method of the text field to get a string that co
you can check whether the length of that strin

To test whether a text field contains valid nume

n

NumberFo'rmatExcepticm.

B = ____ 0 | A

489

Chapter 15 How to develop a form

Code that checks if an entry has been made

0)

required field.n";

message,

questFocusInWindow() ;

Example 2: Code that checks if an entry is a valid number

a valid number.";

try
{
double d = Double.parseDouble(monthlyPaymentTextField.getText());
}
catch (NumberFormatException e)
{
String meéssage = "Monthly Investment must be
String title = "Invalid Entry";
JOptionPane.showMessageDialog(this, message,
title, JOptionPane.ERROR MESSAGE) ;
monthlyPaymentTextField.requestFocusInWindow();
return;
§

applications should validate all data entered by the

When an entry is invalid, the application can display an error message and give the

a text field, you can use the getText
tains the text the user entered. Then,
g is zero by using its length method.
ric data, you can code the statement

that converts the data in a try block and use a catch block to catch a

“: Fiu e —)
B Sure 15-15 How to validate the data entered into a text field
|

