196 Section 2 Object-oriented programming with Java

How to code instance variables

Figure 7-6 shows how to code the instance variables that define the typeg of .
data that are used by the objects that are created from a class. When youdeclare gess- amples
an instance variable, you should use an access modifier to control its accessiby]- kB Livate clxou'
ity. If you use the private keyword, the instance variable can be used on ly within, . .rivate ;I‘:‘;
the class that defines it. In contrast, if you use the public keyword, the instance | privete

d (o]
variable can be accessed by other classes. You can also use other access modifi. privece B
ers that give you finer control over the accessibility of your instance variableg.
You’ll learn about those modifiers in the chapters that follow. - b 1ic clas

This figure shows four examples of declaring an instance variable. The first | i
example declares a variable of the double type. The second one declares a : ! / / commo
variable of the int type. The third one declares a variable that’s an object of the ; - pr‘j.w:t:
String class. And the last one declares an object from the Product class. . .the gﬁzate
class that you’re learning how to code right now.

Although instance variables work like regular variables, they must be
declared within the class body, but not inside methods or constructors. That
way, they’ll be available throughout the entire class. In this book, all of the
instance variables for a class are declared at the beginning of the class, How-
ever, when you read through code from other sources, you may find that the

instance variables are declared at the end of the class or at other locations within
the class. o

i I__. ou ca
K Where Y

//the <
public
public
public
public
public
public
public
pliblic

//also
privat.

ription

~ class such as
| !he Pljoduct‘
; - 10 prevent o
1o declare th

B

Chapter 7 How to define and use classes

The syntax for declaring instance variables

public|private primitiveType|ClassName variableName;

Examples

private double price;
private int quantity;
private String code;
private Product product;

Where you can declare instance variables
public class Product

{
//common to code instance variables here
private String code;
private String description;
private double price;

//the constructors and methods of the class

public Product(){}

public void setCode (String code){}

public String getCode(){ return code; }

public void setDescription(String description){}

public String getDescription(){ return description; }
public void setPrice(double price) {}

public double getPrice(){ return price; }

public String getFormattedPrice(){ return formattedPrice; }

//aleo possible to code instance variables here
private int test;

}

Description

* An instance variable may be a primitive data type, an object created from a Java
class such as the String class, or an object created from a user-defined class such as
the Product class.

* To prevent other classes from accessing instance variables, use the private keyword
to declare them as private.

You can declare the instance variables for a class anywhere outside the constructors
and methods of the class.

..\""-..___

F‘
'Qure 7.6 How to code instance variables

197

-'.-L:...—___._ -

Section 2 Object-oriented programming with Java

How to code constructors

Figure 7-7 shows how to code a constructor for a class. When you code one,
it’s a good coding practice to assign.a value to all of the instance variables of the
class as shown in the four examples. You can also include any additional
statements that you want to execute within the constructor. For instance, the
fourth example ends by calling two different get methods from the current class.

When you code a constructor, you must use the public access modifier and

e e

the same name, mcludlng capitalization, as the class name. Then, if you don’t
want to accept arguments, you must code an-empty set of parentheses as shown
in the first example. On the other hand, if you want to accept arguments, you
code the parameters for the constructor as shown in the next three examples.
When you code the parameters for a constructor, you must code a data type and
a name for each parameter. For the data type, you can code a primitive data type
or the class name for any class that defines an object.

The second example shows a constructor with three parameters. Here, the
first parameter is a String object named code; the second parameter is a String
object named description; and the third parameter is a double type named price.
Then, the three statements within the constructor use these parameters to
initialize the three instance variables of the class.

In this example, the names of the parameters are the same as the names of
the instance variables. As a result, the constructor must distinguish between the
two. To do that, it uses the this keyword to refer to the instance variables of the
current object. You’ll learn about other ways you can use this keyword later in
this chapter.

The third example works the same as the second example, but it doesn’t
need to use the this keyword because the parameter names aren’t the same as
the names of the instance variables. In this case, though, the parameter names
aren’t very descriptive. As a result, the code in the second example is easier for
other programmers to read than the code in the third example.

The fourth example shows a constructor with one parameter. Here, the first
statement assigns the first parameter to the first instance variable of the class.
Then, the second statement calls a method of a class named ProductDB to get a
Product object for the specified code. Finally, the last two statements call
methods of the Product object, and the values returned by these methods are
assigned to the second and third instance variables.

When you code a constructor, the class name plus the number of parameters
and the data type for each parameter form the signature of the constructor. You
can code more than one constructor per class as long as each constructor has a
unique signature. For example, the first two constructors shown in this figure
have different signatures so they could both be coded within the Product class.
This is known as overloading a constructor.

If you don’t code a constructor, Java will create a default constructor that
doesn’t accept any parameters and initializes all instance variables to null, zero,
or false. If you code a constructor that accepts parameters, though, Java won’t
create this default constructor. So if you need a constructor like that, you’ll need
to code it explicitly. To avoid this confusion, it’s a good practice to code all of

Chapter 7 How to define and use classes

ntax for coding constructors
Aﬁ_sy,c className ([parameterList])
oot
i // the statements of the constructor
) .
' mple 1: A constructor that assigns default values
sblic product ()

code = ||||;
description =
price = 0.0;

un,
7

thig.code = code;
this.description = description;
this.price = price;

ublic Product(String ¢, String d, double p)

code = c;
description = d4;
price = p;

mple 4: A constructor with one parameter
public Product(String code)

{
/ this.code code;

Product p ProductDB.getProduct (code) ;
description = p.getDescription();

price = p.getPrice();

E

. Description
| * The constructor must use the same name and capitalization as the name of the class.

" * If you don’t code a constructor, Java will create a default constructor that initializes

all numeric types to zero, all boolean types to false, and all objects to null.
To code a constructor that has parameters, code a data type and name for each
parameter within the parentheses that follow the class name.

The name of the class combined with the parameter list forms the signature of the
constructor. Although you can code more than one constructor per class, each
constructor must have a unique signature.

In the second and fourth examples above, the this keyword is used to refer to an
Instance variable of the current object.

S—

FiQUre 7-7 How to code constructors

199

200

Section 2 Object-oriented programming with Java - 4

e

TR
your own constructors. That way, it’s easy to see which constructors are avail- ,: e synta)
able to a class, and it’s easy to check the values that each constructor uses to #47 h aplic|E
initialize the instance variables. L I{,
i & // tt
=4
How to code methods 3 } 1
% gxample
. E i public A
Figure 7-8 shows how to code the methods of a class. To start, you code an
access modifier. Most of the time, you can use the public keyword to declare the e, syst
method so it can be used by other classes. However, you can also use the private " }
keyword to hide the method from other classes. Example 2
After the access modifier, you code the return type for the method, which N public !
refers to the data type that the method returns. After the return type, you code B {
the name of the method followed by a set of parentheses. Within the parenthe- " mekl:
ses, you code the parameter list for the method. Last, you code the opening and }
closing braces that contain the statements of the method. ! . Example &
Since a method name should describe the action that the method performs, B public -
it’s a common coding practice to start each method name with a verb. For i | . {
example, methods that set the value of an instance variable usually begin with <— pjul@ . 'y i
set. Conversely, methods that return the value of an instance variable usually AR K
begin with gez. These types of methods are typically referred to as accessors . Example ¢
because they let you access the values of the instance variables. Methods that . public
perform other types of tasks also begin with verbs such as print, save, read, and g

s . i Num
write.) B ret
The first example shows how to code a method that doesn’t accept any

‘I A
parameters or return any values. To do that, it uses the void keyword for the

Example !

return type and it ends with a set of empty parentheses. When this method is e

called, it prints the instance variables of the Product object to the console, el

separating each instance variable with a pipe character (). ' thi
The next three examples show how to code methods that return data. To do R

that, these methods specify a return type, and they include a return statement to E: ample

return the appropriate variable. When coding a method like this, you must make
sure that the return type that you specify matches the data type of the variable
that you return. Otherwise, your code won’t compile. i

In the fourth example, the getFormattedPrice method uses a NumberFormat AT
object to apply standard currency formatting to the double variable named price-
This also converts the double variable to a String object. Then, the return
statement returns the String object to the calling method.

The fifth and sixth examples show two possible ways to code a set method.
In the fifth example, the method accepts a parameter that has the same name as
the instance variable. As a result, the assignment statement within this method
uses the this keyword to identify the instance variable. In the sixth example, the
parameter has a different name than the instance variable. As a result, the
assignment statement doesn’t need to use the this keyword. Since the parameter

name for both examples are descriptive, both of these examples work equally
well.

. bublic
{

The syntax for coding a method

public|private returnType methodName ([parameterList])

// the statements of the method

}
Example 1: A method that doesn’t accept parameters or return data

public void printToConsole ()

{

}

Example 2: A get method that returns a string
public String getCode()

{
}

Example 3: A get method that returns a double value
public double getPrice()

{
}

Example 4: A custom get method
public String getFormattedPrice ()

System.out.println(code + "|" + description + "|n 4 price);
return code;

return price;

NumberFormat currency = NumberFormat.getCurrencyInstance () ;
return currency.format (price);

?ublic void setCode (String code)

thig.code = code;

B

- Example Another way to code a set method
?uhlic void setCode(String productCode)

} code = productCode;

- Description,
s allow other classes to access a method, use the public keyword. To prevent other
. asses from accessing a method, use the private keyword.

g ode a method that doesn’t return data, use the void keyword for the return type.
©0de a method that returns data, code a return type in the method declaration
€ode a return statement in the body of the method.

1 .

c(}d?n YOu name a method, you should start each name with a verb. It's a common
i v :Lgl Practice to use the verb set for methods that set the values of instance
Varig, °S and to use the verb get for methods that return the values of instance

©S. These methods are typically referred to as set and get accessors.

Chapter 7 How to define and use classes

How to code methods

201

—— e e et . b

194 Section 2 Object-oriented programming with Java

The code for the Product class

1he produt

ort java

—— S —— -

—

Figure 7-5 presents the code for the Product class. This code implements the

fields and methods of the class diagram in figure 7-2. In the next six pages, you’|j publ4C clas
learn the details of writing code like the code shown here. For now, I'll just present / the
a preview of this code so you have a general idea of how it works. é rivate

The first three statements in this class are declarations for the fields of the clagg, private
The fields are the variables or constants that are available to the class and its ob- private
jects. In this example, all three fields define instance variables, which store the daty // the
for the code, description, and price variables that apply to each Product object. public

After the field declarations, this class declares the constructor of the Product {
class. This constructor creates an instance of the Product class and initializes its ;::
instance variables to their default values. As you’ll see later in this chapter, you pri
can also code constructors that accept parameters. Then, the constructor can use }
the parameter values to initialize the instance variables.

Next are the declarations for the methods of the Product class. In this class, the 1/) {1 b;:z
methods provide access to the values stored in the three fields. For each field, a get {
method returns the value stored in the field, while a set method assigns a new thi
value to the field. Of these methods, the getFormattedPrice method is the only } e
method that does any work beyond getting or setting the value provided by the ?u
instance variable. This method applies the standard currency format to the price ret
variable and returns the resulting string. }

Although the Product class includes both a get and a set method for each ﬁeld // the
you don’t always have to code both of these methods for a field. In particular, it’ §id public
common to code just a get method for a field so that its value can be retrieved bu’L i {
not changed. This can be referred to as a read-only field. Although you can also ! } gt
code just a set method for a field, that’s uncommon. i public

The private and public keywords determine which members of a class are
available to other classes. Since all of the instance variables of the Product class &) ret
use the private keyword, they are only available within that class. The constructor - =
and the methods, however, use the public keyword. As a result, they are available ,l‘ // the
to all classes. Keep in mind, though, that you can include both public and private ' Public
instance variables and methods in any class. hi

By the way, this class follows the three coding rules that are required for a }
JavaBean. First, it includes a constructor that requires no arguments. Second, all - Public
of the instance variables are private. Third, it includes get and set methods for all
instance variables that you want to be able to access. As you progress with Java, } oSt
you’ll find many advantages to creating classes that are also JavaBeans. For
example, if you develop JavaServer Pages (JSPs) for a web application, you can s // a cu
use special JSP tags to create a JavaBean and to access its get and set methods. Public

Now that you’ve seen the code for the Product class, you might want to Nuz
consider how it uses encapsulation. First, the three fields are hidden from other) ret

classes because they’re declared with the private keyword. In addition, all of the
code contained within the constructor and methods is hidden. Because of that, Yo
can change any of this code without having to change the other classes that use
this class.

---*'_‘——-——-...

Oplements the
X pages, you’l]
I'll just present

*1ds of the clags,
s and its op-

h store the data
It object,

the Prodyct
tializeg its

ipter, you

X Can uge

lis class, the
tﬁehi a ger
1new

e Only

by the

‘€ price

ach fielq,
tar, jt’g
ved but
talso

e
class
uctor
lable
ivate

a
all

“all

a,

n

u

Chapter 7

The Product class
 mport java.text.NumberFormat;
1

ublic class Product
4

{

// the instance variables
private String code;
private String description;
private double price;

// the comnstructor
public Product()

{
code = nn ;
description = nw,;
price = 0;

}

// the set and get methods for the code variable
public void setCode (String code)

{
this.code = code;
}
public String getCode ()
{
return code;
}

How to define and use classes

// the set and get methods for the description variable

public void setDescription(String description)

{
}

public String getDescription()

{

this.description = description;

return description;

// the set and get methods for the price variable
public void setPrice(double price)

{
}

public double getPrice()

this.price = price;

return price;

}

// a custom get method for the price variable
public String getFormattedPrice ()

NumberFormat currency = NumberFormat.getCurrencyInstance();

return currency. format (price) ;

Fig-u.ré %-5_ The code for the Product class

s e e — -

195

