
10/25/2018

I. Form Based Programs in NetBeans week 8 - 9

· the NetBeans IDE provides for Graphical User Interface (GUI) applications

· two main toolkits are provided, Abstract Window Toolkit (AWT) and Swing

· main container (aka a form) called a JFrame (in Swing)

· create New Project as always

· enter Project Name as always, but deselect the “Create Main Class” checkbox and Finish

· once project is created, R-click on project name, New, JFrame Form, then give Frame class a

meaningful name, e.g. projectFrame or mainFrame

Open a form

· double-click on the .java file for the form in the Projects window

Switch between Design and Source view

· select design or source tabs in the toolbar

Add a control

· select the control in the Palette window then click where you want the control

Move a control

· select control then drag it

Set the controls text

· right-click on the control, then set text, or

· select the control, select the properties window and set it there

Set the controls name

· in Java, this is not the property name, but the variable name

· right-click on the control, then set variable name, or

· select the control, select the properties window, select code and set it there

10/25/2018

II. Naming Conventions

· in general, controls have three types of behaviors

1. passive

Ø labels

Ø titles

2. partially active

Ø textboxes

3. interactive

Ø buttons

· the more interactive a control is, the better the name needs to be

· for interactive controls, a 3-letter prefix may be the easiest, best solution

Ø e.g. button (btn), textbox (txt), etc.

Ø txtPayment vs. paymentTextField

Ø btnCalculate vs. calculateButton

III. Creating Event Handlers

· most active controls (e.g. buttons) will have events associated with them

· an event handler is a special method that will execute (respond) when an event is triggered or

fired

· for an event to fire, it must be connected or wired to the control

· double clicking on a control object will take you to the event handler for that object

10/25/2018

IV. Getting Data from Textbox Objects

· in general, NO calculations should be performed upon control objects

· since most data comes from textboxes, you use the textbox_name.getText() method

· you can also combine this with the conversion method to get the String value and convert it

to a numeric (if necessary) along the way

· double number = Double.parseDouble (txtInputNumber.getText());

V. Putting Data into Textbox Objects

· since most data goes into textboxes, you use the textbox_name.setText() method

· you may need to convert the type of the data to String, using the toString method to be

displayed in a textbox

txtOutputNumber.setText(numType.toString (number));

VI. Terminating a Form Based Program

· to terminate a form based program, use

System.exit (0);

VII. Form Based UI Design Tips

· balance

· simplicity

· address user expectations

· include all things that are necessary, and no more

· If you’ve got the chance to make something beautiful, and you don’t, what does that say

about you? – Dan Gurney

10/25/2018

VIII. First Graphical User Interface (GUI) Program

· see General development steps

· how many inputs???? 1

· how many outputs???? 1

· how many objects????? 8, form, 4 labels, 1 text box, 2 command buttons

· how many events????? 2

· see SquareOMatic

IX. MESSAGE BOX DIALOG

· belongs to the JOptionPane class

· syntax: JOptionPane.showMessageDialog(this, “message”, “title”, icon);

· note that code execution stops when a message box is visible, until OK is clicked

· see dialog example on syllabus

Square-o-Matic Calculate Button Event

private void btnComputeActionPerformed(java.awt.event.ActionEvent evt)
{

 // declare variables
 int numInput;
 int numDoubled;

 // get input from textbox
 numInput = Integer.parseInt(txtInput.getText());

 //square input
 numDoubled = numInput * numInput;

 // display output, converting back to string
 txtOutput.setText(Integer.toString(numDoubled))

 }

Notes:

- btnCompute is the name of the button to trigger this event
- txtInput and txtOutput are the variable names of textboxes in the JFrame

