
9/24/2015 1

I. Decision Based Control Structures BJ Ch 3 week 5

• flow of control refers to the order in which a programs statements are executed

• until now, all statements have executed sequentially

• decision structures allow the programmer to alter the normal sequential flow of

control

• decision statements provide the ability to decide which statements, from a well-
defined set, will get executed next

simple if format:

if (condition) // note parens mandatory
 statement ; // single-line body

if (condition)
{
 statement; // multi-line body
 statement(s); // must use braces
}

where condition has type of ? and values of ?

9/24/2015 2

if-else format:

if (condition)
 statement1; // single-line body
else
 statement2;

if (condition)
{
 statement1; // multi-line body
 statement(s); // must use braces
}
else
{
 statement2; // multi-line body
 statement(s);
}

• if >1 statement, must use { }…strongly suggest always using { }

• suggest lining up braces vertically

• indent inside { }

• note that no statement terminator follows the if or the else line

• empty blocks should NEVER be present – this is poor logical design

• note that compiler ignores all indentation, it is merely for the human reader

9/24/2015 3

nested if statements:

if (condition1)
 if (condition2)
 statement; // single-line body

• the nested if-else (below left) will not work as planned, since the else will really

match up with the closest if, no matter the indentation

if (condition1) // wrong if (condition1) // right
 if (condition2) {
 statement; if (condition2)
else statement;
 statement; }

 else
 statement;

II. Relational Operators

• compare relationship of operands on either side of operator
• results are always ? type

Name Symbol # Operands

1. Equals == 2
2. Not Equals != 2
3. Less Than < 2
4. Less Than or Equal To <= 2
5. Greater Than > 2
6. Greater Than or Equal >= 2

• examples:

 Expression Result

 2 < 9 true
 8 < 8 false
 6 <= 6 true
 3 == 5 – 2 true
 1.0 / 3.0 == 0.33333 false **
 3=< 4 err
 “a” == 9 err – incompatible types

9/24/2015 4

• never compare strings using the == operator, use the methods that belong to the
String class

• when comparing floating point numbers for equality**, take the absolute value of the
difference of the two numbers, then compare to some small tolerance value

if (x == y) // wrong

if (Math.abs(x - y) < 0.0000000002) // much better

III. Logical Operators

• operators which work based on logic, return type of ?

• and operator  && Op Precedence # 2

• or operator  || Op Precedence # 3

• not operator  ! (note this is a unary operator) Op Precedence # 1

• with an &&, if any operand is false, the entire statement is false

• with an ||, if any operand is true, the entire statement is true

• examples:

0 < 200 && 200 < 100 false

0 < 200 || 200 < 100 true

0 < 200 || 100 < 200 true

! (0 < 200) false

0 < 100 < 200 error

• rather than using (done == true), one can just use if (done)

• rather than using (done == false), one can just use if (!done)

• note the following is an error if (a < 10) && (b < 20)

	I. Decision Based Control Structures BJ Ch 3 week 5
	II. Relational Operators
	III. Logical Operators

