
1/30/2018 1

I. Methods week 4

 a method consists of a sequence of instructions that can access the internal data of an

object (strict method) or to perform a task with input from arguments (static method)

 when you call the method, you do not have to know exactly what those instructions

are, or even how the object is organized internally

 however, the behavior of the method is well-defined, and that is what matters to us

when we use it

 built-in methods:

System.out.println (“Hello world!”) ; // note this is an invocation

 class object method arguments

 user-defined methods:

public static double findMax (double num1, double num2) // definition

 access modifiers return_type name arguments

 printf method

System.out.printf (“string to output %format_specifier”, object_to_format);

 example format specifier: %8.2f

 System.out.printf (“The answers are %8.2f and %6.2f ”, num1, num2);

 note the multiple variations of printf, this is an example of operator

overloading, that is one operator/command performing multiple actions based

upon the context in which it is used, also known as its signature

 see the .getCurrencyInstance method page on syllabus

 see programming assignment1

1/30/2018 2

II. Miscellaneous

 line continuation

 since java uses statement terminators, a line can be broken in most any white

space

 escape characters

 a character preceded by the backslash character \ which has special meaning to

the compiler

 common escape chars include \n (newline), \t (tab character), \char (ignore any

special meaning of char), e.g. \\

III. Type Casting

 converts (casts) a primitive data type to another primitive data type

1. implicit, aka widening or up-casting

 converts a smaller primitive type to a larger primitive type

 examples:

double d = 123;

int i = ‘a’; // single quotes make it a char type

1/30/2018 3

2. explicit, aka narrowing or down-casting

 converts a larger primitive type to a smaller primitive type

 note this results in loss of data!

 syntax: new_small_value = (small_type) big_value;

 examples:

int i = (int) 34.567; // results in 34

int i = 34.567; // error

float xFloat = 3.45678f; // literal causes number to be a float type

float sum;

sum = 2.0 + xFloat; // error, why

this will not work because, by default, in Java the 2.0 on the right-hand-side of the

last expression is a double-precision number, so "xFloat" is first converted to a

double-precision number before it is added to "2.0", then right-hand-side is of

type "double" while the left-hand-side is of type "float" so you have to perform an

explicit type cast, like....

 sum = (float) (2.0 + xFloat); or sum = 2.0f + xFloat;

1/30/2018 4

IV. Conversion Methods (pg 326)

 Java’s conversion methods convert data to/from a String type to another primitive

type

 if numeric data is input as a String type, it must be converted to a numeric type to

perform calculations

 conversion methods are static (not strict) methods, that is they operate only on

arguments

 recall methods return values across the assignment operator (=) in 1 direction only,

L R

 conversion types must match (see below)

 syntax: class_variable = Class.method (“string_arg”);

 from String examples

int i = Integer.parseInt (“1234”);

double d = Double.parseDouble (“12.34”);

int i = Integer.parseInt (“12.34”); // error

 to String examples

String s = Integer.toString (123);

1/30/2018 5

V. Getting Input Continued

 using Scanner .nextInt or .nextDouble works for simple valid input, but not very well

for anything else

 to verify our input, the safe way is to 1) read all input as a String type, then 2) (try to)

convert the String type to the type we wish, using the conversion methods discussed

above

 we will use the Scanner method .nextLine to read a String of text from the console

Scanner in = new Scanner(System.in);

String strNumber ;

double number;

strNumber= in.nextLine(); // step 1

number = Double.parseDouble (strNumber); // step 2

// OR, combining 2 steps into a single line

number = Double.parseDouble (in.nextLine()); // don’t need strNumber

VI. Math Class methods (pg 882)

 used to calculate more complex math functions

 types are usually double, and number and types of arguments depend upon specific

method

 general format: answer = Math.method_name (argument(s)) ;

examples:

double d = Math.abs (x); // returns the absolute value of x

double d = Math.pow (x, y) ; // returns the value of x raised to the y power

 note that to perform a simple exponentiation such as x ^2, it is much simpler and

faster to do

double d = x * x; rather than double d = Math.pow (x, 2);

 see java for argument types as well as return types

