
1/30/2018 1

I. Methods week 4

 a method consists of a sequence of instructions that can access the internal data of an

object (strict method) or to perform a task with input from arguments (static method)

 when you call the method, you do not have to know exactly what those instructions

are, or even how the object is organized internally

 however, the behavior of the method is well-defined, and that is what matters to us

when we use it

 built-in methods:

System.out.println (“Hello world!”) ; // note this is an invocation

 class object method arguments

 user-defined methods:

public static double findMax (double num1, double num2) // definition

 access modifiers return_type name arguments

 printf method

System.out.printf (“string to output %format_specifier”, object_to_format);

 example format specifier: %8.2f

 System.out.printf (“The answers are %8.2f and %6.2f ”, num1, num2);

 note the multiple variations of printf, this is an example of operator

overloading, that is one operator/command performing multiple actions based

upon the context in which it is used, also known as its signature

 see the .getCurrencyInstance method page on syllabus

 see programming assignment1

1/30/2018 2

II. Miscellaneous

 line continuation

 since java uses statement terminators, a line can be broken in most any white

space

 escape characters

 a character preceded by the backslash character \ which has special meaning to

the compiler

 common escape chars include \n (newline), \t (tab character), \char (ignore any

special meaning of char), e.g. \\

III. Type Casting

 converts (casts) a primitive data type to another primitive data type

1. implicit, aka widening or up-casting

 converts a smaller primitive type to a larger primitive type

 examples:

double d = 123;

int i = ‘a’; // single quotes make it a char type

1/30/2018 3

2. explicit, aka narrowing or down-casting

 converts a larger primitive type to a smaller primitive type

 note this results in loss of data!

 syntax: new_small_value = (small_type) big_value;

 examples:

int i = (int) 34.567; // results in 34

int i = 34.567; // error

float xFloat = 3.45678f; // literal causes number to be a float type

float sum;

sum = 2.0 + xFloat; // error, why

this will not work because, by default, in Java the 2.0 on the right-hand-side of the

last expression is a double-precision number, so "xFloat" is first converted to a

double-precision number before it is added to "2.0", then right-hand-side is of

type "double" while the left-hand-side is of type "float" so you have to perform an

explicit type cast, like....

 sum = (float) (2.0 + xFloat); or sum = 2.0f + xFloat;

1/30/2018 4

IV. Conversion Methods (pg 326)

 Java’s conversion methods convert data to/from a String type to another primitive

type

 if numeric data is input as a String type, it must be converted to a numeric type to

perform calculations

 conversion methods are static (not strict) methods, that is they operate only on

arguments

 recall methods return values across the assignment operator (=) in 1 direction only,

L  R

 conversion types must match (see below)

 syntax: class_variable = Class.method (“string_arg”);

 from String examples

int i = Integer.parseInt (“1234”);

double d = Double.parseDouble (“12.34”);

int i = Integer.parseInt (“12.34”); // error

 to String examples

String s = Integer.toString (123);

1/30/2018 5

V. Getting Input Continued

 using Scanner .nextInt or .nextDouble works for simple valid input, but not very well

for anything else

 to verify our input, the safe way is to 1) read all input as a String type, then 2) (try to)

convert the String type to the type we wish, using the conversion methods discussed

above

 we will use the Scanner method .nextLine to read a String of text from the console

Scanner in = new Scanner(System.in);

String strNumber ;

double number;

strNumber= in.nextLine(); // step 1

number = Double.parseDouble (strNumber); // step 2

// OR, combining 2 steps into a single line

number = Double.parseDouble (in.nextLine()); // don’t need strNumber

VI. Math Class methods (pg 882)

 used to calculate more complex math functions

 types are usually double, and number and types of arguments depend upon specific

method

 general format: answer = Math.method_name (argument(s)) ;

examples:

double d = Math.abs (x); // returns the absolute value of x

double d = Math.pow (x, y) ; // returns the value of x raised to the y power

 note that to perform a simple exponentiation such as x ^2, it is much simpler and

faster to do

double d = x * x; rather than double d = Math.pow (x, 2);

 see java for argument types as well as return types

