
1/25/2022 1

I. Variables and Data Type week 3

• variable: a named memory (i.e. RAM, which is volatile) location used to store/hold

data, which can be changed during program execution

in algebra: 3x + 5 = 20, x = 5, x is the variable

• formally, a variable is defined as an object with the following properties:

1. name: a tag to identify the variable in code

2. address: a location in memory where the variable’s value is stored

3. type: determines the possible range of values the variable can store, as well as

how much space the variable will occupy

4. value: contents of the memory starting at address and as big as determined by the

type

5. scope: where in a program a variable’s value is visible, i.e. where it can be

referenced

6. lifetime: when a program a variable’s value is visible, i.e. where it can be

referenced

• variable and constant naming conventions

➢ name must begin with a letter, followed by 0 or more letters, numbers, and/or

underscore characters

➢ the name cannot be a keyword

➢ use meaningful names, i.e. X is not a meaningful name

➢ 1st word lower case, then upper case 1st letter of each following word, i.e.

camelCase

➢ as always, variable names are CASE SENSITIVE!

1/25/2022 2

Variable Declaration:

➢ all variables/constants in Java must be declared – this allows the programmer to

give the variable a TYPE and a NAME

1/25/2022 3

➢ general form: [access] type var_name [= value] ; // indicates optional

➢ Examples:

int age;

int sum = 20;

double subTotal = 33.88;

String firstName ; // String is a Class in Java, not a primitive type

➢ variable types should be selected based upon the values the variable are expected

to contain

➢ variable type are essentially classes, and the declaring of the variable instantiates

an object of that type

➢ Java does not assign default values for local variables, only for class and

instance variables, which get initialized to 0, or something that closely resembles

0, e.g. strings initialized to null

➢ I strongly suggest declaring all variables together, then do assignments at the

appropriate spot in the program (note this is different from the book)

Variable Assignment:

➢ assigning values to variables

➢ general syntax: var_name = expression ; (note: assignment works L  R)

➢ expression can be

o compatible literal value

o another variable of ??? type

o mathematical equation

o call to a method that returns a compatible value

o combination of one or more items in this list

➢ examples:

age = 22 ; // what is name, what is type, what is data value

sum = sum + 1 ;

name = “Mark” ;

answer = sum ;

1/25/2022 4

➢ bad examples:

int age = abc ;

int age = "22" ;

String Name = 22 ;

int sum = 22.5 ;

String firstName = Mark Thomas ;

Note: 22 = age is not a valid assignment (although it is in Algebra)

STRONGLY SUGGESTED techniques

1. declare all necessary variables needed for the entire block, grouping likely used

variables together, in order

2. perform any necessary variable assignments, in order of need

Named Constants

➢ a named memory location used to store/hold data, which CANNOT be changed

during program execution

➢ general syntax: [access] final type var_name = expression ;

➢ naming conventions: all Upper Case with _ between words, e.g. TAX_RATE

➢ examples:

final double TAX_RATE = 0.065 ;

final double PI = 3.14159 ;

➢ may need to use type declaration characters following the number:

 D / d : double ** F/f : float

 S / s : short (integer) L : long (integer)

 ** default

1/25/2022 5

II. Variables and Arithmetic Operators

What is an arithmetic operator? Something that performs operations.

What does an operator perform operations on? Operands.

 Name Symbol # Operands

1. addition + 2 e.g. num = num + 5 ;

2. subtraction - 2

3. multiplication * 2

4. division / 2

5. negation - 1 unary

Operator precedence – order of arithmetic evaluation

1. parenthesis

2. negation

3. multiplication/division

4. addition/subtraction

 ? = (2 + 3) * (3 + 3) // answer =

 ? = 4 + 6 / 2 // answer =

 ? = 1 + 2 * 3 // answer =

To make precedence a bit more complex, if expressions contain operators of equal

precedence, the order of operations is left to right.

 ? = 8 / 2 * 3 // answer = 12

 ? = 8 + 40 / 8 * 2 + 4 // answer = 22

 ? = 7 – 2 – 4 + 1 // answer = 2

1/25/2022 6

➢ Typical Types of Arithmetic Techniques

1. counting

- typically count a single unit/item

- typically count by 1 (or –1)

- e.g. count = count + 1 ;

2. accumulation

- act of accumulating a total value (i.e. a sum)

- typically don’t accumulate by a single unit/item

- e.g. sum = sum + itemPrice ;

III. Division and Exponentiation

Division

• division in Java is based upon the types of the numbers in the operation

• if all numbers are type int, the result will be an int, e.g.

➢ 8 / 5 yields 1, because 8 and 5 are int types

➢ 8.0 / 5.0 yields 1.6, because both types are double

➢ 8.0 / 5 yields 1.6, because one of the numbers is a double, so Java converts the

smaller (int) to a larger (double), and the result is a double

• be very careful with this

Exponentiation

• exponentiation in Java uses the Math.pow method

• syntax: double Math.pow(double a, double b)

• example: twoSquared = Math.pow (2.0, 2.0);

1/25/2022 7

IV. Getting Console Input (BJ 2.3)

• we have already used the System.out object, with println and print methods

• to get input, we use the System.in object, but a bit differently

• first, we need to define a scanner class as follows:

Scanner in = new Scanner(System.in);

• the new statement, called a constructor, construct or builds a new object, in this case,

a Scanner object, passing it the System.in object to specify where to scan from

• the 2nd part of the above statement, declares a variable named in of type Scanner and

assigns the newly constructed object to it

• next, to actually get the input, you use the in variable with the .nextInt() or

.nextDouble() method as follows:

int number;

number = in.nextInt();

• note, when using a Scanner class, you’ll most likely see an error as the class

containing the Scanner class (java.util) has not been imported, to fix this, you can

either

1. select Source…Fix Imports…OK

2. manually include the missing class statement: import java.util.Scanner;

V. Example Program

• example task: create a program to prompt the user to enter a number (as int), take the

number and double it, then output results

• understand the problem?

• how many inputs? how many outputs?

• how many variables?

• see NumberDoubler program exercise in class/solution on syllabus

1/25/2022 8

• steps (or algorithm)

1. prompt user for input (use System.out.print)

2. get the input from the console and assign to variable (use Scanner class)

3. take the stored number and double it, assigning output to another variable

4. display the output (the doubled number)

• suggested practice: convert NumberDoubler program to work on double types

