
I. Object Oriented Concepts week 2

• see web page definitions

II. Introduction to Java Language Program Elements

• languages can be described as verbose or terse, depending upon the number of keywords they
contain

• keywords are predefined reserved identifiers that have special meanings to the compiler

• Java # is a relatively terse language, see list of keywords: google Java keywords

• NOTE: keywords are case sensitive!!!!!!!!!!!!!!!!!!!!

i. comments

• why?

➢ documentation for you, or more importantly, someone else in the future
➢ debugging statements
➢ removing sections of potentially poor/damaging code

• single-line comments (also called in-line)

➢ uses the // notation
➢ doesn’t need an end symbol, ended by EOL/CR
➢ can go anywhere on line, but everything following is a comment

• block comments (also called multi-line)

➢ uses the /* */ notation
➢ must have an end symbol
➢ can be on a single line or span across many

• doc comments

➢ uses the /** */ notation
➢ used by javadoc to generate documentation

ii. class definition

• fundamental building block of Java programs

• every application begins with a class definition

iii. code block definition { }

• used to define a block of code, i.e. the beginning and end

• each { must have a matching } or errors will occur

iv. statement terminators

• terminate complete program instructions, i.e. statements

• use the ; to terminate statements

v. main method definition

• entry point for all Java applications, i.e. where the program will begin execution

• general syntax (or signature): public static void main(String[] args)

• public and static keywords are access modifiers (more later)

• void is the return type of the main () method

vi. main () body

• contains the code to be executed when the application begins

III. Errors

1. compile-time (or syntax) errors

• when: at compile time, i.e. caught by Java compiler

• why: violations of Java keyword syntax

• common syntax errors

✓ case errors

✓ misspellings

✓ forgotten semi-colons

✓ missing closing characters

2. run-time errors

• when: during program execution

• why: unhandled errors, e.g. math errors like division by 0, invalid user input, file not found
errors

3. logic

• when: typically, the worst possible time

• why: complex problems, less than optimal time spent on design

Which one’s of these are the easiest to find/fix? Which are the hardest?

How to avoid logic errors?

• good analysis and design techniques

• use of planning techniques, e.g. flowcharts, algorithms

IV. Java and the NetBeans Development Environment

• Java is a language created by Sun Microsystems starting circa 1991

• Sun Micro was purchased by Oracle in 2009, thus Oracle now owns Java

• the NetBeans development environment called NetBeans IDE – Integrated Development
Environment and is separate from Java

• java source files should end in .java

• javac is the name of the java compiler, once run, this creates a .class file

• from the console window, java will execute the .class file

• main method of organization called an application

• projects divided into multiple, physical files

• ALWAYS create a folder per project…save all of your files to this folder, and ONLY move the folder
as a whole

• for example, create a OOP 1 folder, then using project name & location to create a subfolder with
that project name

• on startup, NetBeans displays a “start page”, where you can Open an existing project or open a
New project (not file, PROJECT)

• if you select New, you will be prompted for:

➢ Project category: Java with Ant
➢ Projects: Java Application

➢ Project Name: name using each word upper case, no spaces, using good names
➢ Project Location: if populated, leave alone (e.g. NetBeansProjects)

otherwise, create folder for projects, then enter entire path name

➢ Create main class, use defaults (leave defaults alone)

• to (build and) RUN project, click the start button (>) in the toolbar, or click Run…run project in the
menu bar, or press SHIFT F6

(Note, if simple programs will not display output correctly, try SHIFT F11, then run project)

