Object Oriented Concepts week 2

e see web page definitions

Introduction to Java Language Program Elements

e |languages can be described as verbose or terse, depending upon the number of keywords they
contain

o keywords are predefined reserved identifiers that have special meanings to the compiler

e Java #is a relatively terse language, see list of keywords: google Java keywords

i. comments
e why?
» documentation for you, or more importantly, someone else in the future
» debugging statements
» removing sections of potentially poor/damaging code
° single-line comments (also called in-line)
> uses the // notation

» doesn’t need an end symbol, ended by EOL/CR
> can go anywhere on line, but everything following is a comment

e block comments (also called multi-line)
> usesthe/* */notation

> must have an end symbol
> can be on a single line or span across many

° doc comments

> uses the /** */ notation
> used by javadoc to generate documentation

vi.

class definition

fundamental building block of Java programs

every application begins with a class definition

code block definition { }

used to define a block of code, i.e. the beginning and end

each { must have a matching } or errors will occur

statement terminators

terminate complete program instructions, i.e. statements

use the ; to terminate statements

main method definition

entry point for all Java applications, i.e. where the program will begin execution

general syntax (or signature): public static void main(String[] args)

public and static keywords are access modifiers (more later)

void is the return type of the main () method

main () body

contains the code to be executed when the application begins

I1l. Errors

1. compile-time (or syntax) errors

e when: at compile time, i.e. caught by Java compiler
e why: violations of Java keyword syntax
o common syntax errors

v\ case errors

v" misspellings

v' forgotten semi-colons

v" missing closing characters

2. run-time errors

e when: during program execution
e why: unhandled errors, e.g. math errors like division by 0, invalid user input, file not found
errors

e when: typically, the worst possible time
e why: complex problems, less than optimal time spent on design

Which one’s of these are the easiest to find/fix? Which are the hardest?

How to avoid logic errors?

e good analysis and design techniques
e use of planning techniques, e.g. flowcharts, algorithms

V.

Java and the NetBeans Development Environment

Java is a language created by Sun Microsystems starting circa 1991
Sun Micro was purchased by Oracle in 2009, thus Oracle now owns Java

the NetBeans development environment called NetBeans IDE — Integrated Development
Environment and is separate from Java

java source files should end in .java
javac is the name of the java compiler, once run, this creates a .class file
from the console window, java will execute the .class file

main method of organization called an application

projects divided into multiple, physical files

ALWAYS create a folder per project...save all of your files to this folder, and ONLY move the folder
as a whole

for example, create a OOP 1 folder, then using project name & location to create a subfolder with
that project name

on startup, NetBeans displays a “start page”, where you can Open an existing project or open a
New project (not file, PROJECT)

if you select New, you will be prompted for:

» Project category: Java with Ant
» Projects: Java Application

» Project Name: name using each word upper case, no spaces, using good names
» Project Location: if populated, leave alone (e.g. NetBeansProjects)
otherwise, create folder for projects, then enter entire path name

» Create main class, use defaults (leave defaults alone)

to (build and) RUN project, click the start button (>) in the toolbar, or click Run...run project in the
menu bar, or press SHIFT F6

(Note, if simple programs will not display output correctly, try SHIFT F11, then run project)

