Classes week 10/11

e aclass is a specification (think of it as a blueprint or pattern and a set of instructions) of how
to construct something

e classes will have names to identify objects created from that class

e classes may have private data, i.e. data that is private to that class, often referred to as
instance variables

e protecting internal data fields within a class from external code access is encapsulation
¢ this is one of the fundamental principles of OOP

e classes may have method members, i.e. methods that work on the private class data

class definition

get methods

\J

private data

A

Syntax accessSpecifier class ClassName
{

accessSpecifier typeName variableName;

}
Example public class Counter Each object of this class
{ has a separate copy of
stance variables shoold private int value; this instance variable.
always be private. } B \

Type of the variable

Creating and Manipulating Objects

e ingeneral, there are 3 types of non-static methods for creating and manipulating objects
1. constructors
2. accessors, aka getters

3. mutators, aka setters

e non-static methods must be instantiated by creating a new object — each method then is a part
of that specific object

e the process of creating a new object is called construction (see BJ, ch 8.6)
e constructing a new object uses the new operator
e the new operator returns an instance of the object, along with any non-static method members

e to actually use the newly created object, you’ll need to assign it to a variable of type ???

Syntax new ClassName(parameters)

Example The new expression yields an objeet. _ Gonstruction parameters
Rectangle box = new Rectangle(5, 10, 20, 30);
Usually, you save
the constructed object System.out.printin(new Rectangle());
in a variable.
rel evel
Yo can als thre are e parametrs
pass the consfructed object

1o a method.

constructors must have the same name and case as the name of the class
constructors create objects that are ready-to-go (i.e. use)

constructors with the same name and different parameter lists are said to be overloaded, the
specific one executed is decided by its signature

accessor methods usually are named with the word get, and usually return a specific value
accessor methods should not change values, only return values
mutator methods usually are named with the word set, and usually set a specific value

either accessor or mutator can be omitted, i.e. omitting the set accessor creates a read-only
property and omitting the get accessor creates a write-only property

Syntax accessSpecifier class ClassName
{

instance variables
COnstructors
methods

}

Example public class Counter
{

private int value;

Private
implementation

public Counter(double initialValue) { value = initialValue; }

Public interface
pubTlic void count() { value = value + 1; }
public int getValue() { return value; }

}

Section I~ Get started right

How to create an object from a class

R TR T N A

Figure 4-8 shows how to create an object with one or two statements. Most
of the time, you can use one statement to create an object. However, in some
situations, you need to use two statements to create an object.

When you use two statements to create an object, the first statement declares
the class and the name of the variable. However, the object isn’t created until
the second statement is executed. This statement uses the new keyword to call
the constructor for the object. This creates the object by initializing its instance
variables, and it stores the object in memory. Then, the assignment operator (=)
assigns a reference to this object to the variable. That’s why objects are known as
reference types.

When you send arguments to the constructor of a class, you must make
sure that the constructor can accept the arguments. To do that, you must send
the correct number of arguments, in the correct sequence, and with compatible
data types. When a class contains more than one constructor, Java executes the
constructor that matches the arguments.

The two-statement example in this figure creates a new Product object
without passing any arguments to the constructor of the Product class. The first
one-statement example accomplishes the same task. Then, the second
one-statement example shows how to send three arguments to the constructor. Of
course, this assumes that the Product class has a constructor with three param-
eters that are compatible with these three arguments.

Chapter4 How to code your own classes and methods

How to create an object in two statements

Syntax
ClassName variableName;
variableName = new ClassName(argumentList);

No arguments
product product;
product = new Product();

How to create an object in one statement
Syntax

ClassName variableName = new ClassName (argumentList);

No arguments
Product product = new Product();

Three arguments _
Product product = new Product ("java", "Murach's Java Programming", 57.50);

Description

e To create an object, you use the new keyword to create a new instance of a class.
Each time the new keyword creates an object, Java calls the constructor for the
object, which initializes the instance variables for the object and stores the object in
memory.

e After you create an object, you assign it to a variable. When you do, a reference
to the object is stored in the variable. Then, you can use the variable to refer to the
object. As a result, objects are known as reference types.

The variable for a reference type stores a reference to an object.

To send arguments to the constructor, code the arguments between the paren-
theses that follow the class name. To send more than one argument, separate the
arguments with commas.

When you send arguments to the constructor, the arguments must be in the
sequence called for by the constructor and they must have data types that are
compatible with the data types of the parameters for the constructor.

Example:

public class Counter

{

/[private member data
private int value;

Il constructor methods, 1 with an arg, 1 without
public Counter () { value=0; }
public Counter (int initial_value) { value = initial_value; }

// public mutator method - a setter method
public void setCount () { value++;}

// public accessor method - a getter method
public int getValue() { return value; }

public static void main (String[] args) {
Counter clicker = new Counter(); Il construct clicker object from Counter class

clicker.setCount();
clicker.setCount();

System.out.printIn("The clickers value is: " + clicker.getValue());

e see inputDialogExample program

	I. Classes week 10/11
	 a class is a specification (think of it as a blueprint or pattern and a set of instructions) of how to construct something
	II. Creating and Manipulating Objects

