
10/25/2018

I. More ARP Week 7

 after resolving a hardware address, why not store it?

 ARP assumes that there will most likely be more than 1 communication between two

nodes, so it stores the hardware address in a table

 table referred to as the ARP cache

 ARP cache is small on most machines

o if full, and another ARP request occurs, oldest entry replaced (FIFO)

o entries are also timed-out, removed after a period of time, could be as short as 2

minutes

o entries can also be manually added/deleted

o on Linux, ARP data stored in file: /proc/net/arp

 why not keep cache between boot-up? Things change:

o NICs go bad

o IP addrs change

o machines taken off network

 ARP Lab

useful commands:

 ipconfig /all (Win)

 hostname (linux)

 ifconfig (linux)

MTU – maximum transmission unit

TX

RX

lo

 arp –a (linux & Win)

 arp –d

 wireshark &

in one window, sleep 10 ; ping –c1 hostname

in wireshark, filter: arp host hostname

10/25/2018

II. Even More ARP

We want to send from station a to station c in the following diagram:

1. what 2 pieces of info does A need? a) C’s network addr b) C’s hardware addr

2. assuming we have the network addr for station c (e.g. IPc), what do we do to get the

hardware addr? ARP.

3. who do we ARP (assuming an empty ARP cache)? IPc? (no) Why? Because we know

IPc is on a different network. How do we know IPc is on a different network? How many

parts to an IP address? 2, the network portion and the host portion. Thus we know the

network portion of IPa is different than the network portion of IPc.

 when building the ARP packet, we know we want the HW addr of the router so we

provide the IP addr of the router, and send down to layer 2

 then at layer 2, who do we send this to? everybody on our LAN (broadcast)

4. How do we know the IP address for the router? Entered at config time. ARP for HW

address the first time, then use cache.

Note that IP layer is only useful between networks, otherwise not (really) necessary.

10/25/2018

III. Internet Protocol (IP)

 IP is responsible for datagram delivery across network boundaries

 IP is a connectionless/unreliable protocol

 IP datagram (see RFC 791)

 version (4 bits) – identifies the version of IP, either 4 (IPv4) or 6 (IPv6)

 header length (4 bits) – length of header in “32 bit words”, i.e. 4 octet chunks

- usually 5, 5 * 32 bits = 5 x 4 octets = 20 octets

- maximum header length: since we have 4 bits, 2^4 -1 * 4 = 60 octets

 type of service (TOS) (1 octets) – specifies how an upper-layer protocol would like a current

datagram to be handled, and assigns datagrams various levels of importance

 total packet length (2 octets) - specifies the length, in octets, of the entire IP packet,

including the data and header

- min size: 21 octets

- max size: 2^16 approx 65K octets

- max size Ethernet frame? 1500, is this a problem?

10/25/2018

 identifier (2 octets) - contains an integer that identifies the current datagram used to help

piece together datagram fragments

 fragment flags (3 bits) - consists of a 3-bit field of which the two low-order (least-

significant) bits control fragmentation

- left-most bit is reserved (and must be 0, MBZ)

- middle bit specifies whether the packet can be fragmented (0 = may fragment, 1 =

do not fragment).

- right-most bit specifies whether the packet is the last fragment in a series of

fragmented packets (0 = last fragment, 1 = more fragments coming).

 fragmentation offset (13 bits) - indicates the position of the fragment's data relative to the

beginning of the data in the original datagram, which allows the destination IP process to

properly reconstruct the original datagram

 time-to-live (TTL) (1 octet) - maintains a counter that gradually decrements down to zero, at

which point the datagram is discarded. This keeps packets from looping endlessly.

 protocol (1 octet) – indicates which upper-layer protocol receives incoming packets after IP

processing is complete

 1: ICMP 2: IGMP 6: TCP 17: UDP

 header checksum (2 octets) – error check which helps insure IP header integrity

 source address (4 octets) – specifies the sending node

 destination address (4 octets) – specifies the receiving node, destination never changes

along the way

 options (size varies) – allows IP to support various options, such as security

 data (size varies) – upper layer data

 See ARP/Ping example. Ping non-existent hosts

 See ARP, ping, IP, ICMP packet document

10/25/2018

IV. More on IP Addressing Week 8

 how big are IP (IPv4) addresses? 32 bits, how many total addresses is this? 2^32 = approx

4.3 billion

 we are currently running out of IPv4 addresses, why?

- inefficient allocation

- did not anticipate the need

 recall, IP addresses have how many parts? 2, the NW part and the host part

Classful IP Addressing: (see pg. 411…)

Class Leftmost bits Network/Host division Dotted decimal format

A 0 8 bits NW, 24 bits host NW.H.H.H

B 10 16 bits NW, 16 bits host NW.NW.H.H

C 110 24 bits NW, 8 bits host NW.NW.NW.H

D 1110 Multicast

E 1111 Experimental

 also denoted by /n notation, where n determines the # NW bits, e.g. A: /8, B: /16, C: /24

Class A Networks:

 max # total Class A networks? 2^7 = 128

 2 NW addresses reserved: 0.0.0.0 & 127.0.0.0, thus max # useable networks: 128 – 2 =

126

 range: 1.xxx.xxx.xxx – 126.xxx.xxx.xxx

 max # hosts (per network): 2^24 = approx 16 million

 2 host addresses reserved: all 0’s & all 1’s, so 2^24 – 2

 also referred to as /8 addresses, e.g. 126.0.0.0/8

 total IPv4 address space = 2^32 total Class A address space = 2^31

2^31/2^32 = .5 thus Class A addresses make up 50% of IPv4 addresses

10/25/2018

Class B Networks:

 max # total Class B networks? 2^14 (why 14, why not 16?)

 range: 128.0.xxx.xxx – 191.255.xxx.xxx

 max # hosts: 2^16 – 2 (why – 2?)

 total IPv4 address space = 2^32 total Class B address space = 2^30

2^30/2^32 = .25 thus Class B addresses make up 25% of IPv4 addresses

Class C Networks:

 max # total Class C networks? 2^21 (why 21, why not 24?)

 range: 192.0.0.xxx – 223.255.255.xxx

 max # hosts: 2^8 – 2 (why – 2?) = 254

 total IPv4 address space = 2^32 total Class C address space = 2^29

2^29/2^32 = .125 thus Class C addresses make up 12.5% of IPv4 addresses

10/25/2018

V. Network Masks

 RFC 950 circa 1985

 recall classful addressing

Class A N.H.H.H 1.xxx.xxx.xxx – 126.xxx.xxx.xxx /8

Class B N.N.H.H 128.0.xxx.xxx – 191.255.xxx.xxx /16

Class C N.N.N.H 192.0.0.xxx – 223.255.255.xxx /24

 a network mask identifies the network portion of the IP address

 natural network masks

 Class A: 255.0.0.0

 Class B: 255.255.0.0

 Class C: 255.255.255.0

 network masks are and-ed with the network address to identify the network portion

 Thus given IP addr: 198.22.16.239 (class C) and the corresponding mask, we get

 11000110 00010110 00010000 11101111 original address

 11111111 11111111 11111111 00000000 Class C natural mask

 11000110 00010110 00010000 00000000 network portion of the addr

 on Windows from cmd prompt: netsh interface ipv4 show config

