I. Media Contention & MAC Rules

Collisions in Ethernet (specifically 10Mbps – half duplex):

- are not errors
- do not corrupt data
- are the basis for multiple node access on a single half duplex line

10baseT manages collisions using something called **CSMA/CD** (Carrier Sense Multiple Access/Collision Detect).

<u>CSMA/CD</u> (see Ch 2 & Ch 3, pg. 48+)

- 1. node wishing to transmit listens to media for presence of a carrier signal (i.e. a signal on the wire)
 - if a carrier is present, node must wait
 - if no carrier for IFG time period, transmit
- 2. if a collision is detected, a (32 bit) jam signal is transmitted
- 3. after sending a jam, all nodes will wait a random amount of time before trying to send again (backoff)
- 4. goto step 1

Timing Issues:

- <u>network diameter</u> distance between two (most distant) end nodes
- <u>network segment</u>
 - 1) in general, network section that is bounded by bridges, routers, or switches (i.e. a collision domain) per Cisco definition
 - 2) physical wire connection w.r.t. 5-4-3 rule, not a collision domain
- while signals on the line are very fast (almost 3 x 10⁸ m/sec), they still take measurable time. Time is measured in <u>bit time</u>, for 10 Mbps:

10 Mbps = 10 million bits/sec or 10 bits/ μ second, so 1 bit 1/10 millionth of a second or 1 bit transmitted in .1 μ second

- <u>interframe gap</u> (IFG) time for brief recovery after receiving (tail end of) frame
 - ➢ 96 bit times
 - ➢ 9.6 µseconds (microseconds) for 10 Mbps

- <u>slot time</u> maximum time required to detect a collision
 - ▶ smallest Ethernet frame? 64 octets, or 512 bits, thus 51.2 µseconds
 - approximately twice the signal propagation time between the two end nodes (most distant) on the network
 - > why twice? the time it takes a signal to travel from one end two the other end, and back
 → physical layer round trip propagation time
 - > slot time is the maximum time required for collision enforcement
- wire speed & data delivery (see Gallo, pg 334)
 - smallest Ethernet frame (worst case scenario) transmitted in 51.2 μsec + preamble 6.4 μsec +IFG 9.6 μsec totals 67.2 μsec per frame
 - > thus 1 frame is transmitted in $1/67.2 \,\mu \text{sec} = 0.0148809 \,\mu \text{sec}$
 - > since 1 second is $10^6 \,\mu$ sec, 0.0148809 μ sec * $10^6 = 14880$ (min size) frames are transmitted in 1 second → this is referred to as wire speed
 - data (payload) delivery: at 14880 frames per second, 46 data octets (min) per frame, 8 bits/octet, we get 14880 frames/sec * 46 octets/frame * 8 bits/octet = 5.476 (approx) Mbps data
 - $= \frac{\text{largest}}{\text{frame, } + 6.4 + 9.6 = 1230.4 \text{ } \mu \text{sec}} = 12144 \text{ bits transmitted in } 1214.4 \text{ } \mu \text{sec per}$
 - > 1 frame in $1/1230.4 \,\mu \text{sec} = 0.0008127 \,\mu \text{sec}$ (approx)
 - \triangleright .0008127 * 10⁶ = 812.74 frames per second
 - > 1500 data octets (max) per frame, 8 bits/octet \rightarrow 812.74 * 1500 * 8 = 9.773 Mbps data

II. CSMA/CD & Backoff Algorithm

- goal: once a collision occurs, goal is to minimize chances of another
- backoff algorithm provides a mechanism for adjusting timing of retransmissions
- based upon slot time multiple with random integers in a given range
- integer (i) chosen such that $0 \le i \le 2^n 1$ where n is collision attempt and $n \le 10$

collision #	range	wait time		
0	-	-		
1	0-1	0 * 51.2 μs, 1 * 51.2 μs		
2	0-3	0 * 51.2 μs, 1 * 51.2 μs, 2 * 51.2 μs, 3 * 51.2 μs		
10	0-1023			
11-15	same as above			
16	discard frame			

III. Ethernet Restrictions

10 Mbps Ethernet:

	Туре	Max Seg	Max Nodes	Max Diameter	Spacing
		Len	Seg		
Thick coax	10base5	500 m	100	2500 m	2.5 m
Thin coax	10base2	185 m	30	925 m	.5 m
TP	10baseT	100 m	2	500 m	-
fiber	10baseF	2000 m	2	2500 m	-

• see hub handouts and network diameters

IV. 5-4-3 Rule

- rule is applied to Ethernet networks where greater distances are achieved using (repeating) hubs
- used to insure that any data sent will arrive at its destination within a given time, thus reducing collisions
- only applied to hub based Ethernets, does not apply to switched Ethernets
- rule states:
 - > given two types of segments, user (populated) segments and link segments
 - for any two end nodes on the LAN, there can be a maximum of 5 segments between them
 - connected via a maximum of 4 (repeating) hubs
 - where a maximum of 3 of the segments are user populated (i.e. have user nodes connected to them)
 - sometimes called 5-4-3-2-1, where 2 is the number of segments that are not user populated and 1 is the number of collision domains
- workarounds to 5-4-3, stackable hubs, but these are also limited based upon manufacturer
- see handout