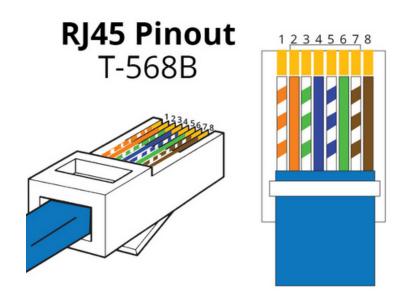
I. Signal Issues

- as an electrical signal travels through (along) a wire, the strength of the signal weakens, referred to as **attenuation**
- the longer the circuit, the greater the attenuation
- analog signals can be strengthened using **amplifiers**, but these also boost the amount of ? (noise)
- digital signals are strengthened using **repeaters**

II. Physical Layer & Media Specifications

Physical Layer Specifications: <u>xxx</u> <u>yyy</u> <u>zzz</u>


- ➤ xxx is speed in Mbps
- yyy is signaling method (baseband a single signal or broadband multiple mux-ed signals)
- > zzz is max cable length (in 100 meters lengths) or medium type

Copper

- **1.** coaxial
 - **a.** thick coax
 - called "thick Ethernet"
 - 10 base 5 (? Mbps, ?, ? meter max cable length)
 - **b.** thin coax
 - called "thin Ethernet" or thinnet
 - 10 base 2
- **2.** twisted pair
 - consists of (at least) 2 pairs of copper, 1 transmit, 1 receive
 - twists cause noise to get out of phase, thus cancels itself out
 - **a.** shielded twisted pair (STP)
 - each pair enclosed in shielding
 - expensive, used for specialty applications, e.g. hospitals

- **b.** unshielded twisted pair (UTP)
 - standards set by EIA/TIA (see <u>www.tiaonline.org</u> & spec 568)
 - categories 1-5e & 6 are standards, 6e & 7 are proposed, but currently proprietary
 - cat 3 supports 10 Mbps 10BaseT (802.3i)
 - cat 5 supports 100 Mbps 100BaseTX (802.3u) aka Fast Ethernet
 - cat 5 <u>4 pair</u> supports 1000 Mbps 1000BaseT (802.3ab) aka Gigabit Ethernet
 - UTP connectors are called 8-pin modular connectors, officially called 8 Position 8 Contact (8P8C), more commonly called RJ-45 (telco name, Registered Jack)
 - pin 1 TD+ pin 2 TD- pin 3 RD+ pin 6 RD-
 - cat 5 made up of 4 twisted pairs, colored orange / orange-white blue / blue-white
 green / green-white brown / brown-white
 - **<u>patch cables</u>** connect computer to hub or switch, both ends (EIA 568B):

pin	1	2	3	4	5	6	7	8
wire	O-W	0	gr-w	bl	bl-w	g	br-w	br

• <u>crossover cables</u> connect computer to computer, one end above, one end below

pin	1	2	3	4	5	6	7	8
wire	gr-w	g	O-W	bl	bl-w	0	br-w	br

III. Physical Components, Cont'd.

- **1. Transceiver** (Transmitter/Receiver)
 - layer 1 devices used in Ethernet/802.3 to connect the node to the physical medium (i.e. wire)
 - transmit & receive signals simultaneously as well as performs notification to the host if an error condition has occurred
 - connect to/from host via an Attachment Unit Interface (AUI)
 - transceivers/AUIs today are typically (almost always) incorporated into the NIC

2. Network Interface Cards (NICs)

- sometimes called LAN adapters, network adapters, network cards, etc.
- NICs can support different types of networks and media, e.g.
 - an Ethernet card is a NIC used in an Ethernet network
 - a token ring card is a NIC used in a Token Ring network
- NICs are considered as layer 2 devices, providing:
 - organization of data into frames
 - ➤ transfer of frames between end points of connection
 - ➢ link management
 - error control
 - initialization
 - termination control
 - flow control
- layer 2 functionality is implementation specific, e.g. Ethernet \neq Token Ring

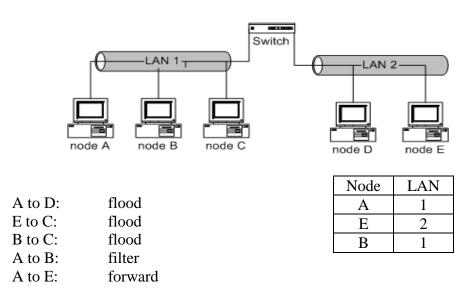
- NICs come hard-wired with addresses from the manufacturer (what kind of addresses? Ethernet cards with Ethernet addresses, etc.)
- NICs also require a software device driver, specific to the hardware and OS
- NICs also provide layer 1 functionality
 - > converting bit values into electric signals using coding scheme
 - > capturing data from the physical medium if addressed to that NIC

3. Hubs

- sometimes called a repeating hub (not a switching hub)
- device which connects 2 or more computer or network segments
- hubs are dumb, layer 1 devices
- takes incoming signal, regenerates it, and repeats signal on all outgoing ports (except incoming one), this is a broadcast model
- source of **propagation delay or latency**, that is the time for a signal to get from point A to point B
- see ch 17

4. Switches

- sometimes called switching hub
- establishes a link between sending and receiving nodes, via a virtual circuit model
- each switch port on an Ethernet switch supports a separate LAN segment, also called a <u>collision domain</u>
- layer 2 devices, examine ? addresses (MAC addresses, e.g. Ethernet)
- ports can accommodate different media types, e.g. 10baseF, 10baseF
- switches examine source and destination addresses and switch based upon pre-learned knowledge


• each port filters traffic sent across its segment, if destination is on same segment, frame is discarded; if traffic sent to another segment, frame is switched to that segment

IV. Collisions

- detection based upon media type, e.g.
 - coax: improper signal levels (e.g. 2x normal level)
 - > TP: any data on receive wire during transmit
- collision domain: any network or segment where 2 or more nodes can experience a collision (see pg. 65)

V. Switching, cont'd.

- goal: break-up (segment) the collision domain
- each switch (sometimes called a bridge) port is a separate collision domain
- support multiple protocols, e.g. Ethernet, ATM
- typically operate in **promiscuous mode**, that is they capture every frame along wire
- self-learning, i.e. build table based upon <u>source</u> address of each frame keeping track of LAN/node pair
 - 1. if destination not in table, send out all ports on switch (flood)
 - 2. if destination in table, and on same LAN (or port) as source, drop (filter)
 - 3. if destination in table, and NOT on same LAN (or port), send (forward)

Switch Types

- 1. cut-through
 - only read and process the minimum number of bits in frame necessary to determine where to send it
 - no error checking
 - low latency
- 2. store & forward
 - accept entire frame before forwarding
 - provides error checking, if errors present, drop frame
 - higher latency, larger the frame, the larger the latency