I. Communication Methods and Data Transmission

> transmitted signal moving across/through a medium is called **propagation**

Serial vs. Parallel Communication/Transmission

- 1. Serial
 - bits transmitted 1 at a time, in sequence, over a single channel
 - speed limited to the speed of the channel
 - works using existing media, but slowly
- 2. Parallel
 - simultaneous transmission of a group of bits on separate channels,
 - given the amount of time to transfer 1 bit serial, can transfer in parallel n bits over n channels
 - requires more complex physical media and transmits (typically) over relatively short distances

Asynchronous, Synchronous, & Isochronous

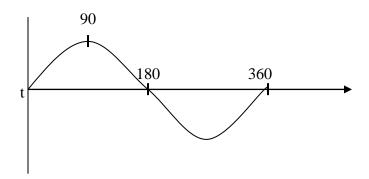
- 1. Asynchronous
 - encapsulating data within "start" and "stop" bits
 - data can be transmitted any time without the receiver having advance notification
 - receiver does not know (or need to) the length of the transmission
 - more cost effective than synchronous...most local links use this method, e.g. PC serial

2. Synchronous

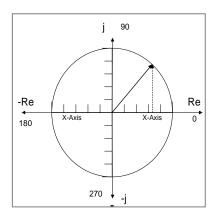
- communication between nodes is monitored by each node
- nodes are in "sync" with each other
- more costly, due to required timing/clocking mechanisms in hardware, but much lower data overhead than in async.
- 3. Isochronous
 - establishes a specific bandwidth and data rate requirements so data flow in continual and uninterrupted
 - critical for applications such as video (MPEG)

Directional Communication Techniques

- 1. Simplex
 - data may only flow in 1 direction
 - 1 node is sender, 1 node is receiver, e.g. Television
- 2. Half-Duplex
 - data may be sent in either direction, but only 1 way at a given time
- 3. Full-Duplex
 - sending and receiving occurs at the same time
 - two simplex lines, 1 going in each direction, working simultaneously

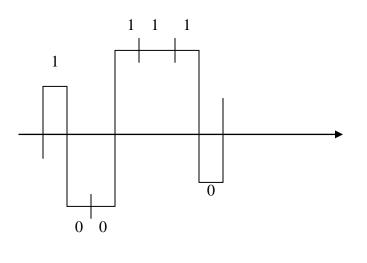

II. Analog and Digital Communication Techniques

Analog signals are smooth, continuous signals over (w.r.t.) time


Describing analog signals:

- 1. Amplitude (A) peak value or strength
- 2. Frequency (f) rate in which signal repeats, measured in cycles per second or Hertz (Hz)
- 3. Phase (Φ phi) relative position in time within 1 cycle (period) of signal
- 4. Period (T) time of 1 cycle, 1/f, in seconds/cycle

represented on a Cartesian graph:



or represented in a polar coordinate system:

Digital Communications

- any method of communication based upon digital principles
- signals in digital communication are discrete (given any point in time, the signal has an exact value)
- exact values are either: on/off, 1/0, high/low, etc.

voltage (v): 5 >= v <= 15	reads as 1
-5 <= v >= -15	reads as 0
-5 > v < 5	ignored

<u>wavelength</u> (λ - lambda) - distance occupied by a single cycle

distance = rate * time lambda = v * time lambda = v * T = v * 1/f= v / f

lambda measured in meters v is typically the speed of light, c represented as 3 * 10^8 meters/sec f is measured in cycles/second

III. Speed and Capacity of a Communications Channel

speed: how fast from A to B capacity: how much data was transferred

Bandwidth

- capacity of a communication channel
- difference of highest and lowest frequencies able to be carried across a channel
- voice phone line spectrum: 300-3300 Hz
- bandwidth: $3300 300 = 3000 \text{ Hz} = 3 \text{ x} 10^3 \text{ Hz} = 3 \text{ kHz}$

Data Rate

- amount of data transferred over a medium in a given period
- measured in bits per second (bps)

 $bps \neq Baud$

- bps: # of bits transmitted per second
- baud: # of signal changes per second
- bps = baud * # bits per baud

Throughput

- bandwidth represents the <u>theoretical capacity</u> of a medium, in bps
- throughput: the amount of data actually transmitted across a medium
- limitations to bandwidth include
 - o noise
 - o intermediate nodes processing capability
 - o I/O speed
 - o node overhead
 - o network traffic

<u>Noise</u>

- any undesirable, extraneous signal on a transmission medium
 - o intermodulation, e.g. EMI
 - o ambient (thermal)
 - o impulse
 - o see Shannon's Limit (w.r.t. S/N ratio)

IV. Multiplexing

- data from multiple channels to share a common medium (see handout)
- data from several low speed channels combined at one end (mux), sent across a high speed circuit, then separated at the other end (demux)

Multiplexing Strategies

- 1. Frequency Division Multiplexing (FDM)
 - divide main frequency into sub-frequencies
 - each sub-frequency customized to the bandwidth of the data it must carry
 - TV, radio, analog telephones
- 2. Time Division Multiplexing (TDM)
 - more than one signal, but at different times
 - digital telephones

- 3. Wave Division Multiplexing (WDM)
 - used with fiber optical media
 - signal split into different optical wavelengths

Others

- statistical multiplexing
- demand access multiplexing (DAM)
- code division multiple access (CDMA)

V. Analog & Digital Transmission Concepts

data source

signal

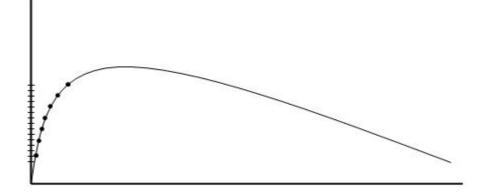
Analog Data to Analog Signal

- baseband signal uses original frequency (300 3300 for human voice)
- carrier signal combine original signal with another (the carrier)
- changing carrier to represent data being carried called modulation
 - o amplitude modulation (AM) modulate signal strength
 - o frequency modulation (FM)
 - phase modulation (PM)
- example is human voice over phone line

Analog Data to Digital Signal

• involves taking samples of the analog wave over time, using a technique called

Pulse Code Modulation (PCM)

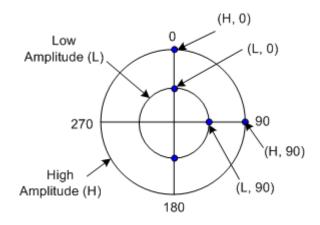

human voice: 300 – 3300 Hz phone company typically allocates 4000 Hz per channel (4 kHz)

Nyquist's Theorem

MDR = 2 x Hz x log2 N (where N = # states)= 2 x 4000 x log2 2= 2 x 4000 x 1 = 8000

PCM uses 8000 samples/second $(1/8000 \times 10^{6} = 125 \text{ microseconds/sample})$

- less samples, lose data
- more samples, no better data

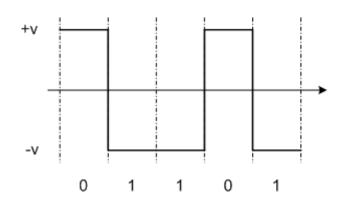

converting analog data to digital data uses a device called a CODEC (COder-DECoder)

Digital Data to Analog Signal

- modulate original signal to represent analog data
- uses a device called a **MODEM** (MOdulator-DEModulator) at each end
- each end must use same modulation technique

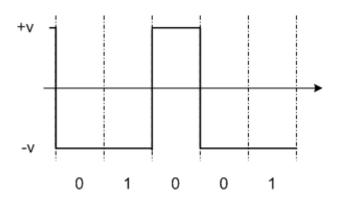
Modulation Techniques

- Amplitude Shift Keying (ASK)
 - varies signal strength while keeping frequency constant
 - unmodulated signal represents a 0, modulated signal represents a 1
- Frequency Shift Keying (FSK)
 - varies frequency while keeping amplitude constant
 - unmodulated signal represents a 0, modulated signal represents a 1
- Phase Shift Keying (PSK)
 - varies signal phase while keeping amplitude and frequency constant
 - unmodulated signal represents a 0, modulated signal represents a 1
- Quadrature Amplitude Modulation (QAM)
 - varies signal amplitude (2 values) and phase (4 values) while keeping frequency constant represents 3 bit trios
 - unmodulated signal represents a 0, modulated signal represents a 1
 - how can we get 3 bits? how do we get 8 states?

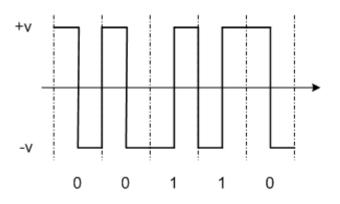

Amp	Phase	bits
L	0	000
Н	0	001
L	90	010
Н	90	011
L	180	100
Н	180	101
L	270	110
Н	270	111

constellation diagram

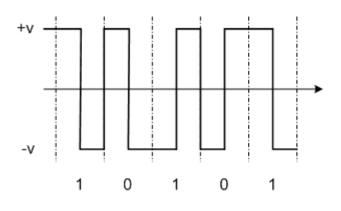
<u>Digital Data to Digital Signal</u> (Encoding Techniques)


Non-Return to Zero Level (NRZ-L)

- zero encoded using +voltage, one encoded using -voltage
- never uses zero voltage
- can lead to problems with synchronization


Non-Return to Zero Inverted (NRZ-I)

- invert signal when a zero is to be encoded
- no synchronization


Manchester (named for Manchester University in England)

- zero encoded using + (downward) transition, one encoded using + (upward) voltage
- provides synchronization
- provides error detection, since errors would have to invert both transitions to go undetected
- referred to as bi-phase
- method used by Ethernet

Differential Manchester

- bits are encoded based upon transitions from previous bit value
- transition from previous bit: 0, no transition: 1

ς.