
10/15/2018

I. Transmission Control Protocol (TCP) Week 12

 RFC 793

 recall TCP is a reliable, connection based protocol

 services provided by TCP

1. virtual circuits

- provide guaranteed connection

- data exchange between VC is full duplex

2. application I/O management

- internal addressing (port assignment)

- connection setup/teardown

- data transfer

3. network I/O management

- efficient segment sizing

- MTU/MRU/buffers/header sizes

4. flow control

- adjustment of send/receive rates

5. reliability

- error detection

- error correction

10/15/2018

II. TCP PDU (see pg. 327)

- source port (16 bits): identifies points at which upper-layer source that created the data

- destination port (16 bits): identifies points at which upper-layer destination should

receive the data

- sequence # (32 bits): identifies the first byte of data in the stream from the sender to the

receiver

 allows the destination to sort data in proper order

 ISN: initial sequence number when VC is established

- acknowledgement # (32 bits): identifies the next sequence number the destination

expects to receive

 identifies all data up to, but not including, this number has been received

 simplified, sequence # in + bytes data received = ack # out

- header length (4 bits): size of header in 32 bit multiples, only size of header, not the

size of data (unlike UDP)

10/15/2018

- reserved (6 bits): currently unused, set to zero

- control flags (6 bits): provide VC management services

 URG (urgent)

 ACK – every segment sent will set this (except for 1st one and reset)

 PSH

 RST

 SYN – VC endpoints use to sync their sequence numbers (ISN’s)

 FIN

- window: flow control mechanism

- checksum: checksum of entire segment (header & data)

 mandatory (unlike UDP), why?

 if checksum bad, segment is dropped

- urgent: indicates any urgent segments

- options: see pg 346

10/15/2018

III. TCP Connection Establishment Sequence

 referred to as the 3-way handshake

 see pg 271 - 281

 recall ACKs set for every segment except the 1st (and RST)

 flag values:

32 16 8 4 2 1

U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N

10/15/2018

IV. TCP Connection Teardown

 requires four segments to terminate a connection

 since TCP connection is full-duplex, each direction must be terminated independently

 when a side receives a FIN, it will send an ACK of the incoming sequence number + 1

client server

FIN, ACK (of previous)

ACK (of FIN)

ACK (of FIN)

FIN

application

close

application

close

from Stevens, pg 234

deliver EOF

to application

Note 2
nd

 and 3
rd

 segments usually combined

V. Incomplete Termination Types

1. half close

 one end of the VC sends a FIN, other continues sending data

 see handout

2. half open

 one end of the VC closes or aborts without knowledge of the other end

 e.g. client turned off

10/15/2018

VI. Reset

 sent when a TCP segment arrives which is not destined for a valid connection

 immediate connection termination on both sides of the VC, RST flag set

 what happens in UDP since no control flags? ICMP error, port unreachable

VII. Out of Order Arrival

 since full-duplex, segments can arrive out of order

 segments can also get lost, see pg. 320

seq 1

ack 101

seq 101

seq 201

seq 501

seq 401

seq 301

ack 201

ack 201

ack 201

ack 301

ack 601

seq 601

10/15/2018

 out of order packets will be stored in buffer until all packets arrive and can be reassembled

 however, if missing segments do not show up in a timely manner, timers will expire and

buffer will be emptied

VIII. TCP Flow Control

 recall TCP communicates full-duplex

 goal is to manage flow such that transmission is maximized and loss (overflow) is

minimized

 both sender and receiver use buffers, must keep in buffer until that data is ACK’d

 but all hardware is not the same speed, e.g.

Simplest case - Request/Reply:

 send one segment, wait for an ACK

 slow, but can process/discard packet as soon as receiving an ACK

 not realistic, too much data flow

send buffer receive buffer

3 GHz P 4 233 MHz 486

10/15/2018

Receiver Based Flow Control

1. Receiver Window Size Adjustment (pg. 296, 379)

 RFC 793

 uses the window field returned in ACKs to tell a sender how much data the receiver can

handle

 window # specifies the # of octets the receiver is prepared to receive (i.e. that will fit

into the receive buffer) before sending an ACK

 see example by Hyojin Kim:

http://media.pearsoncmg.com/aw/aw_kurose_network_2/applets/flow/flowcontrol.html

2. Sliding Receiver Windows (pg. 301)

 RFC 793, 1122

 defines how many segments can be in transit

Other Issues

 silly window syndrome

 slow start

 congestion avoidance

 Nagle algorithm

