
I. Internet Control Message Protocol (ICMP) Week 10

• described in RFC 792

• helper protocol for IP, but more like a 3 ½ layer protocol (like ARP as a 2 ½ layer protocol)

• since a helper protocol for IP, uses IP datagrams to deliver ICMP packets

• any IP device can send/receive ICMP packets (i.e. nodes & routers)

• provides a mechanism for IP devices to exchange information about network problems

• purpose of ICMP control messages is to provide feedback about problems in the
communication environment, not to make IP reliable

• even though IP is an ? (unreliable) protocol, it is valuable to know about semi-permanent

errors

General ICMP types:

1. Network errors

• network unreachable/unknown
• host unreachable/unknown
• protocol unreachable/unknown
• port unreachable/unknown

2. Network congestion

• source quench – sender sending too fast, message to slow down

3. Time exceeded

• TTL becomes zero (see TraceRoute)

4. Network queries

• echo request/reply (see ping)

General ICMP PDU format:

• why original header and 8 octets? (see pg. 197 & 204)

• some (not all) sample type values (see pg 196)

ICMP Type Description Family
0 echo reply query
3 destination unreachable error
4 source quench error
8 echo request query
9 router advertisement query
11 time exceeded error

• some (not all) sample code values for type 3 (see pg 206)

ICMP Code Description
0 network unreachable
1 host unreachable
2 protocol unreachable
3 port unreachable
4 frag required but DF bit set
5 source route failed

• note that all ICMP type packets do not have all parts following the checksum, or some
parts may be unused, or some parts may be subdivided, e.g.

 echo request/reply packets do not have original IP header data
 the echo request/reply message field is subdivided into an ID field and a sequence

field (ID field does not change but the seq # does for a single ping session)

II. Introduction to the Transport Layer Week 11

In general the transport layer is:

• layer 4 protocol (in TCP/IP model)
• connection oriented & reliable
• a provider of error detection / correction
• recall PDU called segments (aka TPDU)

• transport layer provides logical connection between end nodes application processes

(where layer 3 provided connections between nodes)

• application identification based upon ports, numeric IDs which identify the

sending/receiving application

Name Range Description
well-known* 0-1023 basic core services
registered* 1024-49151 registered industry applications
dynamic or ephemeral 49152-65535 temporary ports

 *well known or registered ports usually on server side, e.g. DNS:53, WWW:80, IM: 5190

– see /etc/services

• 2 main protocols
- TCP – transport control protocol (IP protocol = 6)
- UDP – user datagram protocol (IP protocol = 17)

III. User Datagram Protocol (UDP)

• defined in RFC 768

• UDP provides none of the reliability (or connection) associated with the transport layer – so

why use it?

- offers low overhead and high performance

- many applications cannot use TCP, e.g. streaming audio & video where error correction is

a liability

- most networking technologies today are fairly reliable, so an unreliable protocol is still

fairly reliable

- if errors do occur, these are most likely caught at the application layer

• UDP PDU – 8 octets (typically), pg 258

- source port: identifies points at which upper-layer source processes send the UDP data

- destination port: identifies points at which upper-layer destination processes receive the

UDP data

- length: length (in bytes) of the entire UDP message, including header & data

- checksum: error check of entire message, including the header & data (recall IP only

checksums its header)

 checksum also includes a “pseudo-header” which includes source & destination IP
addresses, protocol id (UDP = 17) and the size of the UDP PDU

 optional for UDP (why?), required for TCP

• see /etc/services (on linux)

• search for etc on Win XP

• see http://www.iana.org/assignments/port-numbers

IV. Transmission Control Protocol (TCP)

• RFC 793

• recall TCP is a reliable, connection based protocol

• services provided by TCP

1. virtual circuits

- provide guaranteed connection
- data exchange between VC is full duplex

2. application I/O management

- internal addressing (port assignment)
- connection setup/teardown
- data transfer

3. network I/O management

- efficient segment sizing
- MTU/MRU/buffers/header sizes

http://www.iana.org/assignments/port-numbers

4. flow control

- adjustment of send/receive rates

5. reliability

- error detection
- error correction

• TCP PDU (see pg. 327)

- source port (16 bits): identifies points at which upper-layer source that created the
data

- destination port (16 bits): identifies points at which upper-layer destination should

receive the data

- sequence # (32 bits): identifies the first byte of data in the stream from the sender to
the receiver

 allows the destination to sort data in proper order
 ISN: initial sequence number when VC is established

- acknowledgement # (32 bits): identifies the next sequence number the destination
expects to receive

 identifies all data up to, but not including, this number has been received
 simplified, sequence # in + bytes data received = ack # out

- header length (4 bits): size of header in 32 bit multiples, only size of header, not the
size of data (unlike UDP)

- reserved (6 bits): currently unused, set to zero

- control flags (6 bits): provide VC management services

 URG (urgent)
 ACK – every segment sent will set this (except for 1st one and reset)
 PSH
 RST
 SYN – VC endpoints use to sync their sequence numbers (ISN’s)
 FIN

- window: flow control mechanism

- checksum: checksum of entire segment (header & data)

 mandatory (unlike UDP), why?
 if checksum bad, segment is dropped

- urgent: indicates any urgent segments

- options: see pg 346

V. TCP Connection Establishment Sequence

• referred to as the 3-way handshake

• see pg 271 - 281

• recall ACKs set for every segment except the 1st (and RST)

• flag values:

32 16 8 4 2 1
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

VI. TCP Connection Teardown

• requires four segments to terminate a connection

• since TCP connection is full-duplex, each direction must be terminated independently

• when a side receives a FIN, it will send an ACK of the incoming sequence number + 1

client server

FIN, ACK (of previous)

ACK (of FIN)

ACK (of FIN)

FIN

application
close

application
close

from Stevens, pg 234

deliver EOF
to application

Note 2nd and 3rd segments usually combined

VII. Incomplete Termination Types

1. half close

• one end of the VC sends a FIN, other continues sending data
• see handout

2. half open

• one end of the VC closes or aborts without knowledge of the other end
• e.g. client turned off

	I. Internet Control Message Protocol (ICMP) Week 10
	II. Introduction to the Transport Layer Week 11
	III. User Datagram Protocol (UDP)
	IV. Transmission Control Protocol (TCP)
	V. TCP Connection Establishment Sequence
	VI. TCP Connection Teardown
	VII. Incomplete Termination Types

