Computer Programming I

I. Introduction

· my introduction

· web page location & description

· syllabus

· textbook(s)
· coverage approx chapter 1 – 7

· see me for “professional edition” for free or bookstore for $5?

· pre-requisites/co-requisites

· assignments

· preparation

· in class behavior

· see class/weekly schedule

· questions

II. What is a programming language?

· A set of instructions to tell (instruct) some hardware (i.e. computer) what to do.

High Level Languages
focus: user (i.e. programmer)

procedural: C, Pascal, Ada, BASIC, PL-1, FORTRAN, COBOL, Perl

object oriented/event driven: Java, C++, C#, VB/VB.Net

assembly language

 hardware specific

machine language

Low Level Languages

focus: hardware

procedural: focus on processes that affect data
object-oriented: focus on objects

III. Problem Solving

class 2/20
How do we solve problems?

1. understand the problem

2. understand what is necessary to achieve the solution, e.g. inputs, outputs

3. subdivide problem into more easily solvable pieces

4. solve each piece (prioritize subdivided pieces)

5. reassemble the pieces

6. verify results match expectations

 P(X) = Y

inputs (X) outputs (Y)

 program P

algorithm – a series of steps (or methodology) for converting the inputs of a specific problem into meaningful, desired outputs (e.g. a recipe).

Algorithms can be described in a several ways:

1. flowcharts – use predefined, labeled symbols connected by arrows to describe an activity that occurs at each step
2. pseudocode - an English like description to describe the solution steps, and not specific to any computer language
3. hierarchy charts -

IV. Design Techniques and Steps

1. Requirements

e.g. waterfall method (draw picture)

- what does the user want

2. Analysis and Design

· what are inputs, outputs, etc.

· development of algorithms

3. Implementation

- actual coding in specific language

4. Testing and Debugging

5. Documentation

· internal and external

Which of the above steps is the most difficult/easy?

V. Sample Problem/Task

How to make a peanut butter and jelly sandwich?

1. What are inputs, how many, etc.

2. What are outputs?

3. What is the process?

a. open PB

b. open Jelly

c. get out 2? pieces of bread

d. apply PB

e. apply Jelly

f. assemble two pieces with PB & J inside

Which steps are dependent upon other steps? Dependencies – order IS important.

4. What if we want to make a PB, J & banana sandwich? Can the same/similar process be used?

5. What if we want to make 25 PB & J sandwiches? How do we modify the process? How do we know when we have 25 of them?

Computer Concepts in PB & J:

· dependencies

· abstraction

· required (necessary) item cost/prohibitive item cost

· requirements modification

· iteration (looping)

· counter

VI. Object Oriented Concepts

class 3/20
· see web page definitions

VII. Intro to .Net

VB is part of the .Net platform

· .Net platform contains many languages, e.g. VB.Net, C#, J++, …

· .Net platform central component → .Net framework
· .Net framework sits on top of Windows OS, and contains

· Framework Class Library (FCL)

· Common Language Runtime (CLR) - standard resources that (in theory) any .NET program can take advantage of, regardless of programming language

[image: image1.png]C#

C++

VB

Jscript

Other

Common Language Specification (CLS)

Web Services

Windows Interface

Data (ADO) & XML

Base Class Libraries

Common Language Runtime (CLR)

Operating System

VIII. Program Translation

· The translation of HLL (human understandable) to Low Level (machine understandable) languages.

1. Compilation (in general)

translated by compiler program to

translated by assembler/linker/loader

programs

compilers translate program as a whole, scanning the program checking for any errors in the entire program

2. Compilation (for .Net)

[image: image2.png]compilation
phase

execution
phase

VB.Net
Source

Cc#
Source

3 party
Source

—— | VB.Net Compiler

—— | c#Compiler

—— | 3 party Compiler

MS Intermediate
Language (MSIL)

v

JIT Compiler —_— machine code

IX. Visual Basic Development Environment

· VB.Net is a program created by Microsoft Corporation
· we will use MS VB.Net 2003(or VB 7.0), previous version is referred to as VB 6.0
· VB development environment called VB IDE – Integrated Development Environment
· main method of organization called a solution (or assembly/application)
· projects divided into multiple, physical files
· ALWAYS create a folder per project…save all of your files to this folder, and ONLY move the folder as a whole

· on startup, Studio.Net displays a “start page”, where you can Open an existing .Net project or open a New project
· if you select New, you will be prompted for:

· Project type: select Visual Basic Project

· Templates: select Console or Windows Application

· Project Name

· Project Location

· IDE entities/parts
1. solution explorer window

· list of all open projects and files/items associated with the solution (contained within)

2. form window

· a control is an object in the UI of a VB program

· a form is the default container for VB controls (see MS calculator)

· forms comprise the UI of a VB program

· within the form window, forms can be edited, resized, controls added/removed, etc.

3. properties (editor) window

· objects have properties associated with them

· controls are objects, soooo CONTROLS ARE OBJECTS AND OBJECTS HAVE PROPERITES

· e.g. form object: name, height, width, position, etc.

· objects are assigned default properties

· Name property is for the programmer
· Text property is for the user
4. toolbox window

· displays VB controls that can be used in your program

· forms however, are not in the toolbox

5. task list

· list of tasks occurring or going/needed to occur in your project

· VB states
· design-time

· run-time

· break time

· show VB.Net on overhead

X. Introduction to VB Program Elements

class 4/20
· keywords are predefined reserved identifiers that have special meanings to the compiler
· comments (pg. 82)
· uses the single-tick (‘) notation

· doesn’t need an end symbol, ended by EOL/CR

· can go anywhere on line, but everything following is a comment

· Main method definition

· entry point for all VB applications, i.e. where the program will begin execution
· Main body contains the code to be executed when the application begins
· Main – End Sub keywords comprise a code block
XI. Creating & Running Console Programs

1. from the command prompt

· create using any generic text editor, e.g. Notepad

· once created, run from Command Prompt window using the VB compiler (named vbc)

· easiest way to get the correct settings in the window is by Start → Programs → VStudio.Net → VS.Net Tools → VS.Net Command Prompt

· show example of HelloWorld.vb
· show some errors & messages

2. from within .Net

· start .Net → New Project → Visual Basic & Console Application (pick location to put files when creating the project)

· leave off closing “ from the writeline statement

· spell writeline wrong and see what happens

XII. VB Project Management

1. opening a project

· start up .Net and select Open to open an existing project or New to begin a new project

2. naming a project

· first must name the project, using a meaningful name at startup time

· name form file using a meaningful name

· next must name the form, using the 3-letter prefix for forms followed by a meaningful form name

3. saving a project

· keep each project in its’ own separate folder

· use Save or Save All to save changes to your project

· DO NOT use Save As, as you may lose required pieces of your project/assembly

4. closing a project
5. running a project
6. printing project info
XIII. Errors

1. compile-time (or syntax) errors

· why: violations of VB keyword syntax, e.g. typos, missing end symbols, etc

· when: at compile time, i.e. caught by VB compiler

2. run-time errors

· why: mathematical errors, e.g. division by 0, invalid user input

· when: during program execution

3. logic

· why: faulty design

· when: during program execution, but really result from design phase

Which one’s of these are the easiest to find/fix? Which are the hardest?

How to avoid logic errors?

· good analysis and design techniques

· use of planning techniques, e.g. flowcharts, T.O.E charts, algorithms

XIV. Variables and Data Type

class 5/20
· variable: a named memory (i.e. RAM, which is volatile) location used to store/hold data, which can be changed during program execution

in algebra: 3x + 5 = 20, x = 5, x is the variable

· formally, a variable is defined as an object with the following properties:

1. name: a tag to identify the variable in VB code

2. address: a location in memory where the variable’s value is stored

3. type: determines the possible range of values the variable can store, as well as how much space the variable will occupy

4. value: contents of the memory starting at address and as big as determined by the type
5. scope: where in a program a variable’s value is visible, i.e. where it can be referenced
6. lifetime: when a program a variable’s value is visible, i.e. where it can be referenced
· variable and constant naming conventions
· name must begin with a letter, followed by 1 or more letters, numbers, and/or underscore characters

· the name cannot be a keyword

· use meaningful names, i.e. X is not a meaningful name

· 1st word lower case, then upper case 1st letter of each following word

· must use prefixes and prefix should correspond to Type - see prefix handout

· declarations
· all variables/constants in VB must be declared – this allows the programmer to give the variable a NAME and a TYPE
general form: [access] var_name As type [= value]
Dim intAge as Integer

Dim intSum as Integer

Dim strName as String

Dim intAge, intSum as Integer (this is legal, but not allowed by me)

· variable types should be selected based upon the values the variable are expected to contain

· variable type are essentially classes, and the declaring of the variable instantiates an object of that type

· using the VB Option Explicit and Option Strict statements insures all variables must be defined

· VB initializes all variables to 0, or something that closely resembles 0, e.g. strings initialized to Nothing
· variable assignment: i.e. assigning values to variables

· general syntax: var_name = expression (note: assignment works R → L)

· expression can be
· compatible literal value

· another variable of type ???
· mathematical equation

· call to a method that returns a compatible value

· combination of one or more items in this list

· examples:

intAge = 22

what is name, what is type, what is data value

intSum = intSum + 1

strName = “Mark”

intAnswer = intSum

Note: 22 = intAge is not a valid assignment (although it is in Algebra)
· constant: a named memory location used to store/hold data, which CANNOT be changed during program execution

· general syntax: Const var_name [As type] = expression
1. literal

e.g. 3

2. symbolic (named)

e.g. conPI

Const conPI As Double = 3.14159

Use type declaration characters following the number:

D : decimal

L : long (integer)

R : double

S : short (integer)

I : integer

F : single

3. VB intrinsic (built-in)

e.g. vbCrLf

XV. Variables and Arithmetic Operators

 class 6/20
· What is an arithmetic operator? Something that performs operations.

· What does an operator perform operations on? Operands.

Name

Symbol
Operands
1. addition

 +

 2 e.g. intNum = intNum + 5

2. subtraction

-

 2

3. multiplication
 *

 2

4. division
 /

 2

5. exponentiation
^

 2 binary

6. negation

 -

 1 unary

· Operator precedence – order of arithmetic evaluation

1. parenthesis
2. exponentiation
3. negation
4. multiplication/division
5. addition/subtraction

? = 3 + 4 / 2 (answer = 5)

Note: if multiple operators of = precedence, operation evaluated L to R

e.g. ? = 3 * 4 / 2 (answer = 6)

· Typical Types of Arithmetic Techniques

1. counting

· typically count a single unit/item
· typically count by 1 (or –1)
· e.g. intCount = intCount + 1
2. accumulation
· act of accumulating a total value (i.e. a sum)
· typically don’t accumulate by a single unit/item
· e.g. decSum = decSum + decItemPrice
XVI. Conversion Class & Methods

· converts a base data type to another data type

· general form: result_value = type.Parse (base type)
· see number_doubler example
general steps

1. prompt for input
2. read input
3. convert to numeric (see ReadLine method)
4. double the input value
5. output doubled value
· see console assignment 1

XVII. Introduction to VB.Net Control Objects

class 7/20
1. form object

· not retrieved from toolbox

· prefix: frm
· must name the form & use prefix via Name property

· must set the forms title via the Text property

· note difference between Name & Text properties – Name property is for Programmer, Text property is for User

2. button object (called command button in VB 6.0)

· retrieved from toolbox

· prefix: btn
· must name with a meaningful name as well as use prefix

· must set button title via Text property

3. label object
· retrieved from toolbox

· prefix: lbl
· must name with a meaningful name as well as use prefix

· must set button title via Text property

4. textbox object

· retrieved from toolbox

· prefix: txt
· must name with a meaningful name as well as use prefix

· must set button title via Text property

XVIII. Introduction to Windows Application Coding

· VB is event driven (e.g. OO/event-driven)
· procedural vs. event driven (bank ATM vs. web page)
· events are defined by classes
· VB.Net defines Event Procedures
· code for an object is written/located/put in an Event Procedure
· double clicking on control creates the default procedure for that control

· event procedures in VB.Net are named by default based upon the event

· begin with Private Sub, end with End Sub
· general form:

Private Sub object-name_event (…) Handles object-name.event

Private Sub btnExit_Click (…) Handles btnExit.Click

Private Sub BtnPushed (…) Handles btnExit.Click, mnuExit.Click

Object/Property Assignment

· in simplest form, thing = value, where thing & value have consistent types
· with objects, form is, object.property = value
· some values need special treatment, e.g. “string text”

lblTitle.Text = “This is my first program!”

lblTitle.FontSize = 12

lblTitle.FontSize = “Twelve”
incorrect type

Terminating a running program

· use Me.Close() method

XIX. Controls, Events & Event Procedures

· controls are VB objects
· events are actions that VB objects allow
· event procedures are the “mechanism” that allows an code to execute when an event is triggered or fired for a given object

· note that there is a very strong relationship between controls, events and event procedures
· controls can be deleted, but this does not eliminate the event procedure for that control (but there is no way to trigger the procedure)
· similarly, event procedures can be deleted (but then the event does nothing)
· for correct behavior, both the control and the corresponding event procedure should be deleted if necessary

XX. Controls, continued - Working With Multiple Controls

1. Selecting
· click to select, then <shift> or <ctrl> to multiply select

2. De-selecting

· click elsewhere on form

3. Moving

· select, then single click inside one control and move

4. Deleting

5. Setting multiple properties

· some properties, e.g. appearance properties can be set in multiples (e.g. font)

6. Aligning

· right mouse click, format & align

XXI. Windows UI Design Tips

 class 8/20

· balance

· simplicity
· address user expectations
· include all things that are necessary, and no more
XXII. Data Types, Part Deux

· In VB.Net, everything is an object! This includes things like 2.5

· Every object has a default type
· At the top of each application, you must use the

Option Strict On & Option Explicit On
statements. This will catch a plethora of type conversion errors, and enforce default typing.

e.g. Dim decValue as Decimal

 decValue = 2.5 will result in an error because of default type of double

 decValue = 2.5D where the D means object of type decimal

D : decimal

L : long (integer)

R : double

S : short (integer)

I : integer

F : single

XXIII. Type Conversion With Objects
· assigning values from controls

In general, NO calculations should be performed upon control objects.

1. assign values FROM input control objects TO variables, performing any required type conversion along the way

2. perform all calculations/computations on variables
3. assign values FROM variables TO output control objects, performing any required formatting or type conversion along the way.
To get data off a form, e.g. out of a TextBox, one usually has to do type conversion.

We do this using type conversion methods (functions).
· conversion methods

A method/function is a grouping of code (subprogram) that performs a specific operation and usually (almost always) returns a value.

general format: ret_value = fcn_name (argument_list)

 type / scope

· from control to variable:

var = conversion function (control object)

intVar = Convert.ToInt32 (txtValue.Text)

decVar = Convert.ToDecimal (txtValue.Text)

· from variable to control:

control object = format function (var)

1. txtOutput.Text = Format (intVar, “General Number”)

2. txtOutput.Text = FormatCurrency (decVar)

3. txt.Output.Text = decVar.ToString(“c”)
see pg. 100
XXIV. First Windows Program

· see General VB development steps

[image: image3.jpg]Square-o-Matic

Enter value to square

Squared Result

Compute Squar‘e]

Exit

· how many objects????? 8, form, 4 labels, 1 text box, 2 command buttons

· how many events????? 2

· see SampleProgram1
XXV. Variable Scope

 class 9/20
· scope defines the visibility and/or lifetime of a variable (or a constant)

· defines the domain where a variable can be accessed

1. Local Scope

a) procedure level

· local to an event

· defined in an event procedure using Dim keyword
· lifetime of that event

b) block level

· local to a code block

· defined in a block, also using Dim keyword
· block is terminated by End, Catch, Loop, or Next statements

· lifetime of that block

2. Module (or Form Level) Scope

· value known (visible to) all event procedures in that form

· defined in the general declarations section of that form, block of Public Class/End Class

· declared using a Dim or Private keyword

· lifetime of a single form

3. Global (or Namespace) Scope
· known to all form in the processes

· defined in the code module section using Public keyword
· lifetime of process

Note that local variables with the same name have different values and will not affect each other!

XXVI. Decision Based Control Structures

 class 10/20
· general format:

If (condition) Then

 statement

 [statements]

End If

where condition has type of ? and values of ?
If (condition) Then

 statement

 [statements]

Else

 statement

 [statements]

End If

If (condition) Then

 statement

 [statements]

ElseIf (condition2) Then

 statement

 [statements]

Else default condition (everything else)

 statement

 [statements]

End If

· Nested If statements:

If (condition) Then

 If (condition2) Then

 End If

End If

XXVII. Relational Operators
· Compare relationship of operands on either side of operator:

Name

 Symbol

Operands
1. Equals

=

2

2. Not Equals

<>

2

3. Less Than

<

2

4. Less Than or Equal To
<=

2

5. Greater Than

>

2

6. Greater Than or Equal
>=

2

Note: this is not the assignment =

What about intX = 10? Which =? Depends upon context

XXVIII. Logical Operators
· And

Op Precedence # 2

· Or

Op Precedence # 3

· Not (note this is a unary operator) Op Precedence # 1

Note: you can write equivalent expressions like

If Not (intCount = 10)

If (intCount <> 10)

· with an AND, if any operand is False, the entire statement is False
· with an OR, if any operand is True, the entire statement is True

XXIX. MISCELLANEOUS

class 11/20
· setting Tab order

View Tab Order (with the form selected)
Select Tab Order

Set Tab Order
View, Tab Order to activate

· Me keyword to describe forms

XXX. STRINGS and STRING OPERATIONS

· What is a string data type?

Alpha-numeric and other characters enclosed within “ “

· Note that “” and “ “ are not the same thing.

· Concatenation Operator (the only string operator)

· uses the & character to “join” strings

· watch use of the + character to join strings

· concatenation is a binary operator, i.e. 2 operands

· “Mark” & “Thomas” results in “MarkThomas”

· what about “Mark & Thomas”

XXXI. MESSAGE BOX FUNCTION

class 12/20
· syntax (simple):
MessageBox.Show (“text”,”title”)
· data type of prompt & title?
· note that code execution stops when a message box is visible, until OK is clicked
· syntax (complete):
MessageBox.Show (“text”,”title”, buttons, icon)

· see text

XXXII. INPUT DATA VALIDATION

· TryParse method
· syntax: return_status = type.TryParse (original_string, resulting type variable)

data type of expression?

return type from function? values returned?

· example:

 If Decimal.TryParse (txtIntRate.Text, decIntRate) = True Then
 If Decimal.TryParse (txtIntRate.Text, decIntRate) Then

Note if testing multiple inputs, you must use multiple TryParse calls

see TryParse example

XXXIII. MISCELLANEOUS REVIEW

class 13/20
· review assignment #2 and look at common errors

· assignment # 3 questions

· flowchart for assignment # 3

[image: image4.jpg]IsNumeric (txtInput.Text)

Do Conversion from Obj to Var

l

Is numeric data valid

Error
Reporting

Do Calculations & Output

XXXIV. ITERATIVE/REPETITIVE CONTROL STRUCTURES
class 14/20
1. Indeterminate or indefinite (non-fixed) # steps

a) do while loop

Do While (condition)

pre-test loop

statement

[statements]

statement affecting condition

Loop

b) do until loop (or a repeat until loop)

Do

post-test loop

statement

[statements]

statement affecting condition

Loop Until (condition)

What ? needs to be asked about these type of loops?

What condition will stop the looping.

Infinite Loop – never meeting the terminating condition

see Loop handout

2. Determinate or definite (fixed) # of steps

For – Next Loop

For count_variable = start_value To end_value [Step increment]

statement

[statements]

Next [count_variable]
· general logic:

1. initialize variable to start_value

2. test variable <= end_value

3. if true, execute body statements

4. increment Counter_variable by increment

5. goto 2

intSum = 0

Note all vars/values have types

For intCounter = 1 To 10

intSum = intSum + intCounter

Next

intSum = 0

For intCounter = 1 To 10 Step 2

intSum = intSum + intCounter

Next

iterations: end_value – start_value + 1

 (int(end_value - start_value)/step) + 1

Nested For – Next Loops (see pg 278)

· see for loop in MSDN
XXXV. InputBox Function

class 15/20
· predefined dialog box which contains a message, OK & Cancel buttons, along with an area for accepting user input
· returns user input across an = to a variable of type ?

· general syntax:

strRetVal = InputBox (“prompt” [,“title”] [,“default text”] [,Xpos] [,Ypos])
· prompt - string expression displayed as the message in the dialog box

· title – string expression displayed in the title bar of the dialog box
· default text - string expression displayed in the text box as the default response if no other input is provided

· Xpos - numeric expression that specifies, in twips, the distance of the left edge of the dialog box from the left edge of the screen

· Ypos - numeric expression that specifies, in twips, the distance of the upper edge of the dialog box from the top of the screen

· see MSDN page
· assignment # 4
XXXVI. INTRO TO DEBUGGING and the DEBUGGER

class 16/20
· setting breakpoints

· stepping into/over using F8

· looking at values of variables

· continuing

· removing breakpoints

ALWAYS REMEMBER: The debugger will not ever fix your program!

XXXVII. Strings and String Manipulation

· strings in VB are immutable, i.e. they cannot be changed

· while it may appear that strings can be changed, what you actually get is a new instance of the changed string
· string min length: 0
called the Empty or NULL string

· string max length: n > 0

· note string chars are counted starting at 0 to n – 1
· string.Length property
· methods:

· string.ToUpper, string.ToLower

· string.Trim, string.TrimStart, String.TrimEnd

· string.Remove

· string.Insert

· string.PadLeft, string.PadRight

· string.Substring

· string.Mid

· string.IndexOf

· string.Like

· see Length in MSDN (note that this is a property, not a method)
XXXVIII. MODULAR PROGRAMMING

 class 17/20
· Modular programming – dividing programs into smaller pieces (modules)
· This allows for:

1. better problem solving by dividing a complex problem into smaller pieces

2. use modules to organize/group code for reusability
3. allows for more complete and rigorous testing
4. use parameter passing mechanisms to securely share data (communicate) between code modules

· Two types of general modules in VB.Net

1. Sub Procedures

· a grouping of code assigned to perform a specific task

· will return 0 or more values to the calling program

· system defined

· programmer defined

· event procedures

· general (non-event) procedures

2. Functions

· a grouping of code assigned to perform a specific task

· will return at least 1, maybe more values to the calling program

· system defined (e.g. MessageBox)
· programmer defined

Sub Procedures

· Consist of two basic pieces:

1. procedure definition
[Private] Sub CalculateOvertimeWages [()] <CR>

statement(s)

← loop body
End Sub

· Note that when you enter the <CR> VB.Net adds the () and the End Sub
· may also contain local variables (local to this sub procedure)
· should contain one or more statements to perform the specific task

2. invocation or calling of the procedure definition

[Call] CalculateOvertimeWages [()]
Functions

· Consist of two basic pieces:

1. function definition
[Private] Function OvertimeWages () As Type<CR>

statement(s)

Return value

End Function

· also contain local (local to this function) variables

· also contain one or more statements to perform the specific task

2. invocation or calling of the function definition

var = OvertimeWages ()

XXXIX. CREATING GENERAL SUB PROCEDURES & FUNCTIONS

· Note that functions and procedures CANNOT be placed/created/started in other event procedures, general procedures or functions
· variables defined in sub procedures or functions are local to that code block

· see SubProc example

XL. MODULAR PROGRAMMING, CONT.’D

 class 18/20
· Recall, 2 parts to procedures & functions:

1. definition

2. invocation, i.e. the Call to the procedure or function

· Also recall, we securely share data (communicate) between code modules use parameter passing mechanisms

XLI. PARAMETERS & PARAMETER PASSING

· In General:

Call Blah (argument1, argument2, argument3)

Private Sub Blah (parameter1 as type, parameter2 as type, parameter3 as type)

End Sub

· Example:

Call CalculateTax (decAmount, decTaxRate, decTax)

Private Sub CalculateTax (decAmt as Decimal, decRate as Decimal,

 decTax as Decimal)

decTax = decAmt * decRate

End Sub

· Example 2:

decTax = CalculateTax (decAmount, decTaxRate)

Function CalculateTax (decAmt as Decimal, decRate as Decimal) as Decimal

Return (decAmt * decRate)

End Sub

· General Rules for Parameter Passing

1. Number of arguments must match the number of parameters
2. Order must be maintained, e.g. arg1 ↔ param1

3. Data types must match

4. Names are only names and DO NOT have to match

5. You can also use constants

6. Must always keep in mind parameter passing mechanisms

XLII. PARAMETER PASSING MECHANISMS

class 19/20
1. By Value

· uses keyword ByVal

· works by passing a copy of the argument to the procedure or function

· original value CAN NOT BE changed by the procedure

· this is the default if no keyword is specified

· see diagram

2. By Reference

· uses keyword ByRef

· works by passing a pointer to the argument to the procedure or function

· original value CAN BE changed by the procedure

· see diagram

What does this mean??????

· If you want to protect yourself, i.e. maintain data integrity, you pass by ?

· If you must change the value of an argument, you pass by ?

· Mechanism is specified in the procedure/function definition, not (usually) the invocation

· Each argument/parameter pair can be passed by independent mechanisms

· Can be thought about as:

	In Only
	ByVal

	Out Only
	ByRef

	In/Out
	ByRef

XLIII. CALLING OTHER EVENT PROCEDURES

1. object.PeformClick

2. Call object_event_trigger (sender, e)

3. Call object_event_trigger (Nothing, Nothing)

XLIV. KEY PRESS EVENT & DATA VALIDATION

 Class 20
Uses the e structure, e.g.

Dim intKeyAscii As Integer = Asc(e.KeyChar)

 Debug.WriteLine("Key pressed: " & e.KeyChar & _

" ASCII value: " & CStr(intKeyAscii))

To reset data in the object, use

 e.Handled = True

See KeyPress in MSDN

See Key Press Example

Executable Image

Object code

High Level Source

10/31/2006

26

