The UNIX
- System

S.R.Bourne

r
l INTERNATIONAL COMPUTER SCIENCE SERIES

Chapter 1
Introduction

UNIX describes a family of computer operating systems developed at Bell
Laboratories. The UNIX system includes both the operating system and its
associated commands. The operating system manages the resources of the
computing environment by providing a hierarchical file system, process
management and other housekeeping functions. The commands provided in-
clude basic file\and data management, editors, assemblers, compilers and text
formatters. A powerful command interpreter is available and this allows indi-
vidual users or projects to tailor the environment to suit their own style by de-
fining their own commands.

The background leading up to the first UNIX system is worth exploring.
During the sixties the major issues being addressed by the computing science
community included programming language and operating system design. In
the former area such languages as PL/I, APL, SIMULA 67, ALGOL 68 and
COBOL were designed and were the subject of debate, often fierce, over their
relative merits. In the United Kingdom the Combined Programming
Language project (CPL) was undertaken jointly by London and Cambridge
Universities but failed to produce any direct results. However, it did form
the basis for BCPL (Basic CPL), an ingredient of the story.

The operating systems of this period were designed for medium and large
scale computers as a means of sharing the resources among users in a cost ef-
fective way. Time-sharing and interactive (as opposed to batch) use was in-
troduced. Such questions as paging strategies, protection, activity scheduling
and file system design were explored. Systems like CTSS (Crisman, 1965),
Multics (Feiertag, 1969) and, in Europe, the Cambridge Multiple Access
System (Hartley, 1968) were being designed and provided many of the key
ideas found in the UNIX system. For example, file systems and device in-
dependent input-output, processes and command languages were all available
in one form or another in these systems.

1.1 History

The story begins with Ken Thompson in 1968. Thompson had recently re-
turned from Berkeley where Butler Lampson was working on the SDS930
operating system (Deutsch and Lampson, 1965). Dennis Ritchie joined Bell
Laboratories in 1967 from Harvard where his interest was applied mathemat-
ics.

Thompson shared space with a talented group many of whom had recent-
ly abandoned Multics; a joint project between Bell Laboratories, General

1

=

2 The UNIX System 1.1

Electric, and The Massachussets Institute of Technology. Following the with-
drawal of Bell Laboratories from Multics and the removal of the GE 645 Sys~
tem in March 1969, the computer science research group began looking for a
replacement computing environment. Proposals for new equipment were sub-
mitted and rejected as too expensive. Also, operating system development
Wwas not a popular research direction after the Multics debacle.

Thompson’s own interests were to build a file system rather than an
operating system. During discussions between Rudd Canaday, Thompson and
Ritchie the design was sketched out and Thompson wrote simulations of carly
versions of this file system on the GECOS system,

Another thread of the story is the ‘space travel’ program written on the
GECOS machine by Thompson and Ritchie. This program performed poorly
on the time-shared computer and better response was needed. A cast-off
PDP 7 with a 340 display was available but the PDP 7 provided only an as-
sembler and loader. One user at a time could use the computer, each user
having exclusive use of the machine, This environment was crude and parts
of a single user UNIX system were soon forthcoming. The space travel pro-
gram was rewritten for the PDP 7 and an assembler and rudimentary operat-
ing system kernel were written and cross assembled for the PDP 7 on the
GECOS system. This carly system did not provide time-sharing. Indeed,
much like the modern personal computers, the PDP 7 hardware was simple

and provided no support for such activities. An assembler and a command
interpreter were soon available. This file system provided a name structure
that was a directed graph. A single directory was used for all sub-directories
and links made through this directory.,

Cross assembling meant using two computer systems and carrying paper
tapes of programs from one to the other each time a change was made. The
system was soon bootstrapped onto the PDP 7. The process creation primi-
tive, fork, and process images were added to the system during this rewrite,
Essential utilities, such as file copy, edit, remove, and print were soon avail-
able. This system supported two people working at the sdme time and the
term UNIX was coined by Brian Kernighan in 1970.

The computing research group still had no computer of its own. Follow-
ing a series of unsuccessful attempts a proposal was made by Joe Ossanna to
purchase a PDP 11/20 for a text preparation project. In late 1970 the PDP
11 arrived and work started to transfer the UNIX system to this more power-
ful machine.

The text processing project was successful and the Patent department be-
came the first user of UNIX, sharing the facility with the research group,
This First Edition system was documented in a manual authored by Thomp-
son and Ritchie dated November 197]. All the important ideas found in
modern UNIX systems except pipes, but including the file system, process
management, system interface, and major command utilities, were provided
with this edition.

The Second Edition appeared in June 1972 incorporating pipes at Doug
Mcllroy’s urging. The system and utilities were still written in assembler,
Thompson had also been working on the language B and the assembler for

Je
st
ai
)
la

11

S€
SL

V¢

la
pC
ut
cc
ar
su
TI
10

th
pe

ha

16
bo
Tt
of
U)
fre¢

ter
cu
on
Coi
Ut

sp:
fec
me

vith-
Sys-
for a
sub-
nent

1 an
and
arly

the
orly
~off

as-
lser
arts
o~
rat-
the
ed,
ple
ind
ure

ies

oer
‘he
ni-
te.
l-
he

- - .
e ——

1.1 Introduction 3

this system was written in B. B was a direct descendant of BCPL, but pro-
grams were compiled in one pass to produce interpretive code.

Both B and BCPL were typeless languages, providing a single data ob-
ject called the machine word making access to the PDP 11 byte handling in-
structions difficult. Types were therefore added to B to produce NB and an
attempt to rewrite the systiem in NB was unsuccessful. Ritchie started work
on a code generator for NB to make execution of programs faster. This
language was called C although there were no structures or global variables.
The language was sufficiently attractive, however, that new utilities were be-
ing written directly in C.

The year 1973 saw major progress. The system was still written in as-
sembler but following the addition of structures to C the UNIX system was
successfully rewritten in C. Thompson wrote the process management and
Ritchie the input-output system.

The Sixth Edition UNIX system that became the first widely available
version was issued in May 1975, and was distributed for a nominal fee.

Work continued to improve the system. A new file system allowing for
larger files was written and the shell was modernized to provide better sup-
port for the many programs written in this language. The last major project
undertaken by Thompson and Ritchie was to rewrite the system so that it
could be transported from one computer to another. The pilot project used
an Interdata 8/32, a 32-bit computer similar to the IBM 370 series, that was
sufficiently different from the PDP 11 to unearth most machine dependencies.
This project also generated some additions to the C language, including un-
ions, casts, and type definitions. This work resulted in the production of the
Seventh Edition UNIX system released for general use in 1979. Although
the Sixth edition is still in use in some installations it has been generally su-
perseded by the Seventh Edition system.

The UNIX system is now regarded as a standard operating system and
has been implemented on many different computers ranging from micros to
mainframes. The Seventh Edition system was made available for the PDP 11
16-bit computers. The first VAX 11/780 system, UNIX 32V, was
bootstrapped by John Reiser and Tom London, also at Bell Laboratories.
This system was further developed, and is now distributed by the University
of California at Berkeley. Bell Laboratories has also continued to develop the
UNIX system; UNIX System V is the version currently available for license
from Western Electric Co.

Some differences exist between these versions both in the operating sys-
tem and in the commands although these should cause the reader little diffi-
culty. This text is applicable to each of these systems and features found in
only one system have been avoided. The programs in this book have been
compiled and run on UNIX System V from Bell Laboratorics, and on the
University of California, Berkeley release 4.1.

Many commands were initially written for the PDP 11 where address
space was limited to 64K bytes. This constraint had a generally beneficial ef-
fect on the software. Systems are designed as a sct of loosely coupled com-
mands. Lack of address space did prevent such languages as LISP from cf-

-

fsdind

~

4 The UNIX System

fective implementation until the arrival of 32 bit machines.

The UNIX system is well engineered and has set a standard of simplicity
for time-shared operating systems. It was one of the first operating systems
to be widely available on a mini-computer, namely the PDP 11, This combi-
nation was affordable by university departments and a generation
er scientists has been educated on UNIX systems.

The initial interface has aged well and is essentially unchanged since its
original design. This stability provided the basis for the development of the
user level commands. The UNIX documentation has a conciseness
pealing although some consider it to be too brief.

The UNIX system is very successful. At the time of writing there are
over 3000 UNIX systems in active use throughout the world. These can be
found in universities, government laboratories, commercial organizations and
many other areas of industry. At Bell Laboratories it is used by staff
members both for interactive program development and as a communications
and word processing system. The system is portable, easily grasped by both

users and maintainers, and provides facilities not available in other, some-
times larger, systems.

of comput-

that is ap-

1.2 The programming environment
The UNIX system is simple and clegant and provides an attractive program-
ming environment. The facilities available include the following:

® a C compiler and debugger;

® a variety of other language processors, including APL, Basic, For-
tran 77, Pascal, and Snobol;

® the text editors ed, vi, and emacs;

® text processing facilities and document preparation aids including
mathematical typesetting tbl, eqn, troff, and nroff;

® compiler construction aids yace, and lex;

® communication among users mail, and write;

® graphics and plotting; and

°

applications such as circuit design packages.

These tools are made available to users via a command language that
provides the interface between users and the UNIX operating system. This
program is called the shell and programs written in this language are some-
times referred to as shell scripts.

The shell provides notation for directing input and output from com-
mands and control flow mechanisms typical of algorithmic languages.

Techniques for effective program development have emerged in this en-
vironment and include the following:

® Arrange each program to perform a single function.

® Avoid cluttering the output of a program unnecessarily. Assume
that the output from any program will be the input to another,

L]

Use or modify an existing tool if possible rather than rewrite a new

1.2

13 L

1.3.1

A file

hardwa
also av
devices
Within

1.3.2

All use
single ¢
ing acc
two pn
child t
cuted.

1.3.3

The sh
operati
termin.
users t
same s
tablish

Pi
process
tobeu

-~ o oo

Introduction

tool from scratch.

® Get something small working as soon as possible and then modify it
incrementally until it is finished. This requires that the framework
of the design should be in place before significant quantities of pro-
gram are written.

1.3 UNIX system concepts

1.3.1 The file system

A file system allows users to store information by name. Protection from
hardware failures can be provided and security from unauthorized access is
also available. The UNIX file system is simple; there are no control blocks,
devices are hidden, and there is a uniform interface for all input-output.
Within the file system three types of file are distinguished.

® An ordinary file contains characters of a document or program. Ex-
ecutable programs (binary files) are also stored as ordinary files.
No record structure is imposed on files; a file consists of a sequence
of characters. A newline character may delimit records as required
by applications.

® A directory holds the names of other files or directories. A user
may create sub-directories to group files related to a project. Con-
sequently, the file system is a hierarchy. A directory can be read,
but not written, as if it were an ordinary file.

® Special files correspond to input or output devices. The same inter-
face as ordinary files is available; however, information is not kept
in the file system, it is provided directly by the device. The same
access protection is available for special and ordinary files.

1.3.2 Processes

All user work in the UNIX system is carried out by processes. A process is a
single sequence of events and consists of some computer memory and files be-
ing accessed. A process is created by a copy of the process being made. The
two processes are only distinguished by the parent being able to wait for the
child to finish. A process may replace itself by another program to be exe-
cuted. This mechanism is both elegant and effective.

1.3.3 The sheli

The shell is a command language that provides a user interface to the UNIX
operating system. The shell executes commands that are read either from a
terminal or from a file. Files containing commands may be created, allowing
users to build their own commands. These newly defined commands have the
same status as ‘system’ commands. In this way a new environment can be es-
tablished reflecting the requirements or style of an individual or a group.
Pipes allow processes to be linked together so that the output from one
process is the input to the next. The shell provides a notation enabling pipes
to be used with a minimum of effort.

