C

&

Note

hapte? 4: File Attributes | .

Many tools used by the system administrator look at these time stamps to decide whether
a particular file will participate in a backup or not. A file is often incorrectly stamped
when it is extracted from a backup with tar or cpie. Section 19.3.1 discusses how the
touch command is used to rectify such situations.

It's possible to change the access time of a file without changing its modification time. In an
inverse manner, when you modify a file, you generally change its access time as well. However,
on some systems, when you redirect output (with the > and >> symbols), you change the
contents but not the last access time.

What happens when you copy a file with cp? By default, the copy has the modification and
access time stamps set to the time of copying. Sometimes, you may not like this to happen.
In that case, use cp -p (preserve) to retain both time stamps.

find: Locating Files

find is one of the power tools of the UNIX system. It recursively examines a directory
tree to look for files matching some criteria and then takes some action on the selected
files. It has a difficult command line, and if you have ever wondered why UNIX is hated
by many, then you should look up the cryptic find documentation. However, find is
easily tamed if you break up its arguments into three components:

find path_list selection_criteria action

Fig. 4.6 shows the structure of a typical find command. The command completely
examines a directory tree in this way:

» First, it recursively examines all files in the directories specified in path_list. Here,
it begins the search from /home.

It then matches each file for one or more selection_criteria. This always consists of
an expression in the form -operator argument (-name 1index.html). Here, find
selects the file if it has the name index.html.

» Finally, it takes some action on those selected files. The action -print simply
displays the find output on the terminal.

All find operators (also referred to as options in this text) begin with a hyphen. You
can provide one or more subdirectories as the path_list and multiple selection_criteria
to match one or more files. This makes the command difficult to use initially, but it is
a program that every user must master since it lets her select files under practically any
condition.

FIGURE 4.6 Structure of a find command

find [/home | [=name index.hiil
| [

Path list Selection criteria

| [=print]
|

Action

114

4.11.1

Your UNIX/Linux: The Ultimate Gui

As our first example, let’s use find to locate all files named a.out (the executab
file generated by the C compiler):

$ find / -name a.out -print

/home /romeo/scripts/a.out
/home/andrew/scripts/reports/a.out
/home/juliet/a.out

Since the search starts from the root directory, find displays absolute pathnames. Yo
can also use relative names in the path list, and find will then output a list of relatiy
pathnames. Moreover, when find is used to match a group of filenames with a wild-car,
pattern, the pattern should be quoted to prevent the shell from looking at it:

find . -name "* ¢ -print All files with extension . c
find . -name '[A-Z]*' -print Single quotes will also de

The first command looks for all C program source files in the current directory tree
‘The second one searches for all files whose names begin with an uppercase letter. You
must not forget to use the -print option because without it, find on UNIX systems
will look for files all right but won’t print the list.

findin UNIX displays the file list only if the -print operator is used. However, Linux
doesn’t need this option; it prints by default. Linux also doesn’t need the path list; it
uses the current directory by default. Linux even prints the entire file list when used
without any options whatsoever! This behavior is not required by POSIX.

Selection Criteria

The -name operator is not the only operator used in framing the selection criteria; there
are many others (Table 4.4). We’ll consider the selection criteria first, and then the pos-
sible actions we can take on the selected files.

Locating a File by Inode Number (-inum) Refer to Section 4.7.1, where we found
that gzip has three links and gunzip was one of them. find allows us to locate files

by their inode number. Use the -inum option to find all filenames that have the same
inode number:

$ find / -inum 13975 -print Inode number obtained from Section 4.7.1
find: cannot read dir /usr/lost+found: Permission denied

Jusr/bin/gzip

Jusr/bin/gunzip

/usr/bin/gzcat “Cats” a compressed file

Now we know what the three links are, Note that find throws an error message when
it can’t change to a directory. Read the following Tip.

Cha

Tip

pter 4: File Attributes

TABLE 4.4 Major Expressions Used by find (Meaning gets reversed when - is
replaced by +, and vice versa)

-
Selection Criteria Selects File

-inum n Having inode number n

-type x If of type X; x can be f (ordinary fite), d (directory), or 1 (symbolic link)
-perm nnn If octal permissions match nnn completely

-links n If having n links

-user usname If owned by usname

-group gname If owned by group gname

-size +x[c}] If size greater than x blocks (characters if ¢ is also specified) (Chapter 19)
-mtime -x If modified in less than x days

-newer flname If modified after flname (Chapter 19)

-mmin -x If modified in less than x minutes (Linux only)

-atime +x If accessed in more than x days

-amin +x If accessed in more than x minutes (Linux only)

-name flname flname

-iname flname As above, but match is case-insensitive (Linux only)

-follow After following a symbolic link

-prune But don’t descend directory if matched

-mount But don't look in other file systems

Action Significance

-print Prints selected file on standard output

-1s Executes 1s -Tids command on selected files

-exec cmd Executes UNIX command c¢md followed by {} \;

-ok emd Like -exec, except that command is executed after user confirmation

If you use find from a nonprivileged account to start its search from root, the command will
generate a lot of error messages on being unable to “cd"” to a directory. Since you might miss
the selected file in an error-dominated list, the error messages should be directed by using the
command in this way: find / -name typescript -print 2>/dev/null. Note that you can’t do
this in the C shell. Section 6.7 explains the significance of 2>/dev/null.

File Type and Permissions (-type and -perm) The -type option followed by the
letter T, d, or 1 selects files of the ordinary, directory, and symbolic link type. Here’s
how you locate all directories of your home directory tree:

$ cd ; find . -type d -print 2>/dev/nuil

. Shows the . also
./.netscape Displays hidden directories also
./java_progs

./c_progs

./c_progs/include

./.ssh

5
ey
v i
M
([T T
== =—
A
i "R
Al
| 3 ‘1;
o
0 L .~
O
=5
t *
EREITS- e
I o el u]l
1 1
i
i -
' =
4
I‘“ {15

Al

= gt

116

Note

411.2

Your UNIX/Linux: The Ultimate Guide

Note that the relative pathname find displays, but that’s because the pathname itself was
relative (.). find also doesn’t necessarily display an ASCH sorted list. The sequence in
which files are displayed depends on the internal organization of the file system.

The -perm option specifies the permissions to match. For instance, -perm 666
selects files having read and write permission for all user categories. Such files are
security hazards. You’ll often want to use two options in combination to restrict the
search to only directories:

£ind SHOME -perm 777 -type d -print

find uses an AND condition (an implied -a operator between -perm and -type) to
select directories that provide all access rights to everyone. It selects files only if both
selection criteria (-perm and -t ype) are fulfilled.

Finding Unused Files (-mtime and -atime) Files tend to build up incessantly on
disk. Some of them remain unaccessed or unmodified for months—even years. find’s
options can casily match a file’s modification (-mtime) and access (-atime) times to
select them. The -mtime option helps in backup operations by providing a list of those
files that have been modified, say, in less than two days:

find . -mtime -2 -print

Here, -2 means less than two days. To select from the /home directory all files that have
not been accessed for more than a year, a positive value has to be used with -atime:

find /home -atime +365 -print

+365 means greater than 365 days; -365 means less than 365 days. For specifying exactly
365, use 365.

The find Operators (!, -0, and -a)
There are three operators that are commonly used with find. The 1 operator is used
before an option to negate its meaning. So, '

find . ! -name "“*.c" -print

selects all but the C program files. To look for both shell and perl scripts, use the -0
operator, which represents an OR condition. We need to use an escaped pair of pare’”
theses here:

find /home \(-name nk_gh" —o -pame "¥.p1" \) -print

The (and) are special characters that are interpreted by the shell to run commﬂndst ;12
g

a group (7.6.2). The sume characters are used by find to group expressions usin
-0 and -a operators, the reason why they need to be escaped.

Chapteé

4.11.3

Note

r 4: File Attributes .

The -a operator represents an AND condition, and is implied by default whenever
two selection criteria are placed together.

Operators of the Action Component

Displaying the Listing (-1s) The -print option belongs to the action component
of the find syntax. In real life, you’ll often want to take some action on the selected
files and not just display the filenames. For instance, you may want to view the listing
with the -1s option:

$ find . -type f -mtime +2 -mtime -5 -1s -a option implied
475336 1 -rw-r--r-- 1 romeo users 716 Aug 17 10:31 ./c progs/fileinout.c

find here runs the s -1ids command to display a special listing of those regular files
that are modified in more than two days and less than five days. In this example, we see
two options in the selection criteria (both -mtime) simulating an AND condition. It’s
the same as using \(-mtime +2 -a -mtime -5 \).

Taking Action on Selected Files (-exec and -ok) The -exec option allows
you to run any UNIX command on the selected files. -exec takes the command to
execute as its own argument, followed by {} and finally the rather cryptic symbols
\; (backslash and semicolon). This is how you can reuse a previous find command
quite meaningfully:

find $HOME -type f -atime +365 -exec rm {} \; Note the usage

This will use rm to remove all ordinary files unaccessed for more than a year. This can
be a risky thing to do, so you can consider using rm’s -1 option. But not all commands
have interactive options, in which case you should use find’s -ok option:

$ find $HOME -type f -atime +365 -ok mv {} $HOME/safe \;

<mv/archive.tar.gz > ? y
<mv/yourunix02.txt > ? n
<mv/yourunix04.txt > ? y

mv turns interactive with -1 but only if the destination file exists. Here, -ok seeks con-
firmation for every selected file to be moved to the $HOME /safe directory irrespective
of whether the files exist at the destination or not. A y deletes the file.

find is the system administrator’s tool, and in Chapter 19, you’ll see it used for
a number of tasks. It is especially suitable for backing up files and for use in tandem
with the xargs command (see Going Further of Chapter 6).

The pair of {} is a placeholder for a filename. So, -exec cp {} {}.bak provides a .bak extension
to all selected files. Don't forget to use the \; symbols at the end of every -exec or -ok option.

