GETTING AROUND Search Tools

Finding files and searching for text

FINDERS KEEP

With Linux, you can keep track of your files using a variety of

tools: we examine some of the most useful utilities. We also

show you how to search for text _patterhé in files using grep.

BY DMITRI POPOV AND JOE CASAD

hen it comes to finding and
identifying files on your
system, you are spoiled for

choice. Linux offers a variety of tools
that can help you locate files and pro-
grams, including find, locate, whereis,
and which. These tools are not particu-
larly difficult in use, and mastering them
can help you use your Linux system
more efficiently. ‘

Finding Files with find

The find tool lets you search for files by
name or a part of the name. By default,
find searches recursively, meaning it
looks for files through the entire direc-
tory tree. At the very minimum, find re-
quires two options: a path to the direc-
tory where the search should start and
the name of the file to look for. The
name of the file is specified with the
-name switch. For example, the follow-
ing command will search for files whose
names start with Lin in the foo directory
and its subdirectories:

find /home/foo -name "Lin*"

As shown in this example, you can use
wildcards in the search string to broaden
the search. Because the find command
is case sensitive, the previous command
line initiates a search for all file names
that start with Lin, but not those that
begin with lin. However, you can in-
struct find to ignore case with the use
of the -iname switch:

find /home/user -iname "Lim*"
The find command lets you specify mul-

tiple starting directories. The following
i a1l coareh thriioch the /7icr

/home, and /tmp directories to look for
all .bin files:

find /usr /home /tmp -name “*.bin"

If you don’t have the appropriate per-
missions to search in the system direc-
tories, find will display error messages.
To avoid cluttering up the search re-
sults, you can send all error messages
to the null file (i.e., discard them):

find /usr /home /tmp 2
-name “*.bin" 2>/dev/null

The find tool also supports the AND,
OR, and NOT Boolean operators, which
let you construct complex search strings.
For example, you can use the -size pa-
rameter to limit the search to files that
are larger than the specified limit:

find /photos 2

-iname "“* NEF" -and -size +7M

The command line above searches for .NEF
files (Nikon raw files) that are larger than
7MB. In a similar manner, you can use the

| (NOT) operator to find files that are larger
than 7MB but are not . NEF photos:

find /downloads -size +7M ! 2
-iname "*.NEF"

The OR operator also can come in handy
when you need to find files that match
either of the specified criteria:

find /downloads -size +7M 2
-or -iname "¥, NEF"

Instead of searching for files by name,
vau can use find to search for files by

owner. For example, if you want to find
all files owned by root, you can use the
following command:

find . -user root

In a similar manner, you can use find to

search for files owned by a specific group:
find . -group www

The -type option is useful for specifying

the type of object to search for, such as

f (regular file), d (directory), [(symbolic

link), and a few others. Do you want to

find the directory of photos from Berlin?
Here is the command for that:

£ind berlin/ -type d

The find tool also offers several options
that can be used to find files by time,
including -mmin (last modified time in
minutes), -amin (last accessed time in
minutes), -mtime (last modified time in
hours), and -atime (last accessed time
in hours). So, if you want to find photos
that were modified 10 minutes ago, you
can use the following command:

find /photos -mmin -10 -name "*.NEF!

The -exec option is another rather useful
option that allows you to execute a com-
mand on every search. For example, the
following command searches for *.NEF
files in the photos directory and renames
the found file with the exiv2 tool:

find /photos -iname "*NEF" 2
-exec exiv2 mv 2
-r "%Y%m¥%d-%HEM%S" 2
*.NEF {} \;

Photo by Nadjib BR an Unsplash

Note the {} \; at the end of the com-
mand. The {} symbol is a placeholder
for the name of the file that has been
found, whereas \; indicates the end of
the command. Instead of -exec, you can
also use the -0k option, which asks you
for confirmation before the command is
executed.

Finallﬂl, you can use the -fprint option

find /home/user -name "Link" 2

-fprint search_results.txt

to print the search results to a text file.

Searching for Files with
locate and updatedb

Similar to find, the locate tool lets you
find files by their names. But instead of
searching the system in real time, locate
searches the database of file names,
which is updated daily. The key advan-
tage of this approach is speed; finding
files with locate is much faster than
with find. The use of locate is easy: Just
run the locate command with the name
of the file you want to find:

locate backup.sh

To ignore the case, you can use the -
option:

locate -i backup

As with find, you can use wildcards in
your searches:

locate "*, jpg"

If you want to see only a limited num-
ber of results, you can do so by using

the -n option followed by the number

of your choice:

locate "¥,jpg" -n 5

As mentioned before, locate performs
searches by querying the database of
file names, which is automatically up-
dated every day, so if you have just
downloaded a batch of photos from
your camera, the locate command
won’t see them until the database is
updated.

Fortunately, you don’t have to wait
until the system updates the database;
with the updatedb command, you can
manually update the database at any

Search Tools GETTING AROUND

time. Just execute the updatedb com-
mand as root to force the system to up-
date the database.

whereis and which

If you need to find the path to an execut-
able program, its sources, and man
pages, the whereis tool can help. The fol-
lowing command, for example, returns
paths to binary, source, and man pages
for the Rawstudio application:

whereis rawstudio

Using the available options, you can
limit your search to specific types. To
search only binaries, you can use the -b
option, or use -m to search for man
pages and -s to search for source files.

Whereas the whereis tool lets you lo-
cate program files and man pages, which
tells you which version of a command
will run if you just type its name in the
terminal. For example, the which soffice
command returns the /usr/bin/soffice
path. This means that the soffice com-
mand runs the application in the /usr/bin
directory. If you want to find all the lo-
cations of the command, you can use
the -a option:

which -a soffice

With just these few, simple commands, you
can locate your files quickly and easily.

grep

The Bash command shell also has tools
that will let you search for a text string

inside of a file. The most popular com-

mand for finding a search string is grep.

In its most basic form, grep searches a
file for text matching a specified pattern
and outputs every line of the file that
contains the string.

The syntax for the grep command is:

grep [options] pattern file_name(s)

You can specify the search pattern ex-
plicitly or use a regular expression. (See
the article elsewhere in this issue on reg-
ular expressions.)

Several options help to refine the
search (see Table 1 for some exam-
ples). For example, if you don’t want
to output all the lines that match the
search string but only want to know
the number of matching lines, use the
-c option.

To specify more than one pattern, use
the -e option once for each pattern:

grep -e patternl -e pattern2 2

filename.txt

Alternatively, you can use the -f option
to specify a pattern file that can contain
multiple patterns.

Although most modern text editors
and word processors have built-in
search features, grep is still very useful
for searching across a group of several
files or for expressing complex search
patterns that would be cumbersome in
a GUI tool. System administrators often
use grep to hunt for errors, warnings,
devices names, and other information
in system logs. See the following arti-
cles on “Regular Expressions” and
“Pipes and Redirection” for more grep
examples. l

Table 1: Examples of grep Options

Option Description

- Prints only a number @resenting the number of lines matching the pattern

-e Specifies an expression as a search pattern (you can specify multiple
expressions in one command - use the -e option with each expression)

-E Use extended regular expressions (ERE)

-ffile_name Take patterns from a pattern file

-i Ignore case

-/ Prints a list of file names containing the se;r;_siring

-0 Only prints matched parts of matching line

-V Prints all the lines that do NOT match the search pattern

-w Match a whole word

-An Prints the matched line and n_Iines after Ematched line

-Bn Prints the matched line and n lines before the matched line

-Cn Prints the matched line with nlines before and n lines after

