
APRIL 2016  |   VOL.  59  |   NO.  4  |   COMMUNICATIONS OF THE ACM     31

V
viewpoints

C
O

L
L

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

, 
U

S
I

N
G

 T
U

X
 B

Y
 L

A
R

R
Y

 E
W

I
N

G
, 

G
N

U
 B

Y
 A

U
R

E
L

I
O

 A
. 

H
E

C
K

E
R

T

Kode Vicious  
GNL Is Not Linux 
What’s in a name?

linker, assembler, and debugger—tools 
we now take for granted. All of these ad-
vances were significant and important, 
but they had one thing holding them 
back from even broader acceptance: li-
censing.

The Unix system and its tools were 
written and owned by AT&T, which, at 
that time, was the largest monopoly 
in the U.S. It did not have to license 
anything, of course, because it was the 
phone company, and the only phone 
company, which put it in a unique posi-
tion, best summed up by Lily Tomlin in 
an old comedy sketch: “We don’t care, 
we don’t have to.” 

The truth was many people inside 
AT&T did care and they were able to get 
AT&T to sell “cheap” licenses for insti-
tutions such as universities that had to 
pay only $1,000 to get the entire source. 
Companies had to pay quite a bit more, 
but they were able to spread the cost 
over their entire computing infrastruc-
ture. Having the source meant you 
could update and modify the operating 

Dear KV,
I keep seeing the terms “Linux” and 
“GNU/Linux” online when I am reading 
about open source software. The terms 
seem to be mixed up or confused a lot 
and generate a lot of angry mail and fo-
rum threads. When I use a Linux distro 
am I using Linux or GNU? Does it mat-
ter?

What’s in a Name?

Dear Name,
What, indeed, is in a name? As you have 
already seen, this quasi-technical topic 
continues to cause a bit of heat in the 
software community, particularly in 
the open source world. You can find the 
narrative from the GNU side by utilizing 
the link provided in the postscript ap-
pearing at the end of this column, but 
KV finds that narrative lacking, and so, 
against my better judgment about pigs 
and dancing, I will weigh in with a few 
comments. 

If you want the real back story on the 
GNU folks and FSF (Free Software Foun-
dation), let me suggest you read Steven 
Levy’s Hackers: Heroes of the Computer 
Revolution, which is still my favorite 
book about that period in the history 
of computing, covering the rise of the 
minicomputer in the 1960s through the 
rise of the early microcomputers in the 
1970s and early 1980s. Before we get to 
the modern day and answer your ques-
tion, however, we have to step back in 
time to the late 1960s, and the advent of 
the minicomputer.

Once upon a time, as all good sto-
ries start, nearly all computer software 

cost some amount of money and was 
licensed to various entities for use. That 
time was the 1950s and 1960s, when, in 
reality, very few individuals could afford 
a computer, and, in fact, the idea that 
anyone would want one was scoffed at 
by the companies who made them, to 
their later detriment. Software was de-
veloped either by the hardware manu-
facturer to make its very expensive ma-
chines even moderately usable, or by 
the government, often in collaboration 
with universities. 

About the time of the advent of the 
minicomputer—which came along 
about the same time KV was born, 
screaming, because he knew he would 
have to fix them and their brethren 
someday—two key innovations oc-
curred. Ken Thompson and Dennis 
Ritchie invented Unix, a now well-
known reaction to the development 
of Multics, and computer hardware 
took one of its first steps toward af-
fordability. No longer would the whole 
university have to share and time-slice 
a single large mainframe; now each 
department, if that department had 
$30,000 or so, could share a less power-
ful machine, but among a much smaller 
group of people. 

Before Unix, operating systems were 
large, complicated, and mostly non-
portable. Because Unix was simple and 
written in a new, portable assembler—
which we now call C—it was possible 
for much smaller groups of people to 
write significant software with a lot less 
effort. There were good tools for writ-
ing portable operating systems and 
systems software, including a compiler, 

DOI:10.1145/2892559 George V. Neville-Neil

     Article development led by  
          queue.acm.org

http://dx.doi.org/10.1145/2892559


32    COMMUNICATIONS OF THE ACM    |   APRIL 2016  |   VOL.  59  |   NO.  4

viewpoints

magazines/2014/2/171691-bugs-and- 
bragging-rights/fulltext), where I wrote, 
“I think the propensity for program-
mers to label their larger creations as 
operating systems comes from the need 
to secure bragging rights. Programmers 
never stop comparing their code with 
the code of their peers.”

Why is this important? There are two 
reasons. One is intellectual honesty. KV 
prefers to see the credit go to those who 
did the work. Linus Torvalds and his 
team have built an important artifact, 
out of many tools, that many people use 
each day, so the credit goes to them, not 
to the producers of the tools. It takes 
more than a compiler, linker, and edi-
tor to build something as complex as an 
operating system, or even the operating 
system kernel, and many of the tools 
that go into building Linux have noth-
ing at all to do with FSF or GNU. Should 
we now rename all of our systems as 
GNU/APACHE/FOO/BAR? Only a law-
yer would think of that, and by now you 
all know what I think of letting lawyers 
name projects. The second reason this 
is important is to point out that while 
GNU stands for “GNU is not Unix,” that 
was a reaction against the AT&T Unix of 
the 1980s. Now it might as well be “GNU 
is not Linux,” because the tool is not 
the thing the tool builds. But then, GNL 
doesn’t sound as good.

KV

P.S. If you want to read the GNU side of 
this story, pour yourself a strong bever-
age and start here: http://www.gnu.org/
gnu/linux-and-gnu.html.

  Related articles  
  on queue.acm.org

Open Source to the Core
John Hubbard
http://queue.acm.org/detail.cfm?id=1005064

A License to Kode
George Neville-Neil
http://queue.acm.org/detail.cfm?id=1217262

Desktop Linux: Where Art Thou?
Bart Decrem
http://queue.acm.org/detail.cfm?id=1005067

George V. Neville-Neil (kv@acm.org) is the proprietor of 
Neville-Neil Consulting and co-chair of the ACM Queue 
editorial board. He works on networking and operating 
systems code for fun and profit, teaches courses on 
various programming-related subjects, and encourages 
your comments, quips, and code snips pertaining to his 
Communications column.

Copyright held by author. 

system. If you want to see innovation in 
any type of software, it is very important 
to have the source. In 2016, more than 
50 years after all these changes started, 
it is now common to have access to 
the source, because of the open source 
movement, but this was uncommon at 
the start of the Unix age.

Over the course of the Unix era, sever-
al open source operating systems came 
to the fore. One was BSD (Berkeley Soft-
ware Distribution), built by CSRG (Com-
puter Software Research Group) at UC 
Berkeley. The Berkeley group had start-
ed out as a licensee of the AT&T source, 
and had, early on, written new tools for 
AT&T’s version of Unix. Over time, CSRG 
began to swap out parts of the system in 
favor of its own pieces, notably the file 
system and virtual memory, and was the 
first to add the TCP/IP protocols, giv-
ing the world the first Internet (really 
DARPAnet)-capable Unix system.

At about the same time, FSF had, 
supposedly, been developing its own 
operating system (Hurd), as well as a 
C compiler, linker, assembler, debug-
ger, and editor. The effort to build tools 
worked out better for FSF than its effort 
to build an operating system, and, in 
fact, I have never seen a running version 
of Hurd, though I suspect this column 
will generate an email message or two 
pointing to a sad set of neglected files. 
The GNU tools were, in a way, an ad-
vancement, because now software de-
velopers could have an open source set 
of tools with which to build both new 
tools and systems. I say, “in a way,” be-
cause these tools came with two signifi-
cant downsides. To understand the first 
downside, you should find a friend who 
works on compilers and ask if he or she 
has ever looked inside gcc (GNU C com-
piler), and, after the crying stops and 
you have bolstered your friend’s spirits, 
ask if he or she has ever tried to extend 
the compiler. If you are still friends at 
that point, your final question should 
be about submitting patches upstream 
into this supposedly open source proj-
ect. 

The second downside was religious: 
the GPL (GNU Public License). If you 
read Hackers, it becomes quite obvi-
ous why FSF created the GPL, and the 
copyleft before it. The people who cre-
ated FSF felt cheated when others took 
the software they had worked on—and 
which was developed under various gov-

ernment grants—started companies, 
and tried to make money with it. The 
open source community is very clearly 
split over the purity of what one devel-
ops. There are those who believe no one 
should be able to charge for software or 
to close it off from others, and those who 
want to share their knowledge, whether 
or not the receiver of that knowledge 
makes a buck with it.

All of this background brings us to 
Linux and its relationship to the GNU 
tools. Linux is an operating system ker-
nel, initially developed by Linus Tor-
valds in reaction to the Minix operating 
system from Andrew Tanenbaum. Tor-
valds used the GNU tools—compiler, 
linker, assembler—to turn his C code 
into an operating system kernel and 
then launched it upon the world. He re-
leased the code under a GPLv2 license—
the one it maintains to this day—rather 
than taking on GPLv3, which is even 
more restrictive than its predecessors. 
Other people took up the code, modi-
fied it, improved it, and built new tools 
and systems around it. 

Now, to the point about naming. 
When you build a house, you use many 
tools: hammers, saws, drills, and so 
forth. When the house is complete, 
do you call that a Craftsman/House, 
a Makita/House, or a Home Depot/
House? Of course you don’t. We do not 
name things after the tools we use to 
build them; we name things in ways that 
make sense because they describe the 
whole of the thing clearly and complete-
ly. Linux is an operating system kernel 
and some associated libraries that pres-
ent a mostly, but not always, Posix, Unix-
like system on top of which people write 
software. In point of fact, Linux distri-
butions do not ship with the GNU tools, 
which must be installed from packages 
later. Linux is a thing unto itself, and the 
GNU tools are things unto themselves. 
That one might be used to work on the 
other is irrelevant, as is the fact that I 
am holding a Craftsman hammer from 
Home Depot right now … must put the 
hammer down.

The whole GNU/Linux naming sil-
liness is probably a case of kernel 
envy, not unlike the programmers 
who feel their ultimate achievement 
is to write a process or thread sched-
uler, which I addressed in my Feb-
ruary 2014 column “Bugs and Brag-
ging Rights” (http://cacm.acm.org/




