Development of Integrated Treatment Scheme of Adsorption and Biofiltration for VOCs Removal

Dissertation Defense for the Degree of Ph.D.

January 19, 2006

Daekeun Kim

Department of Civil & Environmental Engineering

Introduction

• VOCs ?

Volatile organic compounds (VOCs)

- They are found in the waste stream emitted from most processes employing organic or petroleum based solvents.
- A cost-effective technology: Biological treatment technology (biofiltration)

Solution = Buffer unit

Adsorption unit can be a buffer unit for a biofilter

Research Objectives

Main Objective

To develop an innovative technology for VOCs removal from waste gas with long-term, stable, high removal (>99%) performance

• Proposed Technology: Integrated treatment scheme Adsorption + Biofiltration

Objectives

To characterize Trickle Bed Air Biofilter (TBAB) performance treating different single VOCs under adverse operating conditions

Objectives

To characterize Trickle Bed Air Biofilter (TBAB) performance treating different single VOCs under adverse operating conditions

Specific Objectives

- Determine the critical loading capacity of TBAB for target VOCs
- Determine the impact of non-use periods on TBAB performance under different organic loading rates.

Target VOCs: (Paint booth industry)

K'_{*H}</sub> = dimensionless Henry's law constant,* coefficient</sub> $K_{ow} = Octanol-water partition$

Experimental Methods

- Reactor : Independent lab-scale TBAB Dimension: 76 mm (D) \times 130 cm (L) Operating Temperature: 20°C
- Media: pelletized biological support media

Experimental Strategies

- <u>Backwashing</u> (as biomass control, 1 hour/ 1 week)
- Non-use periods
 - Starvation (without contaminant loading, 2 days/ 1 week)
 - Stagnant (without any flows, 2 days/ 1 week)

• Experimental Conditions

	Toluene	Styrene	MEK	MIBK	
Inlet Conc., <i>ppmv</i>	50 ~ 500	50 ~ 330	50 ~ 500	50 ~ 250	
Loading rate kg COD/m ³ .day	0.7 ~ 7.03	0.64 ~ 3.17	0.7 ~ 7.03	1.09 ~ 5.43	
EBRT, <i>min</i>	1.23	1.51 ~ 2.02	0.76	0.76	

Results

- VOC removal capacity
- Correlation between critical loading rate & K_{ow}
- Biofilter response after Backwashing & Non-use periods
 - : Toluene, MEK
- Biomass distribution
 - : VS, EPS (proteins & total carbohydrates)

Results

- VOC removal capacity
- Correlation between critical loading rate & K_{ow}
- Biofilter response after Backwashing & Non-use periods
 - : Toluene, MEK
- Biomass distribution
 - : VS, EPS (proteins & total carbohydrates)

• **Results** – Comparison of VOC removal capacity

• **Results – VOC removal capacity**

• **Results – VOC removal capacity**

Results

- VOC removal capacity
- Correlation between critical loading rate & VOC properties
- Biofilter response after Backwashing & Non-use periods
 : Toluene, MEK
- Biomass distribution
 - : VS, EPS (proteins & total carbohydrates)

• **Results** – Critical loading vs. Kow

Results

- VOC removal capacity
- Correlation between critical loading rate & K_{ow}
- Biofilter response after Backwashing & Non-use periods
 - : Styrene, MEK
- Biomass distribution
 - : VS, EPS (proteins & total carbohydrates)

Results – Styrene biofilter response

• **Results – MEK biofilter response**

Results

- VOC removal capacity
- Correlation between critical loading rate & K_{ow}
- Biofilter response after Backwashing & Non-use periods
 : Toluene, MEK
- Biomass distribution
 - : VS, EPS (proteins & total carbohydrates)

• Results – Biomass distribution

Results

- VOC removal capacity
- Correlation between critical loading rate & K_{ow}
- Biofilter response after Backwashing & Non-use periods
 : Toluene, MEK
- Biomass distribution
 - : VS, EPS (proteins & total carbohydrates)
- _

Conclusion and Summary

Experimental findings supported the handling limitation of performance of the current biofiltration system

- 1. Up to the critical VOC loading rate, the backwashing was effective biomass control to attain consistently high removal performance.
- 2. Non-use periods can be considered as another means of biomass control at lower VOC loading rate.
- 3. Reacclimation was a critical factor in biofilter peformance. After non-use periods, the active biomass affects biofilter response.

Conclusion and Summary

Experimental findings supported the handling limitation of performance of the current biofiltration system

- 4. Biofilter performance linked with VOCs removal and biomass growth depended on the physicochemical properties of VOCs.
- 5. Biofilter performance was affected by microbial activity and biomass distribution.

Objectives

To development of 2-bed adsorption process for dampening contaminant fluctuations

Specific Objectives

- Determine the adsorption isotherms of VOCs of concern
- Design and evaluate a 2-fixed bed adsorption unit

- Experimental Methods
- Adsorbate: Toluene, MEK, MIBK
- Adsorbent:
 - **BPL-Bituminous based**
 - OVC-Coconut based
- Method: Simple constant volume method

Adsorption Isotherm

Simple Constant Volume Method

Using "Gas sample bag", a 10-L Tedlar gas sample bag
Using "Calibrated 6-L canister" for provide 6-L air into bags

Adsorption Isotherm

Results: Single solute Isotherm

- Results: Single solute Isotherm
- MEK Adsorption on OVC

- Results: Single solute Isotherm
- Comparison of activated carbon adsorption capacity

- **Results:** Ternary Isotherm
 - Adsorbent: BPL
 - Adsorbate: Toluene, MEK, MIBK
 - Method: simple constant volume method
 - Simulation: IAST

Adsorption Isotherm

• **Results:** Ternary Isotherm

Adsorption Isotherm

Conclusion and Summary

Single and ternary adsorption isotherms were successfully determined by employing a simple constant volume method

- 1. For single solute adsorption, the pore size distribution of adsorbents was found to affect their adsorption capacities; its effect was dependents on the solute concentration.
- 2. The ideal adsorbed solution theory (IAST) was found to accurately predicts the ternary adsorption isotherms.

2-Bed Adsorption

2-Bed Adsorption

- Concept
- Conceptually simple process to PSA
- PSA (Pressure Swing Adsorption) :
 - \rightarrow A technology for separation and purification for gas mixtures
 - \rightarrow 4 Steps for operational function

2-Bed Adsorption

Concept

Hypothetically, if adsorption rate is equal to its desorption rate
 → Operational function is simplified to a 2-step

2-Bed Adsorption

Concept

• Driving force for desorption: decrease in contaminant gas pressure

 \rightarrow Each bed will not be fully saturated with adsorbate

Counterclockwise

2-Bed Adsorption

Concept

Will serve as

- Polishing unit during the initial acclimation period of the biofilter
- Buffer unit in load fluctuation
- Feeding source without any feeding phase during non-use periods

2-Bed Adsorption

- Experimental Methods
 - 2 Beds
 - Dimension : 2.5 cm (D) imes 20 cm (L)
 - Duration of one cycle : 8 hours
 - EBRT: 5.6 sec (2.2 L/min)

Adsorbate : Toluene

• Adsorbent : GAC (BPL 6×16)

* Design

2-Bed Adsorption

Results

2-Bed Adsorption

- Results
- Efflunet response to cyclic operation and non-cyclic operation

2-Bed Adsorption

Conclusion

- The adsorption system consisted of two fixed beds which are alternately pressurized and depressurized was simply achieved.
- The operating adsorption and desorption cycles for the unit yielded constant loading conditions that can be treated effectively in the biofiltration

Objectives

To evaluate the performance of the integrated treatment scheme of a biofilter preceded by a 2-fixed bed adsorption unit

Experimental Methods

• Targeted VOC: Toluene

• Feeding condition: Square wave change of inlet concentration

- Base = 200 ppmv
- Peak = 400 ppmv (15 mins / hour)
- Average conc. : 250 ppmv
- Average load. : 3.5 kg COD/m³·day

Results: Toluene removal performance

Results: Toluene removal performance

Results: Effluent performance after Non-use period

Results: Effluent performance after Non-use period

Sequential time after non-use, hrs

• **Results:** Further Application

Results: Further Application

4-different feeding condition

- 8-hr average effluent
- 1st order kinetic constants : Estimate of biological activity

Results: Further Application

Feeding Condition

800

600

400

200

0

0

Inlet Conc., ppmv

• Type A : 46.9 g/m³·hr

60

120

Time, min

Results: Further Application

Results: Further Application

Feeding Condition a)8-hr average effluent b) Reaction rate constant • Type C : 56.3 g/m³·hr (Frequent Peak) 300 0.03 Control unit Peak **Control unit** Base Rate constant, sec⁻¹ 10'0 20'0 **Integrated unit** Effluent, mg/m³ 800 200 ₽ Inlet Conc., ppmv 600 100 400 200 Peak Integrated unit Base 0 0.00 0 B С D B D Α С A 60 120 180 0 **Feeding condition Feeding condition** Time, min

Results: Further Application

Feeding Condition

 Type D : 65.9 g/m³·hr (High & Frequent Peak)

• **Results:** Comparison of reactor volume

<u>Reactor volume</u> of a single biofilter to achieve the same treatment goal as in the integrated system

Results: Further Application

<u>Reactor volume</u> of a single biofilter to achieve the same treatment goal as in the integrated system

Feeding Condition	Type A	Type B	Type C	Type D
Peak concentration ($C_{i,p}$), ppmv	400	700	400	600
(g/m^3)	(1.53)	(2.68)	(1.53)	(2.30)
Biofilter bed volume required (V), m^{3} **	0.00435	0.00761	0.00435	0.00653
V/Vintegrated ***	1.5	2.6	1.5	2.2

* Volume of the integrated unit = 0.00293 m^3

Conclusion

The net effect of the 2-bed adsorption was VOC concentration stabilization that makes it amenable for effective stable biodegradation

- 1. The 2-step cycle in the adsorption unit successfully performed particular functions as
 - A polishing unit to abate the initial acclimation for the biofilter;
 - A buffering unit to mitigate the biofilter performance;
 - A feeding source for the biofilter without any feeding phase
- 2. Details of the reactor volume suggest that capital expense can be minimized by achieving a careful design and operation of the integrated treatment scheme.

Acknowledgements

- Dr. George A. Sorial
- Dr. Makram T. Suidan
- Dr. Dionysios D. Dionysiou
- Dr. Albert D. Venosa
- Mr. Zhangli Cai
- National Science Foundation (NSF)

Development of Integrated Treatment Scheme of Adsorption and Biofilter for VOC Removal

Dissertation Defense for the Degree of Ph.D.