A&WMA's 98th Annual Conference and Exhibition

Feasibility of Adsorption/Desorption Cycles In a Two-Bed Adsorption Unit For Dampening Biofilter Performance Fluctuation

> Daekeun Kim Zhangli Cai George A. Sorial

Department of Civil and Environmental Engineering

Contents

- Introduction
- Objective
- Theory of This Study
- Materials and Methods
- Experimental Results
- Conclusion

Feasibility of Adsorption/Desorption Cycles In a Two-Bed Adsorption Unit For Dampening Biofilter Performance Fluctuation

Introduction

Introduction

Conceptually identical process to the biofilter

- Microbial attachment: Synthetic inorganic media
- Intermittent delivery of Nutrient & Buffer to the media

Introduction

For more successful application in industry

Challenges

Source Characteristics

Biofilter Maintenance

- Transient loading
- Non-use periods
- VOCs composition

- Biomass accumulation
- Microbial activity

Introduction

Solution = Buffer unit

Adsorption unit can be a buffer unit for a biofilter

Current application : Single bed of carbon filter

Consideration of current adsorption unit High loading & Large fluctuation \rightarrow Losing buffer capacity Initial period of operation \rightarrow No contaminant to biofilter

Feasibility of Adsorption/Desorption Cycles In a Two-Bed Adsorption Unit For Dampening Biofilter Performance Fluctuation

Objective

Objective

Main Objective

A 2-bed adsorption unit is proposed to establish long-term stable buffer capacity of adsorption unit in mitigating biofilter performance

Specfic Objective

- To design and evaluate a 2-bed adsorption unit
- To evaluate the overall performance of a combined process scheme (2-bed adsorption unit + Biofilter)
- To be compared with that of a control unit without adsorption unit (Biofilter)

Feasibility of Adsorption/Desorption Cycles In a Two-Bed Adsorption Unit For Dampening Biofilter Performance Fluctuation

Theory of 2-Bed Adsorption

2-Bed Adsorption Unit

- Conceptually simple process to PSA
- PSA (Pressure Swing Adsorption) :
 - \rightarrow A technology for separation and purification for gas mixtures
 - \rightarrow 4 Steps for operational function

2-Bed Adsorption Unit

Hypothetically, if adsorption rate is equal to its desorption rate → Operational function is simplified to a 2-step

2-Bed Adsorption Unit

- Cyclic operation : Shift of air flow direction
 - \rightarrow Each bed will not be fully saturated with adsorbate

Counterclockwise

2-Bed Adsorption Unit

Will Serve as

- Polishing unit during the initial acclimation period of the biofilter
- Buffer unit in load fluctuation
- Feeding source without any feeding phase during non-use periods

Feasibility of Adsorption/Desorption Cycles In a Two-Bed Adsorption Unit For Dampening Biofilter Performance Fluctuation

Materials and Methods

Feeding Condition

Targeted VOC

Toluene (C₇H₈)

- Comment solvent employed in the industry
- A major component in paints and varnishes

Concentration & Loading

Square Wave Change

- Base = 200 ppmv
- Peak = 400 ppmv (15 mins / hour)
- Average concentration : 250 ppmv

Feeding Condition

Targeted VOC

Toluene (C₇H₈)

- Comment solvent employed in the industry
- A major component in paints and varnishes

Concentration & Loading

- 1st Condition: Square Wave Change
- Base = 200 ppmv
- Peak = 400 ppmv (15 mins / hour)
- Average concentration : 250 ppmv

Feeding Condition

Targeted VOC

Toluene (C₇H₈)

- Comment solvent employed in the industry
- A major component in paints and varnishes

Concentration & Loading

- 1st Condition: Square Wave Change
- Base = 200 ppmv
- Peak = 400 ppmv (15 mins / hour)
- Average concentration : 250 ppmv
- Average loading rate : 46.9 g/m³·hr

Materials and Methods

Adsorption Unit

- 2 Beds
- Dimension : 2.5 cm (D) \times 20 cm (L)
- Duration of one cycle : 8 hours
- EBRT: 5.6 sec (2.2 L/min)

• Absorbent : GAC (BPL 6 × 16)

Materials and Methods

Biofilter

Trickle Bed Air Biofilter (TBAB)

- Dimension : 76 mm (D) × 130 cm (L)
- Buffered nutrient solution supply
- Operating Temp. : 20 °C
- EBRT: 1.2 min (2.2L/min)

Media

- Celite[®] 6 mm R-635 Bio-Catalyst Carrier
- Packing depth : 60 cm
- Seeded with aerobic microbial culture pre-acclimating to toluene

Schematic Diagram of Experimental Setup

Feasibility of Adsorption/Desorption Cycles In a Two-Bed Adsorption Unit For Dampening Biofilter Performance Fluctuation

Experimental Results

2-Bed Adsorption Performance

Square wave change of inlet concentration

2-Bed Adsorption Performance

Square wave change of inlet concentration

2-Bed Adsorption Performance

Square wave change of inlet concentration

Effluent Concentration

Exposure guideline (10 hrs average) : 5 mg/m³ (AIHA)

Effluent Concentration

Effluent Concentration

Removal Efficiency

Cincinna

How much saturated?

1. Carbon mass balance (Combined unit) 2. Adsorption performance (Adsorption beds)

Carbon Balance

Cinlet (toluene removed) VS. Coutlet (net gas & liquid effluent)

Carbon Balance

Cinlet (toluene removed) VS. Coutlet (net gas & liquid effluent)

How much saturated?

1. Carbon mass balance (Combined unit)

2. Adsorption performance (Adsorption beds)

Reacclimation

Effluent response after 2 days of starvation

Reacclimation

Effluent response after 2 days of starvation

Reacclimation

Effluent response after 2 days of starvation

Feeding Conditions

Feeding Conditions

• 1st : 46.9 g/m³ hr

Feeding Condition

• 2nd : High concentration of peak, 46.9 g/m³-hr

Feeding Condition

- 2nd : High concentration of peak, 46.9 g/m³-hr
- 3rd : Frequent peak, 56.3 g/m³·hr

Feeding Condition

- 2nd : High concentration of peak, 48.9 g/m³-hr
- > 3rd : Frequent peak, 56.3 g/m³.hr
- 4th : High con. and frequent peak, 65.9 g/m³·hr

Feasibility of Adsorption/Desorption Cycles In a Two-Bed Adsorption Unit For Dampening Biofilter Performance Fluctuation

Conclusion

Conclusion

During unsteady-state loading conditions,

The 2-step of adsorption and desorption cycle in a 2-bed adsorption

mitigated the adverse effect of load fluctuation on biofilter performance

The 2-Step cycle, i.e., adsorption and desorption,

functioned as

- A polishing unit to abate the initial acclimation for the biofilter
- A buffering unit to dampen the biofilter performance
- A feeding source to the biofilter during non-use periods

• National Science Foundation (NSF) Award Number BES 0229135

A&WMA's 98th Annual Conference and Exhibition

Feasibility of Adsorption/Desorption Cycles In a Two-Bed Adsorption Unit For Dampening Biofilter Performance Fluctuation

Department of Civil and Environmental Engineering

