AIChE 2004 Spring National Meeting, April 28, 2004

Behavior of Trickle Bed Air Biofilter for VOCs Removal : Effect of Non-Use Periods

Daekeun Kim, Zhangli Cai, George A Sorial

Department of Civil and Environmental Engineering, University of Cincinnati

- Introduction
- Objective
- Experimental Method
- Experimental Approach
- Results & Summary
- Conclusions
- Future Works

Introduction

VOC: Volatile organic compounds

- Typical air contaminants
 - Environmental concern due to their toxicity
 - Serious health problems: cancer
 - Precursor of Ozone (O_3)
- Sources of VOCs
 - Chemical manufacturing
 - Dry cleaners,
 - Paint booths,
 - and other sources using solvent.

VOC Control Technology

- Carbon adsorption,
- Liquid scrubbing,
- Condensation,
- Catalytic incineration,
- and Biological treatment.

Biofiltration

- Typical biological treatment process
- VOCs are removed through a biologically active media
- Natural organic media (soil, compost)

 → easily exhaust nutrient & buffer capacity
 → long term operation is impractical

Trickle Bed Air Biofilter (TBAB)

- Nutrient & buffer control
- Synthetic & inorganic media
 - → Optimizing the contaminant utilizing kinetics for microorganisms
 - → Long term, high removal performance

Trickle Bed Air Biofilter (TBAB)

- Advantages
 - ✓ Environmental friendly
 - ✓ Economical viable
- Disadvantage
 - Clogging of bed due to accumulation of biomass
 - Unclear performance under non-use periods : a shut down for equipment repair, during weekends and holidays
 - ✓ Unfavorable performance due to shock load & load fluctuation

Solvable problem !!

Trickle Bed Air Biofilter (TBAB)

- Clogging of bed due to accumulation of biomass
 - → Solution: biomass control Periodic *in-situ* upflow washing, backwashing
- Unclear performance under non-use periods
 → A purpose of this study
- Unfavorable performance due to shock load & load fluctuation \rightarrow A purpose of the next study

Objective

- The main objective of this research is to investigate the performance of a TBAB under periodic stressed operating conditions (backwashing & non-use periods) as a function of toluene loading.
 - ✓ To evaluate the effect of non-use periods (starvation & stagnant) on the performance of a TBAB for long-term operation.
 - To compare TBAB operated under non-use periods against backwashing strategy.

Experimental Methods

- Target VOC: Toluene
- Reactor:
 independent lab-scale TBAB
- Media: pelletized biological support media

Schematic diagram

Experimental Approach (cont'd)

- Experimental Condition : 5 steps
 - \rightarrow Different inlet concentration & loading rate

	Ι	Π	III	IV	V
Inlet Concentration, ppmv	50	50	100	250	500
Loading rate, kg COD/m ³ ,day	1.14	0.7	1.41	3.52	7.03
EBRT, min	0.76	1.23	1.23	1.23	1.23

Experimental Approach

Experimental Strategy: backwashing, starvation, stagnant

- Backwashing: biomass control
 - ✓ Using nutrient solution
 - ✓ Frequency: 1 hour once per week for a period of 3 weeks
- Non-use period
 - Starvation: pure air with nutrient passing through the biofilter (without VOC loading)
 - Stagnant: no flow (VOC, nutrient, air) passing through the biofilter
 - \checkmark Frequency: two days per week for a period of 3 weeks
 - ✓ Without backwashing as biomass control

Results

- Biofilter performance
- Reacclimation
- Kinetic analysis

Result 1. Biofilter Performance

• Biofilter performance as a function of inlet VOC concentration and loading, and experimental strategies.

Result 1. Overall performance

- Inlet Concentration
- Outlet Concentration
- Removal Efficiency

Sequential Date, days

Sequential Date, days

Sequential Date, days

Result 1 (cont'd)

Dute, duys

Summary

- At 0.7 and 1.41 kg COD/m³·day, TBAB provided the + 99 % removal efficiency for all strategies.
- For non-use periods at 3.52 kg COD/m³.day, the removal efficiency dropped below 90 %.
 → demanding Backwashing as biomass control
- An increase in loading rate needs much longer acclimation period.

Result 2. Reacclimation

- Reacclimation periods to reach at 99 % removal efficiency
 - After *backwashing* and
 - After *restart-up following the shut down for non-use periods*.

Result 2 (cont'd)

Result 2: Reacclimation

Summary 2-1. An increase in loading rate delayed reacclimation.

Summary 2-2. For backwashing strategy, much longer reacclimation period was required.

 \rightarrow due to the loss of active biomass by conducting backwashing

Summary 2-3. For non-use period strategies, the biofilter response is different from that after backwashing.

 \rightarrow the biomass played an important role in the reacclimation

Summary 2-4. At high loading rate for non-use periods,

- \rightarrow initially, a likely breakthrough was observed
- $\rightarrow~$ due to VOC adsorption on the biomass

Result 3. Kinetic analysis

- Kinetic analysis for VOC removal
 - Based on a pseudo first order reaction rate as a function of depth in the biofilter

Result 3. Kinetic analysis

Summary 3-1. An increase in loading rate decreased reaction rates.

Result 3 (cont'd)

Summary 3-2. For low loading rate (0.7 and 1.41 kg COD/m³day), non-use period strategies showed high reaction rates \rightarrow might be due to availability of active biomass

Summary 3-3. For 3.52 kg COD/m³day,

non-use period strategies showed low reaction rates \rightarrow might be due to high accumulation of the biomass

Conclusion

- High performance of TBAB was observed for all experimental strategies up to 3.52 kg COD/m³day (250 ppmv).
- However, during the reacclimation periods following backwashing and non-use period, the TBAB unit can not comply with emission regulations.
 - → the limitation of current TBAB system demands novel VOCs control technology

Future Works

• Issue

 \checkmark Need to decrease reacclimation periods

✓ Need to mitigate shock load & load fluctuations

Goal

✓ Yield consistently high VOC removal efficiency

Proposal

✓ Employ a preliminary unit as a buffer

Future Works (cont'd)

Preliminary unit: Pressure swing adsorption (PSA) unit ✓ Operated under long term adsorption/desorption cycles

Future Works (cont'd)

Combined Treatment : PSA + TBAB \rightarrow Long term, high performance for VOC removal

Acknowledgements

- National Science Foundation (BES-0229135)
- Dr. George A. Sorial
- Colleagues at Environmental Chemistry Laboratory at University of Cincinnati.

Behavior of Trickle Bed Air Biofilter for VOCs Removal: *Effect of Non-Use Periods*

Daekeun Kim

Department of Civil and Environmental Engineering University of Cincinnati

