Biofiltration Technology For

Effective Control of Air Emissions

George A. Sorial Department of Civil and Environmental Engineering University of Cincinnati

Introduction Theory of the Study Objectives Materials and Methods Results Summary

■ VOCs ?

Volatile organic compounds (VOCs)

They are found in the waste stream emitted from most processes employing organic or petroleum based solvents.

VOC Emission and Regulation

- The passage of the 1990 Amendments to the Clean Air Act: significantly heightened the interest in the development of innovative technologies for VOCs removal.
- 2. VOCs are precursors to the formation of ozone, and they have their own toxicity.
- 3. International standard on environmental management (ISS14000): demands the treatment of VOCs emission

Wastewater treatment

- 1. Source of VOCs to ambient atmosphere. affected by the Clean Air Act Amendments.
- 2. Depends on domestic, commercial, and industrial sources
- 3. VOCs are transferred into the air mainly in case of aerated bioreactor. (activated sludge process)

VOC Removal technology

- Thermal oxidation, Catalytic oxidation, Condensation, Carbon adsorption, Membrane separation...
- 2. Biological treatment: economical and ecological technology
- 3. Biofiltration

Air Treatment Processes

TYPES OF BIOFILTERS

Classical Biofilters

Biotrickling Filters or Trickle Bed Biofilters

Application of biofiltration

- 1. Owner and location: Novartis; Basle, Switzerland
- 2. Air flow rate: 60,000 – 75,000 m³/h (Exhaust air from plant)
- 3. Pollutants:

toluene, xylene, methanol, isopropanol, chloroform... Total conc. : 180 – 500 mg/m³

Application of biofiltration

- 4. Biofilter Design Investment costs (\$2,000,000) Treatment costs (\$1.44 per 1000 m³ off gas)
- 5. Biofilter Performance Removal: 80 %

(depends on inlet loading)

CLASSICAL BIOFILTERS NATURAL ORGANIC MEDIA

Demonstrated Characteristics:

Loading limited (degradation rate of the medium is much higher than the VOC degradation rate. The VOC input has minor effect on microbial activity)

Sensitive to moisture content

Very sensitive to temperature

Biofilter Applications History

Pre 1990: Principally for Nuisance Odor Control

- Sewage Treatment Odors
- Livestock Raising, Processing, and Rendering
- Flavors and Fragrances: Extraction / Processing
- Commercial Composting

Post 1990: Developed for VOC / Volatile Toxics Control

- Groundwater Remediation: Vacuum Extraction Venting
- **Fibers Processing: Rayon Fiber**
- Industrial Finishing : Painting, Lacquering, Printing
- Commercial Fermentation: Bakeries, Breweries

Biotrickling Filters

Conceptually identical process to the biofilter

- Microbial attachment: Synthetic inorganic or polymeric media
- Intermittent delivery of Nutrient & Buffer to the media
 - ✓ Consistent Nutrient & pH control
 - ✓ Optimizing the waste utilizing kinetics

Biotrickling Filters

for more successful application in industry

Challenges

Source Characteristics

Biofilter Maintenance

- •Transient loading
- VOCs composition
- Emission mode: non-use periods

- Biomass accumulation
- Microbial activity

Performance of Pelletized Biofilter at 1 and 2 Minutes EBRT without Backwashing

Solution

In situ up-flow washing with water, i.e., backwashing at a rate sufficient to fluidize the media and permit rapid removal of excess biomass growth

IMPACT of NUTRIENT-N SPECIES

The relative performance of two biofilters was evaluated by varying the form of nutrient nitrogen

Nitrate-N vs Ammonia-N:

Nitrate-N fed biofilter demonstrated the following advantages:

- Better steady state performance (overall)
- Better recovery after backwash with time
- Better removal with depth
- Lower microbial yield (about 40% less)

Characterization of TBAB performance

Effect of step-change in influent concentration (Phase I)

Effect of non-use periods (Phase I)

Effect of interchanging the feed VOCs (Phase II)

Effect of Varying VOCs composition (Phase III)

Materials and Methods

Reactor : Independent lab-scale TBAB

Media: pelletized biological support media

Materials and Methods

Characterizing TBAB Performance

Determination of critical loading
 Impact of non-use periods on performance

Materials and Methods

Feed VOCs

Hydrophobic compounds		Hydrophilic compounds		
Toluene Styrene		Methyl ethyl ketone (MEK)	Methyl isobutyl ketone (MIBK)	
		Ĵ	<u> </u>	
0.280	0.109	0.00194	0.00062	
2.58	3.16	0.28	1.09	
	Hydrophobi Toluene 0.280 2.58	Hydrophobic compoundsTolueneStyreneJJJJJJ0.2800.1092.583.16	Hydrophobic compoundsHydrophiTolueneStyreneMethyl ethyl ketone (MEK)JJJ0.2800.1090.001942.583.160.28	

 K'_{H} = dimensionless Henry's law constant, K_{ow} = Octanol-water partition coefficient

Experimental Conditions

	Toluene	Styrene	MEK	MIBK
Inlet Conc., <i>ppmv</i>	50 ~ 500	50 ~ 330	50 ~ 500	50 ~ 250
Loading rate kg COD/m³.day	0.7 ~ 7.03	0.64 ~ 3.17	0.7 ~ 7.03	1.09 ~ 5.43
EBRT, <i>min</i>	1.23	1.51 ~ 2.02	0.76	0.76

Results – VOC removal capacity (Backwashing)

Aromatic compounds Toluene • Critical loading 3.5 kg COD/m³·day (46.6 g/m³·hr) • Maximum removal capacity 6.0 kg COD/m³·day (79.9 g/m³·hr)

Results – VOC removal capacity (Backwashing)

Loading rate, kg COD/m³day

Results – VOC removal capacity (Backwashing)

8

Loading rate, kg COD/m³day

Results – VOC removal capacity (Backwashing)

Oxygenated compounds MIBK • Critical loading 4.3 kg COD/m³·day (65.9 g/m³·hr) • Maximum removal capacity 4.9 kg COD/m³·day (75.1 g/m³·hr)

Results – Comparison of VOC removal capacity

Results – VOC removal capacity

Results – VOC removal capacity

Results – Critical loading vs. Kow

Summary

Experimental findings supported the handling limitation of performance of the current biofiltration system

- 1. Up to the critical VOC loading rate, the backwashing was effective biomass control to attain consistently high removal performance.
- 2. Non-use periods can be considered as another means of biomass control at lower VOC loading rate.
- 3. Reacclimation was a critical factor in biofilter peformance. After non-use periods, the active biomass affects biofilter response.

Impact of Interchanging VOCs on the Performance of Trickle-Bed Air Biofilter

Interchanging VOCs

Operating Condition

- Sequence of Feed VOCs
 Styrene → MEK → Toluene → MIBK → Styrene
- Inlet concentration of feed VOCs
 50 ppmv ~ the maximum allowable inlet concentration
- Flow rate
 - Nutrient solution: 1.5 L/day
 - Air: 1.35 L/min (EBRT = 2.02 min)
- Biomass control : Periodic in-situ backwashing
 Frequency: 1 hour of duration / a week

Results

Biofilter Response after interchanging VOCs

Nitrogen Utilization and CO₂ Production

Discussion

- 1. Need more proteins to make up the enzymes for utilizing new substrate
 - More utilization of nitrogen

2. Facultative organisms: Denitrifying microorganisms

• Nitrogen utilization and CO₂ Production

Study of Microbial community structure & diversity

Summary of Phase II Study

- High removal performances were observed in the interchanging VOC-fed TBAB.
- TBAB easily acclimated to hydrophilic compounds (MEK & MIBK), while TBAB acclimations to hydrophobic compound (Toluene & Styrene) were delayed for more than 45 hrs.
- Right after interchanging feeding VOCs, TBAB has shown unusual performances (high nitrogen utilization & high CO₂/COD).

Effect of Varying VOC Concentration

Use of Integrated Systems

Solution = Buffer unit

Adsorption unit can be a buffer unit for a biofilter

Current application : Single bed of carbon filter

Consideration of current adsorption unit High loading & Large fluctuation \rightarrow Losing buffer capacity Initial period of operation \rightarrow No contaminant in effluent

Theory of 2-Bed Adsorption

2-Bed Adsorption Unit

- Conceptually simple process to PSA
- PSA (Pressure Swing Adsorption) :
 - \rightarrow A technology for separation and purification for gas mixtures
 - \rightarrow 4 Steps for operational function

Theory of 2-Bed Adsorption

2-Bed Adsorption Unit

- Conceptually simple process to PSA
- Hypothetically, adsorption rate is equal to its desorption rate
 - \rightarrow Operational function is simplified to a 2-step

Theory of 2-Bed Adsorption

2-Bed Adsorption Unit

- Cyclic operation : Shift of air flow direction
 - \rightarrow Each bed will not be fully saturated with adsorbate

Counterclockwise

Phase II: Adsorption Study

2-Bed Adsorption

Concept

Will serve as

- Polishing unit during the initial acclimation period of the biofilter
- Buffer unit in load fluctuation
- Feeding source without any feeding phase during non-use periods

Objective

Main Objective

Evaluate Cyclic operation of 2-bed adsorption unit as load equalization For air biofiltration system

Specfic Objective

- Mathematically simulate 2-bed adsorption unit performance to compare Cyclic operation vs. Non-cyclic operation
- Experimentally evaluate the performance of the integrated scheme of 2-bed adsorption unit with air biofilter under transient loading of toluene (Integrated unit vs. control unit)

Phase II: Adsorption Study

2-Bed Adsorption

- Experimental Methods
 - 2 Beds
 - Dimension : 2.5 cm (D) \times 20 cm (L)
 - Duration of one cycle : 8 hours
 - EBRT: 5.6 sec (2.2 L/min)

- Adsorbate : Toluene
- Adsorbent : GAC (BPL 6 × 16)

Schematic Diagram of Experimental Setup

Results: Model Simulation

• Model simulation of cyclic operation of 2-bed adsorption

• Model simulation of non-cyclic operation of 2-bed adsorption

Model simulation of cyclic operation of 2-bed adsorption

Mathematical model is formulated for a packed bed for simulation of the proposed cycle, which consists of overall and component material balances.

- Linear driving force model is incorporated into the model in order to include a mass transfer resistance with an adsorbent from a bulk gas phase.
- Freundlich isotherm equation is used for expression of isotherm capacity.

Assumption: (1) no pressure drop along a bed, (2) an isothermal operation, and (3) a plug flow through a bed with no dispersion.

Model simulation of non-cyclic operation of 2-bed adsorption

Model simulation of cyclic operation of 2-bed adsorption

Model simulation of non-cyclic operation of 2-bed adsorption

Plug flow homogeneous surface diffusion model (PFHSDM) which is embedded in an **Adsorption Design Software** (*AdDesignS*TM) developed by Michigan Technological University is used.

The mechanisms incorporated in this model are:

- Homogeneous surface diffusion
- Film transfer resistance at the adsorbent surface
- Advection dominates axial transport in bed.
- Local equilibrium Freundlich isotherm exists at the adsorbent surface.
- Freundlich isotherm equation is used for expression of isotherm capacity.

Effluent Response in 2-bed Adsorption

Transient Feeding Condition 1: Square wave change of inlet concentration

- Base = 200 ppmv
- Peak = 400 ppmv (15 mins / hour)

Effluent Responds in 2-bed Adsorption

Effluent Responds in 2-bed Adsorption

Effluent Responds in 2-bed Adsorption

Results I: Feeding Condition 1

Integrated unit vs. Control unit

Results: Further Application

Feeding Condition

• Type A : 46.9 g/m³·hr

a)8-hr average effluent b) Reaction rate constant

Results: Further Application

Feeding Condition a)8-hr average effluent b) Reaction rate constant • Type B : 46.9 g/m³·hr (High Peak) 300 0.03 Control unit Peak **Control unit** Base Rate constant, sec⁻¹ 00 00 **Integrated unit** Effluent, mg/m³ 800 200 \bigcirc \circ Inlet Conc., ppmv 600 $\mathbf{\nabla}$ ▼ 100 400 200 Peak Integrated unit Base 0 0.00 0 В D B C Α С D Α 60 120 180 0 **Feeding condition Feeding condition** Time, min

Results: Further Application

Feeding Condition

 Type C : 56.3 g/m³·hr (Frequent Peak)

a)8-hr average effluent b) Reaction rate constant

Results: Further Application

Feeding Condition

 Type D : 65.9 g/m³·hr (High & Frequent Peak)

a)8-hr average effluent b) Reaction rate constant

Results II: Feeding Condition 2

Transient feeding condition 2:

10 hrs square wave change + 14 hrs starvation without toluene loadings

600ppmv (15min) → 200ppmv (15min) → 400ppmv(15min) → 200ppmv(15min) / 1 Hr

Desorption profiles of 2-bed adsoprion unit

Overall Removal Performance (with backwashing as biomass control)

Overall Removal Performance (with backwashing as biomass control)

Results: Further Application

<u>Reactor volume of a single biofilter to achieve the same treatment goal</u> as in the integrated system

Feeding Condition	Type A	Type B	Type C	Type D
Peak concentration ($C_{i,p}$), ppmv	400	700	400	600
(g/m^3)	(1.53)	(2.68)	(1.53)	(2.30)
Biofilter bed volume required (V), m^{3} **	0.00435	0.00761	0.00435	0.00653
V/Vintegrated **	1.5	2.6	1.5	2.2

* Volume of the integrated unit = 0.00293 m³

Summary

The net effect of the 2-bed adsorption was VOC concentration stabilization that makes it amenable for effective stable biodegradation

- 1. The 2-step cycle in the adsorption unit successfully performed particular functions as
 - A polishing unit to abate the initial acclimation for the biofilter;
 - A buffering unit to mitigate the biofilter performance;
 - A feeding source for the biofilter without any feeding phase
- Details of the reactor volume suggest that capital expense can be minimized by achieving a careful design and operation of the integrated treatment scheme.

Acknowledgements

• National Science Foundation (NSF) Award Number BES 0229135

