OWEA Meeting, Columbus, June 21. 2005

Treatment of VOCs emitted from Wastewater Treatment Plant by a hybrid process scheme of a 2-bed adsorber and a biofilter

Daekeun Kim

UNIVERSITY

Department of Civil and Environmental Engineering

Contents

- Introduction
- Objective
- Theory of This Study
- Materials and Methods
- Experimental Results
- Conclusion

VOC Emission and Regulation

- 1. Volatile Organic Compounds.
- 2. The passage of the 1990 Amendments to the Clean Air Act: significantly heightened the interest in the development of innovative technologies for VOCs removal
- 3. VOCs are precursors to the formation of ozone, and they have their own toxicity.
- 4. International standard on environmental management (ISS14000): demands the treatment of VOCs emission

Wastewater treatment

- **1. Source of VOCs to ambient atmosphere**. affected by the Clean Air Act Amendments.
- 2. Depend on domestic, commercial, and industrial sources
- 3. VOCs are transferred into the air mainly in case of aerated bioreactor. (activated sludge process)

VOC Removal technology

- 1. Thermal oxidation, Catalytic oxidation, Condensation, Carbon adsorption, Membrane separation...
- 2. Biological treatment: economical and ecological technology
- 3. Biofiltration

Application of biofiltration

- 1. Owner and location: Novartis; Basle, Switzerland
- 2. Air flow rate: 60,000 - 75,000 m³/h (Exhaust air from plant)
- 3. Pollutants: toluene, xylene, methanol, isopropoanol, chloroform...
 Total conc. : 180 – 500 mg/m³

Application of biofiltration

- 4. Biofilter Design Investment costs (\$2,000,000) Treatment costs (\$1.44 per 1000 m³ off gas)
- 5. Biofilter Performance Removal: 80 %

(depends on inlet loading)

Solution = Buffer unit

Adsorption unit can be a buffer unit for a biofilter

Current application : Single bed of carbon filter

Consideration of current adsorption unit High loading & Large fluctuation \rightarrow Losing buffer capacity Initial period of operation \rightarrow No contaminant in effluent

Objective

Objective

Main Objective

A 2-bed adsorption unit is proposed to establish long-term stable buffer capacity of adsorption unit in mitigating biofilter performance

Specfic Objective

- To design and evaluate a 2-bed adsorption unit
- To evaluate the overall performance of a combined process scheme (2-bed adsorption unit + Biofilter)
- To be compared with that of a control unit without adsorption unit (Biofilter)

2-Bed Adsorption Unit

- Conceptually simple process to PSA
- PSA (Pressure Swing Adsorption) :
 - \rightarrow A technology for separation and purification for gas mixtures
 - \rightarrow 4 Steps for operational function

2-Bed Adsorption Unit

- Conceptually simple process to PSA
- Hypothetically, adsorption rate is equal to its desorption rate
 - \rightarrow Operational function is simplified to a 2-step

2-Bed Adsorption Unit

- Cyclic operation : Shift of air flow direction
 - \rightarrow Each bed will not be fully saturated with adsorbate

Counterclockwise

2-Bed Adsorption Unit

Will Serve as

- Polishing unit during the initial acclimation period of the biofilter
- Buffer unit in load fluctuation
- Feeding source without any feeding phase while non-use periods

Materials and Methods

Feeding Condition

Targeted VOC

Toluene (C₇H₈)

- Comment solvent employed in the industry
- A major component in paints and varnishes

Concentration & Loading

- 1st Condition: Square Wave Change
- Base = 200 ppmv
- Peak = 400 ppmv (15 mins / hour)
- Average concentration : 250 ppmv

Feeding Condition

Targeted VOC

Toluene (C₇H₈)

- Comment solvent employed in the industry
- A major component in paints and varnishes

Concentration & Loading

- 1st Condition: Square Wave Change
- Base = 200 ppmv
- Peak = 400 ppmv (15 mins / hour)
- Average concentration : 250 ppmv

Feeding Condition

Targeted VOC

Toluene (C₇H₈)

- Comment solvent employed in the industry
- A major component in paints and varnishes

Concentration & Loading

- 1st Condition: Square Wave Change
- Base = 200 ppmv
- Peak = 400 ppmv (15 mins / hour)
- Average concentration : 250 ppmv
- Average loading rate : 46.9 g/m³·hr

Materials and Methods

Adsorption Unit

- 2 Beds
- Dimension : 2.5 cm (D) × 20 cm (L)
- Cyclic operation : 8 hours/ cycle
- Supplemental fresh air valve
- EBRT: 5.6 sec (2.2 L/min)

• Absorbent : GAC (BPL 6 × 16)

Materials and Methods

Biofilter

Trickle Bed Air Biofilter (TBAB)

- Dimension : 76 mm (D) × 130 cm (L)
- Buffered nutrient solution supply
- Operating Temp. : 20 °C
- EBRT: 1.2 min (2.2L/min)

Media

- Celite[®] 6 mm R-635 Bio-Catalyst Carrier
- Packing depth : 60 cm
- Seeded with aerobic microbial culture pre-acclimating to toluene

Schematic Diagram of Experimental Setup

Experimental Results

2-Bed Adsorption Performance

Square wave change of inlet concentration

2-Bed Adsorption Performance

Square wave change of inlet concentration

2-Bed Adsorption Performance

Square wave change of inlet concentration

Effluent Concentration

Exposure guideline : 5 mg/m³ (AIHA)

Effluent Concentration

Effluent Concentration

Removal Efficiency

Reacclimation

Effluent response after 2 days of starvation

Reacclimation

Effluent response after 2 days of starvation

Reacclimation

Effluent response after 2 days of starvation

Feeding Conditions

Feeding Conditions

• 1st : 46.9 g/m³-hr

Feeding Condition

• 2nd : High concentration of peak, 46.9 g/m³-hr

Feeding Condition

> 2nd : High concentration of peak, 46.9 g/m³-hr

• 3rd : Frequent peak, 56.3 g/m³·hr

Feeding Condition

- > 2nd : High concentration of peak, 46.9 g/m³-hr
- o 3rd : Frequent peak, 56.3 g/m³-hr
- 4th : High con. and frequent peak, 65.9 g/m³·hr

Conclusion

Conclusion

 During unsteady-state loading conditions,
 The 2-step of adsorption and desorption cycle in the 2-bed adsorption mitigated the adverse effects of load fluctuation on biofilter performance

2. The 2-Step cycle, i.e., adsorption and desorption, functioned as

- A polishing unit to abate the initial acclimation for the biofilter
- A buffering unit to dampen the biofilter performance
- A feeding source to the biofilter during non-use periods

Conclusion

By mitigate the adverse effects of load fluctuation,
 It also has the potential to reduce the total size of the system as compared with the single biofilter.

Acknowledgements	
 National Science Foundation (NSF) Dr. George A. Sorial 	
	10

OWEA Meeting, Columbus, June 21. 2005

Treatment of VOCs emitted from Wastewater Treatment Plant by a hybrid process scheme of a 2-bed adsorber and a biofilter

Department of Civil and Environmental Engineering

