Edge Magic Labeling for Unions of Cycles

Inne Singgin Department of Mathematics \& Statistics, University of Minnesota Duluth

DEFINITION

An Edge Magic Total (EMT) labeling is a bijection from the set of vertices and edges to a set of numbers defined by $\lambda: V \cup E \rightarrow\{1,2, \ldots,|V|+|E|\}$ with the property that for every $x y \in E, \lambda(x)+$ $\lambda(y)+\lambda(x y)=k$ for some integer k
A Super Edge Magic Total (SEMT) labeling is EMT labeling with $\lambda(V)=\{1,2, \ldots,|V|\}$ and $\lambda(E)=\{|V|+1,|V|+2, \ldots,|V|+|E|\}$.

KnOwn Results

Cycles C_{n} are known to have EMT labeling for $n \geq 3$ and a SEMT labeling iff $n \geq 3$ is odd. One among a few variations of cycles that is known to have EMT labeling is the union of cycles.
Figuera-Centeno et al. proved that the union of m identical cycles $\left(m C_{n}\right)$ has a SEMT labeling if and only if both m and n are odd. No results had been found for other parities of m and n.
Our objective is to investigate the EMT labeling for $m C_{n}$ when m and n are not both odd
In what follows, $m C_{n}$ where $C_{i}=\left(V_{i}, E_{i}\right)$, and let $V_{i}=\left\{v_{i}^{1}, v_{i}^{2}, \ldots, v_{i}^{n}\right\}$ and $E_{i}=\left\{e_{i}^{1}, e_{i}^{2}, \ldots, e_{i}^{n}\right\}$ with e_{i}^{j} denotes the edge joining the vertices v_{i}^{j} and v_{i}^{j+1} where the index j is taken modulo n.

References

[1] Gallian, J.A., A Dynamic Survey of Graph Label ing, The Electric Journal of Combinatorics, 2013.
[2] Sugeng, K.A., Magic and Antimagic Labeling of Graphs, Dissertation, University of Ballarat, 2005 .
[3] Figuera-Centeno, R.M., Ichisima, R., MuntanerBatle, On Super Edge-Magic Graphs, Ars Combinatoria.64, 2002.
[4] Figuera-Centeno, R.M., Ichisima, R., MuntanerBatle, F.A., Oshima, A., A Magical Approach to Some Labeling Conjectures, Discussiones Mathematicae.31, 2011.
[5] Wijaya, K., Baskoro, E.T., Edge-Magic Total Labeling on Disconnected Graphs, Proceedings of the eleventh AWOCA, 2000
[6] Marr, A.M., Wallis, W.D. Magic Graphs, Springer, 2013.

Kotzig Array

A Kotzig Array is a $d \times m$ grid, each row being a permutation of $\{0,1,, m-1\}$ and each column having a constant column sum.

ALGORITHM

For $m C_{n}$ with odd m and even n, the EMT labeling construction can be obtained using the follow ing steps:

1. Make m copies of labeled C_{n} as given in [6] Reassign the vertex labeled 1 in [6] as v_{1}^{1} and assign the rest of vertices be v_{i}^{j} with j ordered clockwise.
2. Make $3 \times m$ Kotzig array, multiply each number inside the array with $2 n$.
3. Add the number on the $i^{\text {th }}$ column of the first row to the label of odd ordered vertices (vertices with odd j) in the $i^{\text {th }}$ cycle of $m C_{n}$.
4. Add the number on the $i^{t h}$ column of the second row to the label of even ordered vertices (vertices with even j) in the $i^{\text {th }}$ cycle of $m C_{n}$.
5. Add the number on the $i^{\text {th }}$ column of the third row to the label of the edges in the $i^{\text {th }}$ cycle.
For convenience in describing the example later, the algorithm above is only for times when we start using a single cycle. The generalization of this algortihm can be made using small modification on the first two steps.
Observe that every integer m can be expressed as a multiplication between a power of two and an odd number.
For the first step, make $\frac{m}{2}$ copies of labeled $m C_{n}, m=2^{a}$ for $a \in \mathbb{N}$. For the second step, make $3 \times \frac{m}{a+1}$ Kotzig array, multiply each number inside the array with $2^{a+1} n$.

EXAMPLES

Below is how the algorithm applied to construct the labeling of $3 C_{6}$
Step 1.

Step 2.

Step 3 to 5 .

EMT labeling for $3 C_{6}$

CONCLUSION

m	n	Type of labeling	Notes
Odd	Odd	SEMT	all odd n and m (result from [3])
Odd	Even	EMT	all $m \geq 1$ and $n 2$
Even	Even	EMT	$m \equiv 2 \bmod 4, n \in\{4,6,8,10,12\}$ and $m \equiv 4 \bmod 8, n=4$
Even	Odd	not EMT	if $m=2, n=3$. others are unknown

Table 1: Known EMT / SEMT labeling for unions of cycles

Future Research

We strongly believe that $2 C_{n}$ has EMT labeling with $k=5 n+2$ for every even value of n. Currently we are still trying to generate EMT labeling for $m C_{n}, m=2^{a}, a \in \mathbb{N} \cup\{0\}$ in oder to prove that $m C_{n}$ has EMT labeling for every value of m and n.

CONTACT INFORMATION
Web www.d.umn.edu/ singg001
Email singg001@d.umn.edu
Phone +1 (218) 409-4967

