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Erdős et al. (1989) [4] conjectured that the diameter of a K2r-
free connected graph of order n and minimum degree δ ≥ 2
is at most 2(r−1)(3r+2)

(2r2−1) · n
δ

+ O(1) for every r ≥ 2, if δ is a 
multiple of (r − 1)(3r + 2). For every r > 1 and δ ≥ 2(r −
1), we create K2r-free graphs with minimum degree δ and 
diameter (6r−5)n

(2r−1)δ+2r−3 + O(1), which are counterexamples to 
the conjecture for every r > 1 and δ > 2(r−1)(3r+2)(2r−3).

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The following theorem was discovered several times [1,4,6,7]:

Theorem 1. For a fixed minimum degree δ ≥ 2 and n → ∞, for every n-vertex connected 
graph G, we have diam(G) ≤ 3n

δ+1 + O(1).
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Note that the upper bound is sharp (even for δ-regular graphs [2]), but the construc-
tions have complete subgraphs whose order increases with δ. Erdős, Pach, Pollack, and 
Tuza [4] conjectured that the upper bound in Theorem 1 can be strengthened for graphs 
not containing complete subgraphs:

Conjecture 1 ([4]). Let r, δ ≥ 2 be fixed integers and let G be a connected graph of order 
n and minimum degree δ.

(i) If G is K2r-free and δ is a multiple of (r − 1)(3r + 2) then, as n → ∞,

diam(G) ≤ 2(r − 1)(3r + 2)
(2r2 − 1) · n

δ
+ O(1)

=
(

3 − 2
2r − 1 − 1

(2r − 1)(2r2 − 1)

)
n

δ
+ O(1).

(ii) If G is K2r+1-free and δ is a multiple of 3r − 1, then, as n → ∞,

diam(G) ≤ 3r − 1
r

· n
δ

+ O(1) =
(

3 − 2
2r

)
n

δ
+ O(1).

Set k = 2r or k = 2r + 1 according the cases. As connected δ-regular graphs are 
Kδ+1-free (apart from Kδ+1 itself), we need δ ≥ k (at least) to make improvement on 
Theorem 1. Furthermore, as the conjectured constants in the bounds are at most 3 − 2

k , 
Theorem 1 implies that the conjectured inequalities hold trivially, unless δ ≥ 3k

2 − 1.
Erdős et al. [4] constructed graph sequences for every r, δ ≥ 2, where δ satisfies the 

divisibility condition, which meet the upper bounds in Conjecture 1. We show these 
construction them in Section 2.

Part (ii) of Conjecture 1 for r = 1 was proved in Erdős et al. [4]. Conjecture 1
is included in the book of Fan Chung and Ron Graham [5], which collected Erdős’s 
significant problems in graph theory.

No more progress has been reported on this conjecture, except that for r = 2 in (ii), 
under a stronger hypothesis (4-colorable instead of K5-free), Czabarka, Dankelman and 
Székely [3] arrived at the conclusion of Conjecture 1:

Theorem 2. For every connected 4-colorable graph G of order n and minimum degree 
δ ≥ 1, diam(G) ≤ 5n

2δ − 1.

In Section 3, we give an unexpected counterexample for Conjecture 1 (i) for every 
r ≥ 2 and δ > 2(r − 1)(3r + 2)(2r − 3). The question whether Conjecture 1 (i) holds in 
the range (r−1)(3r+2) ≤ δ ≤ 2(r−1)(3r+2)(2r−3) is still open. The counterexample 
leads to a modification of Conjecture 1, which no longer requires cases:
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Conjecture 2. For every k ≥ 3 and δ ≥ �3k
2 � − 1, if G is a Kk+1-free (weaker version: 

k-colorable) connected graph of order n and minimum degree at least δ, diam(G) ≤(
3 − 2

k

)
n
δ + O(1).

For k = 2r, Conjecture 2 is identical to Conjecture 1(ii). For k = 2r−1, 3 − 2
k = 6r−5

2r−1 , 
and, although the conjectured bound is likely not tight for any δ, the fraction 6r−5

2r−1
cannot be reduced for all δ according to the construction in Section 3.

2. Clump graphs and the constructions for Conjecture 1

We define a (weighted) clump graph H as follows: x is a vertex of maximum eccen-
tricity, Li is the set of vertices at distance i from x, D = diam(H), L0 = {x}, LD = {y}
the weight of x and y is 1 and all other vertices are weighted with positive integers. The 
vertices of H are referred to as clumps.

A weighted clump graph H gives rise to a simple (unweighted) graph G by blowing 
up vertices of H into as many copies as their weight is, i.e. every vertex of H corresponds 
to an independent set of G with size the same as the weight was. Two vertices in G are 
connected if they correspond to connected vertices in H. The degrees in G correspond to 
the sum of the weights of neighbors of the vertices in H, diam(G) = diam(H), and the 
number of vertices in G is the sum of the weights of all vertices in H, and the maximum 
clique size and chromatic number of G and H are the same.

It is convenient to describe the constructions of Erdős et al. [4] in terms of clump 
graphs. Any two consecutive layers of the clump graphs will form a complete graph, and, 
as the order of these complete graphs will be at most 2r − 1 (resp. 2r), the graphs will 
be (2r − 1)-colorable and K2r-free (resp. 2r-colorable and K2r+1-free).

For the construction for K2r-free graphs, when δ is a multiple of (r − 1)(3r + 2): For 
2 ≤ i ≤ D − 2, for every odd i, layer Li has r clumps, and for every even i, layer Li has 
r− 1 clumps The single clumps in L0 and LD get weight 1, for 3 ≤ i ≤ D− 2, for every 
odd i, the clumps in layer Li get weight rδ

(r−1)(3r+2) and for 2 ≤ i ≤ D − 1, for every 

even i, the clumps in layer Li get of weight (r+1)δ
(r−1)(3r+2) . Use weight δ for clumps in L1

and LD−1.
For the construction for K2r+1-free graphs, when δ is a multiple of 3r−1: For 1 ≤ i ≤

D− 1, layer Li has r clumps. The single clumps in L0 and LD get weight 1, and clumps 
in layers Li for 2 ≤ i ≤ D− 2 get weight δ

3r−1 . Use weight δ for clumps in L1 and LD−1.
The diameters of these constructions obviously meet the upper bounds of Conjecture 1

within a constant term that depends on r, but not on n or δ.

3. Counterexamples

We will make use of a clump graph to create a (2r−1)-colorable (and hence K2r-free) 
graphs with minimum degree δ for every r ≥ 2 that refute Conjecture 1 (i).
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Fig. 1. The repetitive block C1,δ for the weighted clump graph of the counterexample for 3-colorable/K4-free 
graphs. The letters X, Y, Z give a 3-coloration and the label above the vertex gives the weight of the vertex.

To make our quantities slightly more palatable in the description, we make the shift 
s = r − 1, and work with (2s + 1)-colorable graphs for s ≥ 1.

For positive integers p, s and δ ≥ 2s, we will create a weighted clump graph Hs,δ,p

with p(6s + 1) layers, such that the number of vertices in two consecutive layers is at 
most 2s +1, each vertex is adjacent to all other vertices in its own layer and in the layers 
immediately before and after it. The layer structure of Hs,δ,p is basically periodic, up 
to a tiny modification in the weights. We are going to define a symmetric block Cs,δ of 
6s + 1 layers, and Hs,δ,p is the juxtaposition of p copies of Cs,δ, with the modification 
of increasing by 1 the weight of one vertex in the second layer L1 and one vertex in the 
next-to-last layer Lp(6s+1)−1.

Let 0 ≤ d ≤ 2s −1 be the remainder, when we divide δ with 2s. We define Cs,δ by the 
number of points and their weights in the layers Lm for 0 ≤ m ≤ 3s as detailed below; 
for 3s + 1 ≤ m ≤ 6s, Lm and the weights will be the same as in L6s−m. In layers L3i±1, 
every weight will be � δ

2s	 or � δ
2s� before adjustment, and in layers L3i the weights will 

be 1. More precisely:

(A) For each i : 0 ≤ i ≤ s, let the layer L3i contain a single vertex with weight 1.
(B) For each i : 0 ≤ i ≤ s − 1, let the layer L3i+1 contain 2s − i vertices, and assign 

them the following weights:
(a) If d = 0, let the weight of each of these vertices be δ

2s . The adjustment is that 
for a single vertex in L1, whose weight is reduced to δ

2s − 1. (By symmetry, the 
same adjustment happens in L6s−1.)

(b) If d ≥ 1, then let min(2s − i, d − 1) vertices have weight � δ
2s�, and the rest have 

weight � δ
2s	.

(C) For each i : 0 ≤ i < s − 1, let the layer L3i+2 contain i +1 vertices, and assign them 
the following weights:
(a) If d = 0, let the weight of each of them be δ

2s .
(b) If 1 ≤ d, then let d −min(2s −i −1, d −1) vertices have weight � δ

2s�, and the rest 
gets weight � δ

2s	. (This weight assignment is feasible. Note that L3i+2 contains 
i + 1 vertices, and, as d ≤ 2s − 1, 1 ≤ d − min(2s − i − 1, d − 1) ≤ i).
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(D) Let layer L3s−1 (and symmetrically layer L3s+1) have s vertices each. In these layers, 
let �d

2	 vertices (resp. �d
2� vertices) have weight � δ

2s�, and the remaining vertices get 
weight � δ

2s	. (This weight assignment is feasible. Since d ≤ 2s − 1, �d
2� ≤ s.)

Note that min(d −1, 2s −i) = d −1 for i ∈ {0, 1, 2}. We use this minimization for i ≤ s −2. 
When s ≤ 4, we have s − 2 ≤ 2, consequently there is no need to use the minimization 
formula for s ≤ 4. Therefore we show C5,δ in Fig. 2, which is the first instance to show 
all complexities of the counterexamples. The case s = 1, when d ∈ {0, 1}, is even simpler: 
it is possible to describe the weights without reference to d, see Fig. 1 for C1,δ.

Lemma 1. Let p ≥ 1 and s ≥ 2. The weighted clump graph Hs,δ,p has the following 
properties:

(a) Hs,δ,p is (2s + 1)-colorable with diameter p(6s + 1) − 1.
(b) The sum of the weights of all vertices is p

(
(2s + 1)δ + 2s − 1

)
+2.

(c) For any vertex y ∈ V (Hs,δ,p), the sum of the weights of its neighbors is at least δ.

Proof. (a) The statement on the diameter is trivial. As the number of vertices in any 
two consecutive layer of Hs,δ,p is at most 2s +1, we can (2s +1)-color Hs,δ,p with (2s +1)
colors from left to right greedily.

(b) If W is the sum the weights of vertices in the block Cs,δ, then the total sum of 
weights in Hs,δ,p is pW + 2 (the 2 is due to the modification), so we need to show that 
W = (2s + 1)δ + 2s − 1.

Consider an i with 0 < i < s −1. L3i−1∪L3i+1 has (i −1) +1 +2s − i = 2s vertices. If 
d = 0, each of them has weight δ

2s , otherwise d −min(d −1, 2s − i) +min(d −1, 2s − i) = d

of them have weight � δ
2s�, and the rest have weight � δ

2s	. So the sum of the weight of 
the vertices in L3i−1 ∪ L3i ∪ L3i+1 is δ + 1, and so is in L6s−3i+1 ∪ L6s−3i ∪ L6s−3i−1.

L3s−1 ∪ L3s+1 contains 2s vertices, �d
2	 + �d

2� = d of them has weight � δ
2s�, the rest 

� δ
2s	, so the sum of the weights of the vertices in L3s−1 ∪ L3s ∪ L3s+1 is also δ + 1.
L1 has 2s vertices. If d = 0, one of these have weight δ

2s − 1 and the rest have weight 
δ
2s . If d > 0, d − 1 of the vertices have weight � δ

2s�, the rest has weight � δ
2s	. The sum of 

the weights in L0 ∪ L1 is 1 + δ − 1 = δ.
So W = 2δ + (2s − 1)(δ + 1) = (2s + 1)δ + 2s − 1, which finishes the proof of (b).
For (c): Let y be a vertex of Hs,δ,p. Then for some j (0 ≤ j < p), y is in the j-th block 

Cs,δ, and for some m (0 ≤ m ≤ 6s), y is in the layer Lm of Cs,δ. Because of symmetry, 
we may assume that 0 ≤ m ≤ 3s. The weights in the layer L3s−1 are less or equal than 
the weights in the layer L3s+1, but may not be equal, breaking the symmetry, but still 
handling cases with 0 ≤ m ≤ 3s gives a δ lower bound to the degrees of all vertices 
of Hs,δ,p. In addition, layer (j, m) = (p − 1, 6s − 1), where a modification happened, is 
symmetric to the layer (j, m) = (0, 1), where identical modification happened. Therefore 
checking the degrees of the vertices in the first half of the first (and modified) copy of 
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e graphs. The vertices within a layer are connected 
numbers in the vertices give a good 11-coloration. 
weight � δ

10 �; and the numbers, from which dotted 
0� δ

10 �. The adjustment: if d = 0, the weight of the 
Fig. 2. The repetitive block C5,δ of the weighted clump graph of the for 11-colorable/K12-free counterexampl
with a vertical line. Two vertices are connected, if they are in the same layer or in consecutive layers. The 
Before adjustment, white rectangular vertices have weight 1 and gray vertices have either weight � δ

10 � or 
arrows point to columns, give the number of vertices in the column that have weight � δ

10 �. Recall d = δ − 1
two diamond shaped vertices are decreased by 1.
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Cs,δ in Hs,δ,p covers checking the degrees in the second half of the last (and modified) 
copy of Cs,δ in Hs,δ,p.

If y ∈ L3i for some 0 < i ≤ 2s, then y has weight 1 and is adjacent to all vertices 
but itself in L3i−1 ∪ L3i ∪ L3i+1. As we have already shown in the proof of part (b), 
L3i−1 ∪ L3i ∪ L3i+1 has total weight δ + 1, the neighbors of y have total weight δ.

If y ∈ L0, then as we showed in the proof of part (b), the total weight of the vertices 
in L0 in an unmodified block, which is not the first or the last block, is δ − 1. Either y
is adjacent to a vertex of weight 1 outside of its own block, or y is in a modified block 
where the total weight of L1 got increased by 1: in both cases the sum of the weights of 
the neighbors of y is δ.

Assume now that y is a vertex of L3i+1 ∪ L3i+2 for some 0 ≤ i ≤ s − 1. Note 
L3i+1 ∪ L3i+2 contains 2s + 1 vertices, 2s of which is the neighbor of y, plus y has a 
neighbor of weight 1 outside of L3i+1 ∪ L3i+2. We consider two cases for d:

If d = 0 and 0 < i ≤ s − 1, then each neighbor of y in L3i+1 ∪L3i+2 has weight δ
2s , so 

the sum of the weights of the neighbors of y is δ + 1. If d = 0 and i = 0, because of the 
adjustment, the sum of the weights of the neighbors may decrease by 1, and is still ≥ δ.

If d > 0, then all vertices in L3i+1 ∪L3i+2 have weight at least � δ
2s	. If i < s − 1, then 

at least min(d − 1, 2s − i) + d −min(d − 1, 2s − i − 1) ≥ d many vertices of L3i+1 ∪L3i+2

have weight � δ
2s�. If i = s −1, then, as s +1 > �d

2�, we have that �d
2	 ≥ max(1, d −(s +1)), 

so L3s−2 ∪L3s−1 has at least min(d − 1, s + 1) + �d
2	 = d −max(1, d − (s + 1)) + �d

2	 ≥ d

vertices with weight � δ
2s�. Therefore, for any 0 ≤ i ≤ s − 1, any y ∈ L3i+1 ∪ L3i+2 has 

at least d − 1 neighbors of weight � δ
2s	 + 1, the total weight of y’s neighbors is at least 

2s� δ
2s	 + d − 1 + 1 = δ. This finishes the proof of (c). �

Theorem 3. Let r ≥ 2, δ ≥ 2r − 2, and for each positive integer p, let Gr,δ,p be the 
graph whose weighted clump graph is Hr−1,δ,p. Then Gr,δ,p is 2r−1 colorable (and hence 
K2r-free), connected, with minimum degree δ, of order n = p

(
(2r − 1)δ + 2r − 3

)
+2, 

and of diameter (6r−5)n
(2r−1)δ+2r−3 + O(1). Consequently, Conjecture 1 fails for every δ >

12r3 − 22r2 − 2r + 12 = 2(r − 1)(3r + 2)(2r − 3). Furthermore, the difference between 
the coefficient of nδ in our construction and in Conjecture 1(i) is 1

(2r2−1)(2r−1) + o(1), as 
δ → ∞.

Proof. By Lemma 1, Gr,δ,p is (2r−1)-colorable with minimum degree δ, diameter p(6r−
5) − 1, and it has n = p

(
(2r − 1)δ + 2r − 3

)
+2 vertices. Therefore its diameter is 

(6r−5)(n−2)
(2r−1)δ+2r−3 − 1 = (6r−5)n

(2r−1)δ+2r−3 + O(1). Consider the identity

(6r − 5)δ
(2r − 1)δ + 2r − 3 − 2(r − 1)(3r + 2)

(2r2 − 1) = 1
(2r2 − 1)(2r − 1) ·

1 − 12r3−22r2−2r+12
δ

(1 + 2r−3
(2r−1)δ )

.

This shows both the fact that (6r−5)n
(2r−1)δ+2r−3 ≤ 2(r−1)(3r+2)

(2r2−1) · nδ iff δ ≤ 12r3−22r2−2r+12, 
and the statement about the difference. �
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