

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Counterexamples to a conjecture of Erdős, Pach, Pollack and Tuza

Journal of Combinatorial

Theory

Éva Czabarka^{a,b}, Inne Singgih^c, László A. Székely^{a,b}

^a Department of Mathematics, University of South Carolina, Columbia, SC 29212, USA

^b Visiting Professor, Department of Pure and Applied Mathematics, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa ^c Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA

A R T I C L E I N F O

Article history: Received 6 November 2020 Available online xxxx

Keywords: Diameter Minimum degree

ABSTRACT

Erdős et al. (1989) [4] conjectured that the diameter of a K_{2r} -free connected graph of order n and minimum degree $\delta \geq 2$ is at most $\frac{2(r-1)(3r+2)}{(2r^2-1)} \cdot \frac{n}{\delta} + O(1)$ for every $r \geq 2$, if δ is a multiple of (r-1)(3r+2). For every r > 1 and $\delta \geq 2(r-1)$, we create K_{2r} -free graphs with minimum degree δ and diameter $\frac{(6r-5)n}{(2r-1)\delta+2r-3} + O(1)$, which are counterexamples to the conjecture for every r > 1 and $\delta > 2(r-1)(3r+2)(2r-3)$. © 2021 Elsevier Inc. All rights reserved.

1. Introduction

The following theorem was discovered several times [1,4,6,7]:

Theorem 1. For a fixed minimum degree $\delta \geq 2$ and $n \to \infty$, for every n-vertex connected graph G, we have diam $(G) \leq \frac{3n}{\delta+1} + O(1)$.

 $\label{eq:https://doi.org/10.1016/j.jctb.2021.06.001} 0095-8956/ © 2021$ Elsevier Inc. All rights reserved.

E-mail address: czabarka@math.sc.edu (É. Czabarka).

Note that the upper bound is sharp (even for δ -regular graphs [2]), but the constructions have complete subgraphs whose order increases with δ . Erdős, Pach, Pollack, and Tuza [4] conjectured that the upper bound in Theorem 1 can be strengthened for graphs not containing complete subgraphs:

Conjecture 1 ([4]). Let $r, \delta \ge 2$ be fixed integers and let G be a connected graph of order n and minimum degree δ .

(i) If G is K_{2r} -free and δ is a multiple of (r-1)(3r+2) then, as $n \to \infty$,

$$diam(G) \le \frac{2(r-1)(3r+2)}{(2r^2-1)} \cdot \frac{n}{\delta} + O(1)$$
$$= \left(3 - \frac{2}{2r-1} - \frac{1}{(2r-1)(2r^2-1)}\right) \frac{n}{\delta} + O(1).$$

(ii) If G is K_{2r+1} -free and δ is a multiple of 3r-1, then, as $n \to \infty$,

$$\operatorname{diam}(G) \le \frac{3r-1}{r} \cdot \frac{n}{\delta} + O(1) = \left(3 - \frac{2}{2r}\right)\frac{n}{\delta} + O(1).$$

Set k = 2r or k = 2r + 1 according the cases. As connected δ -regular graphs are $K_{\delta+1}$ -free (apart from $K_{\delta+1}$ itself), we need $\delta \geq k$ (at least) to make improvement on Theorem 1. Furthermore, as the conjectured constants in the bounds are at most $3 - \frac{2}{k}$. Theorem 1 implies that the conjectured inequalities hold trivially, unless $\delta \geq \frac{3k}{2} - 1$.

Erdős *et al.* [4] constructed graph sequences for every $r, \delta \geq 2$, where δ satisfies the divisibility condition, which meet the upper bounds in Conjecture 1. We show these construction them in Section 2.

Part (ii) of Conjecture 1 for r = 1 was proved in Erdős *et al.* [4]. Conjecture 1 is included in the book of Fan Chung and Ron Graham [5], which collected Erdős's significant problems in graph theory.

No more progress has been reported on this conjecture, except that for r = 2 in (ii), under a stronger hypothesis (4-colorable instead of K_5 -free), Czabarka, Dankelman and Székely [3] arrived at the conclusion of Conjecture 1:

Theorem 2. For every connected 4-colorable graph G of order n and minimum degree $\delta \geq 1$, diam $(G) \leq \frac{5n}{2\delta} - 1$.

In Section 3, we give an unexpected counterexample for Conjecture 1 (i) for every $r \ge 2$ and $\delta > 2(r-1)(3r+2)(2r-3)$. The question whether Conjecture 1 (i) holds in the range $(r-1)(3r+2) \le \delta \le 2(r-1)(3r+2)(2r-3)$ is still open. The counterexample leads to a modification of Conjecture 1, which no longer requires cases:

Conjecture 2. For every $k \ge 3$ and $\delta \ge \lceil \frac{3k}{2} \rceil - 1$, if G is a K_{k+1} -free (weaker version: k-colorable) connected graph of order n and minimum degree at least δ , diam $(G) \le (3 - \frac{2}{k}) \frac{n}{\delta} + O(1)$.

For k = 2r, Conjecture 2 is identical to Conjecture 1(ii). For k = 2r - 1, $3 - \frac{2}{k} = \frac{6r - 5}{2r - 1}$, and, although the conjectured bound is likely not tight for any δ , the fraction $\frac{6r - 5}{2r - 1}$ cannot be reduced for all δ according to the construction in Section 3.

2. Clump graphs and the constructions for Conjecture 1

We define a *(weighted) clump graph* H as follows: x is a vertex of maximum eccentricity, L_i is the set of vertices at distance i from x, D = diam(H), $L_0 = \{x\}$, $L_D = \{y\}$ the weight of x and y is 1 and all other vertices are weighted with positive integers. The vertices of H are referred to as clumps.

A weighted clump graph H gives rise to a simple (unweighted) graph G by blowing up vertices of H into as many copies as their weight is, i.e. every vertex of H corresponds to an independent set of G with size the same as the weight was. Two vertices in G are connected if they correspond to connected vertices in H. The degrees in G correspond to the sum of the weights of neighbors of the vertices in H, diam(G) = diam(H), and the number of vertices in G is the sum of the weights of all vertices in H, and the maximum clique size and chromatic number of G and H are the same.

It is convenient to describe the constructions of Erdős *et al.* [4] in terms of clump graphs. Any two consecutive layers of the clump graphs will form a complete graph, and, as the order of these complete graphs will be at most 2r - 1 (resp. 2r), the graphs will be (2r - 1)-colorable and K_{2r} -free (resp. 2r-colorable and K_{2r+1} -free).

For the construction for K_{2r} -free graphs, when δ is a multiple of (r-1)(3r+2): For $2 \leq i \leq D-2$, for every odd *i*, layer L_i has *r* clumps, and for every even *i*, layer L_i has r-1 clumps The single clumps in L_0 and L_D get weight 1, for $3 \leq i \leq D-2$, for every odd *i*, the clumps in layer L_i get weight $\frac{r\delta}{(r-1)(3r+2)}$ and for $2 \leq i \leq D-1$, for every even *i*, the clumps in layer L_i get of weight $\frac{(r+1)\delta}{(r-1)(3r+2)}$. Use weight δ for clumps in L_1 and L_{D-1} .

For the construction for K_{2r+1} -free graphs, when δ is a multiple of 3r-1: For $1 \leq i \leq D-1$, layer L_i has r clumps. The single clumps in L_0 and L_D get weight 1, and clumps in layers L_i for $2 \leq i \leq D-2$ get weight $\frac{\delta}{3r-1}$. Use weight δ for clumps in L_1 and L_{D-1} .

The diameters of these constructions obviously meet the upper bounds of Conjecture 1 within a constant term that depends on r, but not on n or δ .

3. Counterexamples

We will make use of a clump graph to create a (2r-1)-colorable (and hence K_{2r} -free) graphs with minimum degree δ for every $r \geq 2$ that refute Conjecture 1 (i).

Fig. 1. The repetitive block $C_{1,\delta}$ for the weighted clump graph of the counterexample for 3-colorable/K₄-free graphs. The letters X, Y, Z give a 3-coloration and the label above the vertex gives the weight of the vertex.

To make our quantities slightly more palatable in the description, we make the shift s = r - 1, and work with (2s + 1)-colorable graphs for $s \ge 1$.

For positive integers p, s and $\delta \geq 2s$, we will create a weighted clump graph $H_{s,\delta,p}$ with p(6s + 1) layers, such that the number of vertices in two consecutive layers is at most 2s + 1, each vertex is adjacent to all other vertices in its own layer and in the layers immediately before and after it. The layer structure of $H_{s,\delta,p}$ is basically *periodic*, up to a tiny *modification* in the weights. We are going to define a symmetric block $C_{s,\delta}$ of 6s + 1 layers, and $H_{s,\delta,p}$ is the juxtaposition of p copies of $C_{s,\delta}$, with the modification of increasing by 1 the weight of one vertex in the second layer L_1 and one vertex in the next-to-last layer $L_{p(6s+1)-1}$.

Let $0 \leq d \leq 2s-1$ be the *remainder*, when we divide δ with 2s. We define $C_{s,\delta}$ by the number of points and their weights in the layers L_m for $0 \leq m \leq 3s$ as detailed below; for $3s + 1 \leq m \leq 6s$, L_m and the weights will be the same as in L_{6s-m} . In layers $L_{3i\pm 1}$, every weight will be $\lfloor \frac{\delta}{2s} \rfloor$ or $\lceil \frac{\delta}{2s} \rceil$ before adjustment, and in layers L_{3i} the weights will be 1. More precisely:

- (A) For each $i: 0 \le i \le s$, let the layer L_{3i} contain a single vertex with weight 1.
- (B) For each $i : 0 \le i \le s 1$, let the layer L_{3i+1} contain 2s i vertices, and assign them the following weights:
 - (a) If d = 0, let the weight of each of these vertices be $\frac{\delta}{2s}$. The adjustment is that for a single vertex in L_1 , whose weight is reduced to $\frac{\delta}{2s} 1$. (By symmetry, the same adjustment happens in L_{6s-1} .)
 - (b) If $d \ge 1$, then let $\min(2s i, d 1)$ vertices have weight $\lfloor \frac{\delta}{2s} \rfloor$, and the rest have weight $\lfloor \frac{\delta}{2s} \rfloor$.
- (C) For each $i: 0 \le i < s-1$, let the layer L_{3i+2} contain i+1 vertices, and assign them the following weights:
 - (a) If d = 0, let the weight of each of them be $\frac{\delta}{2s}$.
 - (b) If $1 \leq d$, then let $d \min(2s i 1, d 1)$ vertices have weight $\lfloor \frac{\delta}{2s} \rfloor$, and the rest gets weight $\lfloor \frac{\delta}{2s} \rfloor$. (This weight assignment is feasible. Note that L_{3i+2} contains i + 1 vertices, and, as $d \leq 2s 1$, $1 \leq d \min(2s i 1, d 1) \leq i$).

(D) Let layer L_{3s-1} (and symmetrically layer L_{3s+1}) have *s* vertices each. In these layers, let $\lfloor \frac{d}{2} \rfloor$ vertices (resp. $\lceil \frac{d}{2} \rceil$ vertices) have weight $\lceil \frac{\delta}{2s} \rceil$, and the remaining vertices get weight $\lfloor \frac{\delta}{2s} \rfloor$. (This weight assignment is feasible. Since $d \leq 2s - 1$, $\lceil \frac{d}{2} \rceil \leq s$.)

Note that $\min(d-1, 2s-i) = d-1$ for $i \in \{0, 1, 2\}$. We use this minimization for $i \leq s-2$. When $s \leq 4$, we have $s-2 \leq 2$, consequently there is no need to use the minimization formula for $s \leq 4$. Therefore we show $C_{5,\delta}$ in Fig. 2, which is the first instance to show all complexities of the counterexamples. The case s = 1, when $d \in \{0, 1\}$, is even simpler: it is possible to describe the weights without reference to d, see Fig. 1 for $C_{1,\delta}$.

Lemma 1. Let $p \ge 1$ and $s \ge 2$. The weighted clump graph $H_{s,\delta,p}$ has the following properties:

(a) $H_{s,\delta,p}$ is (2s+1)-colorable with diameter p(6s+1)-1.

- (b) The sum of the weights of all vertices is $p((2s+1)\delta + 2s 1) + 2$.
- (c) For any vertex $y \in V(H_{s,\delta,p})$, the sum of the weights of its neighbors is at least δ .

Proof. (a) The statement on the diameter is trivial. As the number of vertices in any two consecutive layer of $H_{s,\delta,p}$ is at most 2s+1, we can (2s+1)-color $H_{s,\delta,p}$ with (2s+1) colors from left to right greedily.

(b) If W is the sum the weights of vertices in the block $C_{s,\delta}$, then the total sum of weights in $H_{s,\delta,p}$ is pW + 2 (the 2 is due to the modification), so we need to show that $W = (2s+1)\delta + 2s - 1$.

Consider an *i* with 0 < i < s - 1. $L_{3i-1} \cup L_{3i+1}$ has (i-1) + 1 + 2s - i = 2s vertices. If d = 0, each of them has weight $\frac{\delta}{2s}$, otherwise $d - \min(d-1, 2s-i) + \min(d-1, 2s-i) = d$ of them have weight $\lfloor \frac{\delta}{2s} \rfloor$, and the rest have weight $\lfloor \frac{\delta}{2s} \rfloor$. So the sum of the weight of the vertices in $L_{3i-1} \cup L_{3i} \cup L_{3i+1}$ is $\delta + 1$, and so is in $L_{6s-3i+1} \cup L_{6s-3i} \cup L_{6s-3i-1}$.

 $L_{3s-1} \cup L_{3s+1}$ contains 2s vertices, $\lfloor \frac{d}{2} \rfloor + \lceil \frac{d}{2} \rceil = d$ of them has weight $\lceil \frac{\delta}{2s} \rceil$, the rest $\lfloor \frac{\delta}{2s} \rfloor$, so the sum of the weights of the vertices in $L_{3s-1} \cup L_{3s} \cup L_{3s+1}$ is also $\delta + 1$.

 L_1 has 2s vertices. If d = 0, one of these have weight $\frac{\delta}{2s} - 1$ and the rest have weight $\frac{\delta}{2s}$. If d > 0, d - 1 of the vertices have weight $\lceil \frac{\delta}{2s} \rceil$, the rest has weight $\lfloor \frac{\delta}{2s} \rfloor$. The sum of the weights in $L_0 \cup L_1$ is $1 + \delta - 1 = \delta$.

So $W = 2\delta + (2s - 1)(\delta + 1) = (2s + 1)\delta + 2s - 1$, which finishes the proof of (b).

For (c): Let y be a vertex of $H_{s,\delta,p}$. Then for some j $(0 \le j < p)$, y is in the j-th block $C_{s,\delta}$, and for some m $(0 \le m \le 6s)$, y is in the layer L_m of $C_{s,\delta}$. Because of symmetry, we may assume that $0 \le m \le 3s$. The weights in the layer L_{3s-1} are less or equal than the weights in the layer L_{3s+1} , but may not be equal, breaking the symmetry, but still handling cases with $0 \le m \le 3s$ gives a δ lower bound to the degrees of all vertices of $H_{s,\delta,p}$. In addition, layer (j,m) = (p-1, 6s-1), where a modification happened, is symmetric to the layer (j,m) = (0,1), where identical modification happened. Therefore checking the degrees of the vertices in the first half of the first (and modified) copy of

Fig. 2. The repetitive block $C_{5,\delta}$ of the weighted clump graph of the for 11-colorable/ K_{12} -free counterexample graphs. The vertices within a layer are connected with a vertical line. Two vertices are connected, if they are in the same layer or in consecutive layers. The numbers in the vertices give a good 11-coloration. Before adjustment, white rectangular vertices have weight 1 and gray vertices have either weight $\lceil \frac{\delta}{10} \rceil$ or weight $\lfloor \frac{\delta}{10} \rfloor$; and the numbers, from which dotted arrows point to columns, give the number of vertices in the column that have weight $\lceil \frac{\delta}{10} \rceil$. Recall $d = \delta - 10 \lfloor \frac{\delta}{10} \rfloor$. The adjustment: if d = 0, the weight of the two diamond shaped vertices are decreased by 1.

 $C_{s,\delta}$ in $H_{s,\delta,p}$ covers checking the degrees in the second half of the last (and modified) copy of $C_{s,\delta}$ in $H_{s,\delta,p}$.

If $y \in L_{3i}$ for some $0 < i \leq 2s$, then y has weight 1 and is adjacent to all vertices but itself in $L_{3i-1} \cup L_{3i} \cup L_{3i+1}$. As we have already shown in the proof of part (b), $L_{3i-1} \cup L_{3i} \cup L_{3i+1}$ has total weight $\delta + 1$, the neighbors of y have total weight δ .

If $y \in L_0$, then as we showed in the proof of part (b), the total weight of the vertices in L_0 in an unmodified block, which is not the first or the last block, is $\delta - 1$. Either y is adjacent to a vertex of weight 1 outside of its own block, or y is in a modified block where the total weight of L_1 got increased by 1: in both cases the sum of the weights of the neighbors of y is δ .

Assume now that y is a vertex of $L_{3i+1} \cup L_{3i+2}$ for some $0 \le i \le s-1$. Note $L_{3i+1} \cup L_{3i+2}$ contains 2s+1 vertices, 2s of which is the neighbor of y, plus y has a neighbor of weight 1 outside of $L_{3i+1} \cup L_{3i+2}$. We consider two cases for d:

If d = 0 and $0 < i \le s - 1$, then each neighbor of y in $L_{3i+1} \cup L_{3i+2}$ has weight $\frac{\delta}{2s}$, so the sum of the weights of the neighbors of y is $\delta + 1$. If d = 0 and i = 0, because of the adjustment, the sum of the weights of the neighbors may decrease by 1, and is still $\ge \delta$.

If d > 0, then all vertices in $L_{3i+1} \cup L_{3i+2}$ have weight at least $\lfloor \frac{\delta}{2s} \rfloor$. If i < s - 1, then at least $\min(d-1, 2s-i) + d - \min(d-1, 2s-i-1) \ge d$ many vertices of $L_{3i+1} \cup L_{3i+2}$ have weight $\lceil \frac{\delta}{2s} \rceil$. If i = s - 1, then, as $s+1 > \lceil \frac{d}{2} \rceil$, we have that $\lfloor \frac{d}{2} \rfloor \ge \max(1, d-(s+1))$, so $L_{3s-2} \cup L_{3s-1}$ has at least $\min(d-1, s+1) + \lfloor \frac{d}{2} \rfloor = d - \max(1, d-(s+1)) + \lfloor \frac{d}{2} \rfloor \ge d$ vertices with weight $\lceil \frac{\delta}{2s} \rceil$. Therefore, for any $0 \le i \le s - 1$, any $y \in L_{3i+1} \cup L_{3i+2}$ has at least d-1 neighbors of weight $\lfloor \frac{\delta}{2s} \rfloor + 1$, the total weight of y's neighbors is at least $2s \lfloor \frac{\delta}{2s} \rfloor + d - 1 + 1 = \delta$. This finishes the proof of (c). \Box

Theorem 3. Let $r \geq 2$, $\delta \geq 2r - 2$, and for each positive integer p, let $G_{r,\delta,p}$ be the graph whose weighted clump graph is $H_{r-1,\delta,p}$. Then $G_{r,\delta,p}$ is 2r - 1 colorable (and hence K_{2r} -free), connected, with minimum degree δ , of order $n = p((2r-1)\delta + 2r - 3) + 2$, and of diameter $\frac{(6r-5)n}{(2r-1)\delta+2r-3} + O(1)$. Consequently, Conjecture 1 fails for every $\delta > 12r^3 - 22r^2 - 2r + 12 = 2(r-1)(3r+2)(2r-3)$. Furthermore, the difference between the coefficient of $\frac{n}{\delta}$ in our construction and in Conjecture 1(i) is $\frac{1}{(2r^2-1)(2r-1)} + o(1)$, as $\delta \to \infty$.

Proof. By Lemma 1, $G_{r,\delta,p}$ is (2r-1)-colorable with minimum degree δ , diameter p(6r-5) - 1, and it has $n = p((2r-1)\delta + 2r - 3) + 2$ vertices. Therefore its diameter is $\frac{(6r-5)(n-2)}{(2r-1)\delta+2r-3} - 1 = \frac{(6r-5)n}{(2r-1)\delta+2r-3} + O(1)$. Consider the identity

$$\frac{(6r-5)\delta}{(2r-1)\delta+2r-3} - \frac{2(r-1)(3r+2)}{(2r^2-1)} = \frac{1}{(2r^2-1)(2r-1)} \cdot \frac{1 - \frac{12r^3 - 22r^2 - 2r+12}{\delta}}{(1 + \frac{2r-3}{(2r-1)\delta})}$$

This shows both the fact that $\frac{(6r-5)n}{(2r-1)\delta+2r-3} \leq \frac{2(r-1)(3r+2)}{(2r^2-1)} \cdot \frac{n}{\delta}$ iff $\delta \leq 12r^3 - 22r^2 - 2r + 12$, and the statement about the difference. \Box

Acknowledgments

The last two authors were supported in part by the National Science Foundation contract DMS 1600811.

References

- D. Amar, I. Fournier, A. Germa, Ordre minimum d'un graphe simple de diamètre, degré minimum et connexité donnés, Ann. Discrete Math. 17 (1983) 7–10.
- [2] L. Cacetta, W.F. Smyth, Graphs of maximum diameter, Discrete Math. 102 (1992) 121-141.
- [3] É. Czabarka, P. Dankelmann, L.A. Székely, Diameter of 4-colorable graphs, Eur. J. Comb. 30 (2009) 1082–1089.
- [4] P. Erdős, J. Pach, R. Pollack, Z. Tuza, Radius, diameter, and minimum degree, J. Comb. Theory, Ser. B 47 (1989) 279–285.
- [5] Fan Chung, Ron Graham, Erdős on Graphs: His Legacy of Unsolved Problems, A K Peters Ltd., CRC Press, Taylor & Francis, 1998.
- [6] D. Goldsmith, B. Manvel, V. Faber, A lower bound for the order of the graph in terms of the diameter and minimum degree, J. Comb. Inf. Syst. Sci. 6 (1981) 315–319.
- [7] J.W. Moon, On the diameter of a graph, Mich. Math. J. 12 (1965) 349–351.