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Complex ac susceptibility of magnetic colloids of nanospheres, each consisting of Fe3O4

nanoparticles densely and uniformly embedded in a polystyrene matrix, is measured as a function
of frequency. A data analysis based on a model and the directly measured size distribution shows
that each spherical aggregate of nanoparticles carries a small residual magnetic moment, whose
average is basically independent of the sphere size. The mentioned model assumes that magnetic
spheres undergo rotational Brownian motions obeying Debye’s theory and nanoparticles undergo
Néel magnetization rotations. A discussion is made on the superparamagnetism and the nanoparticle
interactions in the present case, in order to justify the applicability of the model and to look for the
mechanism of the detected sphere-size independent magnetic moment. © 2008 American Institute
of Physics. �DOI: 10.1063/1.3005988�

I. INTRODUCTION

A process was developed to produce colloids of nanos-
caled magnetite/polystyrene �Fe3O4 /PS� spheres with a
dense and uniform magnetic occupation and a narrow size
distribution, for satisfying the requirements of biomedical
applications.1 The dense magnetic occupation was detected
by high-field magnetic measurements. It should be of interest
also to study their low-field properties, since magnetic col-
loids are often used at low fields. Connolly and St Pierre2

proposed an ac susceptibility technique to detect the hydro-
dynamic sizes of magnetic colloids. They also proposed a
method to consider the size distribution, of which further
analysis was carried out by Nutting et al.3 In the present
work, we measure frequency dependent complex ac suscep-
tibility �=��− j�� of two samples prepared with the above
mentioned process and use the technique proposed in Ref. 2
to analyze the results. We will show that in spite of a high
saturation magnetization and a certain size distribution of the
nanospheres, each sphere carries only a tiny residual mag-
netic moment and the average moment is roughly indepen-
dent of the sphere size. This phenomenon is intimately re-
lated to the nanostructure of the samples, which is explained
in Sec. II, and studied by a model fit to the experimental data
in Sec. III. For understanding the physics behind it, the su-
perparamagnetism and particle interactions in the present
case are deeply discussed in Sec. IV. The conclusions are
presented in Sec. V.

II. SAMPLES AND MEASUREMENTS

Colloids A and B were prepared as described in Ref. 1
but without a silica coating. Many Fe3O4 �verified by x-ray

diffraction measurements� nanoparticles of diameter 10 nm
�as observed by transmission electron microscopy �TEM��
were uniformly embedded in a nanoscaled spherical PS ma-
trix, and many such Fe3O4 /PS nanospheres were suspended
in a 0.5 wt % Tween 20 solution. The polysorbate surfactant
Tween 20 was used as a wetting agent to stabilize the sus-
pension; without it, nanospheres would sink quickly to the
bottom.4 The suspension concentration was measured to be
1.12 and 0.90 wt % for colloids A and B, respectively. The
averaged magnetite content in the dried state was determined
by thermogravimetric analysis �TGA2050, TA Instruments�
to be 69 and 71 wt % for colloids A and B, respectively. The
remaining 31 and 29 wt % came from the PS and the surface
modification agent. The hydrodynamic size distribution of
the nanospheres, pi versus Di, was determined using a high-
performance particle sizer �model HPP5001, Malvern Siber
Hegner� based on the detection of translational Brownian
motion by dynamic light scattering. The results are plotted in
Fig. 1.

The dependence of the complex ac susceptibility � on
frequency f =� /2� was measured at 296 K with an ac sus-
ceptometer using Helmholtz coils as magnetizer.5 The sus-
ceptometer was calibrated using a copper disk as the stan-
dard sample.6 For the measurements, glass bottles containing
about 0.8 cm3 of colloid A or B served as sample A or B.
The field amplitude was set below 100 A/m to ensure the
measured � be the low-field limit required by a relevant
model of Brownian rotations �see Sec. IV�. The results are
plotted in Figs. 2�a� and 2�b� for samples A and B, respec-
tively. For both samples, with increasing f from 10 to
20 000 Hz, �� decreases from a stable high value to a stable
low value, which is accompanied by a ���f� peak.a�Electronic mail: duxing.chen@uab.es.
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III. ANALYSIS OF EXPERIMENTAL RESULTS

A. Model

In the literature,7–11 the above feature has been inter-
preted as arising from two contributions. The first originates
from the ac field driven rotational Brownian motions of mag-
netic spheres and the other from the ac field driven Néel
magnetization rotations within the nanoparticles:

���� = �B��� + �N��� = �B���� + �N0 − j�B���� , �1�

where we have assumed that the Néel susceptibility �N���
equals its low-� limit �N0 with �N� ���=0. A general analysis
for the Brownian susceptibility �B��� is carried out as fol-
lows.

Parallel to Debye’s theory for the electric susceptibility
of spherical polar molecules undergoing rotational Brownian
motion in a liquid,12 the complex low-field magnetic suscep-
tibility �B=�B� − j�B� of magnetic spheres of number density n
with identical magnetic moment m0 and identical hydrody-
namic diameter D suspended in a liquid of viscosity � at
angular frequency � is expressed by

�B��,D� =
�B0

1 + j���D�
=

�B0

1 + ����D��2 − j
�B0���D�

1 + ����D��2 ,

�2�

where the low � limit of �B is12,13

�B0 =
n�0m0

2

3kBT
, �3�

and the Brownian relaxation time is12

��D� =
��D3

2kBT
. �4�

If there is a distribution in D between Dmin and Dmax with a
number probability density p�D�, �B0 should be replaced by
its average,

�B0,av =
n�0�m0

2�D��av

3kBT
, �5�

where m0�D� has been assumed to be the moment of the
spheres with hydrodynamic diameter D, so that the averaged
m0

2�D� over all sizes is calculated by

�m0
2�D��av = �

Dmin

Dmax

m0
2�D�p�D�dD . �6�

Replacing �B0 in Eq. �2� by �B0,av in Eq. �5� and averaging
�B�� ,D� with respect to D, we obtain the final result

�B��� = �
Dmin

Dmax

�B��,D�p�D�dD

=
�B0,av

�m0
2�D��av

�
Dmin

Dmax m0
2�D�p�D�

1 + j���D�
dD

=
�B0,av

�m0
2�D��av

�
Dmin

Dmax m0
2�D�p�D�

1 + ����D��2dD

−
j�B0,av

�m0
2�D��av

�
Dmin

Dmax m0
2�D����D�p�D�
1 + ����D��2 dD . �7�

Using this model, the measured ���� curves for both
samples may be simulated by Eqs. �1� and �7�.

B. Simulation to experimental results

For the simulation, we use �=0.933 mPa s for water at
T=296 K,14 �0=4��10−7 H /m, kB=1.38�10−23 J /K,
and the directly measured pi versus Di, which is a discrete
version of p�D�, in Fig. 1. m0�D� is generally approximated
by
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FIG. 1. The number distribution of nanospheres for colloids A and B as a
function of hydrodynamic size. The ith column corresponds to the sphere
number fraction pi for a diameter interval, in logarithmic scale, centered at
Di marked by a symbol.
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FIG. 2. The measured complex low-field ac susceptibility of samples A and
B as a function of frequency �symbols� compared with modeling results
assuming a sphere-size independent moment �solid lines� and a moment
proportional to sphere volume �dashed lines�.
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m0�D� � D	, �8�

where 	 is a constant. Adjusting the values of fitting param-
eters �B0,av, �N0, and 	 to simulate the low-f portion of the
measured results, we find that only when 	 is near zero may
both ���f� and ���f� be well fitted by Eqs. �1� and �7� with
�B0,av=0.0061 and �N0=0.0109 for sample A and �B0,av

=0.00585 and �N0=0.0118 for sample B. The calculated
curves for 	=0 are plotted by solid lines in Fig. 2.

C. Size-independent residual magnetic moment of
nanospheres

The value of 	=0 in Eq. �8� means that m0�D� is a
constant, i.e., each sphere carries a moment that is indepen-
dent of sphere size. In contrast, one could have expected
another case as follows. When magnetic nanoparticles are
uniformly distributed in the spheres, the saturation magneti-
zation of each sphere should be the same, and it would be
reasonable that each sphere also has the same residual mag-
netization Mr at zero field. This would correspond to 	=3.
Replacing 	=0 in the above simulation by 	=3, the calcu-
lated results are plotted in Fig. 2 by dashed lines. We see that
compared with the experimental data, all these lines are re-
markably shifted to low frequencies, so the possibility of 	
=3 is ruled out. We should mention that for magnetic col-
loids of nonaggregate nanoscaled cobalt ferrites, 	=3 is ba-
sically valid.15

Hence, we can state that the residual moment m0 of ev-
ery magnetic nanosphere is basically the same but not pro-
portional to its volume, as would be derived from a constant
residual magnetization Mr, in spite of the large variation in
the sphere volume covering a range of two orders of magni-
tude. Not only is m0 nearly constant, but m0 is also very
small in comparison with the saturation moment ms in each
sphere, as estimated below.

D. Smallness of nanosphere moment

Since two samples are similar, we give our estimates for
sample A only. Assuming the density of the magnetite and
the remainder solids to be 5.24 �Ref. 13� and 1.15 g /cm3,
respectively, and knowing the weight percentage for the
magnetite and the rest solids to be 69 and 31, respectively,
the 1.12 wt % of solid spheres in the liquid may be con-
verted to 0.45 vol %. The averaged volume per sphere is
calculated as

vav =
�

6
�

Dmin

Dmax

D3p�D�dD = 1.37 � 106 nm3. �9�

Thus, a number density n=3.28�1018 m−3 is obtained from
the ratio from 4.5�1024 to 1.37�106 nm3. Substituting
�B0,av=0.0061 and this n value in Eq. �5�, we obtain

m0 = �3kBT�B0,av

n�0
�1/2

= 4.3 � 10−18 A m2. �10�

Assuming �0Ms�Fe3O4� at 296 K to be 0.60 T, estimated
from the magnetization data in Ref. 1, the moment m0 per
nanoparticle of magnetite of diameter 10 nm is estimated to
be 2.5�10−19 A m2. Thus, the m0 carried by each magnetic

nanosphere corresponds to the total moment of about 17
nanoparticles when their moments are parallel. Since the
smallest and largest spheres contain 102 and 104 nanopar-
ticles, m0 turns out to be about 20% and 0.2% of ms for the
smallest and largest spheres, respectively.

E. Comparison with previous works

We now come back to Connolly and St Pierre’s
proposition.2 They have assumed a normal Gaussian distri-
bution function for p�D�, by which the average is carried out
considering the distributed ��D� but disregarding a distribu-
tion in m0�D�. In fact, such an omission could be justified by
our result of m0�D�=m0. Nutting et al.3 have added another
possible log-normal distribution to p�D�, which has been
used by Claesson et al.11 to analyze their ac susceptibility
measurements of colloids containing monodispersed silica-
cobalt ferrite microspheres. In their case, CoFe2O4 particles
of 16.8 nm in diameter and �0Ms=0.53 T are uniformly
planted on a silica sphere surface to form a magnetic
microsphere,16 and the measured � curves were well fitted
without considering the m0�D� distribution. Although a par-
ticular log-normal distribution of p�D� rather than a mea-
sured pi versus Di function was chosen for the fit in Ref. 11,
it seems that our statement of a uniform m0 is also valid for
their case, where the experimental moment per microsphere
m0=2.5�10−17 A m2 corresponds to the moment of about
24 magnetic nanoparticles when their moments are parallel.
Therefore, the results of previous works on nanospheres con-
sisting of many single-domain particles are consistent with
the tiny and basically size-independent residual moment dis-
covered in the present work, and a further analysis on this
general feature is of great interest.

F. High-frequency susceptibility

It should be mentioned that there is a small error in the
above m0 estimate, since the hydrodynamic D has been used
to stand for the diameter of solid sphere; the hydrodynamic
sphere should be larger than the solid one by a bonded thin
water layer.11

Another phenomenon is necessary to be studied further:
�� and �� at high f are not constant and zero, respectively, as
characterized by Néel magnetization rotation. This phenom-
enon may be attributed to the presence of nanospheres with
sizes around 30 nm. We can estimate from Eq. �4� that ��D�
is on the order of 10−5 s when D=30 nm, which will result
in a �B with maximum �B� occurring at �1.6�104 Hz, i.e.,
the frequency around which the anomaly occurs. In order to
check if this idea is correct or not, we have made TEM
observation of some dried colloid A and found the presence
of such “nanospheres” �of irregular shapes� as shown in Fig.
3. The volume percentage of such nanospheres are extremely
small, but since each of such small spheres has the same
moment m0 as the much larger ones, their contribution to �B

becomes quite large.
On the other hand, the high-performance particle sizer

measures the sizes, between 0.6 and 6000 nm, of spherical
particles by analyzing the intensity fluctuations of the Ray-
leigh scattering laser light without assuming any special size
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distribution so that the 30 nm small nanospheres should be
detectable. However, repeating several times careful mea-
surements, we did not find any spheres of D
63 nm by this
technique. It seems that the translational Brownian motions
of such small particles are coupled to those of larger ones in
the colloid, so that the scattering by small particles them-
selves with an extremely small volume fraction becomes
negligible. If this is true and as long as there is a size-
independent moment, we may state that our ac susceptibility
technique is more sensitive than the high-performance par-
ticle sizer to detect the presence of very small magnetic par-
ticles in colloids.

IV. SUPERPARAMAGNETISM

A. Classical definition of superparamagnetism

The concept of superparamagnetism was first proposed
by Bean,17 who referred a dilute assembly of ferromagnetic
particles as superparamagnetic if the particles were single
domain and when the thermal energy at the temperature of
the experiment was sufficient to equilibrate the magnetiza-
tion of the assembly in a time short compared with that of
the experiment.

Assuming the particle number density to be n and each
particle to carry a moment m0, the thermal equilibrium mag-
netization M as a function of field H is calculated by the
Langevin function L�x� as

M = M0L�x� = M0�coth x − 1/x� , �11�

where M0=nm0 and x=�0m0H /kBT. We have used M0 to
stand for nm0 rather than using the saturation magnetization
Ms. This is because that Ms is exclusively used in the present
paper for the saturation magnetization of ferrite materials and
that nm0 is not always a saturation magnetization when Eq.
�11� is used. This second reason is conceptually essential for
us to use the superparamagnetism theory for the present col-
loids of magnetic nanospheres, as will be discussed below.

In order to achieve the equilibrium, the time for either of
the following two kinds of relaxation should be less than the
time of an experiment.18 If spherical particles are suspended
in a liquid medium so that the equilibrium is approached by

physical Brownian rotations of individual particles, the re-
laxation time is calculated by Eq. �4�. If the particles are
physically fixed, the equilibrium is realized by thermally ac-
tivated moment rotations proposed by Néel19 with time con-
stant � determined by

� = �0 exp�Keffv/kBT� , �12�

where �0 has the order of 10−9 s, v is the particle volume,
and Keff is an effective anisotropy constant.

B. Superparamagnetism for the assembly of Fe3O4
nanoparticles

If we want to use the classical definition of superpara-
magnetism for the assembly of Fe3O4 nanoparticles, which
are densely packed within each nanosphere, then “ferromag-
netic particles” should be modified to include ferrimagnetic
ones and the constraint of “dilute” should be temporarily
relaxed.

We have measured at 300 K the saturated dc magnetiza-
tion loop of a powder sample consisting of nanospheres be-
ing the same as the present ones but with 10 nm silica coat-
ing. A low-field portion of the results is plotted in Fig. 4 by
solid lines and it is rather well fitted by the Langevin func-
tion �Eq. �11��, as the dashed line. From the fitting parameter
m0=2.35�10−19 A m2 and �0Ms=0.60 T, we obtain the
particle diameter to be 9.8 nm, which is consistent with the
directly observed nanoparticle size. This result indicates that
although the nanoparticles are densely packed within each
nanosphere, they are apparently superparamagnetic. The
Néel relaxation time constant may be estimated as follows.
Since the cubic anisotropy constant of Fe3O4 at 300 K is
K1=−1.1�104 J /m3,13 we have Keff=−K1 /12	1
�103 J /m3,18 so that �	2�10−5 s is estimated from v
=5�10−23 m3. It is much smaller than the time of dc mag-
netic measurement, so that the obtained magnetization is
equilibrate. The small hysteresis and departure from the fit-
ting curve may result partially from the interaction among
the densely packed particles.

FIG. 3. A TEM picture of dried colloid A.

FIG. 4. For a powder sample consisting of silica coated nanospheres with
densely packed 10 nm Fe3O4 particles, the low-field portion of the hysteresis
loop �solid lines� obtained by semiconducting quantum interference device
�SQUID� measurements at 300 K between �8�105 A /m. Dashed line is
calculated from Eq. �11�. The hysteresis is partially due to that of the super-
conducting magnet used in the SQUID magnetometer.
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C. Magnetostatic interaction

The interaction between neighboring magnetic particles
may be estimated by point moment approximation. The di-
polar interaction energy U12 between two point moments mi

at ri �i=1 and 2� with r12=r1−r2 is calculated by13

U12 =
�0

4�r12
3 
m1 · m2 −

3

r12
2 �m1 · r12��m2 · r12�� . �13�

Assuming m1=m2=m0=2.5�10−19 A m2 for particles of di-
ameter 10 nm so that r12=10 nm, we obtain from Eq. �13�
that U12=−1.2�10−20 or 6�10−21 J when m1,2 are in the
same direction that is along or perpendicular to r12, respec-
tively, and that both values change their signs if m1,2 are
opposite. Since the energy difference between different rela-
tive moment directions is larger than kBT	4�10−21 J, the
particles should be distributed in a structure with a minimum
magnetostatic energy roughly corresponding to the sum of
relevant U12 values. As a result, some kind of random “anti-
ferromagnetic” moment orientations will occur with domi-
nant elementary interaction U12 to be close to −1.2�10−20

and −6�10−21 J.
This antiferromagnetic coupling is equivalent to a unidi-

rectional anisotropy for each nanoparticle. If the easy direc-
tions of such anisotropy for all the nanoparticles are uni-
formly distributed in all directions, then this coupling does
not change the low-field M�H� of the superparamagnetism of
Néel rotations, just like that the uniaxial or cubic magneto-
crystalline anisotropies do not influence the low-field M�H�
of superparamagnetism described in Ref. 18. Thus, by fitting
the low-field M�H� in Fig. 4, we obtain the correct particle
size. This coupling may be an origin of the hysteresis in the
M�H� curve. At higher �H�, the fact that �M� is lower than the
calculated one shown in Fig. 4 may also be attributed to the
antiferromagnetic coupling, which impedes the parallel pro-
cess. It seems that the magnetostatic U12 is not large enough
to completely account for the hysteresis and the overlow �M�
at intermediate values of �H�, and the exchange interaction
between mutually touched nanoparticles may play an impor-
tant role to reinforce these features.

Thus, with magnetostatic and possible exchange interac-
tions among densely packed single-domain particles, the as-
sembly of Fe3O4 nanoparticles shows approximately a super-
paramagnetic M�H� curve.

D. Superparamagnetism for the assembly of
nanospheres

With antiferromagnetic coupling within each nano-
sphere, the magnetic moment per nanosphere is ideally zero
if its constituting nanoparticles form a large perfect regular
array. A small moment is expected to occur for any real
nanosphere where the nanoparticles are located randomly
with some voids and whose shape is not perfectly spherical.
A size-independent moment is not deducible, but it may be
expected that when an aggregation contains a few particles,
most particle moments will be in the same direction to
achieve the lowest U12.

20 For the present case where the
sphere sizes are not very small, it is most possible that there

is a certain moment distribution for the spheres with a given
size and the averaged moment for the distribution is roughly
independent of the sphere size.

To apply the above classical definition of superparamag-
netism to the assembly of the nanospheres, the single-domain
condition has to be removed since each nanosphere contains
many single-domain Fe3O4 particles. Generally speaking,
when each particle contains a number of domains, a dilute
assembly of the particles can behave as superparamagnetic if
each particle carries a fixed moment m0. For our case, the
condition of “fixed moment” can be quite well met when x
=�0m0H /kBT�1, where m0=2.35�10−19 A m2, holds for
the Néel rotations so that the antiferromagnetism is not over-
come by the applied field. Obviously, M0 in Eq. �11� for the
superparamagnetism of the assembly of nanospheres cannot
be understood as the saturation magnetization Ms. This M0 is
well defined only at low fields by nm0 and this superpara-
magnetism will be completely destroyed at fields much
smaller than the saturation field.

There should be another modification introduced to the
classical definition of superparamagnetism; the assembly is
not necessarily thermally equilibrate. In fact, while the dc
property of a superparamagnetic assembly is generally ex-
pressed by Eq. �11�, the low-field limit of its ac property in
liquid is expressed by Eq. �2�. For the Brownian rotations
with m0=4.3�10−18 A m2 for the spheres, x=1 corresponds
to H=770 A /m, so that low fields mean that Hm

�770 A /m. This condition has been met in our measure-
ments.

The occurrence of a permanent magnetic moment in
small antiferromagnetic particles has been studied conceptu-
ally by Néel.21 He states that there is no good reason why the
two antiferromagnetic sublattices should contain exactly the
same number of magnetic atoms, and the particle should, in
practice, exhibit a slight ferrimagnetism. The permanent
magnetic moment, equal to the difference in spontaneous
magnetizations of both sublattices, becomes relatively
greater the smaller the particle. Adopting different hypoth-
eses, he suggests that the net moment is proportional to a 1

3
to 2

3 power of the number of spins, so slowly increases with
the particle size. Our case is similar to his case if the nano-
particles and nanospheres are understood as his spins and
particles, respectively. However, his suggestion corresponds
to 	=1 to 2 in Eq. �8�, different from our discovery of 	
=0 for the nanospheres.

E. Summary remarks

After the above analysis on the superparamagnetism and
particle interactions, it is worthy giving some summary re-
marks. Both the assembly of nanoparticles and the assembly
of nanospheres are partially superparamagnetic, since they
satisfy some but not all necessary conditions required by the
classical definition of superparamagnetism.

The nanoparticles are single domain and undergoing
Néel rotations. The time constant of Néel rotations is on the
order of 10 �s, which is much smaller than our dc and ac
measurement time, so that the dc and ac M�H� of the assem-
bly follows basically Eq. �11�. The assembly of nanoparticles
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is partially superparamagnetic since it is not dilute and there
is a certain antiferromagnetic interaction between neighbor-
ing particles, which leads to slower approaching to saturation
and hysteresis at high fields. However, the low field suscep-
tibility is not influenced by the interaction, so that the par-
ticle size deduced from the low-field fit of Eq. �11� to the
measured M�H� curve is reliable, and in our modeling Eq.
�1�, the low-field �N���=�N0 is also justified.

The second partial superparamagnetism arises owing to
the interaction between the nanoparticles within each nano-
sphere. The assembly of nanospheres is dilute in this case
with magnetic nanospheres suspended in water undergoing
Brownian motions. However, each sphere is not single do-
main but consisting of many single-domain particles, so that
its dc magnetization can be precisely expressed by Eq. �11�
only at low fields. For studying the properties of the nano-
spheres the classical superparamagnetic properties are ex-
tended to including the frequency dependence of low-field ac
susceptibility, whose measuring time is comparable with the
Brownian relaxation time.

Although both assemblies are partially superparamag-
netic when the classical definition of superparamagnetism is
concerned, they can be simply regarded as superparamag-
netic if only low-field properties are considered, like our case
of ac susceptibility measurements. In this case, both �N and
�B are constants, which are calculated from Eq. �11� or Eq.
�3� and originated from the field driven orientation of ther-
mally agitated moments m0 that are much larger than atomic
moments. It is interesting to see that although the M0 for the
second case is much smaller than for the first case, low-
frequency �B� is comparable to �N� . The reason is that m0 per
sphere in the second case is 17 times m0 per particle in the
first case, so that the field driven moment rotation is 17 times
enhanced by the increase in Zeeman energy.

The appearance of a finite residual m0 for the spheres
may be attributed to structural and thermal fluctuations, so
that this m0 should be understood as an average value in the
second case. It is interesting to study how such fluctuations
can lead to a basically sphere-size independent average m0,
so that the value of m0 becomes controllable for different
kind of applications.

V. CONCLUSION

In conclusion, we have measured ��f� of colloids con-
taining magnetic nanospheres, each sphere consisting of
many Fe3O4 nanoparticles uniformly embedded in a polysty-
rene matrix. Based on Debye’s theory for ��f� of magnetic

colloids where nanospheres undergo rotational Brownian
motion, the measured results are consistent with the hydro-
dynamic size distribution p�D� derived from translational
Brownian motion detected by dynamic light scattering, as far
as the moment of each nanosphere is assumed to be identical.
Therefore, the magnetic moment carried by each nanosphere
is demonstrated to be size independent. Since each sphere is
an aggregation of single-domain particles mutually interact-
ing antiferromagnetically, this moment should be an aver-
aged small residual moment owing to structural and thermal
fluctuations, of which detailed mechanism is to be elucidated
in the future.
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