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In vivo Imaging and Drug Storage by Quantum-Dot-Conjugated
Carbon Nanotubes**

By Yan Guo, Donglu Shi,* Hoonsung Cho, Zhongyun Dong, Amit Kulkarni, Giovanni M. Pauletti, Wei Wang,
Jie Lian, Wen Liu, Lei Ren, Qiqing Zhang, Guokui Liu, Christopher Huth, Lumin Wang, and Rodney C. Ewing
A specially designed carbon nanotube (CNT) is developed for use in the early detection and treatment of cancer. The key

functionalities for biomedical diagnosis and drug delivery are incorporated into the CNTs. In vivo imaging of live mice is

achieved by intravenously injecting quantum dot (QD)-conjugated CNT for the first time. With near infrared emission around

752 nm, the CNT with surface-conjugated QD (CNT-QD) exhibit a strong luminescence for non-invasive optical in vivo imaging.

CNT surface modification is achieved by a plasma polymerization approach that deposited ultra-thin acrylic acid or poly(lactic-

co-glycolic acid) (PLGA) films (�3 nm) onto the nanotubes. The anticancer agent paclitaxel is loaded at 112.5� 5.8mg mg�1 to

PLGA-coated CNT. Cytotoxicity of this novel drug delivery system is evaluated in vitro using PC-3MM2 human prostate

carcinoma cells and quantified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The in vivo

distribution determined by inductively coupled plasma mass spectrometry (ICP-MS) indicates CNT-QD uptake in various

organs of live animals.
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1. Introduction

One of the key challenges of nanotechnology in cancer

diagnosis and treatment has been the design and development

of a nanosurface structure with multiple functionalities. Due to

complexity of biological systems, these nanostructured materi-

als must have key features, such as the ability to ‘‘tune’’ or

control the surface properties. The first step is to treat the

surface with specific functional groups such that they attach to

specific biological molecules. Second, for diagnosis, the

nanoparticle should have a strong luminescence in the visible

range for in vivo imaging. Third, certain nanoparticle should

have a geometry that allows for storage and release of

treatment drugs. Finally, the nanoparticle should be biode-

gradable in order to avoid toxic effects. Thus far, there have

been few attempts to design and produce a nanostructure that

meets all of these requirements.

There are several critical issues involved in the design and

the development of such a nanoscale material. The first is the

surface functionalization by a variety of novel techniques. As

reported previously, the physical and chemical properties

of CNT can be significantly altered through chemical

surface modification, doping, and coating.[1] The surface
[**] The work at University of Cincinnati (UC) was supported by a grant
from UC Institute for Nanoscale Science and Technology. The work at
Argonne National Laboratory was performed under the auspices of
the Office of Basic Energy Science, Division of Chemical Sciences, U.S.
Department of Energy, under Contract No. W-31-109-ENG-38. The
TEM analyses were conducted at the Electron Microbeam Analysis
Laboratory at the University of Michigan and supported by an NSF
NIRT grant (EAR-0403732).
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functionalization of CNT by a variety of organic and inorganic

species leads to the assembly of novel, hybrid nanomaterials.

Such an integrated nanosystem normally requires covalent

bonding of the CNT to another nanospecies in a predictable

manner. Recent attempts have attached gold to CNT[2] and

TiO2 nanoparticles.[3] However, these methods resulted in

undesirable side reactions, producing large clusters of nano-

particles, which were unsuitable for biomedical applications.

We have previously described a unique plasma polymerization

process that can be used to treat the surfaces of CNT. Ultrathin

polymer films (�3 nm) with functional groups were uniformly

deposited on the inner and outer surfaces of CNT.[4–7]

For biomedical diagnosis applications, one of the important

issues involves the intensity and the frequency of the emissions

from the nanoparticles. In particular, for deep tissue tumor

imaging, highly intense emissions are required at frequency

close to the near infrared range (>700 nm). Carbon nanotubes

(CNTs) are intrinsically fluorescent in the region of near

infrared,[8–10] whereas human tissues and biological fluids[11]

are practically transparent to these emissions.[12–15] However,

the emission intensities are quite low and not useful for deep

tissue or live animal imaging. In our previous research we have

succeeded in synthesizing CNT with surface-coated lumines-

cent rare-earth materials, but their emissions have low

efficiency for in vivo imaging.[16] In contrast, quantum dots

(QD), which are semiconducting nanocrystals, may be ‘‘tuned’’

based on their size and have superb optical properties,

resulting from quantum confinement effects.[17,18] They offer

high resistance to photobleaching, thus making them attractive

materials for optoelectronics[19,20] and in vivo biosensing

applications.[21] Bruchez et al.[22] and Chan and Nie[23] first

reported the use of QD conjugates for labeling biological

specimens. Subsequently, several other studies demonstrated

the labeling of whole cells and tissue sections using different

surface modifications of QD.[24–26] For both diagnosis and

treatment, the key issue here is how to combine the tubular

structure of CNT and the tunable optical properties of QD in

an intravenously (i.v.) deliverable nanoassembly.

Another issue deals with suitable requirements for in vivo

imaging. Particularly, QD must have an adequate circulating

lifetime, must show minimal non-specific deposition, and must

retain their fluorescence for a sufficiently long period. Reduced

body clearance can be achieved by coating nanoparticles with

hydrophilic polymers such as polyethylene glycol (PEG). This

augments vascular circulation time without completely elim-

inating non-specific tissue uptake.[27–29] Toxicity and biocom-

patibility have been major concerns for the use of nanomaterials

in biomedical applications.[30,31] Before clinical applications of

QD become possible, the biocompatibility of these nanopar-

ticles must be thoroughly investigated. For cell culture studies, a

biocompatible particle must be non-toxic and inert, as well as

stable over the course of an assay. Recently, Derfus et al.[32]

used cultured liver cells to determine the cytotoxicity of CdSe/

ZnS QD with various surface coatings. The results suggested

that the surface coatings must be sufficiently stable in order to

prevent oxidation of the QD surfaces, which results in the
www.afm-journal.de � 2008 WILEY-VCH Verlag GmbH
release of divalent cadmium, a known toxin and suspected

carcinogen. PEG and other biologically inert polymers may be

useful for reducing QD-associated toxicity. So far, nearly all

studies on the in vivo use of QD have reported normal organism

development and no short-term detectable toxicity.[33–38]

Paclitaxel is an antitumor agent demonstrating significant

activity in clinical trials against a variety of solid tumors.[39,40]

However, limited aqueous solubility and low therapeutic index

restrict widespread clinical application. Therefore, a diverse

array of materials has been investigated for paclitaxel delivery

systems including liposomes,[41] nanoparticles,[42] micro-

spheres,[43] and soluble polymers.[44] Among these new drug

delivery systems, polymers have attracted attention as

promising carriers for anticancer agents because of increased

stability and opportunities of surface functionalization.

Among those polymers investigated poly(lactic-co-glycolic

acid) (PLGA), which is biodegradable and FDA approved, is

preferentially used in drug delivery systems.

In this study, nanotubes with different properties and

functionalities were assembled based on a unique nanoscale

design. An idealized representation of the nanostructure design

for in vivo imaging and drug storage is schematically illustrated in

Figure 1. The hollow core and polymer-coated surfaces of the

nanotube can be used to store antitumor agents such as paclitaxel

as a consequence of non-covalent adsorption. For deep tissue

imaging, the outer surface of the nanotube is conjugated with

luminescent materials such as QD. However, both drug storage

and surface conjugation of QD depicted in Figure 1 present great

challenge to the surface functionalization of the CNTs.

In this paper, we report a novel design of a nanoassembly.

Using a unique plasma polymerization method, CNT surfaces

were functionalized with carboxyl groups that facilitated

covalent coupling of amine-containing QD. Successful in vivo

imaging and quantitative determination of paclitaxel drug

loading are described for the first time for this novel

nanoassembly. CNTs containing an ultra-thin PLGA coating

were prepared by plasma polymerization. Paclitaxel loading

efficiency on PLGA-coated CNTs was measured by high

performance liquid chromatography (HPLC). The therapeutic

efficacy of paclitaxel-loaded CNT was estimated in vitro by

quantifying drug-induced changes in viability of human PC-

3MM2 prostate carcinoma cells using the MTT assay.

2. Results and Discussion

2.1. Plasma Surface Functionalization

Plasma polymerization is an effective method for surface

functionalization of nanotubes and nanoparticles.[4–7] The

main principle of plasma polymerization is that the ionized and

excited monomer molecules created by an electrical field

bombard and react on the surface of the substrate. These

activated molecules may be etched, sputtered, or deposited

onto the substrate surface. Due to these characteristics,

the plasma technique can be used for polymer surface

functionalization on various nanotubes and nanoparticles.
& Co. KGaA, Weinheim Adv. Funct. Mater. 2008, 18,1–9
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Figure 1. Schematic diagram illustrating the concept of a CNT functiona-
lized with plasma polymer coating, luminescent QD, and loaded with
anticancer drugs. The functionalized CNT can be used as biomarkers and
drug carriers.
The experimental procedures and conditions for plasma

surface functionalization and characterization have been

published pre-viously.[4–7] The plasma reactor for surface

functionalization consisted mainly of a radiofrequency source,

a glass vacuum chamber, and a press gauge. Monomers were

introduced from the gas inlet during the plasma polymeriza-

tion. In this study, acrylic acid (AA), lactic acid (LA), and

glycolic acid (GA) were used as monomers for nanotube

surface functionalization.

Figure 2a and b show high-resolution transmission electron

microscopy (HRTEM) images of surface-functionalized CNT.

An ultrathin AA film of �3 nm is clearly evident on the

outer surface of the nanotube after plasma polymerization
Figure 2. a) HRTEM image showing plasma deposited AA polymer thin film (�
end of the CNT, b) HRTEM image of the coating layer of PLGA on CNT by pl
c) schematic diagram outlining chemical coupling procedure of amine-conta
functionalized CNT.

Adv. Funct. Mater. 2008, 18, 1–9 � 2008 WILEY-VCH Verl
(Figure 2a). The characteristic lattice fringe spacing for carbon

can be seen in contrast to the amorphous AA film (e.g., the

absence of lattice fringes). The AA film appears quite uniform,

covering the outer surface of the nanotube. Figure 2b shows a

HRTEM image of a PLGA-coating layer deposited on the

CNT by plasma polymerization. LA and GA were used as

monomers for this process. In this image, the thickness of

ultrathin coating layer is approximately 6–7 nm and also

appears as a uniform layer on the nanotube surface. For

comparison, the inner diameter of CNT used is in the order of

50–80 nm. This dimension appears particularly suitable for

drug loading with anticancer drugs of comparable molecular

size like paclitaxel.[26] The polymer films deposited on

nanotubes were characterized by surface analyses such as

time of flight secondary ion mass spectroscopy (TOFSIMS),

and results are detailed in ref.[4–7].
2.2. CNT-QD Conjugation

The procedure for coupling amine-containing QD to AA-

functionalized CNT is illustrated in Figure 2c. Covalent

attachment of QD to the CNT was achieved in the presence

of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydro-

chloride (EDC) and N-hydroxysuccinimide (NHS). Con-

jugation of QD with nanotubes was confirmed by char-

acterizing the microstructure of CNT-QD using HRTEM

and energy dispersive spectroscopy (EDS), respectively.

The TEM samples of CNT-QD were prepared by dispersing

the solution directly onto holy carbon films supported with

Cu grids. The TEM images of CNT-QD are shown in
3 nm) near the open
asma polymerization,
ining QD to carboxyl-

ag GmbH & Co. KGaA, We
Figure 3. As can be seen in Figure. 3a,

the QD exhibits a dark contrast with an

average particle size of 5–10 nm, randomly

distributed on the surface of the nano-

tubes. In a Z-contrast TEM image of

Figure 3b, these QD appears to be bright

on the CNT surfaces with some aggre-

gated clusters. QD coverage is not uni-

form throughout the entire length of the

CNT suggesting preferential conjugation

of QD due to inhomogeneous CNT

dispersions.

Figure 3c and d show the HRTEM

images of surface-conjugated QD. As can

be seen in Figure 3c, the QD are quite

distinct from the matrix of the CNT. The

lattice images of QD and CNT are shown

in Figure 3d. In this figure, the crystalline

features of CdSe/ZnS QD deposited on

the surfaces of the CNTs can be clearly

seen. The interlayers of the CNTs are also

well resolved in both HRTEM images

(Figure 3c and d). These results suggest

that the QD are either embedded within

or attached onto the surface of the CNTs.
inheim www.afm-journal.de 3
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Figure 3. a) TEM image of CNT with surface coupled QD, b) Z-contrast TEM image showing the
light gray QD on the CNT’s surfaces, c) and d) HRTEM images of the crystalline CdSeTe/ZnS QD
deposited on the surfaces of CNT.

Figure 4. EDS acquired from QD attached on CNT’s surface. It shows the
elemental signals from the CdSeTe/ZnS QD and CNTs.

4

Energy dispersive X-ray spectroscopy (EDS) measurements

were performed by focusing the nanosized electron probe

on CNT and QD as shown in Figure 4. Strong signals of Cd,

Se, Te, Zn, and S were observed in the spectrum acquired.

These signals suggest the identity of the QD coupled onto

the outer walls of CNT. The Cu and C peaks observed in

the spectrum can be attributed to the TEM grids and CNT

substrate. The EDS results confirm the presence of CdSe/

ZnS QD coupled onto the surface of the CNT. This is also

consistent with the results of the HRTEM (Figure 3c and d)

showing the crystalline QD on the outside surface of a

CNT.

It should be noted that no efficient coupling was observed

when QD were simply mixed with CNT in various organic

solvents (methanol, chloroform, and toluene) and in the absence

of the activating agents. There was no obvious sign of QD

degradation as studied by TEM (Figure 3). This enhanced

chemical stability is consistent with the formation of an amide

bond after covalent coupling between the amino group on the

QD and the carboxyl group on the polymer-coated CNT.

Furthermore, the preserved fluorescence of QD-modified CNT in

vivo implies limited hydrolysis of this covalent coupling product

by competent enzyme families such as peptideases.
www.afm-journal.de � 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Figure 5 compares the fluorescent spec-

tra of uncoupled QD and the CNT-QD

coupling product. As seen in this figure,

the maximum emission of the uncoupled

QD (dash dot line) is at 795.6 nm, which is

the consistent with the specification of this

commercial product. For CNT-conjugated

QD, the maximum emission (solid line)

was shifted to 752.5 nm, with a broad

shoulder around 650 nm. This shifting is

likely attributable to the background

emissions from the CNT or interactions

between the QD and CNT. However, an

understanding of the detailed physics of

these interactions will require further

investigation.

2.3. Drug Storage and Cytotoxicity

Study

Paclitaxel-loaded CNTs were prepared

by simple mixing of PLGA-coated CNT

with a methanolic drug solution followed

by evaporation of the organic solvent and

repeated washes in distilled water. Drug

loading efficiency was quantified by

HPLC. The recovered amount of this

anticancer agent from three independent

production batches was 112.5� 5.8mg

mg�1 CNT. Variation in incubation time

between drug solution and PLGA-coated

CNT from 2 to 6 h did not significantly

alter the relative loading efficiency (data
not shown). Previously, paclitaxel encapsulation into poly-

meric microparticles was reported at loading capacities

between 14 and 24mg drug mg�1 carrier material.[42,43] Our

results demonstrate a �five-fold increase in this loading

capacity when the polymer is deposited as a thin layer onto

CNT using plasma polymerization. The reproducible drug
Adv. Funct. Mater. 2008, 18,1–9
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Figure 5. The fluorescent emission spectra of the uncoupledQD and CNT-
QD. The maximum peak at 795.6 nm is consistent with specifications of
this commercial QD. The blue shift from CNT-QD and a broad shoulder
around 650 nm may result from the interactions and/or background
emissions of CNT.

Figure 6. Dose-dependent effects of paclitaxel and various CNTs on
viability of human PC-3MM2 prostate cancer cells. Tumor cells
were treated for 4 days with various concentrations of paclitaxel (*),
paclitaxel-loaded, PLGA-coated CNTs (&), or PLGA-coated CNTs without
drug (&) either dissolved or dispersed in culturemedia supplemented with
3% FBS for 96 h. Each data point represents the mean of six replicate
experiments.
amount recovered after one single coating/drug loading cycle

implies that drug load could be further augmented by several

sequential polymer coating/drug loading steps. This is

consistent with previous reports that identified high drug

loading capacity of soluble CNT for the anticancer drug

doxorubicin.[44] Selection of methanol as solvent in our drug

loading protocol was based on its high solubility capacity for

paclitaxel and corresponding low solubility capacity for PLGA.

As a consequence, we hypothesize that the PLGA film was not

affected by the drug loading process and that paclitaxel is

deposited by non-covalent adsorption either inside and/or

outside of the PLGA-coated CNT. It is conceivable that

conventional paclitaxel PLGA nanoparticles pre-fabricated

using the solvent evaporation technique[45] also adsorb to the

surface of uncoated or coated CNT. Although this could

constitute an alternative paclitaxel delivery system, reprodu-

cibility, and control of size distribution following adsorption of

preformed nanoparticles are considered significant technical

challenges and appear inferior to the simple drug loading

procedure of PLGA-coated CNT described in this work.

The therapeutic efficacy of paclitaxel-loaded CNT was

estimated in vitro by quantifying drug-induced changes in

viability of human PC-3MM2 prostate cancer cells using the

MTT assay. As shown in Figure 6, exposure of PC-3 human

prostate cancer cells to paclitaxel for 96 h produced a dose-

dependent inhibition of mitochondrial dehydrogenase

enzymes, which are essential for cell viability. The estimated

paclitaxel concentration leading to a 50% inhibition of cell

viability is �5 ng mL�1 underlining the potency of this

anticancer agent. When exposed to paclitaxel that was loaded

onto PLGA-coated CNT, doses of 100 ng mL�1 of this novel

drug delivery system are required to achieve an equivalent cell

kill of 50%. Importantly, viability of these human prostate

cancer cells in the presence of PLGA-coated CNTs that did

not contain paclitaxel was compromised only at doses
Adv. Funct. Mater. 2008, 18, 1–9 � 2008 WILEY-VCH Verl
>1000 ng mL�1. Whether coating with the biocompatible

PLGA polymer truly altered the cytotoxic potential of CNTs

or affected binding capacity of CNTs for the enzymatically

produced formazan dye that is used to quantify cytotoxicity in

this assay is unclear and will be subject of further investiga-

tions.[45,46] However, it appears reasonable to conclude that the

cytotoxic effect observed with drug-loaded CNTs in this in

vitro model reflects the action of paclitaxel released from

PLGA-coated carriers. Using the experimentally determined

paclitaxel concentration that kills 50% of the tumor cells in the

absence of CNTs (i.e., 5 ng mL�1) and the volume of 100mL

media added per well, we can estimate a paclitaxel dose of

0.5 ng released from the coated CNTs within 96 h. Since the

average drug load is 112.5mg mg�1 CNT, the estimated 0.5 ng

paclitaxel corresponds to almost 50% of the total amount of

anticancer agent incubated with the cells at the CNT dilution of

100 ng mL�1. To verify this prediction, more extensive drug

release studies are required using different media in combina-

tion with cytotoxicity assessment.

2.4. In vivo Imaging and Distribution of CNT-QD

CNT-QD were injected i.v. via tail vein into mice and the

emission at 800 nm was monitored in live animals at various

time points (i.e., immediately after injection, 1, 2, 4, and 6 days)

using the Kodak 4000MM whole mouse imaging system. The in

vivo images were acquired from the front, side, and back of the

animal using the whole body mode. Mice are known to have

visible emissions that may overlap with those from the QD,

especially near 600 nm. After subcutaneous injection in mice,

the CNT-coupled QD exhibited luminescent emissions in the

visible light range. QD with longer wavelengths, however,

provide the basis for much brighter imaging, which is suitable

for deep tissue diagnosis, due to reduced background. In this
ag GmbH & Co. KGaA, Weinheim www.afm-journal.de 5
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Figure 7. In vivo fluorescence images of CNT-QD IV injected into nude mice and imaged after circulation at various time intervals; (a-0 to a-4) the images
taken from the side ofmice; (b-0 to b-4) from the front of mice; (c-0 to c-4) from the back ofmice, and d), e), f), g) organ images taken after having sacrificed
the mice on the 6th day of post-injection. These pictures show prominent CNT-QD uptaking in the liver, kidney, stomach, and intestine.

6

experiment, the QD with emission of 800 nm was shown to be

capable of exhibiting much brighter images as compared with

those with emissions at 600 nm at the same depth. The small

size of CNT-QD conjugates should allow efficient tissue
www.afm-journal.de � 2008 WILEY-VCH Verlag GmbH
perfusion and good targeting to specific sites in the tissues,

provided that the QDs remain in circulation for a long enough

time. Figure 7 shows spectral imaging results obtained from

CNT-QD i.v. injected into the tail vein of mice.
& Co. KGaA, Weinheim Adv. Funct. Mater. 2008, 18,1–9
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Due to high quantum yields and absorbency, the fluores-

cence of CNT-QD in the superficial vasculature (tail veins in

Figure 7 a-1, b-1, c-1) was readily visible under the Kodak

Imaging System immediately after injection. However, at this

early post-injection stage, the CNT-QD cannot be imaged in

organs and tissues. After circulation for 2–6 days, the images

(Figure 7 a-2 to a-4, b-2 to b-4, c-2 to c-4) exhibit strong signals

of CNT-QD in several organs of live animal including liver,

kidney, stomach, and intestine. The enhanced contrast in these

images indicates that CNT-QD can be visualized against an

essentially black background, with little or no interference by

auto-fluorescence of the animal. The results indicate that QD

with emission at 800 nm are well suited for fluorescence

visualization in live animals. To confirm CNT-QD uptake in

these organs, mice were sacrificed and liver, kidney, stomach,

and intestine were harvested for ex vivo imaging (Figure 7d–g).

The strong luminescent emissions in these organs under epi-

UV illumination support our conclusions that CNT-QD may

provide significant advantages for deep tissue diagnosis.

It must be emphasized that the tested CNT did not contain

specific cell or organ targeting moieties. Therefore, the

observed biodistribution pattern following i.v. administration

reflects the results of non-specific binding and elimination

processes. It is expected, however, that coupling with specific

targeting ligands such as peptides and antibodies will alter the

biodistribution pattern.

After i.v. injection of CNT-QD, liver, kidney, stomach, and

intestine samples were collected for a period of 6 days and

analyzed by inductively coupled plasma mass spectrometry

(ICP-MS). The results of this quantitative evaluation are

presented in Figure 8. In general, CNT-QD accumulated to the

greatest extent in the liver. One day after injection, the mass of

Cd is 70.36mg g�1 in liver; 2.42mg g�1 in kidney; 0.86mg g�1 in

stomach, and 1.00mg g�1 in intestine, respectively. After

3 days, CNT-QD associated with liver, stomach, and intest-

ine significantly decreased, whereas kidney levels appeared
Figure 8. In vivo distribution of CNT coupled with CdSeTe/ZnS after IV
injected in the nude mice for 1, 3, and 6 days. The liver, kidney, stomach,
and intestine of the mice were collected, respectively. The digested organ
samples were analyzed for Cd mass by using an ICP-MS.

Adv. Funct. Mater. 2008, 18, 1–9 � 2008 WILEY-VCH Verl
unchanged. At the sixth day, quantified Cd amounts slightly

increased in all organs without dramatic changes in the relative

distribution (i.e., liver> kidney> stomach� intestine). These

data confirm results from whole body in vivo imaging acquired

in live animals as shown in Figure 7.
3. Conclusions

Based on a novel nanostructure design, QD were conjugated

onto the surfaces of the CNT for in vivo imaging. Anticancer

drug was efficiently loaded in PLGA-coated CNT. Plasma

surface modification of CNT with acidic polymers effectively

facilitated coupling of amine-containing QD. The CNT-QD

formed a fluorescent domain of emission in the desired

wavelength range. With a near infrared emission around

800 nm, the CNT-QD exhibited strong luminescence suitable

for non-invasive optical in vivo imaging. The PLGA-coated

CNT showed high loading efficiency for paclitaxel, which

demonstrated in vitro antitumor efficacy against human PC-

3MM2 prostate cancer cells. ICP-MS studies indicated

predominant CNT-QD uptake in liver, kidney, stomach, and

intestine following i.v. administration in mice. The develop-

ment of CNT-QD as a non-invasive optical in vivo imaging and

drug delivery system may have a great impact in early

detection, diagnosis, and treatment of cancer.
4. Experimental

CNT-QD Conjugation: Commercial grade multiwall CNTs were
obtained from Applied Science, Inc. The CNT were chosen for their
relatively larger inner wall diameters (50–80 nm), which offer increased
capacity for drug storage. The as-produced CNT were severely
aggregated and highly hydrophobic. To modify surface properties,
CNTs were initially treated with superacid (HNO3þH2SO4). Subse-
quently, an ultra-thin AA polymer film was deposited on these
superacid-treated CNT by plasma coating using a protocol published
previously by our laboratories [4–7]. Briefly, the input power was set to
40 W, and the system pressure was adjusted from 150 to 400 mTorr.
Plasma treatment time was 30 min per batch. After surface
functionalization, the CNT were dispersed in phosphate-buffered
saline solution (PBS) and sonicated for 30 min. The as-synthesized
CNTs were too long for in vivo circulation. To select CNTs in a more
desirable size range around 200–400 nm, a sequential filtration protocol
was applied using 25 mm nylon syringe filters with pore sizes of 0.45 and
0.22mm, respectively (Thermo Fisher Scientific, Inc., Pittsburgh, PA).
A stable suspension of CNT collected from the 0.22mm filter in PBS
was used for i.v. administration in mice.

Amine-functionalized Qdot 800 ITK QD with emission wavelength
of 800 nm were supplied by Invitrogen Corporation (Carlsbad, CA,
Product # Q21571MP, 8mM solution). QD have a core of CdSeTe and a
shell of ZnS with a surface coating of amino PEG. Coupling of the
amine-containing QD to the carboxyl-functionalized CNT was
achieved using standard carbodiimide chemistry[47] and the procedure
is illustrated in Figure 2c. Briefly, 10mg of CNT were dispersed into
100mL PBS and combined with 200mL of a solution containing 0.5 M
EDC and 1 M NHS in PBS. Following a 30 min activation at
room temperature 20mL (0.16 nmol) of the commercial, amino-
functionalized QD suspension in borate buffer, pH 8.3 were added, and
the CNT-QD coupling mixture was incubated at 50 8C for 12 h. The
suspension was then cooled to room temperature, centrifuged at
ag GmbH & Co. KGaA, Weinheim www.afm-journal.de 7
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12 000 rpm for 3 min, and rinsed three times with PBS using
centrifugation and decantation. The final CNT-QD preparation was
re-suspended into 200mL of PBS.

Luminescence Spectroscopy: In order to obtain the emission
spectrum of the sample, 475 nm LED was used as the exciting source.
A 550 nm long path filter was placed into the system to block the
emissions from the diode. The fluorescence emission was dispersed by a
SPEX 1704 monochromator and detected with a cooled RCA C31034
photomultiplier. An electric motor driving chopper combined with
SR830 DSP lock-in amplifier was used to improve the signal/noise ratio
of the data. Both measurements were performed at room temperature
and recorded using our own software.

Paclitaxel Storage in PLGA-coated CNTs and Cytotoxicity Study:
PLGA-coated CNT were prepared by plasma polymerization and
washed twice with methanol. Drug loading was performed by
incubating 20–25 mg of PLGA-coated CNT with 11.4–14.2 mL of a
0.7 mg mL�1 paclitaxel stock solution prepared in methanol at a final
CNT/drug ratio of 2.5 w/w. The suspension was sonicating with an
energy output of 5 W in a pulse mode for 5 min under cooling and
vacuum dried. Removal of the organic solvent under these conditions
was completed within 2 h. Preparations were washed at least three
times with 10 mL of distilled water followed by centrifugation. After
the last wash, paclitaxel-loaded CNT suspended in water were frozen
and lyophilized until further use. The amount of paclitaxel loaded onto
PLGA-coated CNT was quantified by HPLC after back extraction of
the drug from CNT using methanol. Drug-loaded CNT (1.5–2 mg) was
suspended in 5 mL of methanol, sonicated for 10 min under cooling,
and centrifuged. The supernatant organic phase was removed, and the
procedure was repeated twice. An aliquot of the pooled extraction
solutions was evaporate to dryness under N2 and reconstituted in
acetonitrile. Samples (10mL) were injected into a Varian ProStar
HPLC system equipped with an UV detector. Isocratic chromato-
graphy was performed on a Dynamax C18 column using acetonitrile/
water (60:40) as a mobile phase. Paclitaxel was detected at l¼ 220 nm
and quantified using a standard curve between 0 and 250mg mL�1.
Drug loading was expressed as amount of drug per weight of carrier
material (i.e., mg paclitaxel mg�1 CNT). Mass balance of this drug
loading and backextraction protocol was verified by separate
incubation of fabrication containers and drug-loaded CNT with
acetonitrile that exhibit high solubility capacity for both paclitaxel
and PLGA. Quantitative evaluation of these samples revealed 20–30%
drug loss in fabrication containers and >90% recovery of drug after the
described backextraction protocol.

PC-3MM2 human prostate cancer cells were cultured in Eagle’s
minimal essential medium (EMEM) supplemented with 5% FBS, non-
essential amino acids, sodium pyruvate, vitamin A, and glutamine at
37 8C in a humidified incubator under an atmosphere of 5% CO2. Cells
in exponential growth phase were harvested by a 2 min treatment with
a 0.25% trypsin/0.02% EDTA solution and maintained by periodic
dilutions with a fresh medium. Effects of paclitaxel solutions and
paclitaxel-loaded CNT suspensions on in vitro cell viability were
evaluated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide] assay. Tumor cells were plated in 100mL EMEM-1%
FBS at a density of 1000 cells in a 96-well plate. After an overnight
incubation culture period, cells were exposed for 4 days with different
concentrations of paclitaxel or different amounts of paclitaxel-loaded
CNT at 37 8C under standard cell culture conditions. EMEM-1% FBS
was used as vehicle control. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (2 mg mL�1 in PBS) was added to the cultures
at 0.05 mL per well during the final 2 h of incubation. The medium was
then carefully removed, and the dark blue formazan was dissolved in
100mL per well of DMSO. The absorbance of each well was measured
with a FluoStar Optima multidetection microplate reader (BMG
Labtechnologies, Durham, NC) at 570 nm. The percentages cell
viability were calculated according to: (Abs 570 nm of treated group/
Abs 570 nm of control group)100.

In Vivo Imaging of CNT-QD: Whole body images were acquired
using a Kodak4000 MM Whole-Mouse Image Station. Excitation and
www.afm-journal.de � 2008 WILEY-VCH Verlag GmbH
emission filters were 720 and 790 nm, respectively, centered on the
emission maxima of the QD. The excitation light was from an UV lamp
with the 10� zoom lens, and the exposure time was 2 min. The dosage
used in this study was 5mg of CNT coupled with 0.08 nmol of QD and
dispersed in 100mL PBS. Nu/nu nude mice, obtained from the National
Cancer Institute, MD, were 6–8 weeks old and typically weigh 18 g.
Mice were anesthetized for imaging by beutal saline intraperitoneally.
The mice used for in vivo imaging were maintained in a facility
approved by the American Association for Accreditation of Labora-
tory Animal Care and in accordance with current regulations and
standards of the US Department of Agriculture, US Department of
Health and Human Services and National Institute of Health. This
study was approved by Institutional Animal Use and Care Committee
(IACUC) at the University of Cincinnati (OH).

Distribution of CNT-QD In Vivo: After UV irradiation for 30 min,
100mL of CNT-QD (5mg of CNT coupled with 0.08 nmol of QD) were
injected i.v. into nude mice via the tail vein. The liver, kidney, stomach,
and intestine of the mice were collected for 6 days and analyzed by ICP-
MS. Each organ sample was washed thoroughly with deionized water
and dried for 4 h at 120 8C. Each experiment was repeated three times.
In order to prepare ICP-MS solution, the organ samples were digested
by a microwave accelerated reaction system (CEM MARS 240/50),
following standard protocols. The digested solutions were then
qualitatively analyzed for the mass of Cd by using an ICP-MS (Perkin
Elmer, SCIEX ELAN DRC-e). Each sample was analyzed five times.
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