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The dielectric properties of lead lanthanum zirconate titanate (PLZT) thin films are investigated on
different combinations of bottom electrode (Pt, LaNiO3) and substrate (Ni, Si). The results indicate strong
effects of electrode on the permittivity and dielectric loss of these PLZT thin-films capacitors. The
substrate-induced thermal strain has a great impact on the temperature dependence of the dielectric
behavior. Based on these findings, dielectric applications using PLZT thin films in a wide range of
temperature are possible by selecting appropriate electrodes and substrates.

& 2013 Published by Elsevier B.V.
1. Introduction

There has been extensive research on thin films of ferroelectric
materials due to their unique physical and electrical properties for
potential applications in ferroelectric memories, tunable micro-
wave devices, and infrared sensors [1–3]. Typically, a ferroelectric
thin film is deposited on substrates for physical support. Also
widely employed is a metal–ferroelectric–metal (MFM) structure,
where a compensating charge is present on each electrode of the
polarized ferroelectric layer. Thus, ferroelectric thin films are
usually either deposited on a metal substrate (e.g., nickel [4,5],
copper [6,7]) or buffered substrates that serve as the bottom
electrode (e.g., platinized silicon [3,8]). The dielectric and ferro-
electric properties of capacitors, primarily based on ferroelectric
compositions, are highly dependent on the bottom electrode and
substrate. Due to ferroelastic nature of the thin films [9], substrate-
induced strain, mainly thermal strain for polycrystalline films, is
critical in determining the dielectric and ferroelectric properties
[10]. Moreover, the electrodes play an important role in the
electrical behavior of ferroelectric thin-film capacitors [11].
The influence of substrate or bottom electrode on the dielectric
properties has been investigated intensively, for example,
lsevier B.V.
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Refs. [12–17] reported the thermal strain due to substrates on
the dielectric properties of BaTiO3, xPb(Mg1/3Nb2/3)O3–(1−x)PbTiO3

(PMN-PT), Pb(Zr,Ti)O3 (PZT), and (Pb,La)(Zr,Ti)O3 (PLZT), and Refs.
[18–20] reported the electrode effect on the dielectric properties of
(Pb,La)TiO3, PZT, (Ba,Sr)TiO3, PMN, and PLZT. However, the
combined-effects of substrate and bottom electrode on the dielec-
tric behavior and phase transition on the ferroelectric thin films
have not been reported to our knowledge. In this letter, we report
on the effects of the bottom electrode (Pt and LaNiO3) and
substrate (Si and Ni) on the dielectric properties of PLZT films.
It should be noted that the dielectric properties of ferroelectric
thin films is highly dependent on the film thickness at nanoscale,
due to increased contribution from “dead layer” effect [21–23].
Therefore, to eliminate such effects, we fabricated constant �1-
μm-thick PLZT films in this work.
2. Material and methods

Pb0.92La0.08(Zr0.52Ti0.48)O3 (PLZT) thin films were deposited on
substrates of nickel buffered by LaNiO3 (LNO/Ni), silicon buffered
by LaNiO3 (LNO/Si), platinized silicon buffered by LaNiO3 (LNO/Pt/Si),
and platinized silicon (Pt/Si). Fabrication details on the PLZT and
LNO thin films prepared from acetate precursors, including
solution preparation, deposition, and heat treatment are reported
elsewhere [17,24]. Briefly, a 0.3 M LNO precursor solution was
prepared by dissolving an appropriate molar ratio of lanthanum
nitrate hexahydrate and nickel acetate tetrahydrate into acetic acid

www.elsevier.com/locate/matlet
http://dx.doi.org/10.1016/j.matlet.2013.05.068
http://dx.doi.org/10.1016/j.matlet.2013.05.068
http://dx.doi.org/10.1016/j.matlet.2013.05.068
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.matlet.2013.05.068&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.matlet.2013.05.068&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.matlet.2013.05.068&domain=pdf
mailto:shid@ucmail.uc.edu
http://dx.doi.org/10.1016/j.matlet.2013.05.068


S. Tong et al. / Materials Letters 106 (2013) 405–408406
and refluxing it at 105 1C for 1.5 h. 0.5 M PLZT solution was prepared
by dissolving zirconium n-propoxide, titanium isopropoxide, lead
acetate and lanthanum acetate in acetic acid, n-propanol and
deionized water (7:7:1 volume ratio) at 105 1C/1 h using inverted
mixing order reported by Schwartz [8]. Films were deposited by
spinning coating the precursor solutions at 3000 rpm for 30 s,
pyrolyzing at 325 1C for 10 min, and crystallizing at 625 1C for
5 min. This process was repeated to achieve films of desired thick-
ness [17,24]. The thickness of the platinum electrode, LNO buffer
layer, and PLZT thin films was �100 nm, �400 nm, and �1 μm,
respectively. The platinum top electrode (�250-μm diameter) was
deposited through a shadow mask by e-beam evaporation. The
samples were studied by X-ray diffraction (XRD, Bruker AXS
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Fig. 1. (a) XRD patterns of the PLZT thin films deposited on various bottom
electrodes/substrates. (b) Interplanar spacing d(211) vs. sin2 (Ψ) of the corresponding
PLZT thin films.
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Fig. 2. Room-temperature dielectric responses to DC bias of PLZT thin films deposited on
of a metal–ferroelectric–metal structure.
diffractometer) analysis and LCR meter (Agilent E4980A) measure-
ments with a 0.1-V oscillating signal at 10 kHz in conjunction with a
Signatone QuieTemp probe station with hot stage (Lucas Signatone
Corp., CA).
3. Results and discussion

The XRD patterns in Fig. 1a indicate the formation of phase-
pure perovskite with randomly oriented pseudo-cubic structure in
the PLZT thin films deposited on Pt/Si, LNO/Pt/Si, LNO/Si, and LNO/Ni.
The ratio of the peak intensities corresponding to the two strongest
peaks [(111) and (101)] for the samples was 0.1470.02 confirming
the randomness of the orientation. The strain states of the PLZT thin
films are studied by the sin2 Ψ method, and the results are shown in
Fig. 1b. Lattice spacings (d) are determined from the PLZT (211)
reflections with ψ in the range of 0–45o. Small variance (70.3%) in
the dΨ vs. sin2 Ψ for Φ¼01, 451, and 90o (not given in this letter)
indicates isotropic and homogeneous in-plane strains of the PLZT
thin films, which is common in polycrystalline thin films. The data
for dΨ vs. sin2 Ψ fit to the line shown in Fig. 1b (R40.9848) and can
be mathematically represented as [25]

dΨ ¼ d⊥ þ ðd∠−d⊥Þ sin 2Ψ ð1Þ
where dΨ, d⊥, and d∠ are the lattice spacing at Ψ, Ψ¼0 (out-of-plane),
and Ψ¼90o (in-plane), respectively. By applying the strain definition
S¼(d–d0)/d0, where d0 is the strain-free lattice spacing, the relation-
ship between the out-of-plane strain (S⊥) and in-plane strain (S∠)
associated with Poisson's ratio (ν¼0.30 [11]) in Fig. 1b can be
expressed as [13]

S⊥ ¼ S∠ −
2ν
1−ν

� �
ð2Þ

From Fig. 1b, d0(211) is calculated to be 0.166270.0083 nm
(R¼0.9995), leading to calculated S∠ values of −0.4270.02% for
LNO/Ni, 0.1970.01% for LNO/Si, 0.1670.01% for LNO/Pt/Si, and
0.2070.01% for Pt/Si. These results suggest that PLZT thin films
deposited on nickel substrates are under compressive strain, and
those on silicon substrates are under tensile strain, regardless of
the buffer layer.

Thermal strain, caused by the thermal expansion coefficient
mismatch between the thin film and substrate, is defined as St¼Δα
(Ts−T0), where α is the thermal expansion coefficient, Ts is the
sintering temperature, and T0 is room temperature. Given the
parameters [24,26–28] of α(PLZT)¼5.4�10−6/1C, α(Si)¼3�10−6/1C,
α(Ni)¼13�10−6/1C, Ts¼650 1C, and T0¼25 1C, St is calculated to
0
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various bottom electrodes/substrates (10 kHz). Inset is the equivalent circuit model
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Fig. 3. Temperature-dependent dielectric behavior of PLZT thin films deposited on
various substrates. Inset shows the diffuse coefficients fit to data for PLZT thin films
deposited on LNO/Si, LNO/Pt/Si, and Pt/Si.
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be 0.15% for the Si substrate samples and −0.47% for the Ni substrate
samples. On the basis of the measured strains, it is concluded that
all the PLZT thin films are mainly under thermal strain. This finding
is expected for polycrystalline PLZT thin films, since the ratios of the
substrate-to-film thickness (4380) and substrate-to-buffer-layer
thickness (4760) are large.

Fig. 2 shows the permittivity (εr) and dielectric loss (tan δ) vs.
DC bias at 10 kHz for the PLZT thin-film capacitors. The butterfly-
shaped C–V curves are typically seen in ferroelectric thin films.
The zero-bias permittivity of PLZT thin-film capacitors is high,
LNO/Si (1160)≈LNO/Ni (1140)oLNO/Pt/Si (1230)oPt/Si (1500),
and the dielectric loss is low, LNO/Si (6.4%)4LNO/Ni (5.7%)
4LNO/Pt/Si (4.9%)4Pt/Si (4.1%). These results indicate that the
dielectric properties of the thin-film capacitors are highly depen-
dent on the conductive properties of the bottom electrodes.

The measured permittivity εrm and dielectric loss tan δm of an
ideal ferroelectric structure are determined from an equivalent
circuit (EC) consisting of a capacitor (Cm) and a resistor (Rm) in
parallel. The εrm¼Cmd/(Aε0), where d is thickness of the thin film,
A the electrode size, and ε0 the vacuum permittivity, and the
tan δm¼1/(ωRmCm), where ω is angular frequency. With this EC,
however, the electrode contribution to the permittivity and
dielectric loss is not included. To explain the electrode effect on
the dielectric properties, a more appropriate EC for MFM structure
is shown in the inset of Fig. 2 to determine the true dielectric
properties of the PLZT thin films. This EC involves an ideal
ferroelectric structure (Cf and Rf in parallel) in series with a resistor
(Re) corresponding to the electrode. Comparing equivalent parallel
circuit and model circuit in inset of Fig. 2, the following equations
for the thin film with electrode contribution apply [18]:

εrm ¼ εrf

ð1þ rÞ2 þ ðr tan −1δf Þ2
ð3Þ

tan δm ¼ tan δf þ rð tan δf þ tan −1δf Þ ð4Þ
where εrf and tan δf are true permittivity and dielectric loss of
the ferroelectric thin films (electrode resistance independent),
r¼Re/Rf.
For small electrode thicknesses, the electrode contact resistance
cannot be ignored, and would increase r [19]. Therefore, based on
Eqs. (3) and (4) when r increases, εrm decreases while tan δm increases,
compared to εrf and tan δf, when r¼0. The bottom electrode resis-
tivity values ρ(Ni)≈6.93 μΩ cm [28], ρ(Pt)≈10.5 μΩ cm [28], and ρ
(LNO)≈1720 μΩ cm (tested using four-point probe method). This wide
range of resistance is consistent with the measured permittivity and
dielectric loss for the PLZT films deposited on LNO/Si, LNO/Ni, LNO/Pt/
Si, and Pt/Si.

The dielectric properties of the samples with PLZT thin films
are illustrated in Fig. 3 as a function of temperature. The εr–T
curves for PLZT deposited on the LNO/Ni substrate increase
steadily over the temperature range, while those for PLZT depos-
ited on the silicon substrate shows a unique peak (Tm) at �150 1C.
The permittivity peak temperature shift is mainly induced by the
thermal strain from the substrates [13,22,29]. tan δ of the PLZT
thin films does not exhibit drastic variations corresponding to the
permittivity peaks, with only minor changes (o7%) in the tem-
perature range. As a relaxor, PLZT undergoes a diffused phase
transition around Tm, and permittivity above Tm obeys the Curie–
Weiss type law, as follows [1]:

1
εr
−

1
εm

¼ CðT−TmÞn ð5Þ

where εm is the peak permittivity, C is a constant, and n is
a dispersion factor between 1 and 2. The n value in Eq. 5 for the
PLZT thin films on Pt/Si, LNO/Pt/Si, and LNO/Si is determined from
the slope of the lines in the inset of Fig. 3, and is found to be
1.6270.06 (R¼0.996). Although the permittivity peak values (εm)
vary according to the bottom electrode used (1540 for LNO/Si, 1610
for LNO/Pt/Si, and 1790 for Pt/Si), the same silicon substrate for
these samples yields the same Tm and n values, indicating that
these parameters are highly related to thermal strain. Previous
studies mainly focused on the magnitude of the permittivity peak
shift due to the thermal strain [13,22,29]. In this letter we high-
light the combined effects of thermal strain and electrode on the
dielectric response and its thermal behavior.
4. Conclusions

We have investigated the strains and dielectric properties of
PLZT thin films deposited on different bottom electrodes/sub-
strates. While the conductive properties of the bottom electrodes
determine the absolute values of permittivity and dielectric loss of
these ferroelectric thin-film capacitors, the substrate-induced
thermal strain is essential in modifying the peak and shape of
temperature-dependent permittivity curves. Thus, it is possible to
tune the dielectric behavior of ferroelectric thin-film capacitors
over a wide temperature range by selecting the proper combina-
tion of bottom electrode and substrate.
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