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Abstract

We show that for some negatively curved solvable Lie groups, all self quasi-
isometries are almost isometries. We prove this by showing that all self qua-
sisymmetric maps of the ideal boundary (of the solvable Lie groups) are bilips-
chitz with respect to the visual metric. We also define parabolic visual metrics
on the ideal boundary of Gromov hyperbolic spaces and relate them to visual
metrics.

1 Introduction

In recent years, there have been a lot of interest in the large scale geometry of solv-
able Lie groups and finitely generated solvable groups ([D], [EFW1], [EFW2], [FM1],
[FM2], [FM3], [Pe]). In particular, Eskin, Fisher and Whyte ([EFW1], [EFW2])
proved the quasiisometric rigidity of the 3-dimensional solvable Lie group Sol. In this
paper, we use quasiconformal analysis to prove a rigidity property of some negatively
curved solvable Lie groups.

Let A be an n× n diagonal matrix with real eigenvalues αi with αi+1 > αi > 0:

A =




α1In1 0 · · · 0
0 α2In2 · · · 0
· · · · · · · · · · · ·
0 0 · · · αrInr


 ,

where Ini
is the ni × ni identity matrix and the 0’s are zero matrices (of various

sizes). Let R act on Rn by the linear transformations etA (t ∈ R) and we can form
the semidirect product GA = RnoA R. That is, GA = Rn×R as a smooth manifold,
and the group operation is given for all (x, t), (y, s) ∈ Rn × R by:

(x, t) · (y, s) = (x + etAy, t + s).
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The group GA is a simply connected solvable Lie group and is the subject of study
in this paper.

We endow GA with the left invariant metric determined by taking the standard
Euclidean metric at the identity of GA ≈ Rn × R = Rn+1. With this metric GA

has sectional curvature −α2
r ≤ K ≤ −α2

1 (and so is Gromov hyperbolic). Hence
GA has a well defined ideal boundary ∂GA. There is a so-called cone topology on
GA = GA∪∂GA, in which ∂GA is homeomorphic to the n-dimensional sphere and GA

is homeomorphic to the closed (n + 1)-ball in the Euclidean space. For each x ∈ Rn,
the map γx : R→ GA, γx(t) = (x, t) is a geodesic. We call such a geodesic a vertical
geodesic. It can be checked that all vertical geodesics are asymptotic as t → +∞.
Hence they define a point ξ0 in the ideal boundary ∂GA.

Since GA is Gromov hyperbolic, there is a family of visual metrics on ∂GA. For
each ξ ∈ ∂GA, there is also the so-called parabolic visual metric on ∂GA\{ξ}. The
relation between visual metrics and parabolic visual metrics is analogous to the rela-
tion between spherical metric (on the sphere) and the Euclidean metric (on the one
point complement of the sphere). See Section 5 for a discussion of all these in the
setting of Gromov hyperbolic spaces. We next recall the parabolic visual metric D
on ∂GA viewed from ξ0.

The set ∂GA\{ξ0} can be naturally identified with Rn (see Section 2). Write
Rn = Rn1 × · · · × Rnr , where Rni is the eigenspace associated to the eigenvalue αi

of A. Each point x ∈ Rn can be written as x = (x1, · · · , xr) with xi ∈ Rni . The
parabolic visual metric D on ∂GA\{ξ0} ≈ Rn is defined by:

D(x, y) = max{|x1 − y1|, |x2 − y2|α1/α2 , · · · , |xr − yr|α1/αr},
for all x = (x1, · · · , xr), y = (y1, · · · , yr) ∈ Rn.

Let η : [0,∞) → [0,∞) be a homeomorphism. An embedding of metric spaces
f : X → Y is an η-quasisymmetric embedding if for all distinct triples x, y, z ∈ X, we
have

d(f(x), f(y))

d(f(x), f(z))
≤ η

(
d(x, y)

d(x, z)

)
.

If f is further assumed to be a homeomorphism, we say it is η-quasisymmetric. A
map f : X → Y is quasisymmetric if it is η-quasisymmetric for some η.

When r ≥ 2, Bruce Kleiner has proved that ([K]) every self quasisymmetry of
∂GA (equipped with a visual metric) preserves the horizontal foliation (see Section
3) and fixes the point ξ0. This is one of the main ingredients in the proof of our main
result. Since Kleiner’s proof is unpublished, we include a proof here for completeness.
Notice that Kleiner’s result implies that a self quasisymmetry of ∂GA induces a self
map of (Rn, D).

The following is the main result of this paper.

Theorem 1.1. Let GA and ξ0 ∈ ∂GA be as above. If r ≥ 2, then every self qua-
sisymmetry of ∂GA (equipped with a visual metric) is bilipschitz with respect to the
parabolic visual metric D.
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One should compare this with quasiconformal maps on Euclidean spaces ([GV])
and Heisenberg groups ([B]), where there are non-bilipschitz quasiconformal maps.
On the other hand, the conclusion of Theorem 1.1 is not as strong as in the cases
of quaternionic hyperbolic spaces, Cayley plane ([P2]) and Fuchsian buildings ([BP],
[X]), where every quasisymmetric map of the ideal boundary is actually a conformal
map. In our case, there are many non-conformal quasisymmetric maps of the ideal
boundary of GA. We also remark that in [T2, Section 15] Tyson has previously
classified (quasi)metric spaces of the form (Rn, D) up to quasisymmetry.

We list three consequences of Theorem 1.1.

Let L ≥ 1 and C ≥ 0. A (not necessarily continuous ) map f : X → Y between
two metric spaces is an (L,A)-quasiisometry if:
(1) d(x1, x2)/L− C ≤ d(f(x1), f(x2)) ≤ Ld(x1, x2) + C for all x1, x2 ∈ X;
(2) for any y ∈ Y , there is some x ∈ X with d(f(x), y) ≤ C.
In the case L = 1, we call f an almost isometry.

Corollary 1.2. Assume that r ≥ 2. Then every self quasiisometry of GA is an almost
isometry.

Notice that an almost isometry is not necessarily a finite distance away from an
isometry.

The following result was previously obtained by B. Kleiner [K].

Corollary 1.3. If r ≥ 2, then GA is not quasiisometric to any finitely generated
group.

In the identification of GA with Rn × R, we view the map h : Rn × R, h(x, t) = t
as the height function. A quasiisometry ϕ of GA is hight-respecting if |h(ϕ(x, t))− t|
is bounded independent of x, t.

Corollary 1.4. Assume that r ≥ 2. Then all self quasiisometries of GA are height-
respecting.

The question of whether a quasiisometry of GA is height-respecting is important
for the following three reasons. First, Mosher and Farb ([FM1]) have classified a large
class of solvable Lie groups (including groups of type GA) up to height-respecting
quasiisometries. Second, there is no known examples of non-height-respecting quasi-
isometries except for rank one symmetric spaces of noncompact type. Finally, showing
a quasiisometry is height-respecting is a main step in the proof of the quasiisometric
rigidity of Sol ([EFW1], [EFW2]).

When r = 1, the group GA is isometric to a rescaling of the real hyperbolic space.
In this case, all the above results fail.

This paper is structured as follows. In Section 2 we review some basics about the
group GA. In Section 3 we prove that quasisymmetric self-maps of ∂GA\{ξ0} equipped
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with the parabolic visual metric preserve horizontal foliations, and in Section 4 we will
prove that such maps are bilipschitz with respect to this metric. The main result of
this paper, Theorem 1.1, is proven in Section 5, where a discussion of parabolic visual
metrics on the ideal boundary and their connection to the visual metrics can also be
found. In Section 6 we provide the proofs of the Corollaries stated in Section 1.

Acknowledgment. We would like to thank Bruce Kleiner for helpful discussions.
The second author would also like to thank the Department of Mathematical Sciences
at Georgia Southern University for generous travel support.

2 The Solvable Lie Groups GA

In this section we review some basic facts about the group GA and define several
parabolic visual (quasi)metrics on the ideal boundary.

Let A and GA be as in the Introduction. We endow GA with the left invariant
metric determined by taking the standard Euclidean metric at the identity of GA ≈
Rn×R = Rn+1. At a point (x, t) ∈ Rn×R ≈ GA, the tangent space is identified with
Rn × R, and the Riemannian metric is given by the symmetric matrix

(
e−2tA 0

0 1

)
.

With this metric GA has sectional curvature −α2
r ≤ K ≤ −α2

1. Hence GA has a well
defined ideal boundary ∂GA. All vertical geodesics γx (x ∈ Rn) are asymptotic as
t → +∞. Hence they define a point ξ0 in the ideal boundary ∂GA.

The sets Rn × {t} (t ∈ R) are horospheres centered at ξ0. For each t ∈ R, the
induced metric on the horosphere Rn×{t} ⊂ GA is determined by the quadratic form
e−2tA. This metric has distance formula dRn×{t}((x, t), (y, t)) = |e−tA(x−y)|. Here | · |
denotes the Euclidean norm. The distance between two horospheres, corresponding
to t = t1 and t = t2, is |t1 − t2|. It follows that for (x1, t1), (x2, t2) ∈ GA = Rn × R,

d((x1, t1), (x2, t2)) ≥ |t1 − t2|. (2.1)

Each geodesic ray in GA is asymptotic to either an upward oriented vertical
geodesic or a downward oriented vertical geodesic. The upward oriented geodesics
are asymptotic to ξ0 and the downward oriented vertical geodesics are in 1-to-1 cor-
respondence with Rn. Hence ∂GA\{ξ0} can be naturally identified with Rn.

Given x, y ∈ Rn ≈ ∂GA\{ξ0}, the parabolic visual quasimetric De(x, y) is defined
as follows: De(x, y) = et, where t is the unique real number such that at height t
the two vertical geodesics γx and γy are at distance one apart in the horosphere;
that is, dRn×{t}((x, t), (y, t)) = |e−tA(x − y)| = 1. Here the subscript e in De means
it corresponds to the Euclidean norm. This definition of parabolic visual quasimetric
is very natural, but De does not have a simple formula. Next we describe another
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parabolic visual quasimetric which is bilipschitz equivalent with De and admits a
simple formula. Recall that a quasimetric on a set A is a function ρ : A×A → [0,∞)
satisfying: (1) ρ(x, y) = ρ(y, x) for all x, y ∈ A; (2) ρ(x, y) = 0 only when x = y; (3)
there is a constant L ≥ 1 such that ρ(x, z) ≤ L(ρ(x, y) + ρ(y, z)) for all x, y, z ∈ A.

In addition to the Euclidean norm, there is another norm on Rn that is naturally
associated to GA. Write Rn = Rn1×· · ·×Rnr , where Rni is the eigenspace associated
to the eigenvalue αi of A. Each point x ∈ Rn can be written as x = (x1, · · · , xr)
with xi ∈ Rni . The block supernorm is given by: |x|s = max{|x1|, · · · , |xr|} for
x = (x1, · · · , xr). Using this norm one can define another parabolic visual quasimetric
on ∂GA\{ξ0} as follows: Ds(x, y) = et, where t is the unique real number such that
at height t the two vertical geodesics γx and γy are at distance one apart with respect
to the norm | · |s; that is, |e−tA(x − y)|s = 1. Here the subscript s in Ds means it
corresponds to the block supernorm | · |s. Then Ds is given by [D, Lemma 7]:

Ds(x, y) = max{|x1 − y1|
1

α1 , · · · , |xr − yr|
1

αr },
for all x = (x1, · · · , xr), y = (y1, · · · , yr) ∈ Rn.

Notice that |x|s ≤ |x| ≤ √
r |x|s for all x ∈ Rn. Using this, one can verify the

following elementary lemma, whose proof is left to the reader.

Lemma 2.1. For all x, y ∈ Rn we have Ds(x, y) ≤ De(x, y) ≤ r1/2α1Ds(x, y).

In general, Ds does not satisfy the triangle inequality. However, for each 0 < ε ≤
α1, the function Dε

s is always a metric, called a parabolic visual metric. In this paper
we consider the following parabolic visual metric

D(x, y) = Dα1
s (x, y) = max{|x1 − y1|, |x2 − y2|α1/α2 , · · · , |xr − yr|α1/αr}.

With respect to this metric the rectifiable curves in Rn ≈ ∂GA \ {ξ0} are necessarily
curves of the form γ : I → Rn with γ(t) = (γ1(t), c2, · · · , cr) where ci ∈ Rni , 2 ≤ i ≤ r,
are constant vectors. This follows from the fact that the directions corresponding to
Rni , i ≥ 2, have their Euclidean distance components “snowflaked” by the power
α1/αi < 1.

3 Quasisymmetric maps preserve horizontal folia-

tions

In this section we show that every self-quasisymmetry of ∂GA fixes the point ξ0 ∈ ∂GA

and preserves a natural foliation on ∂GA\{ξ0}.
Recall that a metric space X endowed with a Borel measure µ is an Ahlfors Regular

space of dimension Q (for short, a Q-regular space) if there exists a constant C0 ≥ 1
so that

C−1
0 rQ ≤ µ(Br) ≤ C0r

Q
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for every ball Br with radius r < diam(X).

We need the following result; see [T1] for the definition of the modulus ModQ of
a family of curves.

Theorem 3.1 ([T1, Theorem 1.4]). Let X and Y be locally compact, connected, Q-
regular metric spaces (Q > 1) and let f : X → Y be an η-quasisymmetric home-
omorphism. Then there is a constant C depending only on η, Q and the regularity
constants of X and Y so that

1

C
ModQΓ ≤ ModQf(Γ) ≤ C ModQΓ

for every curve family Γ in X.

Recall that we write Rn as Rn = Rn1 × · · · × Rnr . Set Y = Rn2 × · · · × Rnr and
write Rn = Rn1 × Y . Since we assume r ≥ 2, the set Y is nontrivial. The subsets
{Rn1 × {y} : y ∈ Y } form a foliation of Rn. We call this foliation the horizontal
foliation and each leaf Rn1 × {y} a horizontal leaf. Since α1

αi
< 1 for all 2 ≤ i ≤ r, we

notice that a curve in (Rn, D) is not rectifiable if it is not contained in a horizontal
leaf.

Observe that (Rni , | · |α1/αi) with the Hausdorff measure (which is comparable to
the ni-dimensional Lebesgue measure) is niαi/α1-regular. Let µ be the product of the
Hausdorff measures on the factors (Rni , | · |α1/αi). Then it is easy to see that (Rn, D)
with the measure µ is Q-regular with Q = Σr

i=1ni
αi

α1
. It follows that Theorem 3.1

applies to the metric space (Rn, D). We also point out here that the Hausdorff
measure µ is comparable to the canonical n-dimensional Lebesgue measure on Rn.

Theorem 3.2. If r ≥ 2, then every quasisymmetry F : (Rn, D) → (Rn, D) preserves
the horizontal foliation on Rn.

Proof. Suppose F does not preserve the horizontal foliation. Then there are two
points p and q in some Rn1 × {y} such that f(p) and f(q) are not in the same
horizontal leaf. Let γ be the Euclidean line segment from p to q and Γ be the family
of straight segments parallel to γ in Rn whose union is an n-dimensional circular
cylinder with γ as the central axis. The curves in Γ are rectifiable with respect to the
metric D. Since f is a homeomorphism, by choosing the radius of the circular cylinder
to be sufficiently small (by a compactness argument) we may assume that no curve
in Γ is mapped into a horizontal leaf. It follows that f(Γ) has no locally rectifiable
curve and so ModQf(Γ) = 0. On the other hand, [V1], 7.2 (page 21) shows that
ModQΓ > 0 (the Euclidean length element on each β ∈ Γ is the same as the length
element on β obtained from the metric D). Since Q = Σr

i=1ni
αi

α1
> 1, this contradicts

Theorem 3.1. Hence each horizontal leaf is mapped to a horizontal leaf.
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4 Quasisymmetry implies Bilipschitz

In this section we show that each self quasisymmetry of (Rn, D) is actually a bilipschitz
map. One should contrast this with the case of Euclidean spaces and Heisenberg
groups, where there are non-bilipschitz quasisymmetric maps ([GV], [B]). On the
other hand, (Rn, D) is not as rigid as the ideal boundary of a quaternionic hyperbolic
space or a Cayley plane ([P2]) or a Fuchsian building ([BP], [X]), where each self
quasisymmetry is a conformal map.

Let K ≥ 1 and C > 0. A bijection F : X1 → X2 between two metric spaces is
called a K-quasisimilarity (with constant C) if

C

K
d(x, y) ≤ d(F (x), F (y)) ≤ C K d(x, y)

for all x, y ∈ X1. It is clear that a map is a quasisimilarity if and only if it is a
bilipschitz map. The point of using the notion of quasisimilarity is that sometimes
there is control on K but not on C.

Theorem 4.1. Let F : (Rn, D) → (Rn, D) be an η-quasisymmetry. Then F is a
K-quasisimilarity with K = (η(1)/η−1(1))2r+2.

In this section, we first develop some intermediate results, and then use these
results to provide a proof of this theorem. We first recall some definitions.

Let g : X1 → X2 be a homeomorphism between two metric spaces. We define for
every x ∈ X1 and r > 0,

Lg(x, r) = sup{d(g(x), g(x′)) : d(x, x′) ≤ r},
lg(x, r) = inf{d(g(x), g(x′)) : d(x, x′) ≥ r},

and set

Lg(x) = lim sup
r→0

Lg(x, r)

r
, lg(x) = lim inf

r→0

lg(x, r)

r
.

Then

Lg−1(g(x)) =
1

lg(x)
and lg−1(g(x)) =

1

Lg(x)

for any x ∈ X1. If g is an η-quasisymmetry, then Lg(x, r) ≤ η(1)lg(x, r) for all x ∈ X1

and r > 0. Hence if in addition

lim
r→0

Lg(x, r)

r
or lim

r→0

lg(x, r)

r

exists, then

0 ≤ lg(x) ≤ Lg(x) ≤ η(1)lg(x) ≤ ∞.
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Recall the decomposition Rn = Rn1 × Y . Given points y = (x2, · · · , xr) and
y′ = (x′2, · · · , x′r) ∈ Y with xi, x

′
i ∈ Rni , set

DY (y, y′) = max{|x2 − x′2|
α1
α2 , |x3 − x′3|

α1
α3 , · · · , |xr − x′r|

α1
αr }.

For p = (x1, y), p′ = (x′1, y
′) ∈ Rn1 × Y , we have D(p, p′) = max{|x1− x′1|, DY (y, y′)}.

We notice that for every y1, y2 ∈ Y , the Hausdorff distance in the metric D of the
two horizontal leaves,

HD(Rn1 × {y1},Rn1 × {y2}) = DY (y1, y2). (4.1)

Also, for any p = (x1, y1) ∈ Rn1 × Y and any y2 ∈ Y ,

D(p,Rn1 × {y2}) = DY (y1, y2). (4.2)

By Theorem 3.2 the quasisymmetry F preserves the horizontal foliation. Hence it
induces a map G : Y → Y such that for any y ∈ Y , F (Rn1×{y}) = Rn1×{G(y)}. For
each y ∈ Y , let H(·, y) : Rn1 → Rn1 be the map such that F (x, y) = (H(x, y), G(y))
for all x ∈ Rn1 . Because F : (Rn, D) → (Rn, D) is an η-quasisymmetry, it follows that
for each fixed y ∈ Y , the map H(·, y) : Rn1 → Rn1 is an η-quasisymmetry with respect
to the Euclidean metric on Rn1 . The following lemma together with equations (4.1)
and (4.2) imply that G : (Y,DY ) → (Y,DY ) is also an η-quasisymmetry.

Lemma 4.2. ([T2, Lemma 15.9]) Let g : X1 → X2 be an η-quasisymmetry and
A, B, C ⊂ X1. If HD(A,B) ≤ tHD(A,C) for some t ≥ 0, then there is some a ∈ A
such that

HD(g(A), g(B)) ≤ η(t)d(g(a), g(C)).

We recall that if g : X1 → X2 is an η-quasisymmetry, then g−1 : X2 → X1 is
an η2-quasisymmetry, where η2(t) = (η−1(t−1))−1, see [V2, Theorem 6.3]. Note that
η2(1) = 1/η−1(1) and η−1

2 (1) = 1/η(1).

In the proofs of the following lemmas, the quantities lG, LG, lG−1 , LG−1 are defined
with respect to the metric DY . Similarly, lH(·,y), LH(·,y), lIy and LIy are defined
with respect to the Euclidean metric on Rn1 , where Iy := H(·, y)−1 : Rn1 → Rn1 .
Lemmas 4.6 and 4.7 together verify Theorem 4.1 for the case r = 2. At the end of
this section we will use induction to then complete the proof of Theorem 4.1 for the
general case r ≥ 2.

Lemma 4.3. The following holds for all y ∈ Y and x ∈ Rn1:
(1) LG(y, r) ≤ η(1) lH(·,y)(x, r) for r > 0;
(2) η−1(1) lH(·,y)(x) ≤ lG(y) ≤ η(1) lH(·,y)(x);
(3) η−1(1) LH(·,y)(x) ≤ LG(y) ≤ η(1) LH(·,y)(x).
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Proof. To prove (1), let y ∈ Y , x ∈ Rn1 and r > 0. Let y′ ∈ Y be an arbitrary
point with DY (y, y′) ≤ r and x′ ∈ Rn1 an arbitrary point with |x − x′| ≥ r. Then
D((x, y), (x, y′)) ≤ r ≤ D((x, y), (x′, y)). Since F is η-quasisymmetric, we have

DY (G(y), G(y′)) ≤ D(F (x, y), F (x, y′)) ≤ η(1) D(F (x, y), F (x′, y))

= η(1) |H(x, y)−H(x′, y)|.
Since y′ and x′ are chosen arbitrarily and are independent of each other, the inequality
follows.

Next we prove (2) and (3). The second inequality of (2) follows directly from (1)
and the fact that lG(y, r) ≤ LG(y, r), while the second inequality of (3) follows from (1)
and the fact that lH(·,y)(x, r) ≤ LH(·,y)(x, r).

To prove the first inequalities in (2) and (3), observe that the inverse map F−1 :
(Rn, D) → (Rn, D) is an η2-quasisymmetry, with

F−1(x, y) = (H(·, G−1(y))−1(x), G−1(y)) = (IG−1(y)(x), G−1(y)).

Applying the second inequality of (2) proven above to Iy and G−1, we obtain:

1

LG(y)
= lG−1(G(y)) ≤ η2(1) · lIy(H(x, y)) =

1

η−1(1)
· 1

LH(·,y)(x)
,

hence LG(y) ≥ η−1(1)LH(·,y)(x), which is the first inequality of (3). Similarly, using
the second inequality of (3) we obtain the first inequality of (2).

When r = 2, we have Y = Rn2 and DY = | · |
α1
α2 .

Lemma 4.4. Assume that r = 2. Then 0 < lG(y) ≤ LG(y) ≤ η(1)lG(y) < ∞ for a.e.
y ∈ Y with respect to the Lebesgue measure on Y = Rn2.

Proof. Observe in this case that DY (y, y′) = |y−y′|α1/α2 for y, y′ ∈ Y = Rn2 . Because
G is an η-quasisymmetry with respect to the metric DY , it is η1-quasisymmetric with
respect to the Euclidean metric, where η1(t) = (η(tα1/α2))α2/α1 . Hence the map
G : (Rn2 , | · |) → (Rn2 , | · |) is differentiable a.e. with respect to the Lebesgue measure.
With Le

G, leG the distortion quantities of the map G with respect to the Euclidean

metric, the differentiability property of G shows that limr→0
Le

G(y,r)

r
and limr→0

leG(y,r)

r

exist. Since LG(y, r) = Le
G(y, rα2/α1)α1/α2 and lG(y, r) = leG(y, rα2/α1)α1/α2 , this implies

that both limr→0
LG(y,r)

r
and limr→0

lG(y,r)
r

exist for a.e. y ∈ Y . It follows that

0 ≤ lG(y) ≤ LG(y) ≤ η(1)lG(y) ≤ ∞.

Fix y ∈ Y such that both limr→0
LG(y,r)

r
and limr→0

lG(,r)
r

exist. We next prove that
LG(y) 6= 0,∞. Suppose that LG(y) = ∞. Then lG(y) = ∞ and so by Lemma 4.3 (2),
lH(·,y)(x) = ∞ for all x ∈ Rn1 . Hence Iy = H(·, y)−1 : Rn1 → Rn1 has the property
that LIy(x) = 0 for all x ∈ Rn1 . This implies that Iy is a constant map, contradicting
the fact that it is a homeomorphism. Similarly we use Lemma 4.3 (3) to show that
LG(y) 6= 0.
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In the next two lemmas we use the fact that η(1) ≥ 1 and 0 < η−1(1) ≤ 1.

Lemma 4.5. Suppose that r = 2. Then, for a.e. y ∈ Y , the map H(·, y) : Rn1 → Rn1

is an η(1)/η−1(1)-quasisimilarity with constant lG(y) > 0.

Proof. By Lemma 4.3 (2) we have lH(·,y)(x) ≥ lG(y)/η(1). Lemma 4.3 (3) and
Lemma 4.4 imply that, for a.e. y ∈ Y , we have lG(y) > 0 and

LH(·,y)(x) ≤ LG(y)/η−1(1) ≤ (η(1)/η−1(1)) lG(y)

for all x ∈ Rn1 . Because Rn1 is a geodesic space, for a.e. y ∈ Y the map H(·, y) is an
η(1)/η−1(1)-quasisimilarity with constant lG(y).

Lemma 4.6. If r = 2, then there exists a constant C > 0 with the following properties:

(1) For each y ∈ Y , H(·, y) is an (η(1)/η−1(1))4-quasisimilarity with constant C;

(2) G : (Y, DY ) → (Y, DY ) is an (η(1)/η−1(1))5-quasisimilarity with constant C.

Proof. (1) Fix any y0 ∈ Y that satisfies both Lemma 4.4 and Lemma 4.5. Set C =
lG(y0). Let y ∈ Y be an arbitrary point satisfying both Lemma 4.4 and Lemma 4.5.
Fix x0 ∈ Rn1 and choose x ∈ Rn1 such that |x− x0| ≥ DY (y, y0). Then

D((x, y0), (x0, y)) = D((x, y), (x0, y)) = |x− x0|.

By choosing x so that in addition |H(x, y0) − H(x0, y)| > DY (G(y0), G(y)), by the
η-quasisymmetry of F we have

|H(x, y0)−H(x0, y)| = D(F (x, y0), F (x0, y))

≤ η(1)D(F (x, y), F (x0, y)) = η(1)|H(x, y)−H(x0, y)|.

By the choice of y and Lemma 4.5, we have

|H(x, y)−H(x0, y)| ≤ (η(1)/η−1(1))lG(y)|x− x0|.

On the other hand,

|H(x, y0)−H(x0, y)| ≥ |H(x, y0)−H(x0, y0)| − |H(x0, y0)−H(x0, y)|
≥ lG(y0)

η(1)/η−1(1)
|x− x0| − |H(x0, y0)−H(x0, y)|.

Combining the above inequalities and letting |x− x0| → ∞, we obtain

lG(y) ≥ 1

(η(1))3(η−1(1))−2
lG(y0) =

C

(η(1))3(η−1(1))−2
. (4.3)
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Switching the roles of y0 and y, we obtain lG(y) ≤ (η(1))3(η−1(1))−2lG(y0). By Lemma
4.4, we have

LG(y) ≤ η(1)lG(y) ≤ (η(1))4(η−1(1))−2C. (4.4)

Because Rn1 is a geodesic space, to show that H(·, y) is a quasisimilarity it suffices
to gain control over lH(·,y) and LH(·,y). By (4.4) and Lemma 4.3 (3),

LH(·,y)(x) ≤ LG(y)/η−1(1) ≤ C(η(1))4(η−1(1))−3

for all x ∈ Rn1 , and by (4.3) and Lemma 4.3 (2),

lH(·,y)(x) ≥ 1

η(1)
lG(y) ≥ C

(η(1))4(η−1(1))−2
.

for all x ∈ Rn1 . Hence for a.e. y, H(·, y) is an (η(1)/η−1(1))4-quasisimilarity with
constant C. A limiting argument shows this is true for all y. Hence (1) holds.

(2) Recall that when r = 2 we have Y = Rn2 and DY = | · |α1/α2 . Hence to prove
(2) it suffices to show that G : (Rn2 , | · |) → (Rn2 , | · |) is a K-quasisimilarity with
K = (η(1)/η−1(1))5α2/α1 . As observed before, G is η1-quasisymmetric with respect to
the Euclidean metric, where η1(t) = (η(tα1/α2))α2/α1 . Because Rn2 is a geodesic space,
it suffices to gain control over leG and Le

G, where leG and Le
G are similar to lG and LG,

but with Euclidean metric instead of the metric DY . Because leG(p) = lG(p)α2/α1 and
Le

G(p) = LG(p)α2/α1 , it suffices to gain control over the quantities lG and LG in terms
of (η(1)/η−1(1))5.

Notice that (1) implies

C

(η(1)/η−1(1))4
≤ lH(·,y)(x) ≤ LH(·,y)(x) ≤ C(η(1)/η−1(1))4

for all x ∈ Rn1 and all y ∈ Y . By Lemma 4.3, for all y ∈ Y we have

C

(η(1)/η−1(1))5
≤ lG(y) ≤ LG(y) ≤ C(η(1)/η−1(1))5.

Hence (2) holds.

Lemma 4.7. Suppose that r ≥ 2 and there are constants K ≥ 1 and C > 0 with the
following properties:

(1) G : (Y, DY ) → (Y, DY ) is a K-quasisimilarity with constant C;

(2) For each y ∈ Y , H(·, y) is a K-quasisimilarity with constant C.

Then F is an (η(1)/η−1(1))K-quasisimilarity with constant C.
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Proof. Let (x1, y1), (x2, y2) ∈ Rn1 × Y . We shall first establish a lower bound for
D(F (x1, y1), F (x2, y2)). If |x1−x2| ≤ DY (y1, y2), then D((x1, y1), (x2, y2)) = DY (y1, y2)
and by (1),

D(F (x1, y1), F (x2, y2)) ≥ DY (G(y1), G(y2)) ≥ C

K
DY (y1, y2) =

C

K
D((x1, y1), (x2, y2)).

If |x1 − x2| > DY (y1, y2), then

D((x1, y1), (x2, y2)) = D((x1, y2), (x2, y2)) = |x1 − x2|,

and since F is an η-quasisymmetry, by using (2),

D(F (x1, y1), F (x2, y2)) ≥ 1

η(1)
D(F (x1, y2), F (x2, y2))

=
1

η(1)
|H(x1, y2)−H(x2, y2)|

≥ C

η(1)K
|x1 − x2|

=
C

η(1)K
D((x1, y1), (x2, y2)).

Hence we have a lower bound for D(F (x1, y1), F (x2, y2)).

By (1), G−1 : (Y,DY ) → (Y,DY ) is an K-quasisimilarity with constant C−1. Sim-
ilarly, (2) implies that for each y ∈ Y , (H(·, y))−1 is a K-quasisimilarity with constant
C−1. Also recall that F−1 is an η2-quasisymmetry and F is an η-quasisymmetry. Now
the argument in the previous paragraph applied to F−1 implies

D(F−1(x1, y1), F
−1(x2, y2)) ≥ 1

CKη2(1)
D((x1, y1), (x2, y2)).

It follows that

D(F (x1, y1), F (x2, y2)) ≤ CKη2(1)D((x1, y1), (x2, y2)) =
CK

η−1(1)
D((x1, y1), (x2, y2))

for all (x1, y1), (x2, y2) ∈ Rn, completing the proof.

Proof of Theorem 4.1. We induct on r. Lemmas 4.6 and 4.7 yield the desired
result in the case r = 2. Now we assume that r ≥ 3 and that the Theorem is true
for r − 1. By Lemma 4.2, F induces an η-quasisymmetry G : (Y, DY ) → (Y,DY ). It

follows that G is η1-quasisymmetric with respect to the metric D
α2/α1

Y (and it is easy
to verify that this is indeed a metric), where η1(t) = [η(tα1/α2)]α2/α1 . We point out
here that for (x2, · · · , xr), (x

′
2, · · · , x′r) ∈ Y ,

DY ((x2, · · · , xr), (x
′
2, · · · , x′r))

α2/α1 = max{|x2−x′2|, |x3−x′3|α2/α3 , · · · , |xr−x′r|α2/αr}.

12



Hence the induction hypothesis applied to G : (Y, D
α2/α1

Y ) → (Y, D
α2/α1

Y ) shows that
G is an (η1(1)/η−1

1 (1))2r-quasisimilarity with constant C. Therefore G : (Y,DY ) →
(Y,DY ) is a K1-quasisimilarity with constant Cα1/α2 , where

K1 =

(
η1(1)

η−1
1 (1)

) 2rα1
α2

=

(
η(1)

η−1(1)

)2r

. (4.5)

This implies that Cα1/α2/K1 ≤ lG(y) ≤ LG(y) ≤ Cα1/α2K1 for all y ∈ Y . Now
Lemma 4.3 yields

Cα1/α2
1

K1η(1)
≤ lH(·,y)(x) ≤ LH(·,y)(x) ≤ Cα1/α2

K1

η−1(1)

for all y ∈ Y and all x ∈ Rn1 . Since Rn1 is a geodesic space, for each y ∈ Y the map
H(·, y) is a K1

η(1)
η−1(1)

-quasisimilarity with constant Cα1/α2 . By Lemma 4.7, the map

F is a K1(
η(1)

η−1(1)
)2-quasisimilarity with constant Cα1/α2 . Here K1 is as in (4.5).

5 Parabolic Visual Metrics

In this section we introduce parabolic visual metrics, discuss their relation with the
visual metrics and give a sufficient condition for them to be doubling. We then use
these results to complete the proof of Theorem 1.1.

Parabolic visual metrics have been defined by Bonk-Kleiner ([BK]) for CAT(−1)
spaces. Here we formally construct parabolic visual metrics in the setting of Gromov
hyperbolic spaces. Since GA is Gromov hyperbolic, the theory developed here is
applicable to ∂GA as well. The metric D (on Rn = ∂GA \ {ξ0}) used in the previous
sections is bilipschitz equivalent with a parabolic visual metric constructed in this
section, see the discussion after Proposition 5.1.

Parabolic visual metric is defined on the one-point complement of the ideal bound-
ary. The relationship between visual metric and parabolic visual metric is similar to
the relationship between the spherical metric (on the sphere) and the Euclidean met-
ric (on the one point complement of the sphere). See Proposition 5.4 for the precise
statement.

Let X be a δ-hyperbolic proper geodesic metric space for some δ ≥ 0. Let ξ ∈ ∂X
and p ∈ X. Then there exists a ray from p to ξ. Let γ : [0,∞) → X be such a
ray. Define Bγ : X → R by Bγ(x) = limt→+∞(d(γ(t), x)− t). The triangle inequality
implies that the limit exists and that |Bγ(x)−Bγ(y)| ≤ d(x, y) for all x, y ∈ X. Note
that Bγ(γ(t0)) = −t0 for all t0 ≥ 0. Since any two rays γ1 and γ2 from p to ξ are at
Hausdorff distance at most δ from each other, we have |Bγ1(x) − Bγ2(x)| ≤ δ for all
x ∈ X.

The Buseman function Bξ,p : X → R centered at ξ with base point p is:

Bξ,p(x) = sup{Bγ(x) : γ is a geodesic ray from p to ξ}.
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Because Bγ is 1-Lipschitz, Bξ,p is 1-Lipschitz. The above discussion shows that
Bγ(x) ≤ Bξ,p(x) ≤ Bγ(x) + δ for all x ∈ X and every ray γ from p to ξ. By
Proposition 8.2 of [GdlH], there exists a constant c = c(δ) such that for any two
points p1, p2 ∈ X, any ξ ∈ ∂X and all x ∈ X we have

|Bξ,p1(x)−Bξ,p2(x)−Bξ,p1(p2)| ≤ c. (5.1)

Let ε > 0, p ∈ X, ξ ∈ ∂X, and η1 6= η2 ∈ ∂X\{ξ}. Given a complete geodesic σ
from η1 to η2, let Hξ,p(σ) = inf{Bξ,p(x) : x ∈ σ}. Define

Dξ,p,ε(η1, η2) = e−ε Hξ,p(η1,η2),

where

Hξ,p(η1, η2) = inf{Hξ,p(σ) : σ is a complete geodesic from η1 to η2}.
Since any two complete geodesics from η1 to η2 are at most Hausdorff distance 2δ
apart, we have Hξ,p(σ)−2δ ≤ Hξ,p(η1, η2) ≤ Hξ,p(σ) for any complete geodesic σ from
η1 to η2.

An argument similar to that found in [CDP, p.124] shows the following:

Proposition 5.1. There exists a constant ε0, depending only on δ, with the following
property. If X is a δ-hyperbolic proper geodesic metric space, for each 0 < ε ≤ ε0,
each p ∈ X and each ξ ∈ ∂X there exists a metric dξ,p,ε on ∂X\{ξ} such that
1
2
Dξ,p,ε(η1, η2) ≤ dξ,p,ε(η1, η2) ≤ Dξ,p,ε(η1, η2) for all η1, η2 ∈ ∂X\{ξ}.

The metric dξ,p,ε is called a parabolic visual metric. With X = GA, p = (0, 0), by
using Lemmas 6.1 and 6.2 one can see that Dξ0,p,1 is bilipschitz equivalent with De.
It follows from Lemma 2.1 and Proposition 5.1 that dξ0,p,α1 is bilipschitz equivalent
with the metric D considered in the previous sections.

We next discuss how dξ,p,ε varies with p and ε.

Proposition 5.2. Suppose X is a δ-hyperbolic proper geodesic metric space. Then
(1) For any p1, p2 ∈ X, the identity map id : (∂X\{ξ}, dξ,p1,ε) → (∂X\{ξ}, dξ,p2,ε) is
a K-quasisimilarity, where K depends only on δ;
(2) For 0 < ε1, ε2 ≤ ε0, the identity map id : (∂X\{ξ}, dξ,p,ε1) → (∂X\{ξ}, dξ,p,ε2) is

η-quasisymmetric with η(t) = 2
1+

ε2
ε1 t

ε2
ε1 ;

(3) For any p1, p2 ∈ X and any 0 < ε1, ε2 ≤ ε0, the identity map id : (∂X\{ξ}, dξ,p1,ε1) →
(∂X\{ξ}, dξ,p2,ε2) is quasisymmetric.

Proof. To prove (1) let η1, η2 ∈ ∂X\{ξ}. Then Proposition 5.1 and inequality (5.1)
imply

dξ,p2,ε(η1, η2) ≤ Dξ,p2,ε(η1, η2) = e−ε Hξ,p2
(η1,η2) ≤ e−εHξ,p1

(η1,η2)+εBξ,p1
(p2)+cε

≤ 2 ecε · eεBξ,p1
(p2) · dξ,p1,ε(η1, η2).
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Similarly, we obtain dξ,p2,ε(η1, η2) ≥ 1
2 ecε ·eεBξ,p1

(p2) ·dξ,p1,ε(η1, η2). The statement holds

with K = 2 ecε0 and constant C = eεBξ,p1
(p2).

The claim (2) follows from Proposition 5.1, and (3) follows from (1) and (2).

We next discuss the relation between the parabolic visual metric and the visual
metric. Recall that there is a constant ε1 depending only on δ such that for any p ∈ X
and any 0 < ε ≤ ε1, there is a visual metric dp,ε on ∂X satisfying

1

2
e−ε(η1|η2)p ≤ dp,ε(η1, η2) ≤ e−ε(η1|η2)p (5.2)

for all η1, η2 ∈ ∂X. Here (ξ|η)p denotes the Gromov product of ξ and η based at p,
and is defined by

(ξ|η)p =
1

2
sup lim inf

i,j→∞
(d(p, xi) + d(p, yj)− d(xi, yj))

where the supremum is taken over all sequences {xi} → ξ, {yi} → η. By the δ-
hyperbolicity of X,

(ξ|η)p − 2δ ≤ lim inf
i,j→∞

(xi|yj)p ≤ (ξ|η)p (5.3)

for all p ∈ X, all ξ, η ∈ ∂X and all sequences {xi} → ξ, {yi} → η; we refer the
interested reader to Chapter 7 of [GdlH].

To formulate the relation between visual metric and parabolic visual metric, we
need to recall the notion of metric inversion and sphericalization. The reader is
referred to [BHX] for more details.

Given a metric space (X, d) and p ∈ X, there is a metric dp on X\{p} satisfying

d(x, y)

4d(x, p) d(y, p)
≤ dp(x, y) ≤ d(x, y)

d(x, p) d(y, p)

for all x, y ∈ X\{p}. Furthermore, the identity map (X\{p}, d) → (X\{p}, dp) is
η-quasimöbius with η(t) = 16t. We call dp the metric inversion of (X, d) at p.

Let X be an unbounded metric space and p ∈ X. Let Sp(X) = X ∪ {∞}, where
∞ is a point not in X. We define a function sp : Sp(X)× Sp(X) → [0,∞) as follows:

sp(x, y) = sp(y, x) =





d(x,y)
[1+d(x,p)][1+d(y,p)]

if x, y ∈ X,
1

1+d(x,p)
if x ∈ X and y = ∞,

0 if x = ∞ = y.

It was shown in [BK] that there is a metric d̂p on Sp(X) satisfying

1

4
sp(x, y) ≤ d̂p(x, y) ≤ sp(x, y) for all x, y ∈ Sp(X). (5.4)
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Furthermore, the identity map (X, d) → (X, d̂p) is η-quasimöbius with η(t) = 16t.

We call d̂p the sphericalization of (X, d) at p.

If (Y, d) is a bounded metric space, and if a metric inversion is applied to Y ,
followed by an application of sphericalization, the resulting space is bilipschitz equiv-

alent to (Y, d). To be more precise, let p 6= q ∈ Y and f : (Y, d) → (Sq(Y \{p}), (̂dp)q)
be the map that is identity on Y \{p} with f(p) = ∞. Then f is bilipschitz (see for
example [BHX, Proposition 3.9]).

We need the following result for the proof of Proposition 5.4.

Theorem 5.3 ([CDP, Chapter 8]). Let (Y, h) be a δ-hyperbolic space, y0 ∈ Y , and
Y0 = {y0, y1, · · · , yn} be a set of n + 1 points in Y ∪ ∂Y . For each 1 ≤ i ≤ n,
let [y0, yi] be a fixed geodesic connecting y0 and yi. Let X denote the union of the
geodesics [y0, yi], and choose a positive integer k such that 2n ≤ 2k + 1. Then there
exists a simplicial tree, denoted T (X), and a continuous map u : X → T (X) which
satisfies the following properties:

(i) For each i, the restriction of u to the geodesic [y0, yi] is an isometry;

(ii) For every x and y in X we have h(x, y)− 2kδ ≤ d(u(x), u(y)) ≤ h(x, y), where
d is the metric on T (X).

Proposition 5.4. Let X be a δ-hyperbolic proper geodesic metric space, ξ ∈ ∂X,
p ∈ X and 0 < ε ≤ min{ε0, ε1}.
(1) The identity map

id : (∂X\{ξ}, dξ,p,ε) → (∂X\{ξ}, (dp,ε)ξ)

is L-bilipschitz, where L is a constant depending only on δ. In particular, the parabolic
visual metric and the metric inversion of the visual metric about the point ξ are
bilipschitz equivalent;
(2) Let η ∈ ∂X\{ξ} and

f : (∂X, dp,ε) → (Sη(∂X\{ξ}), (̂dξ,p,ε)η)

be the bijection that is identity on ∂X\{ξ} and maps ξ to ∞. Then f is bilipschitz.
In particular, the visual metric and the sphericalization of the parabolic visual metric
are bilipschitz equivalent.

Proof. Let D = dp,ε denote the visual metric. Then (dp,ε)ξ = Dξ.

We first prove (1). Let η1, η2 ∈ ∂X\{ξ}. By Proposition 5.1 and inequality (5.2),

Dξ(η1, η2)

dξ,p,ε(η1, η2)
≤ dp,ε(η1, η2)

dp,ε(ξ, η1)dp,ε(ξ, η2)
2 eεHξ,p(η1,η2)

≤ e−ε(η1|η2)p 2 eε(ξ|η1)p 2 eε(ξ|η2)p 2 eεHξ,p(η1,η2)

= 8 eε{Hξ,p(η1,η2)+(ξ|η1)p+(ξ|η2)p−(η1|η2)p}.
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Similarly,
Dξ(η1, η2)

dξ,p,ε(η1, η2)
≥ 1

8
eε{Hξ,p(η1,η2)+(ξ|η1)p+(ξ|η2)p−(η1|η2)p}.

Now (1) follows from the following claim.

Claim: There is a constant C depending only on δ such that if η1 6= η2 then
|Hξ,p(η1, η2) + (ξ|η1)p + (ξ|η2)p − (η1|η2)p| ≤ C.

We now prove the claim. Let γ be a ray from p to ξ. Pick a point y0 ∈ γ that
is far away from any complete geodesic joining η1 and η2. Let γi (i = 1, 2) be a ray
from y0 to ηi. Set X = γ ∪ γ1 ∪ γ2. By Theorem 5.3 (with the choice k = 3) there is
a tree T := T (X) and a map u : X → T with the properties stated in Theorem 5.3.
Let y′0, p

′ ∈ T and ξ′, η′1, η
′
2 ∈ ∂T be the points corresponding to y0, p, ξ η1 and

η2 respectively. Also let x′ be the branch point of ξ′η′1 and ξ′η′2, and let y′ be the
projection of p′ onto the tripod Y := x′ξ′ ∪ x′η′1 ∪ x′η′2. Let y ∈ γ be the point on γ
that is mapped to y′ by u (by choosing y0 far away from p we may assume that y lies
between p and y0). Similarly let xi ∈ γi be the point mapped to x′ by u. Let σ be
a complete geodesic from η1 to η2. Because X is δ-hyperbolic, geodesic triangles in
X ∪ ∂X are 24δ-thin. Also notice that the union x′η′1 ∪ x′η′2 is a complete geodesic in
T . Now the properties of the map u given by Theorem 5.3 imply that the Hausdorff
distance between σ and x1η1 ∪ x2η2 is bounded above by a constant c1 = c1(δ).

Choose zj ∈ γ1 and wj ∈ γ2 with zj → η1 and wj → η2. Then the property of the
map u and inequality (5.3) imply that |(η1|η2)p− (η′1|η′2)p′| ≤ 11δ. Notice that on the
tree T we have (η′1|η′2)p′ = d(p′, η′1η

′
2). Hence |(η1|η2)p − d(p′, η′1η

′
2)| ≤ 11δ. Similar

inequalities hold for (ξ|η1)p and (ξ|η2)p.

Since the Hausdorff distance between σ and x1η1∪x2η2 is at most c1, the definition
of Hξ,p(σ) and the property of the map u imply that |Hξ,p(σ)−Hξ′,p′(η

′
1, η

′
2)| ≤ c1+13δ.

The discussion about Hξ,p(η1, η2) shows that |Hξ,p(η1, η2) −Hξ,p(σ)| ≤ 2δ. It follows
that |Hξ,p(η1, η2)−Hξ′,p′(η

′
1, η

′
2)| ≤ c1 + 15δ. Now on the tree T , by considering three

cases depending on whether y′ ∈ x′ξ′, y′ ∈ x′η′1 or y′ ∈ x′η′2, we can verify that

Hξ′,p′(η
′
1, η

′
2) + d(p′, ξ′η′1) + d(p′, ξ′η′2)− d(p′, η′1η

′
2) = 0.

Now the claim follows by combining the above estimates.

We now prove (2). By (1), the identity map

id : (∂X\{ξ}, dξ,p,ε) → (∂X\{ξ}, Dξ)

is bilipschitz. Pick η ∈ ∂X\{ξ}. Then the map id extends to a map F between their
sphericalizations

F : (Sη(∂X\{ξ}), (̂dξ,p,ε)η) → (Sη(∂X\{ξ}), (̂Dξ)η).

Since id is bilipschitz, inequality (5.4) can be used on (̂dξ,p,ε)η and (̂Dξ)η to verify that
F is also bilipschitz. On the other hand, the natural identification between (∂X, dp,ε)

and (Sη(∂X\{ξ}), (̂Dξ)η) is bilipschitz. The statement now follows.
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We next give a sufficient condition for the parabolic visual metric to be doubling.
Recall that a metric space is doubling if there is a constant N such that every open
ball with radius R > 0 can be covered by at most N open balls with radius R/2. By
a theorem of Assouad ([A]), a metric space is doubling if and only if the metric space
admits a quasisymmetric embedding into some Euclidean space.

A metric space X has bounded growth at some scale, if there are constants r, R
with R > r > 0, and an integer N ≥ 1 such that every open ball of radius R in X
can be covered by N open balls of radius r.

The following is a consequence of Proposition 5.4, a result of Bonk-Schramm and
Assouad’s theorem.

Theorem 5.5. Let X be a Gromov hyperbolic geodesic metric space with bounded
growth at some scale. Then for any ξ ∈ ∂X, p ∈ X and any 0 < ε ≤ ε0, the metric
space (∂X\{ξ}, dξ,p,ε) is doubling.

Proof. Under the assumption of the Theorem, Bonk-Schramm has proved that the
ideal boundary with the visual metric is doubling ([BS, Theorem 9.2]). Hence there
is a quasisymmetric embedding f : (∂X, dp,ε) → Rn for some n ≥ 1. By Lemma 5.6
below, f : (∂X\{ξ}, (dp,ε)ξ) → (Rn\{f(ξ)}, | · |f(ξ)) is also a quasisymmetric em-
bedding, where | · | denotes the Euclidean metric. However, the metric inversion
of the Euclidean space is still a Euclidean space (with one point removed). Hence
(∂X\{ξ}, (dp,ε)ξ) admits a quasisymmetric embedding into a Euclidean space, and
so is doubling. Since doubling is invariant under bilipschitz map, the theorem now
follows from Proposition 5.4 (1).

Recall that a homeomorphism f : X → Y between two metric spaces is η-
quasimöbius for some homeomorphism η : [0,∞) → [0,∞), if for every four distinct
points x1, x2, x3, x4 ∈ X, we have

d(f(x1), f(x3)) d(f(x2), f(x4))

d(f(x1), f(x4)) d(f(x2), f(x3))
≤ η

(
d(x1, x3) d(x2, x4)

d(x1, x4) d(x2, x3)

)
.

Lemma 5.6. Suppose that f : (X, d) → (Y, d) is a quasisymmetric embedding. Then
for any p ∈ X, f : (X\{p}, dp) → (Y \{f(p)}, df(p)) is also a quasisymmetric embed-
ding.

Proof. Suppose f is an η-quasisymmetric embedding for some η. Then f is an η̃-
quasimöbius embedding for some η̃ depending only on η, see [V2, Theorem 6.25].
Now let x, y, z ∈ X\{p} be three distinct points. Set q = f(p). We calculate

dq(f(x), f(z))

dq(f(y), f(z))
≤ d(f(x), f(z))

d(f(x), f(p)) d(f(z), f(p))

4 d(f(y), f(p)) d(f(z), f(p))

d(f(y), f(z))

= 4
d(f(x), f(z)) d(f(y), f(p))

d(f(x), f(p)) d(f(y), f(z))
.
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Similarly,
dp(x, z)

dp(y, z)
≥ 1

4

d(x, z) d(y, p)

d(x, p) d(y, z)
.

It follows that
dq(f(x), f(z))

dq(f(y), f(z))
≤ 4 η̃

(
4

dp(x, z)

dp(y, z)

)
.

Hence f : (X\{p}, dp) → (Y \{f(p)}, df(p)) is η′-quasisymmetric with η′(t) = 4 η̃(4t).

Let (X, d) be an unbounded complete metric space with an Ahlfors Q-regular

(Q > 1) Borel measure µ, and p ∈ X. On the sphericalization (Sp(X), d̂p) we define
a measure µ′ as follows: µ′({∞}) = 0, and on X = Sp(X)\{∞}, µ′ is absolutely
continuous with respect to µ with Radon-Nikodym derivative

dµ′

dµ
(x) =

1

(1 + d(p, x))2Q

for x ∈ X. It can be shown that (Sp(X), d̂p) with µ′ is also Q-regular.

Proof of Theorem 1.1. Let F : (∂GA, dp,ε) → (∂GA, dp,ε) be a quasisymmetric
map, where dp,ε is a visual metric (p ∈ GA and ε > 0 is sufficiently small). We first
prove that F (ξ0) = ξ0. Let D be the metric on ∂GA\{ξ0} = Rn considered in the
previous sections. We have observed that D is bilipschitz equivalent with a parabolic
visual metric on ∂GA\{ξ0}. Let θ ∈ ∂GA\{ξ0} = Rn. Proposition 5.4 implies that
the natural identification

(Sθ(Rn), D̂θ) = (Sθ(∂GA\{ξ0}), D̂θ) → (∂GA, dp,ε)

is bilipschitz. It follows that (after the above natural identification)

F : (Sθ(Rn), D̂θ) → (Sθ(Rn), D̂θ)

is quasisymmetric. Let µ be the product of the Hausdorff measures on the fac-

tors (Rni , | · |
α1
αi ) of Rn. Since the metric measure space (Rn, D, µ) is Q-regular

with Q = Σr
i=1ni

αi

α1
, the remark preceding the proof shows that the metric mea-

sure space (Sθ(Rn), D̂θ, µ
′) is also Q-regular. Here µ′ is obtained from µ as de-

scribed in the remark preceding the proof. Hence Theorem 3.1 applies to the map
F : (Sθ(Rn), D̂θ) → (Sθ(Rn), D̂θ) and the measure µ′.

Suppose F (ξ0) 6= ξ0. Under the above natural identification, this means that
F (∞) 6= ∞. Then F−1(∞) lies in exactly one horizontal leaf. Fix some y ∈ Y such
that Rn1 × {y} does not contain F−1(∞). Notice that the subset (Rn1 × {y}) ∪ {∞}
of Sθ(Rn) is an n1-dimensional topological sphere. So F (Rn1 × {y} ∪ {∞}) is an n1-
dimensional topological sphere in Rn. Since each horizontal leaf is an n1-dimensional
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Euclidean space, the set F (Rn1 × {y} ∪ {∞}) is not contained in any horizontal leaf.
It follows that as a dense subset of F (Rn1 ×{y} ∪ {∞}), the set F (Rn1 ×{y}) is also
not contained in any horizontal leaf. Hence there are two points p and q in Rn1 ×{y}
such that F (p) and F (q) are not in the same horizontal leaf.

Let γ be the Euclidean line segment from p to q and Γ be the family of straight
segments parallel to γ in Rn whose union is an n-dimensional circular cylinder C
with γ as the central axis. The curves in Γ are rectifiable with respect to the metric
D. Since F is a homeomorphism, by choosing the radius of the circular cylinder
to be sufficiently small (by a compactness argument) we may assume that no curve
in Γ is mapped into a horizontal leaf and that F−1(∞) is not in this cylinder. It
follows that F (Γ) has no locally rectifiable curve with respect to D. Now notice that

both C and F (C) are compact subsets of Rn. Hence the two metrics D and D̂θ are
bilipschitz equivalent on C, as well as on F (C). It follows that F (Γ) has no locally

rectifiable curve with respect to D̂θ. Hence ModQF (Γ) = 0 in the metric measure

space (Sθ(Rn), D̂θ, µ
′). Theorem 3.1 then implies that ModQΓ = 0 in the metric

measure space (Sθ(Rn), D̂θ, µ
′). On the other hand, ModQΓ > 0 in the metric measure

space (Rn, D, µ) (see the proof of Theorem 3.2). Since D and D̂θ are bilipschitz
equivalent on C, and µ and µ′ are also comparable on C, we have ModQΓ > 0 in the

metric measure space (Sθ(Rn), D̂θ, µ
′), a contradiction. Hence F (ξ0) = ξ0.

Next we prove that F is bilipschitz with respect to the metric D. Since the map
F : (∂GA, dp,ε) → (∂GA, dp,ε) is quasisymmetric, Lemma 5.6 implies that

F : (∂GA\{ξ0}, (dp,ε)ξ0) → (∂GA\{ξ0}, (dp,ε)ξ0)

is also a quasisymmetric map. By Proposition 5.4, id : (∂GA\{ξ0}, (dp,ε)ξ0) →
(∂GA\{ξ0}, dξ0,p,ε) is bilipschitz, where dξ0,p,ε is a parabolic visual metric. It follows
that

F : (∂GA\{ξ0}, dξ0,p,ε) → (∂GA\{ξ0}, dξ0,p,ε)

is quasisymmetric. By Proposition 5.2, any two parabolic visual metrics are qua-
sisymmetrically equivalent. By the discussion following Proposition 5.1, it follows
that F : (∂GA\{ξ0}, D) → (∂GA\{ξ0}, D) is quasisymmetric. Now the result follows
from Theorem 4.1.

6 Consequences

In this section we will prove the corollaries from the introduction.

We note that because GA has sectional curvature −α2
r ≤ K ≤ −α2

1, GA is a proper
geodesic δ-hyperbolic space with δ depending only on α1.

Proof of Corollary 1.3.. Suppose there is a quasiisometry f : GA → G from GA

to a finitely generated group G, where G is equipped with a fixed word metric. Since
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GA is Gromov hyperbolic, it follows that G is Gromov hyperbolic and f induces a
quasisymmetric map ∂f : ∂GA → ∂G. The left translation of G on itself induces an
action of G on the Gromov boundary ∂G by quasisymmetric maps. By conjugating
this action with ∂f we obtain an action of G on ∂GA by quasisymmetric maps. By
Theorem 1.1, this action has a global fixed point. It follows that the action of G on
∂G has a global fixed point. This can happen only when G is virtually infinite cyclic,
in which case the Gromov boundary ∂G consists of only two points. This contradicts
the fact that ∂GA is a sphere of dimension n ≥ 2 (since r ≥ 2).

The proofs of Corollaries 1.4 and 1.2 require some preparation.

Let X be a proper geodesic δ-hyperbolic space and ξ1, ξ2, ξ3 ∈ ∂X be three distinct
points in the Gromov boundary. For any constant C ≥ 0, a point x ∈ X is called a
C-quasicenter of the three points ξ1, ξ2, ξ3 if for each i = 1, 2, 3, there is a geodesic
σi joining ξi and ξi+1 (ξ4 := ξ1) such that the distance from x to σi is at most C.
For any C ≥ 0, there is a constant C ′ that depends only on δ and C such that the
distance between any two C-quasicenters of ξ1, ξ2, ξ3 is at most C ′.

The following three lemmas hold in all Hadamard manifolds with pinched negative
sectional curvature.

Lemma 6.1. Let (x, t) ∈ GA = Rn × R be an arbitrary point, and σ a geodesic
through (x, t) and tangent to the horosphere Rn × {t}. Let p, q ∈ Rn ≈ ∂GA\{ξ0} be
the two endpoints of σ. Then (x, t) is a 12δ-quasicenter for p, q, ξ0.

Proof. As an ideal geodesic triangle in a δ-hyperbolic space, σ ∪ γp ∪ γq is 4δ-thin.
Hence there is some point m ∈ γp ∪ γq with d((x, t),m) ≤ 4δ. We may assume
m = (p, t′) ∈ γp for some t′ ∈ R. We may further assume that (p, t′) is the point on γp

nearest to (x, t). Then the geodesic segment from (x, t) to (p, t′) must be perpendicular
to the geodesic γp. This implies t′ > t. Since (x, t) is the highest point on σ and is more
than 4δ below the horosphere through (p, t′+4δ), we have d((p, t′+4δ), σ) > 4δ. Now
the thin triangle condition applied to the point (p, t′+4δ) and the triangle σ∪γp∪γq

implies there is some (q, t′′) ∈ γq with d((p, t′ + 4δ), (q, t′′)) ≤ 4δ. The triangle
inequality together with d((p, t′), (p, t′ + 4δ)) = 4δ implies d((x, t), (q, t′′)) ≤ 12δ.
Hence (x, t) is a 12δ-quasicenter for p, q, ξ0.

Let M be a simply connected Riemannian manifold with sectional curvature−b2 ≤
K ≤ −a2, where b > a > 0. For any ξ ∈ ∂M , any horosphere H centered at ξ, and
any two points x, y ∈ H, the distance dH(x, y) between x and y in the horosphere is
related to d(x, y) by (see [HI]):

2

a
sinh

(a

2
d(x, y)

)
≤ dH(x, y) ≤ 2

b
sinh

(
b

2
d(x, y)

)
. (6.1)

For any s > 0, let Hs be the horosphere centered at ξ that is closer to ξ than H and
is at distance s from H. Let φs : H → Hs be the map which sends each x ∈ H to the
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unique intersection point of xξ withHs. Then for each tangent vector v ∈ TxH ofH at
x we have (see [HI]): e−bs‖v‖ ≤ ‖dφs(v)‖ ≤ e−as‖v‖. It follows that for any rectifiable
curve c in H, the lengths of c and φ(c) are related by e−bs`(c) ≤ `(φ(c)) ≤ e−as`(c).

Lemma 6.2. Let p, q ∈ Rn ≈ ∂GA\{ξ0} and suppose that De(p, q) = et0. Then (p, t0)
is a C-quasicenter for p, q, ξ0, where C depends only on α1 and αr.

Proof. Let σ be the geodesic in GA joining p, q ∈ ∂GA\{ξ0}, and (x, t) the highest
point on σ. We may assume d((x, t), γp) ≤ 4δ. Let (p, t1) ∈ γp be the point nearest
to (x, t). Then t1 > t and the argument in the proof of Lemma 5.1 gives a point
(q, t2) ∈ γq such that d((p, t1), (q, t2)) ≤ 8δ. It follows that |t1− t2| ≤ 8δ. The triangle
inequality then implies d((p, t1), (q, t1)) ≤ 16δ.

By the definition of De, we have dRn×{t0}(p, q) = 1. Hence d((p, t0), (q, t0)) ≤
1. If t0 ≤ t1, then the convexity of the distance function f(t) := d(γp(t), σ) =
d((p, t), σ) implies d((p, t0), σ) ≤ d((p, t1), σ) ≤ 4δ. In this case, (p, t0) is a max{1, 4δ}-
quasicenter of p, q, ξ0. Now we suppose t0 > t1. Join (p, t1) and (q, t1) by a shortest
path c in the horosphere H := Rn×{t1}. By (6.1) we have `(c) ≤ 2

αr
sinh (8αrδ). The

projection φt0−t1(c) is a path in the horosphere Rn × {t0} joining (p, t0) and (q, t0).
Hence

1 = dRn×{t0}(p, q) ≤ `(φt0−t1(c)) ≤ e−(t0−t1)α1`(c) ≤ 2

αr

e−(t0−t1)α1 sinh (8αrδ) .

It follows that t0 − t1 ≤ C1, where

C1 =
ln[ 2

αr
sinh (8αrδ)]

α1

.

The triangle inequality then implies d((p, t0), σ) ≤ C1 + 4δ. Hence (p, t0) is a C-
quasicenter for p, q, ξ0, where C = max{1, C1 + 4δ}.

Lemma 6.3. Let p, q ∈ Rn ≈ ∂GA\{ξ0} and suppose that De(p, q) = et0.
(1) If t1, t2 < t0, then |d((p, t1), (q, t2))− (t0 − t1)− (t0 − t2)| ≤ C, where C depends
only on α1 and αr;
(2) If t1 ≥ t0 or t2 ≥ t0, then |t1 − t2| ≤ d((p, t1), (q, t2)) ≤ |t1 − t2|+ 1.

Proof. (1) Let σ be the geodesic in GA joining p and q, and (x, t) the highest point
on σ. By Lemmas 6.1 and 6.2, the three points (p, t0), (q, t0) and (x, t) are all c1-
quasicenters of ξ0,p, q, where c1 depends only on α1 and αr. Hence d((p, t0), (x, t)) ≤
c2 and d((q, t0), (x, t)) ≤ c2 for some c2 = c2(c1, δ) = c2(α1, αr). Since t1 < t0,
the convexity of distance function implies that d((p, t1),m1) ≤ d((p, t0), (x, t)) ≤ c2

for some point m1 ∈ σ lying between (x, t) and p. Similarly, there is some point
m2 ∈ σ between (x, t) and q with d((q, t2),m2) ≤ c2. By triangle inequality we have
|d((p, t1), (q, t2))−d(m1,m2)| ≤ 2c2. Since d((p, t0), (x, t)) ≤ c2 and d((p, t1),m1) ≤ c2,
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the triangle inequality also implies |d((p, t0), (p, t1)) − d(m1, (x, t))| ≤ 2c2. Similarly,
|d((q, t0), (q, t2))− d(m2, (x, t))| ≤ 2c2. Since d(m1,m2) = d(m1, (x, t)) + d((x, t),m2)
and d((p, t0), (p, t1)) = t0− t1, d((q, t0), (q, t2)) = t0− t2, the above estimates together
yield |d((p, t1), (q, t2))− (t0 − t1)− (t0 − t2)| ≤ 6c2.

(2) We may assume t1 ≥ t0. Then the convexity of distance function and the
definition of De imply

d((p, t1), (q, t1)) ≤ d((p, t0), (q, t0)) ≤ dRn×{t0}((p, t0), (q, t0)) = 1.

Now (2) follows from the triangle inequality and (2.1).

Corollary 1.4 follows from Theorem 1.1 and the following lemma. Notice that, by
Theorem 1.1, for any quasiisometry f : GA → GA, the boundary map ∂f fixes ξ0 and
restricts to a homeomorphism of ∂GA \ {ξ0}, which we still denote by ∂f .

Lemma 6.4. Let f : GA → GA be a quasiisometry. Then f is height-respecting if
and only if ∂f : (∂GA \ {ξ0}, D) → (∂GA \ {ξ0}, D) is a bilipschitz map.

Proof. Dymarz ([D, Lemma 7]) proved that the boundary map of a height-respecting
quasiisometry is a bilipschitz map with respect to the quasimetric Ds. It follows
that the boundary map is also bilipschitz with respect to the metric D. Hence we
only prove the “if” part. So we assume ∂f is bilipschitz w.r.t. D. Notice that
it is also bilipschitz w.r.t. De. Hence there is a constant L ≥ 1 such that for all
p, q ∈ ∂GA \ {ξ0} = Rn,

De(p, q)/L ≤ De(∂f(p), ∂f(q)) ≤ LDe(p, q).

Let (x, t) ∈ GA = Rn × R. Pick any geodesic σ through (x, t) that is tangent to
the horosphere Rn × {t}. Then the two endpoints p, q of σ are in ∂GA\{ξ0} = Rn.
If t0 is the real number such that dRn×{t0}((p, t0), (q, t0)) = 1, then by the defini-
tion of De we have De(p, q) = et0 . By Lemmas 6.1 and 6.2 both (x, t) and (p, t0)
are c1-quasicenters of the three points p, q, ξ0 ∈ ∂GA, where c1 depends only on
α1 and αr. Hence there is a constant c2 depending only on c1 and δ such that
d((x, t), (p, t0)) ≤ c2. By (2.1), we have |t − t0| ≤ c2. Let t′0 be the real num-
ber such that dRn×{t′0}((∂f(p), t′0), (∂f(q), t′0)) = 1. Then De(∂f(p), ∂f(q)) = et′0 .
Since f is a quasiisometry between δ-hyperbolic spaces, f(x, t) is a c3-quasicenter
of ∂f(p), ∂f(q), ∂f(ξ0) = ξ0, where c3 depends only on δ, c1 and the quasiisome-
try constants of f . As (∂f(p), t′0) is a c1-quasicenter of these three points, we have
d((∂f(p), t′0), f(x, t)) ≤ c4, with c4 depending only on c1, c3 and δ. Let t′ be the
height of f(x, t). Then by (2.1) again, |t′ − t′0| ≤ c4.

The bilipschitz assumption of ∂f and the formulas De(∂f(p), ∂f(q)) = et′0 and
De(p, q) = et0 imply that |t0 − t′0| ≤ ln L. Combining this with |t − t0| ≤ c2 and
|t′ − t′0| ≤ c4, we obtain |t− t′| ≤ ln L + c2 + c4. Hence the heights of any point (x, t)
and its image f(x, t) differ by at most a constant that is independent of (x, t). The
corollary follows.
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Proof of Corollary 1.2. Let f : GA → GA be an (L,A)-quasiisometry. By Theo-
rem 1.1, the boundary map ∂f : ∂GA → ∂GA fixes the point ξ0. Let (x1, t1), (x2, t2) ∈
Rn × R = GA. Suppose De(x1, x2) = et0 . We only consider the case t0 > t1, t2, the
other cases being similar. By Lemma 6.3 there is a constant c1 = c1(α1, αr) such that

|d((x1, t1), (x2, t2))− (t0 − t1)− (t0 − t2)| ≤ c1. (6.2)

Let t′i (i = 1, 2) be the height of f(xi, ti). By Corollary 1.4, there is a constant
c2 ≥ 0 such that |ti − t′i| ≤ c2. Since f(γxi

) is an (L,A)-quasigeodesic joining ξ0 and
∂f(xi), there is a constant c3 depending only on L, A and δ such that the Hausdorff
distance between f(γxi

) and γ∂f(xi) is at most c3. Hence there is some t′′i such that
d((∂f(xi), t

′′
i ), f(xi, ti)) ≤ c3. It follows that |t′i− t′′i | ≤ c3 and hence |ti− t′′i | ≤ c2 + c3.

Suppose De(∂f(x1), ∂f(x2)) = et′0 . By Lemma 6.2 (∂f(x1), t
′
0) is a c4-quasicenter

for ξ0, ∂f(x1), ∂f(x2), where c4 = c4(α1, αr). Similarly, (x1, t0) is a c4-quasicenter
for ξ0, x1, x2. On the other hand, since f is an (L,A) quasiisometry, f(x1, t0) is a
c5-quasicenter of ξ0, ∂f(x1) and ∂f(x2), where c5 = c5(L,A, c4, δ). It follows that
d((∂f(x1), t

′
0), f(x1, t0)) ≤ c6 for some constant c6 = c6(c4, c5, δ). Let t′′0 be the height

of f(x1, t0). Then |t′0 − t′′0| ≤ c6. By Corollary 1.4 we have |t0 − t′′0| ≤ c2. Hence
|t0 − t′0| ≤ c6 + c2.

Next we consider two cases:
Case 1. Both t′′1, t

′′
2 < t′0.

In this case, by Lemma 6.3 (1) again we have

|d((∂f(x1), t
′′
1), (∂f(x2), t

′′
2))− (t′0 − t′′1)− (t′0 − t′′2)| ≤ c1.

Combining this with (6.2) and the estimates |ti− t′′i | ≤ c2 + c3, |t0− t′0| ≤ c6 + c2, and
d((∂f(xi), t

′′
i ), f(xi, ti)) ≤ c3, we obtain

|d((x1, t1), (x2, t2))− d(f(x1, t1), f(x2, t2))| ≤ 2c1 + 4c2 + 4c3 + 2c6.

Case 2. Either t′′1 ≥ t′0 or t′′2 ≥ t′0.
Without loss of generality, we may assume t′′1 ≥ t′0 and t′′1 ≥ t′′2. Then Lemma 6.3 (2)
implies

|d((∂f(x1), t
′′
1), (∂f(x2), t

′′
2))− (t′′1 − t′′2)| ≤ 1. (6.3)

On the other hand, t′′1 ≥ t′0 and the assumption t0 > t1 together with |t0−t′0| ≤ c6 +c2

and |ti − t′′i | ≤ c2 + c3 imply that |t0 − t1| ≤ 2c2 + c3 + c6. Now it follows from (6.2)
and the triangle inequality that

|d((x1, t1), (x2, t2))− (t1 − t2)| ≤ c1 + 4c2 + 2c3 + 2c6. (6.4)

Now (6.3), (6.4), |ti − t′′i | ≤ c2 + c3, and d((∂f(xi), t
′′
i ), f(xi, ti)) ≤ c3 imply

|d((x1, t1), (x2, t2))− d(f(x1, t1), f(x2, t2))| ≤ 1 + c1 + 6c2 + 6c3 + 2c6.
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